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Abstract

This paper details the recreation of the classic arcade game Donkey Kong. The arcade
game was created by two students using the Hardware Description Language, Verilog. Our goal
was to implement three levels of the game. We were successful in accomplishing our goal. In
the time frame of several weeks, we designed and built both the Game and Display Logic, which
are the two main components of this project. The player controls Mario, and the objective of
the game is to reach the princess. Overall, the experience was valuable and enjoyable.
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Overview

Donkey Kong was created by the legendary game designer from Nintendo, Shigeru Miyamoto.
He and his development team created the game in the year 1982. It was an instant hit in
arcades around the country, and Nintendo sold thousands upon thousands of systems per
month. With this in mind, we decided to implement a recreation of this game on the FPGA lab
kit.

There are three levels in the game. The game consists of three main characters: Donkey Kong,
the princess, and Mario (originally known as “Jumpman”). The princess is situated on the very
top platform and Donkey Kong is situated on the platform below her on the far left. Mario
starts off the game at the lowest platform on the far left side. The player controls Mario, and
there is only one objective to our game: to reach the princess and “save” her from the evil
monster, Donkey Kong. There are ladders connecting each platform. While the player tries to
climb up these ladders to reach the princess, Donkey Kong tries to throw barrels in order to
impede Mario’s progression. If Mario gets hit by a barrel, he loses one life. If he loses all of his
lives, the game is over. However, if he reaches the princess, the player proceeds to the next
level.

In the second level, there is a timer. The objective is the same as in the first level, but now the
player needs to reach the princess in thirty seconds or less. If the player does not reach the
princess in that time frame, he or she loses a life. On the other hand, if the player reaches the
princess in the second level, he or she proceeds to the third level, which is the final level. The
final level has one last twist to it. Not only is Donkey Kong throwing barrels to stop the player
from reaching the princess, but there are also “electrocution zones” where if Mario touches
them he dies. If the player manages to overcome these obstacles and reach the princess for
the third and final time, the player wins the game, and the game is over.



Module Descriptions and Implementations

Description

Page |6

clock 65mhz
—

reset

vsync

Game
Logic

Basic Block Diasram Qverview

restart

[1:0]mario life

[15:0]marjo score

game over

h 4

[5:0]time left

A 4

[1:0]dk_frame

[1:0]mario frame

[1 O:O]Iﬂ}rioix

[10:0]barrel x(x5)

[9:0]mario v

[9:0]barrel y(x5)

moving_left

up

'Y Y 4

down left righ ju

mp

restart

clock 65mhz
e
keyboard data

—_—
keyboard clock
—

Keyboard Interface

Display
Logic

R[8:0]
G[8:01
XVGA
1024x768 |2
pixel[23:0] at 60Hz
v sync, | 1o
h_syne, Game and
v count, | Display Logic
h count | Modules

Game Logic

Figure 1. Basic Block Diagram Overview

The Game Logic controls the visuals onscreen. The sole purpose of the Game Logic is to make

sure the user (who controls Mario) and the objects in the game adhere to the strict rules

designed for them. In order to achieve its goal, the game logic has to be designed to calculate

and know numerous details. The details it needs to know and calculate range from calculating

the current positions of Mario and the barrels onscreen to knowing when to end the game or

advance to the next level.

The Game Logic consists of seven main modules: Mario Logic, Barrel Logic, Collision Detector,

Game Finite State Machine, Donkey Kong Logic, Clock Divider, and Game Timer. The main

purpose of the Mario Logic is to take the control signals from the Keyboard Interface (the up,

down, right, left, jump signals) and to use those signals to update Mario’s position and frame of
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animation. The Barrel Logic controls the barrels on the screen. Like the name implies, the
Collision Detector detects when Mario collides with a (detects also when Mario jumps over a
barrel) barrel, the princess, or Donkey Kong. The Game FSM is the master controller of the
entire Game Logic. It controls which level the game should be in at the moment. The Game
FSM also keeps track of the score and the amount of lives Mario has left, and it tells the other
modules when re-initialize themselves. Donkey Kong Logic uses the Clock Divider to determine
when to tell the Barrel Logic to create the new barrel onscreen. Donkey Kong Logic also
determines the specific frame of animation Donkey Kong should be in at that particular
moment. The Clock Divider is the simplest module of them all. Its sole purpose is to take the
65 MHz video clock and convert it into a 1MHz clock, which Donkey Kong Logic and Game Timer
will use. The Game Timer is used by the Game FSM for the second level (in the second level the
user has to reach the princess in thirty seconds). It also has to determine when to transition to
the next state. All seven of these modules work in unison to create the Game Logic. Figure 2
details the schematics of the Game Logic.
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Figure 2. Block Diagram of Game Logic.

Clock Divider
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The purpose of the Divider is to take the 65 MHz video clock and to create an output that is a
1MHz enabled clock. A counter, with the use of a register to store its value, is created within
the Clock Divider module. It increments itself by one each time the video clock goes high.
When the counter reaches the number 64,999,999, the Clock Divider goes to one. Therefore,
by outputting a high value pulse on the video clock’s 65,000,000™" cycle, a 1IMHz clock is
created. There is a reason why a 1MHz clock is specifically needed. With a 1 MHz clock, a
system can count in seconds instead of nanoseconds. Once the Clock Divider outputs its high
pulse on the 65,000,000th cycle, the counter resets to zero, and the entire cycle is repeated
again. In addition, when the restart signal is asserted by the Game FSM, the counter resets to
zero.

Collision Detector

The Collision Detector is designed to achieve several goals. It needs to send a signal when
Mario hits (or jumps over a barrel) a barrel, the “danger zone”, Donkey Kong, or the Princess.
To make the goals realizable, the Collision Detector is not designed to be a single module.
Instead the module known as the Collision Detector consists of several sub-modules (seven in
total), which when wired together create the Collision Detector system. Figure 3 shows the
diagram of the Collision Detector.
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Figure 3. Block Diagram of the Collision Detector

There are a maximum of five unique barrels, which can roll onscreen. From here on, the five
unique barrels will be called Barrel #1, Barrel #2, Barrel #3, Barrel #4, and Barrel #5. During the
last level there are three “danger zones,” which will cause Mario to die if he touches them.
Collision Detector 1’s purpose is to detect if Mario either hits or jumps over Barrel #1, collides
with Donkey Kong, or reaches the princess. In order to detect these four different scenarios,
Collision Detector 1 takes in as inputs the X and Y coordinates of Barrel #1 and the Xand Y
coordinates of Mario. During every frame, Collision Detector 1 tries to determine whether one
of those four previously mentioned scenarios has occurred. As a side note, like the majority of
the modules in the Game Logic, Collision Detector 1 goes through its calculations every time the
frame changes. If one of the scenarios does occur, Collision Detector 1 will output a signal to
the Game FSM.
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In order to determine whether Mario collided or jumped over anything, a series of exhaustive
tests were made. Taking the coordinates of Mario and the barrel (the Collision Detector
already knows the coordinates of the princess and Donkey Kong), Collision Detector 1 uses a
series of conditional statements, which contain inequalities and ranges, to determine when
Mario has jumped over a barrel or collided with an object in the game. In order to determine
when Mario is jumping in the air and possibly jumping over a barrel, Collision Detector 1 uses
the move_jump signal from Mario Logic. The pixels of the platforms in the game are already
known by the Collision Detector, and are use in the series of conditional statements. The
ranges are carefully thought out, since being off by even one pixel could introduce glitches and
annoying bugs. In order to detect whether Mario has collided with a barrel, Donkey Kong, or
the princess, the Collision Detector compares the coordinates of the three objects onscreen
with Mario’s current pixel coordinate. Using these coordinates, the Collision Detector can
determine if Mario is touching an object that he is not suppose to touch. After all of the
calculations are done, Collision Detector 1 outputs four values: collision_barrel,
collision_princess, collision_donkey_kong, and over_barrel. Collision_barrel, collision_princess
and collision_donkey_kong are asserted when Mario collides with any of the three objects.
Over_barrel is asserted when Mario jumps over a barrel. Not unlike the Clock Divider, when the
restart signal is asserted by the Game FSM all the collision signals revert by to zero.

Collision Detector 2, 3, 4, and 5 are nearly identical to Collision Detector 1. The only difference
between these four detectors and Collision Detector 1 is that the other four do not determine
whether Mario collides with the princess and Donkey Kong, since Collision Detector 1 is already
in the mist of testing those conditions. Collision Detector 2, 3, 4, and 5 are identical, and they
follow the same logic as Collision Detector 1. The only difference between Collision Detectors
2, 3,4, and 5 is that each individual collision detector determines whether Mario collides with
its own specific barrel (i.e., Collision Detector 2 only determines when Mario collides or jumps
over Barrel #2).

The Pit Detector is essentially the same as the other detectors, but it takes in an additional
input. Because it is only used in the last level, it takes in the level signal to determine when to
calculate whether Mario has run into a “danger zone” or not. The level signal tells the Pit
Detector which level the user is currently playing. There is no need to take in any other
coordinates for inputs except for Mario’s coordinates, since the “danger zones” are stationary.
During every frame, the Pit Detector outputs the collision_pit signal, which tells the Game FSM
whether Mario has ran into a “danger zone”.

Because there is a need to condense the outputs of the six sub-modules into cohesive output
signals, another module is needed. This module is called the Collision Detector Main. It takes
in all of the outputs of the six collision modules, and condenses them into only five signals.
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Several OR gates are used. For example, all the collision_barrel signals from the five different
Collision Detectors are OR’d together to form one signal which is called collision_barrel_main.
The same logic is applied to the other signals. If there are no similar signals for a particular
output, the signal is still routed through the Collision Detector Main to keep the wires logically
organized.

Donkey Kong Logic

Donkey Kong Logic is a fairly simple module in design. It receives the 65 MHz video clock and
the 1 MHz clock from the Clock Divider. The module is triggered on the video clock, and
whenever the 1 MHz clock is high it increments its clock counter, which initially starts off at
zero. There are three frames of animation. The three frames consist of Donkey Kong picking up
a barrel, throwing a barrel, and staying inactive. When the clock counter is one, two and three,
the Donkey Kong module outputs a different frame of animation. When the counter is at four,
the Logic tells a specific Barrel Module to create a barrel and the frame of Donkey Kong
throwing a barrel is drawn onto the screen. This gives the player the illusion that Donkey Kong
is actually rolling a barrel. Moreover, when the clock counter reaches four, it is rolled back to
zero, and the same process is repeated continuously.

Game Timer

The Game Timer has several purposes. Its purposes are to keep track of how much time is left
in the second level and to output the remaining time to the Visual Logic and the Game FSM.
When on the second level, the Game Timer also outputs a signal to the Game FSM telling the
Game FSM when the time is up for that level. In order to perform correctly, the Game Timer is
designed in a similar vein as the Donkey Kong Logic. It takes in as inputs the video clock and
1MHz clock from the clock divider. The timer starts off at thirty seconds. Whenever the 1MHz
clock is high, it decrements one from the remaining time left. When the remaining time is
equal to zero and user is on the second level, the time_up signal is asserted, and the timer is set
back to thirty. If the game is on any other level, the timer just resets back to thirty. Becausea 1
MHz clock is used, each time the clock goes high one second has elapsed, so in reality the timer
is timing when thirty seconds have passed.

Barrel Logic

The Barrel Logic consists of five smaller, individual modules. Each of the five modules is
responsible for keeping track of the coordinates for its own particular barrel. Subsequently,
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because there are five individual barrel sub-modules, there can only be a maximum of five
barrels onscreen at a time. As inputs, all five modules receive the video clock, the vsync signal,
the restart signal, and the new_barrel signal. Since the logic for each barrel sub-module is
identical, only one would be discuss in detail.

The new_barrel signal comes from the Donkey Kong Logic. The number from the new_barrel
signal determines which barrel needs to be initialized on the screen. Once the barrel is
initialized and in its proper place, the barrel starts rolling on the platforms. The barrels roll by
falling off of each platform and rolling onto the next platform. When the barrels reach the last
platform and rolls toward the left of the screen, they disappear until they are reinitialized again
by the new_barrel signal from the Donkey Kong Logic. The coordinates of the specific barrel
were updated every frame by using an edge trigger on vsync, in a similar manner as was done
with the Collision Detector. Using the coordinates of the platforms and barrels in its
calculations to determine the barrels’ new coordinates, the barrels roll properly down the
platform.

Directional vectors are used to control the movements of the barrels. There are two vector
signals used in the Barrel Logic: right and down. If right equals one, then the barrel should be
going right. If right equals zero, then the barrel should be moving left. The same logic can be
applied to the down signal. When a barrel’s coordinates matching a specific condition in the
Barrel Logic, a directional vector could potentially be changed. If so, the Barrel Logic will move
the barrel a certain speed in the direction the directional vector signal specifies. Each barrel
sub-module moves its barrel at different speeds than the other ones, therefore making the
game more challenging and more difficult.

The outputs of each barrel module are the X and Y coordinates of each barrel. So, technically,
there are five barrel X values and five barrel Y values being outputted by the Barrel Logic, each
corresponding to a different barrel’s coordinates. These coordinates are given to the Visual
Logic and are also routed into the Collision Detector. Figure (INSERT NUMBER HERE) gives a
block diagram of the Barrel Logic that was used in the Donkey Kong game.
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Figure 4. Block Diagram for the Barrel Logic
Mario Logic

The most difficult model to design and implement, the Mario Logic module’s purpose is to give
the Visual Logic the current coordinates of Mario, which is the character the user controls in the
game. As inputs, the module takes in the control signals from the keyboard (up, down, left,
right, and jump), the vsync signal, the video clock, and the restart signal from the Game FSM.
Mario Logic outputs the X and Y coordinates of the character Mario. Mario Logic goes through
its calculations of Mario’s position during the transition of every frame. During the start of each
game, Mario starts off at the far left of the lowest platform. The calculations are done using the
coordinates of the various objects onscreen.

If the user wants Mario to jump and Mario is not about to go off the screen, the logic will make
Mario jump (depending on the user’s input) either in a north, northeast, or northwest direction.
In order to make Mario “jump,” a counter was needed. Once the Mario module receives the
jump signal, it will create a signal to tell itself and the Collision Detector that Mario is in the
midst of jumping. It will also change the coordinates of Mario to put Mario in the air. When in
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“jump mode,” Mario Logic will increment a counter, which starts off at zero. During every clock
cycle the counter increments itself by one. Every multiple of two that the counter increments
to, the logic will move Mario down one pixel back from the air towards the platform. When the
counter reaches the value of sixty, it will reset itself and the jumping signal back to zero.
However, if Mario is suppose to jump left or jump right, every time the counter increments ten
times (starting from five), the logic will move Mario left or right three pixels while also moving
Mario down.

If Mario is off a platform, then he should fall down. The falling block of the Mario Logic
calculates how Mario should move down. When the logic realizes that Mario should be falling,
two signals are asserted high to tell itself that Mario should be falling and not doing anything
else. These signals are the falling and the no_move signals. Once Mario Logic knows that
Mario needs to be falling down, the logic moves Mario down until he is about to hit a platform.
When the logic knows Mario is about to hit a platform during the next frame, it reasserts the
falling and no_move signals back to zero.

When the user tells the Mario Logic to move Mario left or right, the logic moves Mario left or
right by two pixels each frame until the user decides to not move Mario anymore. There are
constraints added to the logic to make sure Mario will not move off of the screen while walking
or jumping. While walking either left or right, the user can decide to go up a ladder when he or
she reaches one.

If the user is in the proper range of the ladder and when he or she presses the up button, Mario
will move up the ladder by two pixels per frame. Not unlike what the logic does when Mario is
falling, when Mario is climbing the ladder the same no_move signal is asserted high in order to
make sure Mario can only move vertically and to make sure Mario is not able to move in any
other direction. While Mario is on the ladder, the user can also make Mario move down. If
Mario should be going down, the logic moves Mario down two pixels per frame until the user
decides not to move Mario down anymore. There are numerous conditional statements
checking to see whether Mario is about to reach another platform. If Mario is about to reach
another platform, the logic reasserts the no_move signal back down to zero, and afterwards
Mario will then be able to walk along that newly reached platform.

The Mario Logic also tells which frame of animation of Mario to display on screen. When Mario
is walking right, he alternates between two walking frames of animation every twenty frames.
The same occurs when Mario is walking to the right; however, there is one caveat. The
“moving_left” signal is asserted high to tell the Visual Logic that Mario is moving left. Knowing
that Mario is moving left, the Visual Logic while reverse Mario’s image. Also, when Mario is on
the ladder, his frame changes to a frame where Mario’s back is showing. Using these five
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frames of animation (if you include the reverse image of Mario when he is walking left), gives
the user the illusion that Mario is actually walking on platforms and climbing up ladders.

Keep in mind that when Mario Logic calculates Mario’s new X and Y coordinates, logical
calculations are made. Whether it is checking to see if Mario falls off of a platform or checking
to see if Mario is walking along a platform, a majority of the logical conditions deal with specific
coordinates. This is the only way to check to see if Mario meets certain conditions, since
Mario’s own X and Y coordinates are coordinates of the “game screen.” The X coordinates
range from 0 to 1023, and the Y coordinates range from 0 to 767.

Game Finite State Machine

A FSM was created to serve as the “central hub” of all the other modules in the Game Logic. It
takes in the collision signals from the Collision Detector; the amount of time left in a level and
the time_up signal from the Game Timer; the 65 MHz video clock; and the reset signal from the
user. Using these signals as inputs, the Game FSM will determine when to tell the other
modules in Game Logic to reset; determine how many lives Mario has left; determine the
current score; and determine what level the user is currently playing.

Whenever the FSM receives the reset signal from either the user or the initial power up
sequence, it will reset and do the following actions: reset the score back to zero, re-initialize
the amount of lives Mario has back to three, and revert back to the Level 1 state. All of the
calculations and actions done by the FSM are triggered on the video clock. The diagram below
details the state transitions of the Game Finite State Machine.
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Game Finite State Machine

collision_princess = 1 collision_princess = 1

&&
time_left < 20

mario |life =0

mario life =0

mario life =10

(collision_princess = 1
&&
time_left 1= 30)
|

mario_life =0

reset=1

Figure 5. The Game Finite State Machine’s state transition diagram

The FSM starts off in the Level 1 state. When the player reaches the princess, the FSM will
transition to the next state, which is level two. There is one extremely subtle nuance that
needs to be properly explained. The FSM only transitions from Level 1 to Level 2 and from
Level 2 to Level 3 when the collision_princess signal is high. The collision_princess signal is high
for more than one clock cycle; therefore, other constraints had to be added to make sure the
FSM would not transition through multiple states at a time. The other constraints are to make
sure the time_left signal is not thirty, or to make sure the time_left signal is less than twenty.
Since the player cannot conceivably reach the princess in less than ten seconds, these
constraints make sure that the FSM does not erroneously transition to another state. When
the user reaches the princess in the Level 2 state, the FSM transitions to the Level 3 state, and
when the user reaches the princess in the Level 3 state, the FSM transitions to the Game Over
state. The FSM will stay in the Game Over state until the user manually resets the game. Also,
if the user loses all of Mario’s lives in any of the states, the FSM transitions to the Game Over
state.
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If the FSM receives the over_barrel signal from the Collision Detector in any state other than
the Game Over state, it will increment the score by 100 points. If, on the other hand, the FSM
receives any of the other collision signals from the Collision Detector (i.e., collision_barrel), it
will decrement a life from the remaining lives Mario has left. In addition, when the FSM is in
the Level 2 state and receives the time_up signal from the Game Timer, Mario’s loses one of his

lives

In any of the states, the FSM will output to the Visual Logic the score, the number of lives Mario
has left, and the current level the user is playing. It will also output the restart signal to the
other Game Logic modules when the user resets the game or when the game is in the Game
Over state. When in the Game Over state, the FSM outputs a high game_over_screen signal to
the Visual Logic in order to tell the Visual Logic to display the Game Over screen.
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DISPLAY LOGIC OVERVIEW

The overall system was broken down into smaller modules, each with a specific function.
Dividing the task into simpler pieces made the design as well as the debugging process much
easier to grasp. The project was implemented with eight main modules. Table 1 below
summarizes the function of each.

Module Name |Module Function

Generates the pixels for the ladders to be displayed on the
vga_ladder monitor

Generates the pixels for Mario and the 5 Barrels (moving
vga_moving objects) to be displayed on the monitor

vga_platform |Generates the platform pixels to be displayed on the monitor
Generates pixels for the stationary objects (Donkey Kong, Peach,
vga_stationary |[Life count) to be displayed on the monitor

vga_title Generates the pixels for the Start and Game Over screens

Takes as input moving_pixel, bram_pixel, platform_pixel,
ladder_pixel, gameover_pixel, and start_pixel from the above 5
modules and determines which pixels are outputted onto the
screenbuffer  |screen

vga_score Generates a 5 digit score to be displayed on monitor
Generates the pixels for the Timer Countdown to be displayed
vga_timer on the monitor.

Table 1. Description of the 8 main display logic modules.

This first phase involves designing the functionality of each module. Figure 7 shows a block
diagram of the overall display logic.

As can be seen in the block diagram, each module was chosen to assemble graphics of similar
properties. For example, all the barrels and Mario frames are dealt with in the vga_moving
module. These seemingly simple separations made life a lot easier when it came to developing
the logic for each module because it was easier to specify instructions such as displaying
moving objects in front of ladders if the two pixel positions were to overlap. Now, | will describe
in detail the methods and logic behind the modules. Because these ideas recur in all my
modules, | will present them here only once, and not repeat them during each module
presentation.
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DISPLAY LOGIC OVERVIEW
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Figure 7. Display Logic Overview Block Diagram
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Graphics Generation Method

| will begin by describing the process used to generate the game graphics. Each of the letters for
the “DONKEY KONG” and “GAME OVER” screen were designed by Stephen and me using Adobe
Photoshop. The animation frames for Mario, DK, and Peach were screenshots taken of the
game online’. The screenshots obtained online were modified and redrawn in some parts to fit
size and color constraints. The platforms, ladders, and barrels were replicated from the ones |
saw in the actual arcade game.

In order to render the jpgs into a format suitable for the labkit, we used Paint to first convert
the files into 16-COLOR BITMAP. | then used a MATLAB BMP2COE conversion tool’ to convert
the bitmaps into the COE format which is accepted by the Xilinx FFGA memory generator.
Please refer to the attached Appendix for the detailed code. After successfully generating the
COE file, the FPGA's block rams (BRAMs) were used to build the memory to store these
pictures. When generating the BRAMs, | named each by their size. Thus, Mario32x32 means the
Mario graphic is 32 pixels by 32 pixels. In order to call the stored pixels from memory, the
appropriate read-addresses need to be given to the BRAM.

Additional, location zero of every BRAM in our project was initialized to zero. | did this by using
notepad to modify the COE file. This way, when the object is not within the region in which it is
supposed to be display, it is easy to assign the BRAM read-address to zero, and have the black

pixel be outputted. Black is represented by 0’s. This property is useful because anything OR’ed

with black will not be affected. Also, our background is black, so it blends in well.

Three-Stage Pipeline Implementation

To synchronize the timing of the pixel arrivals onto the monitor, a three-stage pipeline was
used throughout the code. To make the point clear, please find below an example of how the
process is used to generate the fifth barrel’s pixel values:

barrel5_delay <= (vcount-barrel5_y);

barrel5_delay2 <= hcount-barrel5_x;

raddr5 <= {barrel5_delay, barrel5_delay2};

barrel5 _new_delay <=1;

barrel5_new_delay2 <= barrel5_new_delay;

barrel5_new <= barrel5 _new_delay2;
The computation of each read-address into the BRAM takes two clock cycles. The additional
registers were added to give the logic enough time to propagate through within one clock cycle
without causing timing violations. An additional clock cycle is also needed to account for the
BRAM access time. Because of these three cycles of delays, the pixel outputs of the BRAMs are

! www.fetchfido.co.uk/games/donkey_kong/donkey_kong.htm

? http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectld=12437&objectType=file
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offset by three cycles if displayed directly onto the monitor. Pipelined signals such as
title_display, plat_displaynew, barrel5_new, and mario_new are used to account for this timing
delay. Finally, the vsync, hsync, and blank signals all needed to be delayed by 3 clock cycles too
in order to ensure that all the signals arrive at the monitor at the correct locations at the right
times.

Generating the BRAM Read Address

All my modules use very similar methods for generating the BRAM read addresses. | will run
through an example of how to calculate Donkey Kong’s read address from BRAM. The pipelined
calculation consists of first calculating (vcount-dk_y). dk_y is the y coordinate of the top-left
hand side of the Donkey Kong graphic. (vcount-dk_y) represents how deep we are into the
picture vertically. The next calculation is (hcount-dk_x), where dk_x is the x coordinate of the
top-left hand side of the Donkey Kong graphic. This value represents how deep we are into the
picture horizontally. Each location in the BRAM represents a pixel on the screen. Thus, given
that DK is 64 by 64 pixels, location 0 of the BRAM represents the top-most left hand corner of
the picture, while location (64*64-1) represents the bottom-most right hand corner. In other
words, the size of a WIDTH by HEIGHT rectangular object’s BRAM read address will be
[WIDTH*HEIGHT-1 : 0]. Location 4 in the BRAM would be the fifth pixel in the first row. In order
to systematically calculate the read-address, the following process was used:

1. Multiply the vertical depth of the current pixel location by the width of the picture

(given the picture is rectangular)

2. Add to the result from step 1 the value of (hcount-dk_x).
Because multiplying can take a long time, | designed most of my graphics to be multiples of 2.
This way, | can shift instead of multiplying, and save valuable computation time. The final read-
address calculation can be summarized below:

// pipelined BRAM read address calculation
DK_addrl <= (vcount-dk_y); // how far into the picture
// vcount is vertically with respect to the top-left
// hand side of DK
DK_hcount <= hcount-dk_x; // how far into the picture
// hcount is width-wise with respect to the top-left
// hand side of the DK to be displayed
raddr3 <= {DK_addr1, DK_hcount}; // DK_hcount is 6 bits so the
// shift is equivalent to multiplication by 64
// saves significant computation time

The following paragraphs will go into detail about how the different modules work together to
form the game graphics you saw in lab.
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vga_title Module

The vga_title module is responsible for generating the pixels to be displayed onto the monitor
when the game first starts, as well as when it ends. Please refer to Figure 8 for its block
diagram.

clock VGA_TITLE
heount[10:0]
veount[9:0] char_string_display cdpivel20]
x[10:0], ex2[104] Module cdpixel2[2:0]

D0 2B Combinational

velock cstring[207:0] LOgiC
reset_bg cstring2[231:0]
heount[10:0]
veount[9:0] intro_display[2:0]
game over screen 100kup4lx1259
Vgaititle BRAM letter_pixel[15:0]
Module raddr letter[15:01 Combinational

Logic

NP

letter_display_pixel[l SZK Combmz}tlonal
Logic

show_title_screen To: screenbuffer module

title_display

Combinational
Logic

reset_bg

gameover pixel[15:0]
start_pixel[15:0]

Figure 8. vga-title Module Block Diagram

The module takes as inputs vclock, reset_bg, hcount[10:0], vcount[9:0], and game_over_screen.
vclock is a 65Mhz clock on which the video display runs. hcount and vcount specify the current
horizontal and vertical indexes of the pixel’s position on the monitor. The game_over_screen is
high once Mario has lost all his lives, or once Mario passes all three levels and saves the
Princess. reset_bg is a pulse which is high for one vclock cycle after the ENTER button on the
labkit has been pressed. | used combinational logic to keep track of changes in reset_bg. Every
time it is changed, show_title_screen will toggle between 1 and 0. Thus, when the user presses
the ENTER button on the labkit once, the Start Screen will show up. When the user presses it
again, show_title_screen will go low, and the Start Screen will not be displayed.

Start Screen
Figure 9 below shows the start screen: It consists of the letters “DONKEY KONG” centered

across the monitor, as well as, “Yi Wang and Stephen Pueblo”, and “6.111 Fall 2006 Final
Project”.



Page |23

¥i Yang and Stephen Pueblo
6.111 Fall 2886 Final Project

Total Score: 080888

Figure 9. Start Screen Photograph

In thevga-title block diagram, cstring represents “Yi Wang and Stephen Pueblo”, while cstring2
represents “6.111 Fall 2006 Final Project”. (cx[10:0], cy[9:0]), and (cy2[9:0], cx2[10:0]) are the x
and y coordinates of the top-left hand side of cstring and cstring2 respectively. The
char_string_display module was obtained from the “Fall 2005 — 6.111"” course website. It looks
up each character of cstring in a BRAM lookup table, and outputs the corresponding pixel. In
the block diagram, these are cdpixel[2:0] and cdpixel2[2:0]. The two signals are put through an
OR gate to produce intro_display[2:0].

The title screen “DONKEY KONG” graphics were designed by Stephen and me. Each letter was
placed under the previous one in a “graphic lookup table”. The letters were all the same size to
ensure easy read-access from the BRAM. The picture stored into the BRAM is half the size of
the picture which is eventually displayed onto the screen. This was due to the limiting number
of BRAMS available for use: In order to save space, | shrunk down the picture horizontally by a
factor of %.. When being read out from the BRAM, each pixel is repeated twice. The repetitive
nature of our graphic made this visual effect easy to implement. The read-addresses are
calculated as described above with the added caveat of repeating each pixel in the BRAM twice
on the monitor.

The output of the lookup41x1259 BRAM letter pixel[15:0] is used with title_display to create a
properly pipelined time-delayed letter_display_pixel[15:0]. Depending on the value of the
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show _title_screen signal previously discussed, combinational logic decides whether
letter _display_pixel[15:0] or black will be outputted.

Game Over Screen

Figure 10 below shows the game over screen: It consists of the letters “GAME OVER” centered
across the monitor. The same logic used for the Start Screen was used here. Depending on the
state the game is in, vga_title will output either start _pixel[15:0], the Start Screen;
gameover_pixel[15:0], the Game Over Screen; or black, when the user is in the middle of a
game. This is implemented through combinational logic.

: |

»,

Total Score: 88788

Figure 10. Game Over Screen Photograph

vga_ladder Module

The vga_ladder module generates the pixels for the ladders to be displayed onto the monitor. It
takes as inputs the x and y locations of the top-left corners of the four ladders, and outputs the
appropriate pixels to the screenbuffer module through the ladder_pixel[15:0] signal. The BRAM
read-address computation process is exactly the same as described above. Please find below in
Figure 11 the block diagram implementation of the module. Figure 12 is a copy of the picture
that was loaded into the BRAM.
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velock

VGA LADDER
hcount[10:0]
veount[9:0]
ladderl x[10:0]
ladder! y[9:0 ddrL[11:0] :
adderl_y[9:0] raddr ladder32x120 To: screenbuffer module
ladder]l x2[10:0] vga ladder BRAM ladder_pixel[15:0]
ladderl_y2[9:0] Module

ladder1 x3[10:0]

ladderl y3[9:0]

ladderl x4[10:0]

ladderl_y4[9:0]

Figure 11. vga_ladder Module Block Diagram

Figure 12. Ladder BRAM
vga_platform Module

This module is slightly more complex than the vga_ladder module because the platforms are
different depending on the level the player has reached. Please refer to Figure 13 for the block
diagram.

For all levels, the pixels are read directly from the BRAM. Please refer to Figure 14 below for a
picture of what was loaded into the BRAM. The different color assignments of the platforms for
each Game Level occur in the screenbuffer module. The three top platforms which do not cover
the span of the monitor width are 904 pixels wide. In order to save BRAM space, | decided to
use repeated units which are 512 pixels wide.
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VGA_PLATFORM

velock

level[1:0]

hecount[10:0]
veount[9:0] raddr_4[14:0]
platform512x50
latform x[10:0
% BRAM platform test pixel[15:0]
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Logic electro_pixel[15:0]
platform_x5[10:0]

_patiorm y*741 — Logic
To: screenbuffer module
platform y5[9:0]
-

platform pixel[15:0]

Figure 13. vga_platform Module Block Diagram

Figure 14. Platform BRAM

For the third level, we implemented three “electrocution” regions. They are represented on the
monitor by a thin line of red that is 10 pixels wide. As previously described, when Mario
touches these regions, he instantaneously loses a life. These electrocution regions were
implemented with simple if-statements. Within a certain range specified by the locations of the
electrocution regions, vga_platform module outputs a dark red pixel. This electro_pixel[15:0] is
fed into an OR gate which outputs platform_pixel[15:0].

vga_moving Module

The vga_moving module generates the pixels for Mario and the 5 barrels to be outputted onto
the monitor. Please refer to Figure 15 for pictures of what was loaded into memory. The top
row shows the different colored barrels. Each different color represents a barrel of different
speeds. The bottom row shows Mario’s different animation frames. Going from left to right, we
have Frame 0 - Mario_walk; Frame 1 — Mario_stand; Frame 2 - Mario_jump; and Frame 3 —
Mario_climb.

O )
AEA AL, 4

Figure 15. Barrels and Mario BRAMS
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In addition to the already introduced inputs vclock, hcount[10:0], and vcount[9:0], this module
takes in the (x,y) coordinates of the top-left corner of each of the 5 barrels, and Mario. It also
receives from the Game Logic mario_frame[1:0], which specifies the particular Mario animation
frame to be displayed, as well as go_left, which is high when Mario is moving towards the left.
Please find below the detailed block diagram for this module in Figure 16.

velock

hecount[10:0]

veount[9:0]

barrell x, barrell v
barrel2_x, barrel2_y
barrel3_x, barrel3_y
barreK x. barreld v

harrelS_x harrelS v

mario_X, mario_y

mario_frame[1:0

go_left

vga moving
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raddr1[7:0]
Barrel216x16 barrell pixel2[15:01
BRAM
raddr2[7:0] . .
Combinational
Barrel316x16 parent pixesrison Logic
raddr3[7:0] BRAM —
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Logic

raddrm[9Q]

mario_stand 32x32 | marios pixell15:01

BRAM

mario_frame[1:0]

|

mario_new

Figure 16. vga_moving Module Block Diagram

Timing becomes crucial in this module more so than the rest because of the constant location
changes of both Mario and the barrels. A detailed discussion on the timing issues will be
provided in the Testing and Debugging section.

Although this module’s block diagram looks more complicated, it is in fact very similar to the
two previously discussed. A read address is calculated with the (x,y) location of each pixel. A
pixel output is obtained from the BRAM, which is then sent to a block of combinational logic
which uses the signals barrel1_new, barrel2_new, barrel3_new, barrel4_new, barrel5_new, and
mario_new to determine the appropriate time to output moving_pixel[15:0] to the screenbuffer
module. Please refer to the above discussion on “Three-Stage Pipeline Implementation” for a
detailed discussion on the logic behind the timing delays.
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vga_stationary Module

The vga_stationary module generates the pixels for Donkey Kong, Peach, and Mario’s life
counter. This module takes as inputs vclock, vsync, hcount[10:0], vcount[9:0], dk_x[10:0],

dk_y[9:0],dk_frame[1:0], peach _x[10:0], peach_y[9:0], and life_count[1:0]. The block diagram is
found in Figure 17.

VGA_STATIONARY

dk_roll64x64 | g pixerrison dk_frame[1:0]
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— dkp pixell15:01

addr3[11:0 :

veount[9:0] raddr3(11:0] dk_pickup64x64 \\)\/\/
— . BRAM
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LSS X)) B raddr_peach{10:0] peaCh64X32 peach pixell15:01 To: screenbuffer module
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BRAM lifel pixell15:01
ddr_ife[11:0 -
L) life281x32
BRAM
life2 pixell15:01 Combinational
- Logic
raddr_life[11:0] life381x32 life3 pixell15:01
BRAM

Figure 17. vga_stationary Module Block Diagram

For Donkey Kong’s animation, similar to the previous modules, the frame outputted onto the
screen depends on inputs from the Game Logic. In other words, dk_frame[1:0] determines
whether Donkey is seen rolling a barrel, standing idle, or picking up a barrel. Going from left to
right in Figure 18: Frame O - DK_idle; Frame 1 — DK_pickup; and Frame 2 - DK_roll.

Figure 18. The three Donkey Kong animation screens stored into BRAMs.

For Peach’s animation, | used a 6-bit register to count off approximately half a second.
Approximately every half a second, the two Peach frames seen in Figure 19 are interchanged.
The implementation is as follows: The 6-bit counter is incremented at every negedge of vsync.
Because there are 60 vsyncs in a second, the counter can be used as a second counter.
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Additionally, before the counter is 6bits wide, once you get to 63, 63+1 makes you loop back to
the beginning again. A mux can thus be used to select whether to display peach_pixel[15:0] or
peachhelp_pixel[15:0] depending on the value of the_z 6bit counter.

# #

Figure 19. The two Peach animation screens stored into BRAMSs

Finally, Mario’s life counter shows Mario’s Health status by using three mini-Marios located on
the left bottom corner of the screen. Please see Figure 20. A mux selector is used to output the
appropriate life pixel. For example, when life_count[1:0] has a value of 2, then life2_pixel[15:0]
is selected to be outputted towards the screenbuffer module.

Figure 20. The three Mario Lives graphics stored into BRAMS.
screenbuffer Module
The screenbuffer module is the “hub” of the display logic. It collects all the pixel outputs from

the modules discussed above, and determines which ones to display pass onto the XVGA at any
given time. Please refer to Figure 21 for its block diagram.
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Figure 21. screenbuffer Module Block Diagram
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In addition to the global vclock, hcount[10:0], and vcount[9:0] signals, the screenbuffer module
requires the inputs level[1:0]; moving_pixel[15:0], an output of vga_moving; bram_pixel[15:0],
an output of vga_stationary; platform_pixel[15:0], an output of vga_platform;
ladder_pixel[15:0], an output of vga_ladder; and gameover _pixel[15:0] and start_pixel[15:0],
outputs of vga_title.

As can be seen in the block diagram in Figure 21, the module first determines which platforms
to display depending on the current level. Thus, given a different level[1:0] signal, the platforms
will be different colors. The signal platform_multilevel_pixel[15:0] represents the platform
corresponding to the current level. Then, | needed to account for the possible overlapping of
the barrels and Mario with the ladders and platforms. | decided to let Mario and the barrels
take precedence. Thus, whenever moving_pixel[15:0] has a value other than O,
moving_objs_pixel[15:0], the signal being passed to the XVGA, is assigned the value of
moving_pixel[15:0]. Otherwise, moving_objs_pixel[15:0] is assigned the value of
platform_multilevel _pixel[15:0] instead.

If game is over, gameover_pixel should be displayed. Otherwise, if start_pixel (DONKEY KONG
title screen) has a value other than zero, it means it should be displayed. Otherwise, the regular
game screen (platforms, ladders, Mario, DK, Peach, and barrels) should be displayed. The
output of this last set of combinational logic is display_pixel[15:0].

The final step is to convert this 16-bit color into the 24-bits necessary for display onto the
monitor. Table 2 shows the conversion chart | used. Adobe Photoshop was the main tool used
for this section because its color palettes gave the hex-code for the colors. After the bit-size
conversion, output_pixel[23:0] is finally outputted to the XVGA.
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16 Bit Color |24 Bit Color
Overall Game Colors
16'h0000 24'h000000;
16'h0001 24'h800000
16'h0003 24'h808000
16'h0004 24'h000080
16'h0005 24'hE948FC
16'h0007 24'h808000
16'h0008 24'h808080
16'h0009 24'hFFO000
16'h000A 24'h3DFF33
16'h000B 24'hFFFFOO
16'h000C 24'h0000FF
16'h000D 24'hFFOOFF
16'h000E 24'hOOFFFF
16'h0O00F 24'hFFFFFF
Level 2 Platform Colors
16'h0060 24'hEB0652
16'hO0OF8 24'hEB81F8
Level 3 Platform Colors
16'hFFCO 24'hFFC000
16'hCFCA 24'hCFCACA
Level 3 Electrocution Zone Color
16'hE118 24'hE11809

Table 2. 16-bit to 24-bit Color Conversion
vga_timer Module

The vga_timer module generates a 30 seconds countdown timer display for Level 2 of our
game. Please refer to Figure 22 for its block diagram.

The module takes as input reset, vclock, hcount[10:0], vcount[9:0], level[1:0] and time_left[5:0].
In order to display the time onto the monitor, | needed to find a way to convert the binary
time_left into decimals since the char_string_display module downloaded from the course
website only took in strings of characters and decimals as inputs. After some searching, and
asking around the lab, | decided to use a binary-to-bcd module found on the OPENCORE.ORG
site.

® http://www.opencores.org/projects.cgi/web/binary_to_bcd/overview
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VGA_TIMER

velock

hecount[10:0]
—_— levell1:01

veount[9:0] char_string_display cdpixel2:0]
Module cdpixe2[2:0]

ex2[10:0], ¢x3[10:0]

¢y2[9:0], cy3[9:0]

e cotring4{79.0) Combinational

Logic _
To: XVGA
timer_pixel[23:0]
Combinational
ji;\)/

Figure 22. vga_timer Module Block Diagram

reset

vga_timer
Module

hecount[10:0]

veount[9:0] cstring3[15:01

levell1:01

time left[5:01 start convert

time left[5:0]

time dec[7:0]

binary to_bcd Module

velock done o

reset

After every frame load, the module generates a start_convert pulse which starts the binary-to-
decimal conversion process. When the conversion is done, the binary-to-bcd module outputs a
signal done_o which signals that the output time_dec[7:0] is now stable to use. Each
time_dec[7:0] output represents one digit. Since our countdown of 30 seconds require two
digits, two time_dec signals are concatenated together to form cstring3[15:0], which is then fed
into the char_string_display module. This char_string_display module then converts the
sequence of two digits containing the countdown seconds into pixels ready to be outputted
onto the screen. This output is called cdpixel2[2:0] in the block diagram in Figure 22.

Also in Figure 22, cstring4[79:0] is the string representation for “Time Left:”. Its pixel
representation is called cdpixel[2:0] in the block diagram. If the current user is currently on level
2 of our game, then the cdpixel[2:0] and cdpixel2[2:0] signals are passed through an OR gate,
concatenated into 24-bits, and outputted to the XVGA.

vga_score Module

The vga_score module generates a pixel representation of Mario’s game score to be displayed
on the monitor. Please refer to Figure 23 for its block diagram.

Its structure is very similar to that of vga_timer. Whereas in that module, the desired output
was “Time Left: 00”, here, the result was “Total Score: 00000”. The change from 2 numerical
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digits in the former to 5 in the latter added great propagation delays to the binary to_bcd
module. As a result, the timing was affected, and the last digit of the score was missing 2
columns of pixels, while the first digit of the score had 2 columns too many in the front. An
attempt was made to pipeline the paths with registers to allow for more computation time, but
the result was unsuccessful. The final solution implemented outputs 6 digits to the monitor,
and disguises the glitch by covering the last digit and the first two columns of the first digit with
black. The player cannot in any way tell a difference.

reset

velock

hcount[10:0]

veount[9:0]

mario_score[15:0]

vga_score
Module

VGA_SCORE

score decl19:01 . .
reset | Combinational
binary-to-bcd Logic
velock Module
— done o
mario_score[15:0]
velock [heount[10:0]| veount[9:0]
start_convert cstring[39:01
cx[10:0] . .
char_string display
cy[9:0] Module
¢x2[10:0]
¢y2[9:0]
cstring2[95:0]

cd pixell2:01

hecount[10:0] —_—

char_string_display
Module

velock C bi . 1
ombinational To XVGA:

cd pixel22:01

veount[9:0]

\:O\gi;y score_pixel[23:0]

Figure 23. vga_score Module Block Diagram
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Keyboard Interface

The Keyboard Interface is the interface the user will use to communicate with the game. The
interface consists of two modules: the PS2/Keyboard Driver and ASCII Converter module and
the ASCII-to-Control Signal Converter module. The user has a keyboard, which is connected to
the FPGA lab kit. When the user presses certain keys on the keyboard, it will move Mario in the
appropriate direction. Figure (INSERT HERE) shows the block diagram of the Keyboard

Interface.
Kevboard Interface
[7:0]ascii up
clock 65mhz | PS2/Keyboard Driver | ASCII-to-Control Signal | %
keyboard data) and ASCII Converter Converter right
keyboard clock Resmetly et
» jump
restart clock_65_mhz
Figure 6. Block Diagram of Keyboard Interface
PS2/Keyboard Driver

There are two modules which compose this module, which was originally created by Professor
Terman and I. Chuang. The keyboard sends several signals to the FIFO buffer keyboard driver of
this module. Using the keyboard clock from the lab kit, and keyboard sends specific codes to
the driver. The buffer extracts those codes from the keyboard and places the relevant data into
the FIFO buffer. When the FIFO buffer is empty, the fifo_empty signal is transmitted to the PS2
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module. The FIFO buffer is continuously read by the higher level PS2 module. The PS2 module
takes in the keycode data from the buffer and converts it to ASCIl code that the FPGA can
understand. The PS2 module outputs the converted ASCIl code. If the FIFO buffer is empty, the
previous ASCII value is continuously outputted until a new keystroke gets registered into the
buffer. Because there was no desire to have Mario continuously jump up and down when the
user has already let go of the button, the PS2/Keyboard Driver was slightly hacked and
modified. Not only does the converted ASCIl code get outputted, but also the key_ready signal.
The key_ready signal is the inverse of the fifo_empty signal. It was discovered that when the
FIFO buffer has data in it, the driver does not continuously output a steady key ready signal as
intuition would have it. In reality, when the buffer continuously has data in it, the driver
outputs pulses, not a steady high voltage level step function.

ASCII-to-Control Signal Converter

The ASCII code, the key_ready signal, and the video clock are all inputs into the ASCII-to-Control
Signal Converter module. This module will take those two signals and ultimately output the
appropriate signals that Mario Logic can understand. An implementation was desired that
would make Mario jump only once, when the user pressed the jump button.

Without any hacking around the key ready signal and having just a pure look-up-table
converter, Mario would continuously execute the action that it was assigned to do, even
though the user stopped pressing a key. The module basically consists of several conditional
statements that convert the ASCII code to actual signals the Mario Logic will understand. Having
Mario walk in the same direction was acceptable, but it was decided that it was annoying that
Mario would continuously jump after the user told Mario to do so. In order to fix this nuisance,
a design was conceived that centered on the key_ready signal.

It was discovered that the key_ready signal are pulses that are separated about 100ms apart
when the buffer of the driver has something always in it. Observing this oddity of the system, it
was decided that having a key counter in the module would solve the problem. The video clock
would be use to count up to 100ms by using the key counter. If the key counter is greater than
the value that equates to the interval between the pulses of the key ready signal when the
driver’s buffer has something in it, then the logic knows that the buffer is empty. When it
knows that the buffer is empty, it tells itself to only output the jump signal once, and then not
move again until you get another keystroke. In order to make Mario move again, the key
counter is always initialized back to zero when the key_ready signal is high. In summary, if the
key_ready signal does not come in a certain amount of time, the logic knows that it is empty
and will output the signals accordingly.



Page |36

Testing and Debugging

Game Logic Testing and Debugging

Precision is important

Debugging and testing the Game Logic was extensive and exhaustive. The most significant
problem that | ran into is getting the conditional statements exactly correct. Because | was
using the entire screen as my coordinate plane for the various objects in the game, getting the
logical conditional statements exactly right was extremely difficult. At initial glance, it seemed
logical easy to just have a set of statements checking to see if the object meets a certain
condition by comparing the pixel coordinates, and if so, execute that specific action. However, |
soon learned that being off by even a single pixel proved to be disastrous. For instance, one
time | had a statement to check to see if Mario’s coordinates were at the edge of a platform.
Instead of comparing to see if his coordinates were greater than the platform’s edge pixel
coordinate, | checked to see if it was greater than or equal to it. This would cause Mario to
freeze while at the edge of a platform, instead or falling. Other bugs included Mario not
moving or Mario going through platforms. These bugs were extremely frustrating because
usually | had to recompile the code and check manually onscreen, by controlling Mario. The
majority of these “coordinate bugs” were very subtle and, at times, very frustrating to fix. | had
to methodically check every conditional statement in several modules to make sure | did not
actually typed in, for instance, a less than sign instead of the greater than or equal sign, or to
make sure that | did not compare Mario’s coordinates to the coordinates of (800,900) instead
of (801,900). Debugging these kinds of glitches and bugs was time consuming and tedious.

Forget what you learned in grade school

Another, surprising mistake that | would make numerous times is forgetting that the Y
coordinates onscreen increases from top to bottom. After having beaten into my head since
grade school that Y coordinates positively increase the further you go up, it was difficult to
remember that for the coordinates onscreen, the opposite is true. Sometimes hours would be
wasted because | did not realize that the Y values increased while going down. Becoming
confused, | would compare if a Y coordinate value is greater than another value instead of less
than another value. The majority of the time | would just continuously compile the code onto
the FPGA and see what would happen onscreen and go from there.
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The Logic Analyzer is your friend

By having all of these modules communicating with each other, timing is crucial. Initially, when
| started this project timing was not a worry of mine. However when | started to connect my
modules together, it immediately became a significant problem. Data from one module could
be delayed by one cycle, or data from another module could be high for more than one cycle.
The lists of problems that could occur with regards to timing did occur.

| was initially hesitant to use the logic analyzer because of the fear that it would be too
complicated and inefficient to output the various signals to it. | was wrong. Without using the
logic analyzer | would most likely not have been able to complete the project. The logic
analyzer solved two of my major problems | had with regards to timing.

When testing the Game FSM, | noticed that it would transition from Level 1 to the Game Over
state when Mario reached the princess, instead of transitioning to Level 2. | had an idea what
was going on (I thought the collision_princess signal was high for too many clock cycles), but |
was forced to use the logic analyzer to determine when and how long the collision_princess was
high for and to determine how the state transitioned giving this signal. My hypothesis proved
to be correct, and the logic analyzer specifically showed me where the problem was. After
finding the bug, | immediately added another condition for the state machine and the bug was
fixed.

Yet another major problem | had with timing occurred when | was trying to interface with the
keyboard to make Mario only jump when the user told him to jump. | spent several days trying
to figure out why the keyboard was not working properly with my Game Logic. Finally, it was
suggested to me that | output all the various keyboard interface signals to the logic analyzer.
After outputting the signals to the logic analyzer, the problem was quickly found. The keyboard
driver outputted its keycode data one clock cycle after it told me that it had data in its FIFO
buffer. Knowing how the driver actually worked, the bug was easily fixed by making my module
wait one clock cycle later after it received the key_ready signal.

The bugs and problems mentioned in this section are the main ones that | encountered, but
there were other minor bugs that were annoying to find (i.e., making sure which part of the
logic circuit needed to take precedence of others), but they were easily fixable. When
connecting both the Game Logic and Video Logic together the easiest and most efficient way to
find and correct bugs was to recompile the game, and play it until something went wrong.
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Display Logic Testing and Debugging

The most challenging and time-consuming process of the project was the testing and debugging
process. It was also the most enriching part. The main take-away is the importance of really
knowing the ins and outs of all the timing diagrams of all the modules. For example, if only one
platform_pixel glitches, even though the rest of the modules met the timing specs, the whole
screen can still be affected. In this section, | will discuss some of the problem | encountered,
and how | went about solving them.

Early Lessons

| learned early on the patience and attention to detail that is required to successfully test and
debug subtle errors in code which can have devastating consequences. My first goal was to
read from a BRAM. The task seemed simple enough. It’s just like Lab 4, only pictures instead of
sound, right? Not so simple. During my first couple of attempts, my barrel did not show up on
the monitor. To debug, | used the top-level file from the Pong game. | experimented with the
switches to make sure that at least something was displaying. Instead of reading the whole
BRAM, | tried assigning the whole screen to one particular location of the BRAM. The color
happened to be white. Still nothing showed up. | then tried to assign the whole screen to be
white directly. Again, nothing showed up. Several LAs and Gim puzzled over the problem with
me for 4 straight nights in lab. Finally, it was discovered that pblank was not synchronized with
vsync and hsync.

This experience taught me to be more flexible and imaginative when it came to the debugging
process. When stuck on a problem for several days, it is important to step back and think about
how relevant a blank screen not showing up is to my project. Indeed, the bug had no effect on
my initial problem which actually stemmed from a completely unrelated issue. One week
wasted! Although there is satisfaction derived from finally figuring out what was going wrong,
something needs to be said about efficiency and the reality of the amount of time and
resources available. Throughout the rest of the weeks, whenever | encountered strange,
tedious bugs, | tried to ask myself questions like, “Is what I’'m looking at right now actually
helpful? Am | going on a tangent? Is the answer I’'m chasing after really relevant to my current
problem of finishing the final project in time?” That first week definitely taught me a lot.

Integration with Game Logic

Up until Thanksgiving, | created a screenbuffer through the ZBT interface to load my graphics
onto the XVGA. Because of the read-write cycle delays for data transfer both to and from the
ZBT, | experimented with many tricky timing issues. When Thanksgiving came along, | finally got
all the graphics to display on screen without glitching edges. | wrote a test code to make Mario,
and each of the barrels move across the monitor to test the timing of my system. | thought |
was done with the display, and would be able to start working with the video interface for
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camera-controlled motion. Oh, the inexperienced thoughts of someone 3 weeks into the final
project and still naive about the design and implementation process of a digital system...

After fixing the initial integration errors of mismatched variable names, multi-sourcing signals,
and wire declarations, | found my display logic glitch like I've never seen before. Prior to
integration, all my glitches were only lines of pixels misplaced due to timing errors. This time,
the whole screen was off. Seemingly random pixels were displaced, and the timing delays
seemed random to me. While talking to the staff, a similar theme began to emerge. They all
asked me, “Why don’t you just output the pixels directly onto the screen instead of loading it
up into the ZBT?” At first | was reluctant because | had spent the past 3 and a half weeks getting
the frame buffer running. So | spent the rest of the week trying to fix the ZBT timing issues.
Finally, | decided to let the ZBT rest, and changed everything to display through combinational
logic. With the first compilation, the number of glitches went down drastically. My display was
once again back to being off by only a pixel or two. | learned my second important lesson of the
term: when it comes to being stubborn versus being efficient, | should give efficiency more
weight than | have in the past.

Timing Diagrams, Timing Diagrams, Timing Diagrams

After the switch to combinational logic, | soon learned that subtle mistake and glitches are
much harder to fix than simple ones. Now came two weeks of timing diagrams. All the LAs and
TAs were very helpful and patient with my questions. The first huge error | had in logic was
uneven pipelining. It’s been drilled into our heads many times: When you pipeline a path, you
must add registers to every signal the line crosses. However, when it comes to actual
implementation, it seems easy to forget. All my graphics were off by 1 pixel. For example, my
barrels were only closed on one side; the 1-pixel thick right-side boundary was not displayed.
The problem was | had pipelined the calculation of the read-address into BRAM, but had failed
to pipeline the pixel output of the BRAM. Because the pixel outputs were delayed by three
cycles (two cycle delays for read-address calculation, and one cycle delay for BRAM access), |
was matching up the pixels with the wrong locations on screen. Thus, | spent most of one week
drawing both block and timing diagrams in an attempt to figure out answers to 1. How many
cycles of delay there are, and 2. Which paths need to be included in the pipeline?

A Xilinx tool | found particularly useful in this process was the RLT schematics tool. Figure 24
shows a screenshot of a part of my vga_timer circuit. These schematics are very useful because
they serve as great guides to figuring out what each signal was connected to, where all the
clocked registers are, which paths are crossed by the same pipeline, etc.
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Figure 24. RTL Schematic Screenshot

After making what | thought were the appropriate changes, | still had several glitches with the
character string display. A tool | found very useful in finally solving my timing issues was the
post place and route static timing report. Figure 25 shows a screenshot of this tool. This report
lists the three worst-case timing violations of the system. Lo and behold, my problem was
found. My character display circuit for vga_timer took over 18ns. This is well over the clock
cycle of around 15ns. The breakup of how many nanoseconds each segment of the circuit takes
helped me to clearly identify where to pipeline. The issue was determined to be the direct
assignment of hoff and voff in the char_string_display module. | modified to code to assign
them on the positive edge of vclock instead, and that solved my timing issues. Please refer to
the appendix for the detailed Verilog code.

Finally, the last problem | encountered was the probabilistic nature of my DONKEY KONG start
screen actually showing up. If | got lucky during compilations, it would show up. If not, then |
was out of luck. Because the post place and route static timing report did not show any timing
errors, the problem was determined to be one of routing. In order to solve the problem, Cassie
and Daniel, another student in the class, helped me create area constraints on the labkit. Please
see figure 26 for a screenshot of the process. Constraining the area should minimize the routing
times and solve the random occurrences of my DONKEY KONG start screen. Indeed it did, and
my last big bug was found.
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Data Path: m2/wario_x 5 1 to mw2/wario_y 3_1
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Figure 25. Post Place and Route Static Timing Report Screenshot
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Figure 26. Device Architecture Screenshot

Conclusion
Stephen’s Conclusion

Overall, the project was a resounding success, and both of us completed the majority of what
we wanted to do. | learned a significant amount in the timeframe of creating our project,
especially with respects to debugging. | initially did not know much about where the bugs were
coming from in my project during the first week or so. Several weeks later, | generally made
correct hypotheses about what was causing the various bugs in my modules. | also learned that
it is foolish to try to connect everything at one time and expect it to work. It was much easier
to take small chucks of the project and isolate the specific bug, instead of trying to debug an
entire system at once. Another significant lesson learned is that the logic analyzer is one of the
best tools to use to debug one’s circuit. The logic analyzer allowed me to successfully complete
my part of the project on time.
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| learned that time management is important. Spreading the workload across several weeks
instead of the last week of the project allowed us to complete the game more efficiently and
with less stress. In addition, | learned that planning and designing a complex digital system is
more crucial then the implementation part of it. | initially was skeptical when Professor Terman
said that planning would take a significant amount of time, but he was right. | also learned that
communication is important. Several times during the weeks we worked on the project, we
each misinterpreted how our modules would interact with each other, therefore causing our
game not to work properly. However, through clear communication we were able to solve
these problems. In spite of all the success we had, like in life, there are also regrets.

| regret using the entire screen as my coordinate plane. Using this coordinate plane system
made it extremely difficult to debug, and it made some of my code inefficient because of the all
conditions | had to check by comparing coordinate values. Using this particular coordinate
system also took up a significant portion of my time. | also regret not being able to get to the
motion sensor part of the projects. We were finished with our project several days before it
was due, and instead of working on the motion detection, we decided it would be more
beneficial to add more levels to the game. If given several more days, | am sure we would have
been able to implement the motion detection. It would have been interesting to move Mario
with one’s hand movements instead of using the keyboard. | would have liked to add more
interesting barrel logic to make the barrels not only roll off the platforms, but also roll down the
ladders.

Regardless of my small regrets, | am satisfied with the final outcome. We successfully created a
version of the game Donkey Kong. Very few people can attest to making the game Donkey
Kong from the ground up. Completing such a game in the timeframe given to us is something
that both of us should be proud about.
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Yi’s Conclusion

This Donkey Kong final project provided me with an eye-opening experience into the design
methodology that goes into building digital systems. The planning, coding, implementing,
integrating, and especially the debugging process should prove to be very useful in future
projects.

The first part of the implementation process consists of laying out a detailed design plan taking
into account the interactions between each module of the greater system. This includes timing
specs as well as how the various inputs and outputs are linked between modules. Breaking
down the system into smaller, more easily manageable subparts was very effective in
understanding the role each subsystem must take. The testing and debugging process became
clearer and more easily defined as a result.

For this project, it was especially important to understand the relationships between the Game
and Display logic. This includes details such as whether a particular signal is level signal, a pulse,
etc. Otherwise, complications will surely arise during integration.

The project definitely drilled into my mind the importance of timing. Most of my glitches were
results of asynchronous signals which | assumed to have been synchronous, calculations which
overextended the 15ns clock cycle, and mismatched pipelines. | learned a lot by working with
the staff to figure out exactly how each signal is propagated through the circuit. The staff also
helped me familiarize myself with many useful Xilinx tools. Overall, | learned a lot about
software-based design and debugging tools.

One of the greatest takeaways from this project for me was the importance of fully
understanding the timing specs of each input and output down to the single cycle of the clock.
Digital design isn’t a discipline where one can fudge the understanding, and hope to be lucky
and come out with a working design. The minute details really make or break the big picture.

On a more personal level, as I've previously alluded to, the past six weeks have taught me a lot
about problem solving in general. For example, the afore mentioned first week of debugging
the pblank taught me the importance of being open-minded to new solutions and different
approaches; the switch from ZBT to combinational logic taught me the value of cutting my loses
while | still had the chance to even if it meant letting go of something | really wanted to see
work. More importantly, although this may sound cheesy, these past weeks have really taught
me the meaning of cooperation. | was surprised to see so many students want to take the time
to talk to me about my bugs and offer me their help, even when they were under pressure to
get their work done too. For example, at the very beginning, the Python BMP-to-COE converter
provided on the course website did not meet the specifications | needed for my graphics. It was
Yunjie who told me about the Matlab code she had found online. When my converted COE files
wouldn’t load correctly into the BRAMs, it was Kevin who taught me the trick of opening it first
in Notepad to change two lines. When | couldn’t figure out how to convert my mario_score
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from binary to decimal, it was Daniel who helped point me to the OPENCORE.org website. In
retrospect, | don’t think the experience would have been the same had it not been with this
group of people.
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Appendices
MATLAB BMPtoCOE

function BMPtoCOE(image_name)

%Converts a 16 color bitmap image to a Xilinx .COE file

%Was written so students could use a FPGA to display images on a VGA
%monitor

%read bmp data in and display it to the screen
[imdata,immap]=imread(image_name);
image(imdata);

colormap(immap);

numpixels=numel(imdata);

%create .COE file
COE_file=simage_name;
COE _file(end-2:end)="coe’;
fid=fopen(COE_file,'w");

%write header information

fp”ntf(ﬂd,‘,******************************************************************\nl)

fprintf(fid,";**** BMP file in .COE Format *EEXXE\N");

fp”ntf(ﬂd,‘,******************************************************************\nl)

fprintf(fid,"; This .COE file specifies initialization values for a\n');
fprintf(fid,"; block memory of depth= %d, and width=4. In this case,\n',numpixels);
fprintf(fid,'; values are specified in hexadecimal format.\n');

%start writing data to the file

fprintf(fid,'memory_initialization_radix=16;\n");

fprintf(fid,"memory_initialization_vector=\n');

%convert image data to row major

newimdata=transpose(double(imdata));

%write image data to file

for j=1:(numpixels-1)
fprintf(fid,'%s,\n',dec2hex(newimdatal(j)));

end

%last data value supposed to have a semicolon instead of a comma

fprintf(fid,'%s;\n',dec2hex(newimdata(numpixels)));

%clean shutdown

fclose(fid)



