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We built a multimedia digital synthesizer. Using subtractive synthesis, we were 
able to produce notes that sounded similar to a violin and a guitar. The 
synthesizer is controlled by a computer keyboard interface and video monitoring 
interface. The video monitoring interface tracks hand movements reasonably well 
using a video camera. The hand movements in turn control the pitch of the note 
that is playing.  All movements will be displayed to the computer monitor as 
feedback to the user.  We also investigated the use of a neural network in 
synthesizing audio.  Unfortunately, we were only able to test our neural network 
in simulation. 
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0. Introduction 

 
0.1 Overview of Audio Synthesis System (Alexander Sanchez) 

 
 One of the goals of this project is to synthesize audio signals that sound like 

musical instruments without the use of stored samples.  To achieve this goal we 

investigated the use of to different methods for synthesizing audio. 

 
0.1.1 Subtractive Synthesis  (Alexander Sanchez) 

 

The first method implemented was subtractive synthesis.  Subtractive synthesis 

consists of creating instrument like sounds from a combination of basic oscillatory 

signals such as sine waves, square waves, or sawtooth wave.  The main component of the 

subtractive synthesis method is to apply a volume envelope to a signal.  The volume 

envelope used is often referred to as an Attack Decay Sustain Release (ADSR) Envelope.  

An ADSR envelope can be used to characterize the variation in volume of a note played 

on an instrument.  For example, a guitar has a very sharp attack and decay, very little 

sustain, and a gradual release.  Applying and ADSR envelope to an oscillatory signal 

produces a double sided enveloped oscillating signal.  This signal can then be feed to the 

audio out channel.  

 
0.1.2 Neural Network (Alexander Sanchez) 

 

0.1.2.1 Neural Network Overview 
 

 The second method of audio synthesis investigated was the use of a neural 

network in learning how to synthesize audio.  The goal of using a neural network is to 

have the neural network learn how to synthesize audio signals that sounded like musical 

instruments.  In order to achieve this, the network would be trained with a sampled signal 

for a particular instrument.  Once the network has learned to produce that signal within 

some acceptable margin of error, the network’s learning capabilities would be removed 

so that the system could operate faster in order to produce cleaner sounds. 

 

0.1.2.2 Forward Propagation 

 
 The neural network used is a multilayer feed-forward neural network.  It consists 

of 2 inputs, 4 layers of neurons (3 layers of  2 neurons and 1 layer of 1 neuron), and 1 

output.  It uses forward propagation for computing the output of the system and 

backwards propagation for learning.  Forward propagation consists of a series of 

computations that are internal to each neuron.  First all the inputs to a single neuron are 

multiplied by weights (one weight is specifically assigned to each input) and then these 

weighted inputs are summed.  This value is then passed into an activation function that 

produces the output of the neuron.  The activation function used in this implementation of 

a neural network is the sigmoid function since it is differentiable and the derivative of the 

activation function is necessary in backwards propagation.  See figure 0.1 for a 
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mathematical diagram of a neuron. The outputs of the neurons in one level are then 

passed to the inputs of each of the neurons in the next level and the process is repeated 

until a final output is produced.  See figure 0.2 for a drawing of a simple multi-layer 

neural network. 
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0.1.2.3 Backwards Propagation 
 

After the final output is produced, the output is compared to a target value and the 

squared error is computed (see equation 0.1). This error is then modified by multiplying it 

by the derivative of the activation function evaluated at the current value of the output of 

the neuron.  This value can be thought of as the delta of the outputs (see equation 0.2).  

This delta is then used to adjust the weights.  The amount that the each weight is adjusted 

Figure 0.1
1
: Mathematical Model of a neuron. 

Figure 0.2
1
: Drawing of a simple multi-layer neural network. 
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by in an output neuron is equal to the output of the neuron times the delta of the output 

times a learning factor alpha.  Alpha is a pre-determined constant factor.  This adjustment 

factor is then added to each of the weights of the output neuron (see equation 0.3). 

 

 
Equation 0.1

1
: Squared output error vector 

 E = 1/2 ∑(yi – ai)
2
 , where y is desired output vector 

 
Equation 0.2

1
: Delta of outputs (modified error) 

∆i = Ei x g’(ini) 

 
Equation 0.3

1
: Weight update rule for output neurons 

Wj,i  ←   Wj,i  + ά x aj x ∆i  

 

 Each of the inputs to the output neuron contributed a certain amount to the output 

error.  To account for the contribution to the error for each of the inputs to the output 

neuron, a separate delta is propagated to each neuron connected to the output layer.  The 

delta propagated to each neuron connected to it is equal to the input to the output neuron 

received from the neuron in the previous layer times the delta of the output (see equation 

0.4).  Once the output neuron has propagated all of its partial delta values the next layer 

of neurons adjusts its weights (see equation 0.5) and propagates its partial deltas to the 

next level and so on until the inputs are reached and there are no more neurons left to 

propagate to.  Once a neuron in a hidden layer receives all the partial deltas from the 

neurons it feeds its output to it calculates its delta.  This delta is equal to the sum of the 

partial deltas it has received times the derivate of the activation function evaluated at the 

value of its output.  It then adjusts its weights in a manner similar to the output neuron 

and calculates it partial delta values also in a similar way.  Once backward propagation is 

finished the network can do forward propagation again. 

 

Equation 0.4
1
: Propagation rule for ∆ values 

∆j = g’(inj) ∑ Wj,i ∆i  

 
Equation 0.5

1
: Weight update rule for neurons in hidden layers 

Wk,j  ←  Wk,j  + ά x ak x ∆j 

 

 

 Each time through this process the weights are adjusted a little bit in order to 

produce an output that is closer to the target output.  The network can be trained until the 

output produced is within some margin of error.   

 

0.2 Overview of Hand Detection (Behram Mistree) 

 

 The principle focus of our project is to construct an instrument that is controlled 

through a user’s hand movements.  There are a variety of ways to sense hand motion: 

buttons, accelerometers, and video detection would all be acceptable.  We chose to do 
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hand detection based on video signals because we felt that it would be least restrictive to 

the user and provide the most interesting feedback. 

We implemented and tested two separate methods for detecting hand movements 

via video.  Both incorporated a user’s wearing LEDs on his/her hands.  The first method 

looked for strings of similarly colored pixels.  Whenever a string was found of suitable 

length, the detector would check to see if there was an LED already registered in a nearby 

neighborhood.  If there were no LEDs within some set distance, the string of consecutive 

pixels became registered as a new LED. 

This was a fairly naïve algorithm.  It was not robust to changes in distance, and 

random noise and shading often impacted our ability to detect a person’s hands. 

Noting the success and accuracy of various past and current projects using center 

of mass calculations to calculate hand positions, we also implemented an algorithm 

which identified LEDs attached to hands by averaging horizontal and vertical values for 

pixels whose color values passed particular thresholds.  This solution was much more 

robust and allowed us to experiment with other aspects of the project.
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1. Module Descriptions 

 
1.1 Module Description for Subtractive Synthesis System (Alexander Sanchez) 

 

1.1.1 adsr_FSM 
 

 The adsr_FSM is a finite state machine that is responsible for controlling the 

output audio signal and the appropriate ADSR envelope being applied to the oscillating 

signal. It takes as input an encoding for the desired note (the signal note), the signal 

instrument, and the signal play.  When the adsr_FSM receives a high play signal it begins 

the process of playing a note at the pitch that note encodes on the instrument specified by 

the signal instrument.  The adsr_FSM contains as parameters the locations of the starting 

points of the attack, decay, release, and sustain portions for each instrument.  A MUX 

that is controlled by the signal instrument is used to decide which address pointers are 

used.  A ready signal at 496 Hz is used to sample the ROMs containing the ADSR 

envelopes.  This allows the signal to last long enough to be audible.  At every ready 

signal the address being accessed in the appropriate ROM is incremented by one.  If the 

instrument should change while a note of another instrument is being played, then the 

address pointers will change and the adsr_FSM will change to the appropriate state to 

account for the change in instrument.  Also, anytime that a high play signal is received 

the current note being played is stopped and a new note is started.  The adsr_FSM 

contains 8 states, although 4 of those states are idle states.  The adsr_FSM changes state 

once address equals one of the address pointers, which indicates that it is time to change 

the portion of the ADSR envelope being used.  For example, reaching the sustain address 

pointer means it is time to leave the attack phase and enter the sustain phase.  Once a note 

has reached the release pointer, the wave form generated goes to zero and audio stops 

coming out of the module. See figure 1.1 for a block diagam of the adsr_FSM module. 
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1.1.2 note_to_frequency2 
 

 The note_to_frequency2 module is responsible for varying the sampling rate of 

the ROM holding the oscillating waves.  By varying the sampling rate of the ROM it is 

possible to change the frequency of the wave stored in the ROM.  This module takes as 

input the signal note which is the encoding used to represent the range of possible notes, 

see Table 1.1 for the encodings of notes that can be produced by this system.  There are 

two octaves of notes available centered around middle C (261.626Hz).   

 

 

Encoding Frequency (Hz) 

0 C 130.813 

1 C# 138.591 

2 D 146.832 

3 D# 155.563 

4 E 164.814 

5 F 174.614 

6 F# 184.997 

7 G 195.998 

8 G# 207.652 

Figure 1.1: Block diagram of adsr_FSM module 
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9 A 220 

10 A# 233.082 

11 B 246.942 

12 C 261.626 

13 C# 277.183 

14 D 283.665 

15 D# 311.127 

16 E 349.228 

17 F 369.994 

18 G 391.995 

19 G# 415.305 

20 A 440 

21 A# 466.164 

22 B 493.883 

23 C 523.251 

 

 
 

1.1.2.1 Solution to Issue of Sampling ROMs Storing Waveforms 
 

The original note_to_frequency module was clocked with a 27mHz clock so the 

method used for calculating the freq_count signal was not consistent since everything 

else was run off of a 65 mHz clock.  To get the module working with a 65mHz clock it 

became necessary to recalculate the freq_count values.   The original value was obtained 

by first dropping the 27mHz clock down to 3,375,000Hz.  This signal was then divided 

by the desired frequency to get the value of freq_count for the desired note.  However, 

once we started using the 65mHz clock we realized that the signals generated where no 

longer at the correct frequency and were highly distorted and didn’t resemble the 

waveforms they were suppose to.  This was due to the fact that the 65mHz clock would 

pick up 2 to 3 positive edges of the control signals generated with the 27mHz clock 

causing the ROMs to be sampled at the wrong rates.  To account for this error the 

formula for getting the value of freq_count was modified.  First 3,375,000 is divided by 

the desired frequency to get a number that represents what the original signal feed into 

the module had to be divided by to generate the desired frequency, let’s call this number 

f_div.  Next divide 27,000,000 by 8  as was done originally and call this number clk_div.  

Now we again divide clk_div by f_div as before.  However, now we multiply this number 

by 2 to account for the 65mHz clock picking up multiple positive edges, call this number 

div_adjusted. Finally divide 65,000,000 by div_adjusted to get the value for freq_count.  

Some problems with this method is that this is only an approximations since the 65mHz 

clock might not be picking up a constant amount of positive edges of the signal generated 

by the 27mHz clock.  This caused the resulting waveforms to be slightly off pitch; 

however, the waveforms appear to be in relative tuning which results in decent sounds. 

 

1.1.3 sine_generator 

  

Table 1.1: Encodings for Frequencies of Playable Notes 
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The sine_generator module is responsible for generating a frequency variable sine 

wave.  It interacts with the sineROM and the note_to_frequency2 module.  The 

sine_generator takes as input the signal frequency which is the encoding of the desired 

note pitch specified in the note_to_frequency2 module (see Table S.1).  The 

sine_generator operates by sending the frequency signal encoding to the 

noteToFrequency2 module and getting the signal max_freq_count.   Max_freq_count is 

the maximum number for the counter enable_count that is used to determine how long to 

hold the address signal to the sineROM at any given address.  By changing the value that 

enable_counter counts to you are able to sample the sinROM at different rates and thus 

get sine wave of different frequencies out of the ROM. 

 

1.1.4 sawtooth_wave_generator 
 

 The sawtooth_wave_generator is responsible for generating a frequency variable 

sawtooth wave.  It functions almost identically to the sine_generator except that it 

interacts with the sawtoothROM. 

 

1.1.5 square_wave_generator 

 
 The square_wave_generator is responsible for generating a frequency variable 

square wave.  It functions almost identically to the sine_generator except that it interacts 

with the squareROM. 

 

1.1.6 synth_channel_selector 

 
 The synth_channel_selector is used to select which audio channel is sent to the 

ac97 audio chip.  The synth_channel_selector takes as input four 8 bit signed signals.  

The last signal is suppose to be a voice channel and the other 3 channels are supposed to 

be synthesized instruments.  The input note_selector selects which of the three 

synthesized signals to play.  The possible selections are the signals note1, note2, note3, or 

the sum of all three waves.  The waveform selected by note_selector is then passed into 

another MUX with the voice channel.  The input voice_sel selects which of the channels 

gets passed through the MUX.  The possible options are the output of the MUX 

controlled by note_selector, the voice channel, or the two channels added.  Finally the 

signal out of the MUX controlled by voice_sel is passed into a final MUX controlled by 

the signal loop.  This last MUX was to allow for looping.  The second input to the MUX 

was suppose to be the waveform saved into a memory.  However, it is also to put a 

different type of a signal into the input for looping. 

 

1.1.7 adsrROM 

 
 The adsrROM module is a wrapper for the guitarROM and the violinROM.  It 

takes as input an 8 bit signal address that it then feeds into the guitarROM and 

violinROM address ports.  The adsrROM also takes as input the 3-bit signal instrument 

that specifies which instrument should be synthesized, i.e. which instrument ROM needs 

to be accessed at the moment.  The instrument signal was made 3 bits in order to allow 
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future expansions with more instruments being synthesized.  The adsrROM outputs an 8 

bit signed signal data that is the data being read out of the appropriate instrument ROM.  

The adsrROM interacts with the adsr_FSM. 

 

1.1.8 guitarROM 

 
 The guitarROM contains the ADSR envelop for the guitar.  This envelop was 

generated using MATLAB.  A script was used to create a graph that consisted of 4 parts: 

attack, decay, sustain, and release.  The script can be seen in appendix a.1The attack 

portion of the guitar ADSR is a growing exponential.  The decay portion is a linearly 

decreasing line.  The sustain phase is a single point on the graph.  The release phase is a 

slowly decaying parabola.  This portions were chosen because a guitar has a quick and 

sharp attack followed by a quick decay that is then followed by a very minimal sustain 

and then finally a slow, drawn out release.  A plot of the ADSR envelope for the guitar 

can be seen in figure 1.1. 
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1.1.9 sineROM 
 

The sineRom module contains one period of a sine wave at 440Hz.  The 

sineROM contains 256 samples of a sine wave that has been amplified to fit within the 

range of -127 to 127 so that it would not contain decimal values and fit into an 8bit 

signed number.  It takes as input an 8 bit number for the address of the data desired and 

outputs an 8 bit signed number data that is the data located at address.  The actual file 

was created using a matlab script made to compute the sampled values of the 440Hz sine 

wave and create the look up table. 

 

 

 

 

Figure 1.2: ADSR Envelope for the guitar. 
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1.1.10 squareROM 
 

The squareROM contains one period of a square wave at 440Hz.  It also contains 

256 samples of the waveform and has the same structure as the sineROM.  The 

squareROM was also created using a matlab script. 

 

1.1.11 sawtoothROM 

 
 The sawtoothRom contains one period of a sawtooth wave at 440Hz. The 

sawtoothRO M also contains 256 samples of a sawtooth wave and has the same structure 

as the sineRom.  It was also created using a matlab script. 

 

1.1.12 violinROM 
 

 The violinROM module contains the ADSR envelop for the violin.  The actual 

ADSR envelope was created with matlab.  The ADSR envelope for the violin was 

generated in MATLAB using a similar method to that used for the guitarROM.  

However, a violin has a slow attack, no decay, a very long almost constant sustain, and 

then a slow decay.  The ADSR for a violin looks like a wide upside down U and a plot of 

the envelope can be seen in figure 1.2. 
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1.2 Module Descriptions for Neural Network System (Alexander Sanchez) 

 

1.2.1 propagation_fsm 
 

 The propagation_fsm a finite state machine and is responsible for controlling the 

forward and backward propagation, which neuron_bus is currently active, and generally 

the whole flow of learning.  It consists of 21 states (1 idle state, 12 states for forward 

propagation, and 8 states of backward propagation) and a state transition diagram can be 

seen in figure 1.3.  The propagation_fsm interacts with the neurons, neuron_bus, and the 

neuron_output modules.  See Figure 1.4 for a block diagram of the neural network.  The 

propagation_fsm receives as inputs from each of the neuron_bus (the ready signal from 

Figure 1.3: ADSR envelope for a violin 
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each of the neuron_buses).  Receiving a ready signal from the neuron_bus whose ID 

number matches the value specified by the propagation_fsm’s current_bus signal causes 

the state of the propagation_fsm to change. 
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Figure 1.4: State Transition Diagram for the propagation_fsm. 
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 The propagation_fsm generates several output signals.   The forward  and adjust 

signals control whither forward or backwards propagation is running.  When forward is 

high the neural network runs the forward propagation algorithm and when the adjust 

signal is high the neural network runs the backward propagation algorithm.  Only one of 

these signals may be on at any given moment. 

 The current_neuron signal is used to control which neuron is passing its outputs 

onto the outputs of the current neuron_bus at any given time as well as lets the neurons in 

the next level know which neuron in the previous level the current input is coming from. 

 The propagation_fsm also keeps track of what epoch the neural network is 

currently on as well as when the neural network should stop training.  The stopping 

conditions for the neural network are to either reach the maximum number of epochs 

specified by its parameters or to receive a high within_margin signal from the 

neuron_output.  A high within_margin signal means that the output error has fallen 

within an acceptable error margin and thus training can stop. 

 

1.2.2 neuron_bus 
 

 The neuron_bus module is used to decrease the amounts of wires neccesary 

between modules.   Since all each neuron in a single level are suppose to be connected to 

each neuron in the level before and after it, a great deal of wires would be required to 

make all of the required connections in a multilayer neural network.  In order to decrease 

the number of wires between each level a bus is used.  Each neuron in a single level will 

feed its output into the appropriate input of the neuron_bus.  Then based on the 

current_neuron signal the neuron_bus will decide which neuron’s outputs to allow to 

pass.   

The neuron_bus is a two-way bus.  During forward propagation it passes the 

output of the neurons (i.e. the output of the each neuron’s activation function) and during 

propagation it passes each neuron’s partial deltas.  For backward propagation, the 

neuron_bus has four 32-bit signed input and two 32-bit signed outputs.  Each neuron 

generates 2 partial deltas (one for each neuron in the next level).  Out_backward_1 goes 

to the neuron on the left in the next level and out_backward_2 goes to the neuron on the 

right in the next level.  So first the neuron_bus passes the first partial delta for each 

neuron through the 2 outputs of the bus and then it passes the second partial deltas for 

each neuron in the level.   Every time that the neuron_bus has new data ready on its 

outputs and it is the current bus specified by the propagation_fsm, the neuron_bus will 

generate a high ready signal that gets passed to the propagation_fsm. 

 

1.2.3 Weight Control System 

 

1.2.3.1 weight_manager_controller 

 
 The weight_manager_controller module is a finite state machine used for 

controlling the loading and saving of weights from memory.  It consists of 15 states (1 

Figure 1.5: Block diagram of neural network. 
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idle state,  7 loading states, and 7 saving states).  In state 1 neuron 0 is loading its initial 

weights from memory, in state 2 neuron 1 loads its initial weights, and so on for each of 

the 7 neurons.  The weight_manager_controller interacts with each of the 

weight_managers for each of the neurons.  See Figure 1.5 for a block diagram of the 

weight control system. When the weight_manager_controller receives a high start_load 

signal it will begin telling neurons to load their respective weights.  The 

weight_manager_controller sends the current_unit signal to each of the neurons where 

current_unit specifies the unit ID number of the current unit that is being allowed access 

to the memory.  After a weight_manager has finished loading its respective weights from 

memory it sends a load_done signal to the weight_manager that causes weight_manager 

to advance to the next state.  
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 As for saving, state 8 corresponds to neuron 0 saving the value of its current 

weights to memory, state 9 corresponds to neuron 1, and so on.  The 

weight_manger_controller enters state 8 upon receiving a high start_saving signal.  As 

with loading, weight_manager_controller sends each individual weight_manager the 

current_unit signal so that each weight_manager knows when it is its turn to access the 

Figure 1.6: Block diagram of Weight Control System. 
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memory.  When a weight_manger finishes saving its weights it sends the 

weight_mangaer_controller a high saving_done signal.  The weight_manager_controller 

can do only one thing at a time, it is not possible for the weight_manager to save and load 

at the same time.  Also, the weight_manager controller can’t be interrupted by receiving 

another start_load or a start_save signal as once it receives one it will proceed to the end 

of the load or save process before being allowed to accept another signal. 

 The weight_manager_controller controls access to the memory by sending the 

current_unit signal to the weight_bus and weight_address_bus modules.  This allows 

these two modules to know which neuron should currently be allowed access to the 

memory. 

 

1.2.3.2 weight_manager 
 

 The weight_manager module is responsible for keeping track of the current values 

of the weights of a neuron.  It has three functions.  It can load weights from a BRAM, 

save weights to a BRAM, and load/save weights from the modules that use/adjust the 

weights within the neuron.  Loading and saving weights to and from a BRAM is 

somewhat tricky since the weights are 32 bit signed numbers and the BRAM stores 7 bit 

signed numbers.  The reason for this restriction is that the serial port sends 8-bit data and 

the processing we do on that data ignores the most significant bit, thus reducing the 

available data sent via serial to a computer to 7-bits.  This means that the weights must be 

stored in among 5 address.  Bits 31-28 of a weight are stored in bits 3-0 of the first 

address.  Bits 27-21 of the weight are stored in the second address, bits 20-14 are stored 

in the third address, bits 12-7 are stored in the fourth address, and bits 7-0 are stored in 

the fifth address.   

To load the weights from a memory, weight_manager uses a counter that acts as a 

pseudo finite state machine to keep track of what bits of the weight it is loading and what 

weight it is currently on.  Once all of the bits have been loaded for each of the weights, 

weight_manager sends a high load_doneI signal to the weight_manager_controller 

module. 

 Saving is done in a similar fashion.  A counter is used as a pseudo finite state 

machine to keep track of which bits of which weight and to what address in memory the 

module is sending data to.  After all the data is written to the bram the module will send a 

high save_done signal to the weight_manager_controller module. 

 The weight_manager also interacts with the other modules within the neuron and 

neuron_output modules.  Modules can request the current values of weights from the 

weight_manager and the weight_manager will send the modules the requested data.  The 

module has two ports for interacting with other modules within the neuron.  One port is 

an output port called current_weight that sends the currently requested weight to a 

module.  Whenever the weight_manager is not loading or saving and the value of 

weight_request changes then weight_manager changes the value of current_weight to the 

appropriate weight.  The module that sends the weight_request signal to weight_manager 

is weight_multiplier and weight_multiplier_output.  However, the weight_adjuster 

modules also take the same weights as inputs as the weight_multiplier modules.  The 

other port for interacting with modules within the neuron that weight_manager has is an 

input port called current_weight_out_adj.  This port is feed by the weight_adjuster 
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modules.  When the weight_adjuster modules are finished adjusting weights they then 

send the weight_manager a high adjusted_weight_ready signal, an adjusted_weight 

signal and a current_adj_weight signal.  These signals tell the weight manager which 

weight is being adjusted and what its new value is.  The weight_manager then overwrites 

the old value of the weight being adjusted with its new value. 

 

1.2.3.3 weight_address_bus 
 

 The weight_address_bus module is used to control which neuron has access to the 

address port on the BRAM containing the weights.  It takes as input the current_unit 

signal from the propagation_fsm.  The current_unit signal tells the weight_address_bus 

which module should be accessing the weights BRAM at any given moment.  Whenever 

the current_unit signal changes, on the next positive edge of the clock the address on the 

address output port of the module will change to the address being requested by the 

neuron specified by the current_unit signal. 

 

1.2.3.4 weight_bus 
 

 The weight_bus module controls which neuron has access to the data_in port at 

any given time.  It works in a similar fashion to the weight_address_bus.  It should be 

noted that the weight_bus takes as inputs 7 bit signed numbers whereas the weights used 

are 32 bit signed numbers.  This just means that each neuron has to send each weight in 

five 7 bit parts to the weights BRAM.  The weight_bus also takes as input the 

current_unit signal from the propagation_fsm and whenever this signal changes on the 

next positive edge of the clock the weight_to_mem output will change to the current 7-bit 

portion of a weight that the current neuron specified by current_unit is currently 

changing. 

 

1.2.3.5 weight_system_test_fixture 
 

  The weight_system_test_fixture is a test fixture used for testing the interfacing of 

all of the components of the weight control system (weight_managers, the 

weight_manager_controller, the weight_address_bus, the weight_bus, the initial weights 

bram, and the labkit to pc via serial modules)  The test was to load some initial weights 

from the memory, increase them by one, save the adjusted weights to memory, and then 

transmit the newly saved weights to a laptop via the labkit’s serial port. 

 

1.2.4 Neurons 

 

1.2.4.1 neuron 
 

 The neuron module is the basic computational component of the neural network 

system.  Its main purpose is to abstract away the various computations involved in 

forward and backward propagation.  The neuron module functions in two separate modes, 

forward and backward propagation.  During forward propagation the neuron takes as 

inputs the outputs of all the neurons in the previous layers and performs various 
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calculations with those values in order to get out a single 32-bit signed value that it then 

propagates to all the values in the next layer.  During backward propagation the neuron 

takes as input the delta from the layer it sent its outputs to during forward propagation.  

Then the neuron will perform various calculations with those deltas.  Next the neuron 

will adjust the values of its weights and calculate its new delta.  Finally the neuron 

propagates its new delta to the next level. See figure 1.6 for a block diagram of a neuron. 
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1.2.4.2 weight_multiplier 
 

 The Weight Multiplier module applies weights to the inputs of a neuron.  The 

weight multiplier module takes as input either the inputs to the system or the output of 

each neuron in the previous layer.  There is a specific weight in each neuron that 

corresponds to each input that it receives.  Each neuron also has a bias weight that is 

multiplied by a constant input of 1.  In order to assure that each weight is properly loaded 

and that each input value that is received is correct, the module waits until all the weights 

have been loaded and the inputs have been received before performing any 

multiplications. 

 First the weight multiplier module communicates with the neuron_bus module 

that drives the inputs of the weight multiplier.  The neuron_bus tells the 

Figure 1.7: Block diagram of a neuron. 
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weight_multiplier when it has a value ready at its outputs.  When the weight_multiplier 

receives this signal it loads the value of the output of the neuron_bus into a register and 

then waits for the next input from the neuron_bus.  Once all the inputs have been receive, 

the weight_multiplier then communicates with the weight_manager module to load the 

current value of the weights into registers.  First the weight_multiplier tells the 

weight_manager module the ID number of the weight it wants (0 = bias weight, 1 = 

weight 1, 2 = weight 2).  The weight_multiplier then finds the value for the appropriate 

weight and sends the weight_multiplier module a high control signal once it has found 

the appropriate weight and has put the weight on its output to the weight_multiplier.  The 

weight_multiplier then stores this weight into the appropriate register and tells the 

weight_manager the ID of the next weight it wants.  Once all the weights have been 

loaded the weight_multiplier multiplies the inputs by the appropriate weights and stores 

the values in registers.  It then puts these values on its output to the input_function 

module one at a time and signals to the input_function when a value is ready at its 

outputs 

 

1.2.4.3 input_function 
 

 The input_function module is used to sum the weighted inputs to a neuron.  This 

module interacts with the weights_multiplier module and the sigmoid module.  It takes as 

inputs the weighted_in output from the weights_multiplier.  The input_function module 

waits until it receives a high done signal from the weights_multiplier to store the current 

weighted_in value into a register.  Once input_function has received 3 weighted_ins it 

will signal that is done summing the weighted inputs by making done high and placing 

the sum of the weighted inputs on its summed_input output. 

 

1.2.4.4 sigmoid 
 

 The sigmoid module serves as the neural network’s activation function.  The 

sigmoid function is a differentiable threshold function.  It is a constant high value for 

numbers greater than some threshold, a constant low value for numbers below some 

threshold, and takes on different values for numbers between the two thresholds.  The 

graph of the sigmoid function looks like an elongated ‘S’.  The sigmoid module takes as 

input the summed_input output of the input_function module.  The sigmoid function is 

then evaluated when input_function sends sigmoid a high done signal.  The sigmoid 

function is then evaluated at summed_input as well as the derivative of the sigmoid 

function at summed_input.  Since the sigmoid function involves an exponential division 

by a number that is possibly not a power of 2 a look up table was used to compute the 

function.  By using a lookup table an output value is reached in a reasonable amount of 

time.  Once the function is evaluated the sigmoid function sends a high done signal and 

outputs the value of the evaluated function as sig and its derivative as sigDer.  These 

outputs are used to let the system know when a layer of neurons are finished with forward 

propagations.  sig is passed as an input to neuron_bus which it then passes to the inputs of 

the next layer of neurons. 
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1.2.4.5 weight_adjuster 
 

 The weight_adjuster has more or less the same functionality as the 

weight_adjuster_output module.  The big difference is that the weight_adjuster_output 

module gets its delta inputs from the output_errror module whereas the weight_adjuster 

gets its delta inputs from the neuron_bus.  This means that weight_adjuster has to wait to 

receive both partial deltas from the propagating level.  The neuon_bus has two outputs 

for backwards propagation, one for the partial delta propagating to each of the neurons in 

the level.  Since each neuron is receiving 2 partial deltas it needs to wait for both.  When 

weight_adjuster receives a bus_ready high signal from neuron_bus while adjust is high, it 

will store the incoming delta value as in a register the first time and then add the 

incoming delta value to the first value the second time to get the total delta.  After the 

second delta is received the internal delta_prop_recieved signal is set to high and the 

module then functions like the weight_adjuster_output module. 

 

1.2.4.6 neuron_output 

 
 The neuron_output module is the output neuron of the neural network and is 

responsible for generating the output of the system as well as calculating the output error 

and beginning the backward propagation.  As far as forward propagation is concerned it 

functions almost identically to the neuron module with the exception that it uses the 

weight_multiplier_output and the sigmoid_output to account for the state transition of the 

propagation_fsm from forward to backward propagation.  Since the neuron_output 

module is not feed any partial deltas it has to compute its own delta based off of the 

output error that it computes.  See Figure 1.7 for a block diagram of neuron_ouput. 
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1.2.4.7 weight_multiplier_output 
 

 The weight_multiplier_output module has the same functionality of the 

weight_multiplier module except that the actual multiplications occur at a different time.  

The weight_multiplier module computes the multiplications during the time that the 

forward signal is asserted high and the weight_multiplier_output module makes the 

computations while the adjust signal is asserted high.  The reason for this difference is 

the propagation_fsm.  Once the last neuron_bus sends the last input to the neuron_output 

the forward signal is asserted low and the adjust signal is asserted high.  This doesn’t 

leave enough clock cycles for the weight_mutliplier module to finish all of the necessary 

multiplications.  This would cause the weight_multiplier to never finish and assert its 

finished signals high and would thus stop the training of the neural network prematurely.  

In order to prevent this, the weight_multiplier_output defers its computation of the 

necessary multiplication to when forward is asserted low and adjust is asserted high so 

that it will have the necessary number of clock cycles to finish. 

 

 

Figure 1.8: Block diagram of neuron_output. 
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1.2.4.8 sigmoid_output 
 

 The sigmoid_output module has all the same functionality as the sigmoid module 

except that it operates at a different time.  Due to the implementation of the 

propagation_fsm, the sigmoid would receive summed_input from input_function on the 

last clock cycles of the forward signal being high.  This causes the sigmoid module not to 

evaluate.  In order to get the module to evaluate it was necessary to make the 

sigmoid_output module become functional when the adjust signal is high.  The output sig 

is sent to the output_error module and is also the output to the entire system.  The ouput 

sigDer is sent to the output_error module as well as the weight_adjuster_output module.  

After sigmoid_output exerts a high done signal, backward propagation can be thought of 

as having officially begun. 

 

1.2.4.9 output_error 
 

 The output_error module calculates the squares output error of the system as well 

as the delta of the output.  It takes as input the done signal from the sigmoid_output 

module and the forward signal.  The output_error module keeps track of how many 

samples of the target have been compared to the output of the system.  Every time that 

output_error finished cycling through the samples, when forward is high output_error 

will calculate the total average error over all the samples in the target.  If this average is 

within some acceptable margin of error, then the within_margin signal is asserted high to 

signal that training can stop.  While the adjust signal is high and withing_margin is low 

the output_error module calculates the squared output error of the system and the delta of 

the output. Once done from sigmoid_out is asserted high output_error begins making its 

calculations.  The process of calculating the squared error and the deltas has been 

pipelined.  First the differences between the output of the system and the target sample 

value is computed .  Then on the next clock cycle this difference value is squared. On the 

next clock cycle the squared value is multiplied by the sigDer value from the 

sigmoid_outpput module to get the output delta value.  On the last clock cycle the output 

delta value is divided by two and put on the delta output of the output_error module and 

the value of the squared difference divided by two is put  on the error output.  The 

internal running_sum of the output error is incremented by error.  Also on this last clock 

cycle, done is asserted and sent to weight_adjuster_output module. 

 

1.2.4.10 weight_adjuster_output 
 

 The weight_adjuster_output is used in backward propagation to calculate the new 

values of the weights based on the delta of the output and then propagate the partial deltas 

to each of the neurons in the next level.  It receives as input the done signal from 

output_error, the delta signal from output_error, and the current inputs to the output 

neuron from the neuron_bus.    First, while forward is asserted high 

weight_adjuster_output waits for the appropriate neuron_bus to become active.  Once the 

appropriate neuron_bus is active, weight_adjust_output behaves just like 

weight_multiplier_output in that it loads the current inputs into registers.  Once aadjust is 

asserted high weight_adjuster_output begins to load the current value of the weights for 
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the output_neuron.  Whenever weight_adjuster_output receives weight_ready_adj from 

the weight_manager, it stores the weight into a register and increments 

weight_request_adj by one.  This signal is the id of the current weight being requested for 

adjusting.  Once all the weights have been loaded the internal signal weights_loaded is 

assert high and loading of weights stop.  When the delta from the output_error is ready, 

weight_adjuster_output stores the value of delta into a register and asserts the internal 

signal detla_recieved high.  When the signal done is asserted high from the 

sigmoid_output, weight_adjuster_output stores the value of sigDer into a register and 

asserts the internal signal der_recieved high. 

 Once der_recieved, delta_recieved, and weights_loaded are all asserted high the 

process of adjusting the weights begins.  This process is also spread out over a series of 

clock cycles.  On the first clock cycle the adjustment factor is finished being computed 

and the current adjustment factors are multiplied by the current delta.  The partial deltas 

are also started to be computed when the weights are multiplied by the current delta.  On 

the next clock cycle the partial deltas are finished being computed when the current 

partial delta values are multiplied by the stored value of the derivative of the sigmoid 

function.  The weights are also adjusted by the adjustment factor on this cycle. On the 

next clock cycle the new value of the bias weight is put on the current_adjusted_weight 

output and ready_adjuste_weight is asserted high.  This allows the weight_manager to 

store the new value of the bias weight.  Two clock-cycles later current_adjusted_weight 

is changed to weight two and weight_Manager stores this new value for weight 1.  Again 

two clock cycles later the process is repeated for weight 2.  Finally, on the last clock 

cycle the partial deltas are sent on partial_delta_out_1and partial_delta_out_2 and done 

is asserted high.  The partial deltas are sent as inputs to the appropriate neuron_bus. 

 

1.2.4.11 network_test_fixture 

 
 The network_test_fixture is the testing fixture used for testing the integration of 

all the neural network components into the full neural network.  First the 

network_test_fixture consisted of two constant inputs being feed into the neural networks 

inputs and trying to get the neural network to learn to output a constant number.  The 

neural network was able to learn to achieve this.  It quickly converged to a number within 

3 of the target number and then stopped as 3 was within the chosen error margin of 10 for 

the test.  Next the network_test_fixture was feed the values in the and input look up 

tables and the target values were taken from the target and look up table.  The target was 

to have TRUE be 127 and FALSE be 0, however the neural network learned TRUE to be 

127 and FALSE to be -127.  This could have been due to the implementation of the 

sigmoid function.  The range of values for which the sigmoid function was not constant 

might have been too small.  As the error on this training data would jump from 0 (when 

the output was 127) to a very large number (when the output was -127) .  If FALSE 

would have been defined as -127 the network_test_fixture would have been able to 

properly learn the function.  It should be noted that all of these test were only run in 

simulation as there was not enough time to test the network in hardware on the labkit. 
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1.3 Block Diagrams for Hand Detection, Serial, etc. (Behram Mistree) 

 Please note that all gray blocks came from external creators.  All pale blue blocks 

were written by us. 

1.3.1 High Level Block Diagram 
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1.3.2 Keyboard, ROM, Naive Hand Detection Block Diagram 
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Figure 1.9: High Level Block Diagram 

Figure 1.10: Keyboard, ROM, Naïve Hand Detection Block Diagram 
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1.3.3 Naive Hand Detection Block Diagram 
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1.3.4 Alternate Hand Detection Block Diagram 
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Figure 1.11: Naïve Hand Detection Block Diagram 

Figure 1.12: Alternate Hand Detection Block Diagram 
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1.3.5 Audio Player Block Diagram 
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1.3.6 Monitor Module Block Diagram 
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Figure 1.13: Audio Player Block Diagram 

Figure 1.14: Monitor Module Block Diagram 
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1.3.7 Serial Block Diagram 
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1.4 Module Desccriptions for Hand Detection, Serial, etc. (Behram Mistree) 

 

1.4.1 hand_detect 

 
 At a high level, the hand_detect module is simply supposed to take in camera data 

and output the horizontal and vertical positions of any LEDs within the camera data.  To 

accomplish this task, the hand_detect module takes in YcrCb data directly from the 

camera.  The hand_detect module filters each pixel that comes in as either suitably red or 

not suitably red.  The hand_detect module keeps track of the last ten pixels recorded.  If 

all of the last ten pixels were categorized as suitably red, the hand_detect module does 

two things: (1) it checks whether the current position is adequately different from an LED 

position it already has stored, and  (2) it checks whether the maximum number of LEDs 

has not yet been detected for this frame of camera data.   

 If both of these conditions are met for the aforementioned tenth consecutive 

suitably red data point, hand_detect stores the horizontal and vertical positions of the 

tenth point a distinct LED.  In addition, it increments the stored number of LEDs the 

module believes it has seen as well as multiplying. 

 After a full frame of data, a ready signal is asserted which guarantees the validity 

of the outputs.  This ready signal is high for one clock cycle, after which the data 

continues to change. 

 The hand_detect module takes as inputs vclk_i, ycrcb_i, hcount, vcount, hsynch, 

and vsynch. 

 The vclk_i input is a simple clock signal timed to the 27 mHz camera's clock.  The 

ycrcb_i input is a 30-bit long value that is updated on every clock edge.  It contains the 

luminosity (10 most-significant-bits), red chrominance (middle 10 bits), and blue 

Figure 1.15: Serial Block Diagram 
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chrominance (10 least-significant-bits) of each pixel.  hcount is an 11 bit number that 

corresponds to the horizontal position within a frame of camera data of the data that is in 

ycrcb_i.  Similarly, vcount is a 10-bit number which corresponds to the vertical position 

of the data that is in ycrcb_i.  hsynch  and vsynch are each 1 bit numbers that correspond 

to the horizontal and vertical syncing  of the data represented by ycrcb_i.  When hsynch 

or vsynch are high, we know that the data that is being presented in ycrcb_i is invalid, and 

should not be used for calculations. 

 The hand_detect module issues five relevant outputs: x_positions_o, 

y_positions_o, type_of_hand_o, ready_o, and number_hands_o.   

 The hand_detect module is capable of detecting up to seven distinct LEDs.  

x_positions_o is a 77 bit number that corresponding to all of the potential seven LEDs' 

horizontal positions.  The 11 least-significant-bits map to the horizontal position of the 

first LED detected, the next 11 bits map to the horizontal position of the second LED 

detected, etc. 

 Similarly, y_positions_o is a 70 bit number that corresponds to all of the potential 

seven LEDs' vertical positions.  The 10 least-significant-bits map to the vertical position 

of the first LED detected, the next 10 bits map to the vertical position of the second LED 

detected, etc.   

 number_hands_o is a 3 bit output.  Its value corresponds to the number of distinct 

LEDs that were detected in a full scan of the data.  For example, if we detected 4 distinct 

LEDs after scanning the data, number_hands_o would equal 3'b 100. 

 The original specification of our design called for detection of two, differently 

colored LEDs.  The purpose of the 7 bit output type_of_hand_o is to distinguish which 

type of LED was detected.  That is, if the least-significant-bit of type_of_hand_o is high, 

we know that if LEDs were detected (ie number_hands_o greater than 0), the first LED 

that was detected was red.  Similarly, if the second bit of type_of_hand_o is low, we 

know that if at least two LEDs were detected (ie number_hands_o greater than 1), the 

second LED detected was blue.  (Please note that for simplicity, we later decided that all 

LEDs should just have a default type value of 1.) 

 

1.4.2 alternateHandDetect 
 

 The alternateHandDetect module is responsible for taking in a stream of camera 

data and returning the centers of the LEDs detected within that data.  Please refer to the 

block diagram labeled Alternate Hand Detection Block Diagram for specific connections. 

The alternateHandDetect module filters out red pixels (with appropriate 

brightness and red chrominance as determined by the ycrcb_acceptable module) and 

filters the data for blue pixels (with appropriate brightness and blue chrominance as 

determined by the ycrcb_brightness module).   

 The module keeps a running count of the number of red pixels detected as well as 

their horizontal and vertical positions.  As you can see from the diagram labeled 

Alternate Hand Detection Block Diagram, we divide these values using a separate, 

pipelined divider module that returns a 29-bit number.   

Because division is an intensive process, the actual result of the division takes 31 

clock cycles to propagate.  When we sample the results of this division, we reset the red 
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and blue pixel accumulators.  Therefore, we could potentially miss 31 pixels worth of 

data. 

Dividing the horizontal and vertical positions by the number of red pixels detected 

gives the center of mass of red pixels.  A symmetric method is used to determine and 

return the center of mass of the blue pixels.  After a full set of clock cycles, the center of 

mass of red pixels is returned and the center of mass of blue pixels is returned.   

 The relevant inputs of the alternateHandDetect module are clk_i, 

complete_reset_i, ycrcb_i, hcount_i, and vcount_i.  

 The clk_i signal represents the 27 mHz clock coming in from the camera.  The 

ycrcb_i input is a 30-bit long value that is updated on every clock edge.  It contains the 

luminosity (10 most-significant-bits), red chrominance (middle 10 bits), and blue 

chrominance (10 least-significant-bits) of each pixel.  The hcount_i and vcount_i signals 

represent the horizontal and vertical position of the pixel that corresponds to each YCrCb 

value. 

 The complete_reset_i signal is simply an input that allows the user to reset all his 

or her registers to an initial state. 

 Although there are numerous debugging outputs which were primarily used to 

demonstrate functionality, the relevant outputs of the alternateHandDetect module are 

blue_center_x_o, blue_center_y_o, red_center_x_o, and red_center_y_o.   

 The blue_center_x_o, blue_center_y_o, red_center_x_o, and red_center_y_o 

outputs correspond to the horizontal and vertical components of the red and blue centers 

of mass of a previous frame's video data.  All these outputs are held static, except during 

a one-clock-cycle refresh where they are updated with the values of the newest frame of 

data that has been processed. 

 As you can see from the block diagram labeled High Level Block Diagram, the 

four outputs of this function are fed into something of a mux which determines whether 

to send on the information from the ROM, keyboard, or other hand detection module to 

the b_monitor and note_module modules for display and sounding respectively. 

 

1.4.3 b_monitor.v 
 

 The monitor module was designed to take in the x and y positions of up to seven 

distinct LEDs and display their positions on a grid on the computer screen.  The simple 

logic describing the grid is contained in the screen_grid module.  To see the interface to 

this module and other details of the b_monitor module, please reference the block 

diagram labeled Monitor Block Diagram. 

 The b_monitor module takes in as inputs x_i, y_i, hand_types_i, number_hands_i, 

ready_i, vclock_i, hcount_i, vcount_i, pulse_i, and keyboard_i. 

 The monitor module is clocked differently from the camera.  Specifically, while 

the camera takes in a 27 mHz clock, the clock input of the b_monitor module, vclock_i, is 

clocked at 65 mHz. 

 x_i is a 77 bit input that maps to the horizontal centers of each LED recorded.  

Because the module was designed to support up to seven distinct LEDs, the 11 least-

significant-bits of x_i correspond to the horizontal position of the center of the first LED 

detected by one of the hand detection modules, its next 11 bits correspond to the 

horizontal position of the center of the next LED detected, etc.  
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 Similarly, y_i is a 70 bit input that maps to the vertical centers of each LED 

recorded.  (The 10 least-significant-bits correspond to the vertical position of the center 

of the first LED detected by one of the hand detection modules, the next 10 bits 

correspond to the vertical position of the center of the next LED detected, etc.) 

 Our design called for our hand detection to distinguish seven distinct LEDs of two 

different colors.  hand_types_i is a seven bit number.  The value of each bit corresponds 

to what type of LED is detected.  That is, if the least-significant-bit of hand_types_i is 

high, we know that if LEDs were detected (ie number_hands_i greater than 0), the first 

LED that was detected was red.  Similarly, if the second bit of hand_types_i is low, we 

know that if at least two LEDs were detected (ie number_hands_i greater than 1), the 

second LED detected was blue. 

As you can see from the block diagram labeled High Level Block Diagram, x_i, 

y_i, hand_types_i, and number_hands_i come from either the alternate_hand_detect 

module or the ROM, keyboard, or the naïve hand detection module. 

 hcount_i and vcount_i are 11 and 10 bit signals respectively.  hcount_i represents 

the value of the horizontal value of the particular pixel that is being painted on the screen, 

while vcount_i represents the vertical value of the particular pixel on the screen.  As you 

can see from the block diagram labeled Monitor Module Block Diagram, these signals 

come directly from the XVGA module.  In essence, if hcount_i and vcount_i are within a 

sufficient radius of the horizontal and vertical positions of detected LEDs, a black pixel is 

painted.  Otherwise, a white pixel is painted. 

 pulse_i is a single bit pulse signal.  It is asserted high for only one 65 mHz clock 

cycle.  The time between these pulses can be thought of as the minimum duration a note 

must be held.  (For our project, the time between pulse_i's pulses was roughly an eighth 

of a second.)  Clocking changes in notes to these pulses helps reduce noise in the display. 

 Because aspects of the hand-detection system were susceptible to random noise, 

while music is being played based on hand positions, the monitor module only displays 

data when at least two different LEDs are seen.  However, when displaying notes from 

the keyboard or a ROM input, the data is pure, and we do not have any problems with 

random noise.  As such, we do not need to require that more than one hand is detected 

when displaying note values from a keyboard or ROM input.  Therefore, we use a one-bit 

input called keyboard_i.  When keyboard_i is high, it indicates that we are either reading 

note data from a ROM or keyboard.  When low, keyboard_i indicates that we are 

displaying note values from hand detection and need to require that more than one hand 

is seen. 

 The only non-debugging output in the b_monitor module is the three-bit value 

pixel_o.  pixel_o corresponds to the RGB value that you want the monitor to display at 

the point specified by hcount_i and vcount_i. 

 

1.4.4 note_module 
 

 note_module is responsible for taking in a list of LED positions and converting 

those to a single synthesized sound wave.  As you can see from the block diagram labeled 

Audio Player Block Diagram, this synthesized sound wave output is then sent out through 

speakers and to the user.   
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Also, please note in the Audio Player Block Diagram that note_module makes use 

of the verilog module which_note.  which_note is a simple look-up table that maps x and 

y positions to frequency values that are then mapped to a waveform using ADSR FSM 

which is finally played using Synth Channel Selector. 

 note_module takes as input clk_i, x_positions_i, y_positions_i, type_of_hand_i, 

min_note_duration_i, num_hands_i, rom_i, instrument_i, multi_note_switch_i, 

keyboradDelay_i, and keyboard_switch_i. 

 clk_i is the same 65 mHz clock that is used by the b_monitor module. 

 x_positions_i is a 77 bit input that maps to the horizontal centers of each LED 

recorded.  Because the module was designed to support up to seven distinct LEDs, the 11 

least-significant-bits of x_i correspond to the horizontal position of the center of the first 

LED detected by one of the hand detection modules, its next 11 bits correspond to the 

horizontal position of the center of the next LED detected, etc.   

 Similarly, y_positions_i is a 70 bit input that maps to the vertical centers of each 

LED recorded.  (The 10 least-significant-bits correspond to the vertical position of the 

center of the first LED detected by one of the hand detection modules, the next 10 bits 

correspond to the vertical position of the center of the next LED detected, etc.) 

 Our design called for our hand detection to distinguish seven distinct LEDs of two 

different colors.  type_of_hand_i is a seven bit number.  The value of each bit 

corresponds to what type of LED is detected.  That is, if the least-significant-bit of 

type_of_hand_i is high, we know that if LEDs were detected (ie num_hands_i greater 

than 0), the first LED that was detected was red.  Similarly, if the second bit of 

type_of_hand_i is low, we know that if at least two LEDs were detected (ie num_hands_i 

greater than 1), the second LED detected was blue. 

 min_note_duration_i is a single bit pulse signal.  It is asserted high for only one 

65 mHz clock cycle.  The time between these pulses can be thought of as a the minimum 

duration a note must be held.  (For our project, the time between min_note_duration_i's 

pulses was roughly an eighth of a second.)  Clocking changes in notes to these pulses 

helps reduce noise in the note audio.  

 instrument_i is a single bit value that chooses between synthesizing note audio as 

a violin (instrument_i is a logical 1) and a guitar (instrument_i is a logical 0). 

 multi_note_switch_i is a single-bit input that allows a user to select whether to 

apply an audio effect.  When multi_note_switch_i is high, the audio waveform is played 

in “tremolo” (a musical term for playing a note in rapid succession over and over).  When 

multi_note_switch_i is high, the note is played regularly. 

 Because aspects of the hand-detection system were susceptible to random noise, 

while music is being played based on hand positions, the note_module module only 

displays data when at least two different LEDs are seen.  However, when displaying 

notes from the keyboard or a ROM input, the data is pure, and we do not have any 

problems with random noise.  As such, we do not need to require that more than one hand 

is detected when displaying note values from a keyboard or ROM input.  Therefore, we 

use two one-bit inputs called keyboard_i and rom_i. 

 When rom_i is high, it indicates that we are reading note data from the ROM.  

When low, rom_i indicates that we are playing notes from either hand detection positions 

or the keyboard. 
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 When keyboard_switch_i is high, it indicates that we are reading note data from 

the keyboard.  When low, keyboard_switch_i it indicates that we are playing notes from 

either hand detection or the ROM.  We distinguish between rom_i and keyboard_switch_i 

because keyboard data requires a specific delay to ensure that the correct note value gets 

sounded.   

 This delay is represented outside of note_module.  Essentially, we delay the time 

at which the keyboard's values are sampled.  This delay is represented by 

keyboardDelay_i.   keyboardDelay_i goes high for one clock cycle two clock cycles after 

the ascii data from the keyboard is ready.  When keyboardDelay_i is high, the data from 

the values of x_position_i, y_position_i, type_of_hand_i, and num_hands_i are sampled 

and their values converted to a note value to be played. 

 Unfortunately, despite our efforts, there is a one note delay between values that 

you play and values that you hear.  For instance, if you hit an 'A' and then a 'B' and then a 

'C' on the keyboard.  When you hit 'B,' you will hear the note corresponding to an 'A'; 

when you hit 'C,' you will hear the note corresponding to 'B.' 

 There is only one non-debugging output from note_module: note_o.  note_o is an 

8-bit value that corresponds to the waveform that will be played to the user.  

 

1.4.5 bgetHorVert 
 

 The bgetHorVert module takes in data from the decoded camera signal and 

outputs the horizontal and vertical pixel position that that data corresponds to.   

 As seen in the block diagram labeled High Level Block Diagram, the bgetHorVert 

module takes as input four one-bit signals clk_i, f_i, v_i, and h_i.  clk_i corresponds to the 

27 mHz clock from the camera.  h_i corresponds to a pulse whose rising edge indicates 

that data coming from the camera is associated with a new horizontal line of camera data 

(as shown in the online labkit information: http://www-

mtl.mit.edu/Courses/6.111/labkit/appnotes/xapp286_04.pdf).  v_i corresponds to a pulse 

indicating that the data about to be presented comes from a new vertical line.  f_i 

indicates the field value of the particular vertical row being scanned.  The camera data is 

interleaved: all even rows of data are presented and then all the odd rows of data.  When 

f_i is high, it implies that the row of data being read is even.  When f_i is low, it implies 

the row of data being read is odd. 

 The bgetHorVert module outputs two 10-bit signals: hor_o and vert_o.  hor_o and 

vert_o correspond to the horizontal and vertical positions of the data that are being 

presented.  They are updated on each clock cycle.   

Roughly speaking, hor_o corresponds to the number of clock cycles that have 

passed since the last time h_i was pulsed.  We say roughly speaking here because we 

know that the camera's field of view is only 750x625 pixels.  Therefore, whenever hor_o 

exceeds 749, we set it equal to a default, constant value greater than 750.   

 vert_o is a double count of the number of times h_i was pulsed between changes 

in f_i.  Again, because we know the vertical position of the camera's field of view cannot 

exceed 625, if our count exceeded 625 vert_o was uniformly set to a constant value 

greater than 625. 
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1.4.6 write_all_out 
 

 The writeAllOut module is responsible for writing the contents of a ram out 

through a serial port to a computer.  As you can see from the Serial Block Diagram, 

writeAllOut accomplishes this task by controlling a smaller module, reAttemptSerial, 

which writes an individual 7-bit number across the serial line.  (Please see next module 

description for more information on reAttemptSerial.) 

Because our RAM was larger than the number of relevant values it contained, 

writeAllOut only writes a range of values out through the serial port (in our case, values 

with addresses from 5 to 56).  However, two parameters corresponding to the first 

address that you want your RAM to write from and the last address you want your RAM 

to write from can be specified to increase or decrease the range of values that are being 

written out from your RAM. 

The relevant inputs that we receive (all labeled on the Serial Block Diagram) are 

rs232_rxd_i, rs232_cts_i, clk_i, baudWire, write_ram, and data_to_transmit.   

We ignored all incoming data because we assume that the computer we write to 

will not be simultaneously trying to send data back to us.  Therefore, although we receive 

rs232_rxd_i and rs232_cts_i as inputs, we ignore them.   

 clk_i is our module’s clock.  It is the generic 65 mHz clock from the labkit.  We 

choose to transmit at the baud rate of 57,600 because it is an integer multiple of our 65 

mHz clock.  Therefore, we are limited in our data transmission rate to one character every 

1125 peaks from clk_i.  Because it would be cumbersome to incorporate such a delay 

directly into all of our circuitry, we take in the input baudWire.  baudWire goes high for 

one clock cycle of our 65 mHz clock whenever 1125 peaks of the 65 mHz clock have 

expired.   

 When the input write_ram goes high, writeAllOut initializes its parameters to 

begin transmitting data.  When write_ram goes low after going high, writeAllOut begins 

writing all its data to the serial port. 

 The input data_to_transmit is the seven-bit data value to transmit across the serial 

line. 

 The writeAllOut module produces four outputs: rs232_txd_o, rs232_rts_o, 

busyTransmittingData,  ram_addr, and ram_we. 

 rs232_txd_o corresponds to the binary piece of data that is currently being written 

across the serial port.  rs232_rts_o corresponds to the ready-to-send signal that the 

computer is expecting.  Because our serial communication is remarkably one-sided (the 

labkit is only writing to the computer instead of listening to it), we just generically hold 

this signal at an arbitrary constant value.  

 busyTransmittingData is a signal to whatever module is controlling writeAllOut.  

busyTransmittingData is high whenever writeAllOut has not finished writing data after 

write_ram was asserted. 

 ram_addr is a 6 bit number.  It corresponds to the address of the RAM with the 

data that writeAllOut is currently writing to the serial port. 

 ram_we is the write enable signal that goes to the RAM.  Presumably, the user 

does not want to be writing data to the ram while he or she is writing data from the RAM 

to a serial line.  Therefore, ram_we is constantly grounded. 
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1.4.7 reAttemptSerial 
 

 As shown in the Serial Block Diagram, the module reAttemptSerial is controlled 

by writeAllOut.  The function of reAttemptSerial is to send a 7-bit piece of data specified 

by writeAllOut across the serial port to a computer whenever requested to begin this 

transmission by writeAllOut. 

 reAttemptSerial’s inputs are: rs232_rxd_i, rs232_cts_i, clk_i, send_new_data_i, 

and data_to_transmit_i. 

We ignored all incoming data because we assume that the computer we write to 

will not be simultaneously trying to send data back to us.  Therefore, although we receive 

rs232_rxd_i and rs232_cts_i as inputs, we ignore them.   

 clk_i is the clock signal on which reAttemptSerial’s timing is based.  Instead of 

being a 65 mHz clock signal, clk_i is clocked at 57,600 Hz so as to agree with our 

established baud rate. 

 send_new_data_i is a one-bit signal.  When it goes from high-to-low, 

reAttemptSerial begins transmitting the seven-bit number represented by 

data_to_transmit_i to the computer. 

 As seen in the Serial Block Diagram, reAttemptSerial has three outputs: 

rs232_txd_o, rs232_rts_o, and busy_sending_o. 

 rs232_txd_o is a single-bit value corresponds to the binary piece of data that is 

currently being written across the serial port.  rs232_rts_o corresponds to the ready-to-

send signal that the computer is expecting.  Because our serial communication is 

remarkably one-sided (the labkit is only writing to the computer instead of listening to it), 

we just generically hold this signal at an arbitrary constant value.  

 The output signal busy_sending_o goes high when reAttemptSerial begins 

transmitting data.  It remains high until reAttemptSerial is done transmitting the data. 

 

2. Testing and Debugging  

 
2.1 Testing and Debugging Issues for Subtractive Synthesis (Alexander Sanchez) 

 

2. 1.1 General Testing Strategy for Subtractive Synthesis 
 

 The general strategy used for testing and debugging was to first test the modules 

in behavioral simulations in ModelSim and once the modules passed these simulations 

they were tested on the labkit.  Testing on the labkit for audio signals and waveforms 

consisted of displaying the signals on the logic analyzer and comparing the displayed 

waveforms to the expected waveforms.  Audio signals under went additional testing in 

that they also had to sound good, so the audio signals would be feed into the ac97 chip on 

the labkit and listened to on headphones to see if the signals sounded properly. 

 

2.1.2 Issues Sampling Stored Waveforms 
 

 The major bug encountered with the subtractive synthesis portion of the project 

was getting the oscillating signals stored in the ROMs to play at the right frequency.  

Originally the 27mHz signal was dropped to a lower frequency signal and that lower 
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frequency signal was used as a ready signal to the modules involved with extracting the 

waveforms out of the ROM.  This worked fine when we were using the 27mHz clock at 

the start of the project.  However, we eventually decided to use the 65mHz clock in order 

to get cleaner signals with more resolution.  This caused some major problems with the 

oscillating signal generators since they were using a ready signal that was based off of a 

27 mHz clock.  The problem was that the ready signal didn’t always line up with the 

positive edge of the 65mHz clock.  This would cause the signal generators to get 2 or 3 

ready signals a clock cycle and would thus change the rate the roms were being sampled 

at and in turn the frequency of the oscillating signals.  The solution to this problem was 

described in detail in the module description for note_to_frequency2. 

 

2.1.3 Issues Involving Signed Number Calculations 
 

 Another issue was with using signed numbers.  Originally all of the registers that 

were used in any way with the oscillating signals were declared signed, however, the 

wires that were assigned to these registers were not declared as signed and so the signals 

that came out of the oscillating signal generator modules were in an unsigned form.  

When these signals were later added in the synth_channel_selector to get polyphonic 

sounds with and without voice over the resulting signal would be heavily distorted.  This 

bug took a long time to track down since all of the appropriate registers were declared as 

signed.  Originally the problem was thought to have to do with a timing constraint not 

being satisfied, however, after starting to develop the neural network and a having to deal 

a great deal with signed numbers, it was discovered that wires had to be declared signed 

in addition to the registers they were assigned to.  In the end, the solution to this bug 

proved to be a quick fix of adding a signed declaration to all the appropriate wires.  After 

making this fix, the polyphonic signals with and without voice became very clean. 

 

2.1.4 Issues Creating ADSR Envelopes 
 

 Creating the ADSR envelopes for the guitar and violin also proved to create many 

issues.  Although there was much information to be found online about what an ADSR 

envelope is
2
, there was very little information about how to generate an accurate ADSR 

envelope for an instrument.  Eventually a website was found that described a process for 

creating linear and exponential envelopes in MatLab
3
.  An article describing subtractive 

synthesis was found at wikipedia.org that had audio samples of the signals at various 

points in the process of subtractive synthesis
4
.  After much studying of these signals and 

of the process for creating envelopes in MatLab, attempts were made at creating an 

ADSR envelope for a guitar in MatLab.  This proved to be a grand procedure of trial and 

error.  Eventually the audio signals that we were trying to match were opened in Audacity 

which allows the user to clearly see the waveform of the audio signal.  Eventually, after 

many tries, an envelope was created that could synthesize a guitar sound that was 

reasonably close to the audio sample we were going off of. See figure 2.1 for a plot of the 

ADSR envelope of a guitar 
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2.1.5 Issues with the ADSR FSM 

 

2.1.5.1 Issues With Note Duration 
 

 The adsr_FSM module also presenting some interesting issues that need to be 

debugged.  First there was the issue of how long the envelope should last, as the duration 

of the envelope being applied to a signal would define the duration of a note being 

played.  Originally, the address that was being access from the adsrROM was being 

incremented by one every clock cycle.  However, with a 65mHz clock, 256 samples 

would be played at a rate that would not be audible.  To solve this problem we introduced 

a counter that would produce an enable signal after counting off a certain number of 

clock cycles of the 65mHz clock.  This enable signal would then tell the adsr_FSM when 

to increment the address being accessed from the adsrROM.  However, the question then 

arose of what the counter should be counting to.  This problem was solved by a trial and 

error process.  Being as we wanted an audible signal, this process took longer than 

desired as we would change the duration of the counter, recompile the Verilog, and then 

upload the code to the labkit and see if we could hear the signal.  After trying many 

different values we decided on using 17’b111_111_111_111_111_11.  Using this for 

number we were able to create a 496Hz enable signal.  With this enable signal, a note that 

goes through the entire ADSR envelope with no interruptions would last for 

approximately 0.51 seconds. 

 

2.1.5.2 Issues with Sounding Repeated Notes 
 

 The issue of making a note sound repeatedly proved to become a problem when 

we tried integrating the hand detection system with the sound synthesizes portion.  The 

adsr_FSM was tested using a button on the labkit as the play signal input to the 

adsr_FSM.  However, due to the fact that it is very hard to hit a button and make it give a 

high signal for exactly one clock cycle, the adsr_FSM had very poor repeated note 

functionality.  Essentially you couldn’t play the same note twice, another note had to be 

played first.  Although, you could play one note and then interrupt it by playing a new 

note.  This resulted in not all of the notes that the hand detection generated to be played.  

However, we soon realized that it was possible for the play signal generated by the hand 

detection module to last for exactly one clock cycle.  With this constraint it became 

possible to change the adsr_FSM to allow for repeated notes. 

 

2.2 Testing and Debugging Issues with the Neural Network (Alexander Sanchez) 

 

2.2.1 General Testing Strategy for the Neural Network 
 

 The general testing and debugging strategy used for the neural network was to 

first run behavioral simulations in ModelSim for each individual module.  Once the 

modules were running satisfactory in ModelSim it became time to integrate them and run 

more behavioral simulations in ModelSim.  The last part of the testing strategy we planed 

was to test the full neural network on the labkit.  However, we were only able to test one 

portion of the system on the labkit and were unable to test the entire neural network on 
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the labkit.  Because of this we were also unable to test integrating the neural network 

with the hand detection modules. The portion that we were able to test was the weight 

management system that loaded weights from a bram, changed the weights, saved the 

new weights in the bram, and then transmit the values of the weights to a computer via 

the labkit’s serial port. 

 

2.2.2 Issues with Scaling Numbers 
 

 The neural network provided us with an abundance of interesting issues to tackle 

and debug.  The biggest issue encountered with the neural network was deciding on 

which bits to take out of a number in order to get a smaller number.  For example, what 

bits should be taken out of the multiplication of two 8 bit signed numbers in order to get 

an 8 bit signed number out?  Originally, we were striving to use as few wires as possible.  

Since we wanted the end result of the neural network to be an 8 bit signed signal that 

could be feed to the ac97 chip as an audio signal, we thought it would be a good idea to 

try and only pass 8 bit signed signals between modules.  However, we soon realized that 

this required a lot of bookkeeping in order to make sure that the signed bit was not lost in 

the reductions that took place between levels.  

 

2.2.3 Issues with Signed Number in Case Statements 
 

 The first implementation of the sigmoid function involved centering the function 

on zero and using a case statement to select the output.  However, we soon realized that 

negative inputs to the sigmoid function were returning the constant high value (127) 

instead of the constant low value (-127).  It turns out that case statements in Verilog don’t 

support negative decimal numbers.  To get around this we had to put the negative values 

in binary form in the case statement since the case statement would treat all cases as 

unsigned numbers. This provided a fix to the problem of getting the right value out of the 

sigmoid function. The waveforms for the simulation of the sigmoid module can be seen 

in figure 2.1. 

 

 
 

 

 

 

 

 

Figure 2.1: Simulation Waveform of the Sigmoid Module 
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2.2.4 Possible Solution to Issues with Signed Numbers 
 

 Eventually, though, we decided that it would be easier to get 8 bit numbers out of 

larger bit numbers if we only used unsigned numbers and then converted the final output 

of the system to an unsigned number by subtracting off some constant factor.  This 

engineering decision immediately eliminated all the bookkeeping associated with keeping 

track of the signed bits.  It also made getting a scaled 8 bit unsigned number out of a 

larger bit unsigned number a lot easier as we would only have to take the 8 most 

significant bits.  This soon proved to be deceiving as it introduced huge precision errors 

that would cause the neural network to quickly converge to zero as the weights became 

overloaded and also converged to zero. 

 

2.2.5 Precision Error Issues 
 

 The precision error wasn’t fully realized until all the modules in the network had 

been written and integrated into a test fixture that we were running simulations on.  The 

first few simulations we ran with a very small learning factor of 0.5 and saw that the 

weights and the output would go to zero quickly.  We then tried a really large learning 

factor of 100 and the neural network produced the same convergence problems.  We then 

tried expanding the range of non-constant outputs of the sigmoid function but this 

resulted in the same results. 

 We then realized that the weights wanted to changed by small amounts, but by 

using 8 bit unsigned number it became nearly impossible to accurately represent really 

small decimal changes in the weights which caused the deltas to get large and the weights 

to go to zero.  The solution we decided on for this problem was to make all the registers 

and wires used in the computations in the forward and backward propagation algorithms 

32 bit numbers.  We also realized that if all the numbers were going to be the same bit 

size, then there would be very little, if any, bookkeeping necessary for keeping track of 

the signed bit.  So we finally decided on making all the registers and wires involved in 

the forward and backward propagation algorithms 32 bit signed numbers.  In order to get 

an 8 bit audio signed audio signal we planned on taking the 8 most significant bits out of 

the 32 bit output of the neural network, and if that signal ended up being too low we 

would take the next 8 bits in order to scale the magnitude up. 

 

2.2.6 Issues with Constraints on Size of Stored Weights 
 

 Although using 32 bit signed numbers would get rid of the precision errors we 

were having before, we soon ran into yet another problem with the size of numbers we 

were using.  The labkit to computer via serial port mechanism we were using was strictly 

restricted to transmitting 8 bit numbers where the most significant bit is a garbage bit and 

only bits 0 through 7 can be used for storing data.  This constraint on the amount of data 

we could transfer was one of the original reasons we decided on using 7 bit weights.  

However, if we used 32 bits numbers everywhere except the weights we would still have 

precision errors if we would try to adjust the weights by very small amounts, which is 

what the backward propagation algorithm does. 
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 The way we solved this problem was to make the weights 32 bit signed numbers 

but store the weights in 5 separate 8 bit locations where bit 8 is unused and is some 

garbage value.  This change increased the necessary size of the BRAM used to store the 

weights from 8x21 to 8x128 since there are 21 weights and each would require 5 

locations to store the entire weight. In order to implement this design change it became 

necessary to alter the design of the weight_manager module, although the changes made 

were small.  The loading and saving sequences were simply increased and carefully 

bookkeeping was taken to ensure that the right bits of the weights were written and 

loaded from the correct address.  Fortunately, the weight_manager module and the 

weight_manager_controller module were abstracted from each other enough so that the 

changes made to the weight_manager module had no effect on the 

weight_manager_controller, weight_address_bus, or the weight_bus modules. 

 

2.2.7 Simulation Results of Neural Network 
 

 Once all of these changes were made it was time to test the neural network in 

simulation again.  During the simulations we tried to run the neural network for several 

hundred epochs only to realize that the neural network would stop running after a few 

cycles.  The bug, however, was quickly found to be a timing issue with resetting a control 

signal that resulted in the propagation_fsm module getting stuck in a single state. 

 In general, timing constraints proved to be very tricky to get right in the neural 

network.  We found that there were a lot of hidden delays associated with always blocks 

and accessing memories that we had not originally accounted for. 

 Once the timing constraints were fixed we again started to run simulation.  This 

time we tried to train the network to take in two constant inputs and produce some 

constant output.  In this case we arbitrarily choose 1000 and 350 as the inputs and 90 as 

the output and set the error margin to 10.  The neural network then was able to get the 

value of 87 out and then stop since it was within the acceptable error margin.  In fact, it 

learned to compute this very fast as it only took 4 epochs.  The waveforms of this 

simulation can be seen in figure 2.2.  We then simulated the neural network trying to 

learn to compute the Boolean AND function. However, we found that the network 

wouldn’t converge and the partial deltas would stop propagating after a few epochs.  It 

turned out that after switching to 32 bits we forgot to change the size of the adjusted 

weights that were being saved. This resulted in 6 bit weights being save which again 

introduced precision errors that caused the weights and deltas to go to zero.  After 

changing the size of the weights being adjust to the proper 32 bit size we again reran the 

simulation of learning the AND Boolean function.  The waveforms for this simulation 

can be seen in figure 2.3. 
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 This time we got an oscillatory behavior out of the system.  The neural network 

would oscillate between output 127 and -127 which happen to be the maximum and 

minimum values outputted by the sigmoid modules.  However, in the AND function we 

defined TRUE as 127 and FALSE as 0.  This caused the squared output error to oscillate 

between 0 and a large number as the output oscillated between -127 and 127.  This 

oscillation caused the average error to never be below the margin and for the system to 

Figure 2.3: Simulation waveform of neural network being trained to learn the 

Boolean function AND. 

Figure 2.2: Simulation waveform of neural network being trained to 

computer a constant value from two constant valued inputs. 
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converge.  However, if we were to define TRUE as 127 and FALSE as -127 the neural 

network would have learned how to compute that. 

 

2.2.8 Issues with Compiling the Neural Network 
 

 Satisfied with the simulations we then decided to try the test the neural network 

on the labkit using the labkit to computer via serial mechanism to save the weights.  

However, we ran into a bizarre compilation error that prevented us from compiling the 

Verilog and testing it on the labkit.  The error that we got had to do with an illegal mux 

operation.  It is possible that one of the multiplications in a case statement was not 

completing fast enough and this was causing the error.  However, we were unable to 

track down the exact location of the bug. 
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2.3 Testing and Debugging Hand Detection and Serial (Behram Mistree) 

 

2.3.1 Initial Hand Detection Testing and Debugging 

 
 We demonstrated functionality of our initial hand detection algorithm by painting 

squares to the screen on top of the image the camera was reading.  These squares were 

associated with the positions that the hand detection module detected LEDs.  For short 

distances and correct lighting conditions, the algorithm worked adequately. 

 Debugging was difficult with the initial hand detection module.  For a while it 

was difficult to discern what our sources of error were.  Were we not getting data because 

we were not associating the right horizontal and vertical positions with the right YCrCb 

values?  Or was it because our thresholds for detecting red LEDs were unreasonable?   

 For a long time, there appeared to be a scaling issue with the data: although LEDs 

were detected, they were not painted in the right positions.  This scaling issue occurred 

because I was using some of Javier’s old code incorrectly to decode the horizontal and 

vertical positions of YCrCb values coming from the camera.  Coupling the horizontal 

positions found using the old code with our own new code, bgetHorVert, which did a 

great job finding vertical positions solved this problem. 

 

2.3.2 Alternate Hand Detection Testing and Debugging 

 
Noting other groups’ successes with taking weighted averages of pixel data, we 

implemented a second algorithm for collecting pixel data and began to test it.  We used a 

similar approach to testing our second hand detection module to testing our first: we 

painted squares on top of real-time data being received by the camera.  These squares 

corresponded to the positions that LEDs were supposed to have been detected.  By 

comparing the placement of these squares to their real-world counterparts in the image, 

we tested our algorithm. 

Unfortunately, our alternate hand detection algorithm did not work completely 

correctly.  Specifically, when we interfaced the alternate hand detection module with the 

horizontal positions from get_hcount_vcount, the square representing our pixel would not 

be drawn in the correct place.  We tried to solve this problem by implementing our own 

function, bgetHorVert, which would take outputs from the NTSC decode module and 

convert them into a horizontal and vertical position detected by the camera.  The vertical 

position was almost spot on.  However, the horizontal position still left much to be 

desired: there was a large, constant horizontal offset between the where the camera was 

recording the LED and where our algorithm detected the LED. 

Thinking that such an offset might simply be a product of some linear shift, we 

tried subtracting off the constant value and retesting to see if everything was fixed.  

Unfortunately, when we subtracted the offset, it appeared that our square was being 

drawn horizontally twice as far as it should be.   

We tested and retested our divider.  We tested the system that painted pixels to the 

monitor.  We worked and reworked our horizontal and vertical counters.  All to no effect.   

The only explanation that we can plausibly accept is that the values received from 

the NTSC decode did not correspond to those that we expected from reading about field 



 41 

line decoding from http://www-

mtl.mit.edu/Courses/6.111/labkit/appnotes/xapp286_04.pdf.   

At the time, we could not figure out any plausible reason why that would be the 

case.  In retrospect, we realize that the discrepancy might have to do with the NTSC 

decode’s dv (data valid) output.  In calculating the horizontal pixel position of the 

camera, we increment for every clock cycle after the NTSC decode module’s h output 

goes high.  However, if the data is not valid while we are incrementing, it might explain 

why we were seeing the offset that we were.   

In addition, taking into account the data valid signal would not affect our vertical count at 

all, explaining why we kept getting a poor horizontal position even while we got great 

vertical positions. 

 

2.3.3 Serial Module Testing and Debugging 
 

 We tested the serial module by loading a .coe file onto a RAM with specific 

values.  We wrote a MATLAB function that read data from the serial port.  When the 

data read by MATLAB matched the data that the RAM was initialized to, we declared 

success. 

 Reading the RS-232 specifications, it seemed as though our module would have 

to perform some form of elaborate handshake just to get the computer to listen to it.  For 

a while, we tried to implement this elaborate handshake but were unsuccessful.  After re-

reading the specifications though and talking with Prof. Terman, we discovered that we 

did not need a handshake, we just needed to spew data at the computer in a properly 

clocked manner. 

 Other issues involved sending stop bits.  Although every source about RS-232 

proclaimed that I needed a stop-bit, none of them actually told me whether that stop bit 

would be high or low.  (They also did not tell me that I needed to start transmissions with 

a high bit.)  Fortunately, I sat next to a group who was doing serial project that also 

involved the serial port.  After exchanging information with them and displaying serial 

transmissions from my computer to my labkit on the logic analyzer, we were soon able to 

amend any errors, and use the RS-232 ports to transmit data to the computer. 
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3. Conclusion 
 

 Overall, the final project we choose proved to be satisfactory.  It provided us with 

a very formidable challenge and a great opportunity to learn more about the design of 

complex digital systems.  Even though we did not get the results we wanted, the project 

can still be considered a success.  We accomplished many tasks and took a stab at 

implementing an innovative digital design. 

 The hand detection modules backed with the subtractive synthesis modules 

performed basic functionality satisfactory.  The system was able to synthesize guitar and 

violin in response to the position of LEDs picked up by the camera.  The system 

performed fairly well although there was room for improvement.  The mechanism for 

sampling the stored oscillating signals was not perfect and could have been improved.  

However, we also wanted to try and implement a neural network which limited the 

amount of time we could spend perfecting the subtractive synthesis method we used.  

 The neural network proved to be a very formidable challenge.  We came 

extremely close to finishing the implementation.  The simulations we ran in ModelSim 

showed that the neural network was learning, although it was not always learning 

correctly.  A possible way to improve the ability of the neural network to learn could be 

to increase the threshold of the sigmoid modules.  Our implementation had a fairly small 

threshold considering we were using 32 bit numbers.  We did notice improvements in 

performance when we would increase the range of the module. 

 Event though we didn’t get to test the neural network on actual hardware I’d have 

to say that the overall project was a success.  The project can be considered a success in 

the sense that we learned a great deal about designing complicated digital systems. The 

neural network quickly became very complicated as the individual components were 

integrated and the entire network was built up.  During our design of the neural network 

we also learned a great deal about dealing with signed numbers and choosing the right 

bits out of a number in order to get a smaller scaled number. 

 At the days end we learned a great deal and had a lot of fun in the process.  We 

got to try something new and take risk in trying to implement a complicated system.  

Sometimes life’s greatest lessons come from the small setbacks we encounter along the 

way.  Although we didn’t finish the full implementation of the hand controlled digital 

audio synthesizer we were aiming for, we are now more knowledgeable about digital 

systems and are fully armed and confident to take on even more challenging and 

complicated problems head first. 
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A. Appendix 
 

A.1 Test_guitar2.m 
 
a = .03; 
d = .08; 
r = .89;%.1197;%.125; 
rate = 256; 
decay_percent = .2; 
  
% Do attack portion 
N = round(a * rate); 
p = N^2; 
t = 0:N; 
y = (t .^2) / p; 
  
%N = round(a * rate); 
%y = [0:N-1] / (N-1); 
  
% Do decay portion 
N = round(d * rate); 
decay_target = decay_percent*y(length(y)); 
n = (y(length(y)) - decay_target) / N; 
cpp = (y(length(y))-n):-n:decay_target; 
y = [y cpp]; 
  
% Do release portion 
%N = round(d*rate) + round(a*rate); 
%N = round(a*rate); 
%y4 = [N-1:-1:0] / N; 
%p = (N - rate)^2 / (4*y(length(y))); 
%t = N+1:rate; 
%y4 = ((t - rate).^2) / (4*p); 
  
N2 = round(a*rate) + round(d*rate); 
N = rate - 100 - N2; 
T = 1/N; 
tau = 0.2; 
  
yz = [y(length(y)) 0 ];    % y1 and y2 values 
t = [N2+1 rate-100];    % t1 and t2 values 
tinc = T; 
aa = exp(-T/tau); 
  
% Do iteratively. 
  
tvals = t(1):t(2); 
yvals = zeros( size(tvals) ); 
yvals(1) = yz(1); 
tn = t(1); 
  
for n = 2:length(tvals), 
  yvals(n) = aa*yvals(n-1) + (1-aa)*yz(2); 
end 
  
y = [y yvals]; 
  
yf = zeros(1,99); 
y = [y yf]; 
  
%ph = log(y(length(y))) + length(y); 
%y5 = exp(t + ph); 
%y = [y y4]; 
  
%N = r * rate; 
%y4 = y(length(y)) * [N-1:-1:0] / N; 
%y = [y y4]; 
  
highest = 2^8; 
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y = round(highest/2 .* y); 
  
%%%% 
  
depth = 128; 
width = 8; 
  
fid = fopen('guitarADSR.coe','w'); 
  
fprintf(fid,'\tcase(address[6:0])\n'); 
  
  
for i = 0:255 
    fprintf(fid,'\t\t%1.0f: out[7:0] =  %3.0f;\n',i,y(i+1)); 
end 
  
fprintf(fid,'\t\tdefault: out[7:0] = 0;\n'); 
fprintf(fid,'\tendcase\n'); 
  
  
status = fclose(fid); 
  
 

A.2 test_violin_r2.m 
 
a = .5; 
s = .1; 
r= .4; 
%0.1239 
rate = 256; 
  
% Do attack portion 
N = round(a * rate); 
p = N^2; 
t = 0:N-1; 
y = 1 + (((t - N).^2) / -p); 
  
% No decay portion 
  
% Do sustain portion 
N = round(s * rate); 
y3 = ones(1,N); 
%y3 = decay_target .* y3; 
y = [y y3]; 
  
% Do release portion 
N = r * rate; 
N = round(s*rate) + round(a*rate); 
p = (rate - N)^2; 
t = N+1:rate; 
y4 = 1 + (((t - N).^2) / -p); 
  
y = [y y4]; 
  
zpwm = wavread('Subsynth-wavemix.wav'); 
zpwm = zpwm'; 
  
z1 = squareGen(2*pi*440,1,2*pi*44000); 
z2 = squareGen(2*pi*493.88,1,2*pi*44000); 
z3 = squareGen(2*pi*523.25,1,2*pi*44000); 
z4 = squareGen(2*pi*587.33,1,2*pi*44000); 
  
z = [z1 z2 z3 z4]; 
  
yy = [y y y y]; 
  
  
  
highest = 2^8; 
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y = round(((highest/2) -1) .* y); 
  
depth = 256; 
width = 8; 
  
fid = fopen('violinADSR.coe','w'); 
  
fprintf(fid,'\tcase(address[7:0])\n'); 
  
  
for i = 0:255 
    fprintf(fid,'\t\t%1.0f: out[7:0] =  %3.0f;\n',i,y(i+1)); 
end 
  
fprintf(fid,'\t\tdefault: out[7:0] = 0;\n'); 
fprintf(fid,'\tendcase\n'); 
  
  
status = fclose(fid); 


