Virtual Conducting

6.111: Introductory Digital Systems Laboratory
Andy Lin and Brandon Yoshimoto
December 11, 2006
Abstract

The purpose of this project was to design and implement an interactive music
player which allows the user to control the sound of a composition through hand
movements. The idea is to emulate the experience of a conductor directing the flow of
a musical performance. The design uses a camera to detect hand movements of the
user which are then analyzed to adjust musical qualities of tempo, dynamics, and
articulation in response to these motions.

The volume of high frequency audio content is controlled by the user's right hand,
while the volume of low frequency content is controlled by the user's left hand to allow
control over the balance of the playback. The design includes a screen which displays
a visualization of the hand movements, including colored squares following the path of
the conductor’s hands. The screen also displays current tempo, volume, and
acceleration magnitudes to provide feedback for the user as he conducts.

Contents

1.

2.

3.

4.
5.

Overview... .. P UPRPPPRTE o
Module Descrlptlon and Implementatlon ... 8
2.1. Video Component Overview (Brandon)cocooviiiiiiiiiiiiee 8
2.2. Camera Input Storage and Retrieval...............c.ooi i, 8
2.3. Color Decision ModUIE.o 10
2.4, VidEO PrOCESSON.ttt 11

2.4.1. Color Detection.........cooiiii 11

2.4.2. Position Calculator......... ..o 11

2.4.3. Weighted Average Calculator. ..., 13
2.5, MOtioN ANAIYZET. 14

2.5.1. Beat Marker Generator.............oooiii i, 14

2.5.2. Qualities Generator...........ooviiii i 17

2.5.3. FINA DIStancCe. ..o 17
2.6. Visualization Generator......... ..ot 18
2.7, Signal TAMET. ... 19
2.8. Audio Processmg (Andy) OO PP PPPPPPPPPPRPPRID . O
2.9. Rom FSM.. : 22
2.10. Beat Generator .. 23
2.11. Metronome Programmer.............oiiiiiiii e 23
2 13 Beat Perlod Counter .. 25
2.14.Tempo Modulator. e 25
2.15.Volume and Articulation Modulator.............ccoooiiiiiii 28
216 HP/LP FIlters. ... enenneneeeeeens 29
207 . ROM WO .. e s 30
Testing and Debugging. 31
3.1. Video COmMPONENt.o 31
3.2. Audio COMPONENT. ... e e 33
3.3. Overall System.o s 37
L7 0] o o7 11] T o 38
APPENAIX ..o e 40
5.1. Low Pass Filter Coefficients. ... 40
5.2. High Pass Filter Coefficients............ccoi i, 41
5.3. Verilog Code. 42

List of Figures

1. Organization of the Virtual Conducting System...............ccoooiiii 5
2. The working Virtual Conducting System. ..., 6
3. A screen capture of the visualization..................ooi 6
4. Block diagram overview of Video Component. ..., 8
5. Camera Input Storage and Retrieval block diagram................coooiiiiiiiinn 9
6. Video Processor block diagram............ccooiuiiiiiiiii 10
7. Position Calculator block diagram.......... ..o 12
8. FSM for the Position Calculator module. ..., 13
9. Motion Analyzer block diagram.............coooiiiiiii 14
10.FSM for generating beat markers........ ... 15
11.FSM for handling the update of beat motion qualities.............................. ... 16
12.Description of Screen Components.o 18
13. The volume fading feature of the signal tamer...................co. 20
14.The block diagram for the entire audio system................coooiiiiiiiiiiinns 21
15.The ROM FSM diagram. ..o 22
16.The ZBT FOM. ... e 24
17.Note extend operation........o 24
18.Concept behind the tempo modulator.................o 25
19. The state transition diagram for Division Converter.................cooiiiiiiiinn, 27
20. Different cases for the Division Converter..............ooooviiiiiiiiiees 27
21.Block diagram for the Tempo Modulator. ... 28
22.The concept of articulation modulation...................ci i 28
23.Block diagram of the Volume and Articulation Modulator............................. 29
24 Fourier Transform of high-pass filter with a cut-off frequency of 750 Hz............ 30
25.Fourier Transform of low-pass filter with a cut-off frequency of 750 Hz........... 30
26.ModelSim simulation of Beat Generator Module....................cocooiii. 34
27.Matlab simulation of low-pass filter on a sample of audio............................. 35
28.Matlab simulation of high-pass filter on a sample of audio............................ 36

List of Tables

1.

Parameter values used in beat_markers module for best operation

1. Overview

The Virtual Conducting system is an interactive music player which allows the
user to control the sound of a composition through hand movements. The user stands
in front of a camera with two bright blue LEDs, one in each hand. As the user moves
his hands, he divides the music into different beats which are matched with the audio to
allow control over tempo. Additionally, volume of the high frequency audio is controlled
by the size of the right hand's movement, while the volume of low frequencies are

controlled by the left hand. The system is divided into two main components: video and
audio, as seen in Figure 1.

Conducting System

——tv_in_line_clock1—»| heat_start: * heat
—tv_in_ycrob[19:0]——m amp_|eft[10; D Vel [6:0}
——hutton_up———»| amp_right]10:0}———» VelR[6:0] »
Video Component Scale Qualities Audio Companent —FinalAudic[T:0]—s
button_down—— ——acceleration_keft[10:0}—k AccL] 10—

+——acceleration_right[10:0]—w

ACCR[1:0f———
—huitton_left—ad

—hutton_right—e

[0-2]6 N0~ feydsip
[g:2l e~ Aedsip

e
]
T
[m
et
g
=
==
=2

Figure 1: Organization of the Virtual Conducting System

For video, a camera is used to detect the position of the two bright blue LEDs
held by the user. The position of each hand in the 1024x768 VGA coordinate system is
determined for each frame of the video display. These coordinates are analyzed over
time to determine when a user has started and ended each beat. Beats are determined
by the user's right hand only. A beat starts when the current right hand position moves
out of a bounded area surrounding the coordinates registered upon a beat end. A beat
end is registered if the user's hand remains within certain bounds on the screen for a
certain amount of time. This condition essentially examines the speed of the user's
motion and detects the end of a beat when the user's motion is too slow. Once the
user's motion is divided in to beats, qualities of amplitude, period, and acceleration of
each beat are calculated for output to the audio component. While beat period is
calculated based on just the right hand, amplitude and acceleration calculations are

done for both the left and right hand to control the volume of low and high frequencies
respectively.

The monitor is used to display the current position of the user's hands,
coordinates upon a beat start and end, as well as a motion analyzer display which
contains bars that change width in proportion to the magnitude of each motion
quality. Figure 3 is a sample image of the visualization. A more detailed description of
each part of the display follows in the Module Description section.

M
"8

| Figure 3: A screen capture of the visualization

The audio component uses qualities of the user's motion generated in the video
component to adjust the playback of the audio. If a fast beat period is specified by the
user through the Video Component, there will be a fast playback; conversely, if a slow

beat period is specified by the user, there will be a slow playback. Moreover, the
gesture amplitude of both hands will determine the loudness and articulation of the
audio playback. Also, the left hand will control the volume and articulation of the bass,
while the right hand will control the treble. Between the video and audio components is
a module which translates the values from the video component into valid scaled input
values for the audio component.

The audio source is from the flash ROM. The natural beat period of this music
can be programmed using the buttons on the FPGA’s. In order to program the beat
period, button3 must be depressed, while the 8-bit switches are set to their intended
positions. In order to program the initial offset, button2 and button3 must be depressed,
while the 8-bit switches are set to their intended positions. To reset the beat period and
offset to their default values, button1 is pressed. To reset the audio back to the first
sample in the flash ROM, buttonO is pressed. The output from the Audio Component is
through an AC "97 interface; the audio is 8-bit 24 KHz audio.

2. Module Description and Implementation

Video Overview

ik BSmhz. »

—r_pixel[15: 0]—» color_decision
beat_start. »
mp_left[10:0]
a1 .
R mp_right[10:0] >
I T
—tv_in_line_clock1—s| ER
Camera Input 5 = —T“-——=acceleration_left[10:0]————»
Storage and & 2 |—left_x{10:0} »
Retrisval & miolian_analyzer —"v]vr—acceleration_right[10:0}—————»
—tv_in_ycreb[19:0]- i
—left_y{e-0}—1 >
video_processaor . —— T T beat_period[10:0}———»
—heount[10:0]———7—*
[=right_x[10:0]=T+]
—veount[8:0] P
e e e [—right_y[&0]— T
o
1 U R g
2 gl 5| 2| 2
@ e |1 he | 1
g =Y =1
=4 = o =]
=} =
s Sy Zy Sy Ty yYvY
g
L display_out_r{7-0} -
L
N
— ————display_out_g[T:0}——— »
generate_visualization
L] > —display_ocut_ b7 -0}l——»
27Mhz to 65Mhz Clock al >
Conversion
*Nate: all modules with no
—Clk_2Tmhz—» DCM [=Clk_65mhz_unbufe BUFG ——Clk G5mhz— clock or reset labeled

usMOp LopNgG

include the clk_27mhz and
reset inputs

dn uopng

Figure 4: Block diagram overview of Video Component

21 Video Component Overview (Brandon)

The Video Component of the project consists of five main parts: the camera input
storage and retrieval, color_decision, video_processor, motion_analyzer, and
generate_visualization modules, as arranged in Figure 4. On a general level, this
portion of the project first analyzes data from the camera input to determine the user’s
hand positions. Once this information is found in the video_processor, the
motion_analyzer examines the movement of the hands over time to determine the start
and end of a beat. It also determines qualities of the motion for sending to the Audio
Component of the project. Finally, the generate_visualization module takes in
information from the other modules to create the video for display on the monitor. Each
module is described in further detail below.

2.2 Camera Input Storage and Retrieval (Brandon)

The Camera Input Storage and Retrieval block encompasses the modules which
are used for storing the incoming stream of camera data in the ZBT and reading out the
contents for use in video processing and visualization. The modules in this component
were taken from the sample code on the 6.111 website and modified for this project.
The block diagram is outlined in Figure 5.

Camera Input Storage and Retrieval

—clk_65mhz—»| —clk_A5mhz—»|

—wiite data[360——3 ram clk

m_we_b
———ntsc_addr{18:0}—— -
——tv_in_line_clock1 ntsc_to_zht addr{18:0)}—> 208 111 ram_address[18:0]
* am_cen_b
——yereb[20: 0] —

Fwh[2]
=]

ntsc_decode

fvh[1]——»

ty_in_ycreh{ 19 0}—————» fvh[0]

[——nitsc_we—] > |ead_data[35:0}—;

vram_addr18:0]

—clk_B5mhz—»
——<clk_B5mhz—

——reset——m

vram_display

F———heount[10:0}———»

caunt[9:0] >

_plxel[15:0]

xvga T
read_data[35:0]

VEYNC—

sy Ne—— "
Y ** Note: all modules will

blank——» include the clk_65mhz input
if not already indicated

Figure 5: Camera Input Storage and Retrieval block diagram

Firstly, the ntsc_decode module uses the tv_in_ycrcb[19:0] signal to generate the
ycreb[29:0] signal. The ycrcb[29:0] signal contains a full 30-bit representation of the
camera input steam in YCrCb format. The ntsc_to_zbt takes this stream of incoming
data and stores 16 bits of information for each incoming pixel in the ZBT in the following
format: {4'b0, highest 6 Y bits, highest 5 Cr bits, highest 5 Cb bits}. The sample code
was modified from four 8-bit pixels per location to handle the storage of two 16-bit
blocks of pixel data per location instead. This amount of information is sufficient for
color detection and for display of fairly accurate color video. Addresses for storage are
generated such that each encodes a pixel's x and y position, allowing for easy lookup of
any particular pixel for display on the monitor. Reading and writing from the ZBT is
handled by the ntsc_we output from the ntsc_to_zbt module.

The xvga module generates the necessary hcount[10:0], vcount[9:0], vsync,
hsync, and blank signals for use in the display of 1024x768 video. These signals are
used in the vram_display module which reads raw data from the ZBT and parses it into
a stream of 16-bit pixel data in YCrCb format suitable for use in video display. Since
two pixels are stored per location, the module holds on to data from the same location
for two clock cycles and separates the two pixels’ color information to produce the
vr_pixel[15:0] output. Another necessary modification of the sample code was to flip the
camera image along the y-axis to display the video as if looking into a mirror. This is
done in the accessing stage of the pixel data by negating the hcount bits used in

constructing the read address. The flipped image allows for better visual feedback for
the user in controlling movement.

All modules used in this storage and retrieval operate on a 65 MHz clock except
the ntsc_decode module, which operates on the clock from the camera, denoted as
tv_in_line_clock1. The ntsc_to_zbt module handles the interaction between the camera
clock and the 65 Mhz clock, ensuring that the correct information from the camera is
stored in the ZBT.

2.3 Color Decision Module (color_decision.v) (Brandon)

The color_decision module determines whether or not a pixel from the camera is
of the desired blue color. It also outputs a 24-bit RGB representation of the current pixel.

To determine if a pixel is of the desired blue color, the module does threshold
tests on the stored Cb and Cr data. If Cb[4:0] is greater than or equal to 18 and Cr[4:0]
is less than or equal to 16, the color_found signal will go high. Otherwise, the signal will
be low, indicating the blue color is not detected. This threshold was tested to be the
best for filtering out dark blues and optimizing detection of the bright blue lights held by
the user. The color_found signal is tied to the output pixel_video for use in the
video_processing module to display detected blue areas on the monitor.

Additionally, the color_decision module uses the YCrCb2RGB module provided
by Xilinx to convert from the YCrCb color space to the RGB color space. Since the
VGA display requires RGB content, this component was necessary for displaying color
video. This information is encoded in the cam_image output as {8 bits of R, 8 bits of G,
8 bits of B}.

video_processor

desired_color. >
pixel_video— left_en » left_x{10:0}——p
Module;
color_detection right_en—m lef_y{%0}——
——hicount]10:0]

rigiht_x[1000]—

———wicount[3:0] » Meoube:
position_calculator L right_y[&:0]—

[——hcount[10:0} »

weount[2:0} »

WEYTIC -

** Mote: all modules include
the clk_27mhz and reset
inputs

Figure 6: Video Processor block diagram

10

2.4 Video Processor Module (video_processor.v) (Brandon)

The video_processor module takes in the pixel _video input from the
color_decision module and outputs the average coordinates of each hand as 11-bit x
and 10-bit y coordinates. The outputs are defined as left_x[10:0] for the x-position of
the left hand and left_y[9:0] for the y-position of the left hand. This same notation is
used for the right hand. Calculation of these positions is divided into two modules:
color_detection and position_calculator. The organization of this module is described in
Figure 6.

2.4.1 Color Detection Module (color_detection.v) (Brandon)

The color_detection module determines if a pixel should be used in the
calculation of a hand'’s position. This module has two main functions: one is to decide
which half of the screen the detected pixel is in, and the other is to reduce the noise of
random pixels detected by the color_decision module that should not be included as
part of the hand.

The error reduction function is implemented using shift registers to compare the
pixel_video values across three consecutive samples. The temporary wire
desired_color_temp will be high only if pixel_video is high for two consecutive pixels.
This method detects the user’s blue lights quite well while reducing the amount of noisy
pixels which could affect average position calculations.

Additionally, left_side and right_side signals are used to determine if the current
pixel is inside the left or right half of the region of display, divided along its center. The
display region includes only the camera display window as defined in Figure 12.
Combining these two tests, the left_en output is high only if both /eft_side and
desired_color_temp are high, corresponding to a pixel which withstands the error
correction test and is in the left hand plane of the screen. The right_en output is
generated in the same way, but uses the right_side signal. The desired_color output is
tied to the desired_color_temp signal for use in displaying the detected pixels in the
visualization module.

2.4.2 Position Calculator (position_calculator.v) (Brandon)

The position_calculator module uses the left_en and right_en signals from the
color_detection module to calculate of the weighted average hand positions. On a basic
level, the module uses four weighted_average modules to compute the average x and y
positions for each hand, as seen in Figure 7. However, the position_calculator first
applies some tests to the averages calculated by the weighted_average modules before
updating the positions for output.

11

position_calculator

left_en

Madule:

—hcount[10:0] > eightor, eum [11001—» left_x[10:0—»
_l.]s}llm - >
—{1'b0 veount9:0]} -uaigmléh;um L—left_y_1[10:0] left_y[9:0}—»
._f'_r'4}
ight_&n P—T— -
FSM
Maodula: .) ’ :
e e weightsd_sum ——right_x_ 1[10:0]—» ——right_x[10:0]—
et | | —
Madule;))
> welqh[a‘; aum |—riant_y_1[10:0—» right_y[8:0]—»

** Note: all modules include
the clk_27mhz and reset
inputs

Figure 7: Position Calculator block diagram

The left_in_left_side, and right_in_right_side signals are used to prevent the left
and right hand positions from going out of their respective halves of the camera display.
The left_in_left_side signal is high when the calculated weighted average coordinates
for the left hand are within the appropriate bounds for the left half. The
right_in_right_side signal is similarly high when the right hand is within the appropriate
bounds for the right side.

A second test checks if the new coordinates are sufficiently close to the currently
stored coordinates. This test prevents large jumps in the coordinate positions to provide
smoother motion. If the new coordinates are within a 150 x 150 pixel square centered
at the current left hand coordinates, no_left_jump will be high. The same applies for
no_right_jump on the right hand.

The third test detects if the current pixels are outside of the camera video frame.
The coordinates upon starting the system are all initialized to 0, so both
outside_frame_left and outside_frame _right will start off high.

Using these three test signals, the coordinates for the registers holding the output
coordinates for the left hand will only update if the new coordinates are in the left hand
plane and there is either no large jump in position or the current coordinates are outside
of the frame. This is summarized as the condition: (left_in_left_side && (no_left_jump ||

12

outside_frame_left)). The same applies to the equivalent right hand signals for updating
the right hand coordinates.

The potential coordinate update occurs only when a new frame starts at the
rising edge of the vsync signal. Figure 8 shows the two-state FSM used for
coordinating the update of coordinates.

position_calculator FSM

~VEYN

VENTIC
State 0:
Frame ended, wait
for next frame to
slart
« Update x and y
coordinates upon
transition to state 1
if tests satisfied.

State 1:
- Frame started, wait
for frame to end,

~yEYTIC

WEYMC
Figure 8: FSM for the Position Calculator module

2.4.3 Weighted Average Calculator (weighted_sum.v) (Brandon)

The weighted_average module takes signals enable and count[10:0] as inputs to
calculate the average of the count values received when enable is high. The sum[27:0]
registers are used to hold a running sum of the count values, only adding new value if
enable is high. This running sum calculation begins as soon as vsync goes high.
Pixel_count[17:0] keeps track of how many times enable goes high.

To calculate the average, sum/pixel_count is calculated using the Xilinx Pipelined
Divider v3.0. The lower 11 bits of the divider result are tied to the output avg.

Since divider module requires 28 clock cycles to compute, the module is enabled
as soon as the current vcount is beyond the lower border of the camera image, defined
as when vcount > BOTTOM_BORDER. The clear is done through changing the scir
input to the divider. This timing provides more than enough clocks at 27 MHz to
complete the divide calculation before a new frame starts.

13

motion_analyzer

—beaat_start_x[10:0}—
Aight_x[10:0] » Find right hand ~ |——beat start_y[9:0}—»
Modula: coordinates at start
beat_markers and end of a beat | heat_end_x[10:0]—
———righit_y[9:0} ik » >
ght_y(9:0} —beat_end y[@:0]—=
4 beat_end >
beat_start >
Y Y
amp_lefi[10:0] »
LT~ > -
amp_right[10:0] +
Module: beat_period[10:0] *
left_x[10:0] * qualiies generator
coeleration_left[10:0] >
left_y[S:0] >
acceleration_right[10:0] -

** Note: all modules include
the clk_27mhz and reset
inputs

Figure 9: Motion Analyzer block diagram

2.5 Motion Analyzer Module (motion_analyzer.v) (Brandon)

The motion_analyzer module generates the qualities of beat amplitude, period,
and acceleration by analyzing the movement of each hand's x and y hand coordinates
over time. The computations are divided into two submodules: the beat_markers and
qualities_generator modules, as seen in Figure 9.

The beat_markers module decides when a beat starts and end. The
qualities_generator uses this beat marker information to determine the amplitude,
period, and acceleration calculations for each beat. More detailed descriptions of these
modules are in their respective sections that follow.

The other outputs of the motion_analyzer module are the x and y coordinates of
each hand at the start and end of a beat. These coordinates are used for displaying the
beat start and end points in the generate_visualization module. The beat start
coordinates are stored in registers that are updated whenever beat_start goes high.
Similarly, the end coordinates are held in registers updated when beat_end goes high.

2.5.1 Beat Marker Generator (beat_markers.v) (Brandon)

The beat_markers module determines the start and end of a beat based on the
movement of the right hand over time. Since beats are only formed by the motion of the
right hand, right_x[10:0] and right_y[9:0] are the only inputs to this module. There are
two outputs: beat_start, and beat_end. Beat_start will go high for one clock cycle upon
detection of the start of a beat, while beat_end will go high for one clock cycle at the end
of a beat.

14

beat_markers FSM

within_bound

l_,_:-l—'_‘-\-\.___ .
stationary_test,

(count_stafionary == T_PARAM)

State 01:
+ Potential stop

detected, test for
real stop

State 00:
% Beat started, wait
for stop

~within_bounds

~stationary_test

count_stationary == T_PARAM
~start_test

State 10:
+ Stop found, wait
for new beat to

start

start_test

Figure 10: FSM for generating beat markers

Management of the start and end states of a beat is handled by a three state
FSM diagrammed in Figure 10. State 00 is when a beat already started and the system
is waiting for a stop signal. The stop signal is called within_bounds. This signal goes
high when the current pixel coordinates are within a centered box of 2*TOLERANCE_X
and 2*TOLERANCE_Y of the previous pixel. Assertion high indicates a potential beat
stop and changes the FSM to state 01.

In state 01, the module tests if the potential beat stop should be registered as an
actual stop. Upon transition to this state, the FSM stored the x and y coordinates of the
right hand in registers for use in the next test called stationary_test. Stationary test
goes high if the current frame’s coordinates remain for several clocks within a centered
box of 2*TOLERANCE_END_X and 2*TOLERANCE_END Y of the coordinates stored
upon transition. The length in time that this wait test must remain active is a parameter
which affects sensitivity towards how long the hand must remain within appropriate
bounds to be registered as a beat end. In this implementation, stationary test must be
valid for 1,048,575 clock cycles at 27 MHz to move to state 10 and detect a beat end.
This corresponds to a wait of about 0.039 seconds. If the coordinates go outside of this
bound within that time frame, the FSM will return to state 00 to wait for the next potential

15

beat end. If the test holds, the beat_end output will go high for one clock cycle upon
transition to state 10.

In state 10, a stop has already been detected, so the FSM will remain in this
state until a new beat is detected. A new beat is detected if the start_test signal goes
low. Start_test goes low when the current coordinates are outside an area bounded by
the centered box of 2*TOLERANCE_START_X by 2*TOLERANCE_START_Y around
the stored coordinates upon leaving state 01. The coordinates leaving this bound
means the hand has moved enough to be considered the start of a new beat. Upon
start_test, the FSM will transition to state 00 and the beat_start output will go high for
one clock cycle.

The parameters in this module were tested and set for the user to have best
control over generating beats while conducting. The values used in the final
implementation are listed in Table 1.

Parameter: Value:
TOLERANCE_X 2
TOLERANCE_Y 2

TOLERANCE_END_ X 5
TOLERANCE_END_Y 5
TOLERANCE_START_X 25
TOLERANCE_START_Y 25

Table 1: Parameter values used in beat_markers module for best operation

qualities_generator FSM

beat_end

~beat_and

State 0:
Beat ended, wait for
next beat to start

. Store start
coordinates upan
transition to state 1
Update output
gualities on transition

State 1:
+ Beat started, wait for
next baat to and.
. Stora and
coordinates upon
fransition to state 0

~beal_start

beat_start

Figure 11: FSM for handling the update of beat motion qualities

16

2.5.2 Qualities Generator Module (qualities_generator.v) (Brandon)

The qualities_generator module uses the beat_start and beat_end signals
determined by the beat_markers module to calculate amplitude, time duration, and
acceleration values of the motion every beat. A two-state FSM is used in this module to
coordinate the update of these qualities with the video display as seen in Figure 11.

In state 0, a beat has ended and the system is waiting for a new beat to start,
corresponding to when beat_start goes high. Upon receiving a beat start signal, FSM
transitions to state 1 and stores the start coordinates of each hand in registers. In state
1, the system is now waiting for a beat to end. When beat_end goes high, the FSM
transitions back to state 0 and stores the coordinates upon transition into registers.
These registers are used to calculate the distance in pixels between the start and end of
a beat. This calculation is done for each hand. The left hand distance is used for
updating the amp_left[10:0] output, while the right hand distance is used for updating
the amp_right[10:0] output. Distance calculation is done in the find_distance module
described in the section that follows.

For beat period and acceleration calculation, a signal called count[18:0] is used
to divide the clock into roughly 0.02 second divisions, or 2219 clock cycles at 27 Mhz.
Every time this time period passes, the time_count[10:0] registers will increment by one
to count the time spent in state 1 waiting for a beat to end.

For acceleration calculation, shift registers are used to compute the difference of
distances between three successive coordinate samples. These three coordinate
points are roughly 0.02 seconds apart from each other and are stored only when the
time_count[10:0] signal is less than or equal to 6. This means that only coordinates at
the beginning of a new beat are used for calculations of a single beat's acceleration.
The stored values in the shift registers are used to find the difference in distances for
each hand using a total of four find_distance modules (two for each hand). The results
are rough acceleration approximations for each hand.

Each of these calculated qualities are only updated for output upon the start of a
new beat, as detected in the FSM when beat_start goes high while in state 0.

2.5.3 Find Distance Module (find_distance.v) (Brandon)

The find_distance module takes in two coordinates and outputs the distance in
pixels between the two points. This calculation is done by first calculating the difference
in x coordinates and y coordinates between the two points, ensuring that the difference
is positive. Next, each difference is multiplied by itself to get the squared values. The
two results are added together to form the sum_of _squares[19:0] wire. The Xilinx
square root Core module is used to calculate the square root of this value to produce
the distance[10:0] output.

17

Camera Video Displa

Left hand Right hand

s

Figure 12: Description of Screen Components

2.6 Generate Visualization Module (generate_visualization.v) (Brandon)

The generate_visualization module takes in number of signals from the
color_decision, video_processor, and motion_analyzer modules to output three signals
of R, G, and B data for display on the monitor. Figure 12 is a sample display generated
by this module.

The cam_image[23:0] signal from the color_decision module is used to display
the raw camera input video in RGB format. The desired_color input from the
video_processor module is used to display a pixel as white if high and black if low.
Switching between these two display modes for the camera image area is handled by
an FSM which keeps track of the current display mode. Mode 0 is the default that
corresponds to the black and white desired_color display. Mode 1 is entered after
pressing the down button on the lab kit and corresponds to color display of the camera
input.

Additionally, the left_x[10:0], left_y[9:0], right_x[10:0], and right_y[9:0] signals are
used as inputs to centered_block modules to display squares at each hand’s current
coordinates. The centered_block module is a sprite which generates a color block on
screen with its center at the input coordinates. For example, the block following the left
hand will have input coordinates at left_x[10:0] and left_y[9:0], with width and height of

18

20 pixels. The right hand has similar structure but with right_x[10:0] and right_y[9:0] as
inputs. For color, the left hand block is green, while the right hand block is red to
differentiate between the two. To add to the visualization, two sprites of darker hue for
each hand follow the path of the hand blocks at positions delayed by around 0.2 second
intervals. This is accomplished using the count[18:0] registers to count clock cycles at
27 Mhz such that each time count == 0 the current hand coordinates are stored in
registers. These blocks are displayed on screen to add a slight trailing effect to the
hand motion.

Another set of sprites is used to display the coordinates at which a beat begins
and ends. Since beats are dictated by just the right hand, only two sprites are needed:
one to remain at the start coordinates, and the other to remain at the end coordinates.
These blocks are smaller in size, with a height and width of 10 pixels. The block at the
start of a beat is green, while the block at the end of a beat is red.

Since all the above display signals are within the same area on screen, logic is
used to determine which pixel data should be displayed over others. This layering is
important to prevent odd colors from arising when adding together two different pixel
streams. The order of precedence as described by the logic is as follows, from the
uppermost to lower layer: hand position blocks, hand trailing blocks, beat start and beat
end blocks, then finally the cam_image[23:0] or desired_color display depending on the
current mode.

Other features of the display include the 1-pixel wide white border around the
camera video, as well as the white line dividing the two halves of the screen. Around
the thin white border is a blue border to fill the space of the upper half of the screen.
These colored areas are generated using logic to divide up the screen into parts using
the hcount[10:0] and vcount[9:0] inputs.

Below the camera display are motion analyzer bars which indicate relative
amplitude, beat period, and acceleration values from the motion_analyzer over time.
There are two of each the amplitude and acceleration values (one for each hand) and
one beat period value, for a total of five bars on the screen.

The magnitude of each motion quality scales with the width of its respective bar
on screen. These sprites were generated using the analyzer_bar module which takes
the bar width and upper left hand corner coordinates as parameters. The positioning of
the five bars are, in order from top to bottom of the screen: left hand amplitude, right
hand amplitude, beat period, left hand acceleration, and right hand acceleration. All
qualities for the right hand are colored red to match the block following the right hand,
while qualities for the left hand are colored green to match the block following the left
hand. This display allows the user to clearly see how his motions are affecting the
playback of the music.

The button display on the bottom right of the screen is used to keep track of what
display to show in the camera video frame. The upper button with the “I” label is the
default mode for display of detected blue areas. The lower button with the “II” [abel is
the mode for viewing a dimmed version of the camera input video.

2.7 Signal Tamer (Andy)

The Signal Tamer module is placed between the Video and Audio Processing
parts of the system. The basic function of this module is to take the raw inputs of

19

velocity and acceleration, and to scale them and/or bit-shift them to make them
compatible and within the range needed for the Audio Processing Module. Moreover,
the module also “tames” the signals, meaning it low-pass filters the acceleration signals
and allows for gradual volume transitions.

The low-pass filter for the acceleration signals is merely an average of the
acceleration values of the last two beats. To achieve a gradual volume transition
between two beats, interpolation is required. An audio beat is divided into 32 sections,
each of which has a different volume value. Division 0 will have the volume of the
previous beat and Division’s 15-31 will have the volume of the new beat. There will be
a linear transition between divisions 0 and 15. Figure 13 illustrates this point. See
Verilog code in the Appendix for details.

Volume

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Division

Figure 13: The volume fading feature of the signal tamer steps the volume between the
previous and new volumes by using linear interpolation of the first 16 divisions of the
new beat.

2.8 Audio Processing (Andy)

The Audio Processing Unit of the Virtual Conducting Project interprets the signals,
acceleration_left_fixed[1:0], acceleration_right fixed[1:0], VellL_fixed[6:0], and
VelR_fixed[6:0] to produce audio, stored in the flash ROM, to correspond to these
characteristics. The Audio Processing Component takes audio stored from the flash
ROM, and outputs it one beat at a time. The audio is also modulated in tempo, volume,
and articulation.

The data flow begins at the ROM FSM. Interacting with the ZBT FSM and Beat
Generator, the ROM FSM reads audio data from the flash ROM at 4 clock cycles per
address (6.75 MHz). The ROM FSM will read data and pass it onto the ZBT FSM one
beat at a time with help from Beat Generator. The data read in from the ROM FSM will
be written into the ZBT SRAM at 4 clock cycles per address.

This is performed by reading in data from flash ROM and storing it into the ZBT
RAM until a musicbeat signal is declared, demarking the end of a beat. After the
musicbeat signal is declared, the ZBT FSM will allow the same beat of music stored in

20

the RAM to be read out at 24 KHz to the AC '97 interface. Since the writing in to ZBT
RAM is done at 6.75 MHz, the pause in between beats is barely noticeable by human
ear.

The ZBT RAM allows for the writing and reading of different addresses in the
ZBT RAM. During the writing cycle, it gives access only to the ROM FSM to write data
into the RAM. After the write cycle, the read cycle begins, and the ZBT RAM with help
from the Tempo Modulator reads data from the ZBT RAM.

The Tempo Modulator takes in the original beat period (from the music), and the
user specified beat period and helps change the audio output speed. The main output
from the Tempo Modulator will be addrmod[15:0] which will interact with the ZBT FSM
to change the address accessed from the ZBT SRAM at the right times to change the
tempo. If the user specified tempo is greater than the original tempo, addresses are
added, if the specified tempo is slower, then addresses are subtracted.

The output from the ZBT FSM will be 24 KHz 8-bit PCM data. This audio data is
fed to low pass and high pass filters. The outputs from the filters are the inputs for the
Volume and Articulation Modulator.

beat start fop Flash_reset b——»]
MusicBeat > < fousy Flash_byte_b——>»|
ROM FSM fwdata———») Flash_int [«——Flash_data[15:01—»] Flash ROM
«—firstbeat [«——frdata[15:0——— —Flash_addess[23:0}—>
—BeatAudio[7:01H faddress[23.0——»]
Audio[7:0] beginning ! ! |

Value[7:0] program Program select

<—musicbeatperiod[15:0}—

MusicBeat——————} Beat Generator Metronome Programmer

** Note: all modules will
include a 27 Mhz CLK and
RESET inputs

<«—offset[1 TO}*

— offset[15:0}

MusicBeat

BeatAudio[7:0—»

——ZBTaddress[18:0}—>|
firstbeat——| . —Ram_address[18:0}——»
——ZBTwrite_data[35:0—»|
Musicbeat: ——Ram_datg[35:01——»]
ZBT FSM ZBT SRAM Ram cen_b——» ZBT SRAM

offset[15:0F——>| «—ZBTread data[35:0—

We_b——>

<

beat_start—>»
beat : J;t ‘ T ready
Access_enable AddrMod[15:0]
‘ ‘ ZBTOutAudiof7:0]
beat-start Beat Period v
eat Perio .
Counter [BeatPeriod[10:07 Tempo Modulator LPF HPF
—musi iod[10:0p
—Command_valid—|
e[10:] l«————HPAudio[7:0] —Command_address»|
amp_e . " i [——Command_data—|
N S — - L
-amp_right{10:0} > LPAudio[7:0]

Articulation and Volume y P AC 97
acceleration_left[10:0———»| Modulator FinalAudio[70F—————» | oo [€—ac97_ready—f ACO97
-acceration_right[10:0F——| Ac97_synch—»

ZBTaddf{15:0} > ——Ac97_bit_clock—»|
[——Ac97_sdata_out—»|

Figure 14: The block diagram for the entire audio system. User inputs are Value[7:0],
program, and program_select in order to reprogram musicbeatperiod[15:0] and
offset[15:0]

21

The Volume and Articulation Modulator simply multiplies the existing audio by a
preset function. If the articulation is weak (the acceleration is weak), the function to be
multiplied is simply a constant throughout the beat. However, if the articulation is strong,
the function is low initially, quickly climbs to a maximum, and slowly decays.

The output from the Volume and Articulation Modulator is finally fed into the AC '97
interface for audio output. See Figure 14 for the overall Audio Component block
diagram.

29 ROMFSM (Andy)

The ROM FSM reads from the flash ROM and interacts with the ZBT FSM, and
beat generator to allow output of one musical beat at one time. Initially starting at zero,
an address counter increments in order to read from ROM sequentially. In this
implementation, it takes four clock cycles to read from ROM. The first clock cycle
declares a write operation. It was chosen to wait three more clock cycles to insure that
the FPGA has correctly read one word of data from the flash RAM.

The ROM FSM has 4 states. The first state declares a read operation; the next
two states are dedicated to allow for a delay before actually reading data. The last state
reads the data from the flash, increments the address to read from, and returns the
state to state 0. If the address to read from exceeds the number of addresses stored in
ROM, the address will loop to 0. This cycle will not occur unless if readcontinue is true.
Readcontinue turns high when beat is declared, and remains high until musicbeat is
declared. Since beat represents when the user wants another beat to be played, and
musicbeat declares the end of this beat, this allows audio data to be read out one beat
at a time. See Figure 15 for details.

Moreover, the ROM FSM is responsible for letting the rest of the system know
when the first beat occurs. The first beat contains a different beat period, and a
different note extension technique, and is a signal other modules must use. Refer to the
Appendix for details.

State 1 (waiting
time)

State 0 (declare

R 1 clock cycle
read operation)

1 clock cycle

~readcontinue

State 3
(increment
address

State 2 (waiting
time)

€1 clock cycle

22

Figure 15: The ROM FSM has 4 real states, and one “wait state.” The FSM is used to
read data from the ROM at 6.75 MHz (4 clock cycles per address). Readcontinue turns
high when beat is declared, and remains high until musicbeat is declared.

2.10 Beat Generator (Andy)

The Beat Generator module generates musicbeat signals that indicate the
division between beats. This module uses a set beat period — given by the user- in
order to generate this signal. The sample_count[15:0] register counts the number of
times that the ROM FSM accesses memory. The number of times a different address in
flash memory is accessed will be the unit of measure for the Beat Generator. When
sample_count[15:0] reaches the beat period of the audio data, musicbeat will go high
and sample_count[15:0] will reset to zero.

The Beat Generator interacts with the Metronome Programmer, which stores the
value of musicbeatperiod[15:0] and offset[15:0]. Musicbeatperiod[15:0] specifies the
regular beat period in flash ROM address accesses, and offset[15:0] specifies the offset
to initially assign sample_count[15:0]. The use of Metronome Programmer allows
musicbeatperiod[15:0] and offset[15:0] to be reprogrammed by the user if desired.

2.11 Metronome Programmer (Andy)

Metronome Programmer is a small reprogrammable ROM that stores the
constant values for musicbeatperiod[15:0] and offset[15:0]. Musicbeatperiod[15:0]
represents the time period between musical beats in the audio that is loaded in the
ROM. This time period will vary from song to song. By keeping program high, selecting
which value to program with program_select, and setting the FPGA buttons to the
intended value, musicbeatperiod[15:0] and offset[15:0] can be reprogrammed. Note
that since the FPGA only has 8 buttons, the input will be an 8-bit number, but the
needed value is a 16-bit number. The input is multiplied by 100 to solve this problem.

212 ZBT FSM (Andy)

The ZBT FSM interacts with the ROM FSM, the ZBT SRAM, and the Tempo
Modulator. Inputs for the ZBT FSM are musicbeat, first, beataudio[15:0], offset[15:0],
beat_start, addr_mod[15:0], ZBTreaddata[35:0], and ready. Outputs for this module are
access_enable, ZBTaddress[18:0], ZBTwrite_data[35:0], we, and ZBTOutAudio[7:0].
The ZBT FSM interacts closely with the ROM FSM; when the ROM FSM is reading out
data, the ZBT FSM fetches the data from beataudio[15:0] and writes it into the ZBT
SRAM simultaneously. Like the ROM FSM, the ZBT FSM writes a sample once every 4
clock cycles. When the ROM FSM is not reading out data, the ZBT FSM reads out the
data that was just stored at 24 KHz. See Figure 16 for the state transition diagram.

The transition between writing and reading from RAM is dictated by the continue
signal. When continue is high, the ZBT FSM will write data into the RAM. When
continue is low, the ZBT FSM will read data and play it at 24 KHz. Continue is high
when a user beat is specified. Continue goes low when musicbeat goes high,
specifying the end of the beat stored in the ROM.

When the ZBT FSM has reached the end of the beat, and a new beat has not
been specified yet, it will replay back sections of the end of the beat to allow for note

23

extension. Note extension allows the music playback to appear fluent and without any
gaps in playback. After exceeding the musicbeatperiod[15:0] length, the FSM will
reverse playback until it reaches address musicbeatperiod[15:0] — 2000. Upon reaching
this point, it will reverse playback again, until reaching musicbeatperiod[15:0] — 500, in
which case it reverse direction again. This loop continues indefinitely until the next beat
is specified by the user. See Figure 17 for a diagram of this loop. If beat is specified
before the end of the beat in the flash ROM, the existing beat is truncated, and the next
beat is read from the flash ROM, written into the ZBT SRAM, and then read out from the
ZBT SRAM.

State 0 (write
into ZBT
SRAM)

|

continue

State 1 (waiting
time)

~continue

State 4
(playback, read
from ZBT

1 clock cycle

State 3 (waiting
time)

State 2 (waiting
time)

€1 clock cycle

Figure 16: The ZBT FSM. The ZBT FSM alternates between writing into the ZBT SRAM,
and reading out from it. This alternation is controlled by the continue signal.

musicbeatperiod [15:0] - 500

I W W

musicbeatperiod [15:0] - 3000 musicbeatperiod[15.0]

Figure 17: Note extend works by reversing the playback once the address reaches
musicbeatperiod[15:0]. Playback will reverse again after reaching musicbeatperiod[15:0]
—3000. After reaching musicbeatperiod[15:0] — 500, playback will reverse again. Thus,
playback is contained within musicbeatperiod[15:0] — 3000 and musicbeatperiod[15:0] —
500.

24

2.13 Beat Period Counter (Andy)

The Beat Period Counter is a very simple module which merely counts the time
period between user specified beats. The module consists of a sample access counter
which increments every 100 accesses of a sample. The counter resets every time beat
is high, and immediately outputs the resulting beat period. This module is particularly
important for the Tempo Modulator Module.

2.14 Tempo Modulator (Andy)

The theory behind the Tempo Modulator is simple. Audio is divided into
segments of 800 segments; these segments are then added or subtracted to change
the tempo of the music output. See Figure 18 for an illustration of this concept. The
Tempo Modulator is divided into two sub-modules: the Division Converter and the
Division Counter.

Figure 18: This illustrates the basic concept behind the tempo modulator. Audio data is
grouped into segments of 800 samples and are added or subtracted in order create a
slower or faster playback.

The Division Converter converts a ratio between the original and the intended
beat periods into signals that are easier to use — interval[2:0], skip [2:0], and add.
These signals instruct the Division Counter to add or subtract skip[2:0] amount of
divisions every interval[2:0] of divisions. These signals are fed into the Division Counter
to produce an addrmod[15:0] signal when interval[2:0] amounts of divisions has been

25

read. Addrmod[15:0] instructs the ZBT FSM to change the address by addrmod[15:0] in
order to add or subtract samples, and thus change the speed of playback.

The concept behind Division Converter is simple, but the implementation is a
harder than suspected. Division Converter is an FSM. In state 0, the initial state, initial
values are assigned to registers NewBeatPeriod[10:0] and NewOriginalBeatPeriod[10:0].
In state 1, these values are shifted right until the values of both NewBeatPeriod[10:0]
and NewOriginalBeatPeriod[10:0] are less than 7 (which means both values are 3 bits
or less). When the values are 7 or less, then the state machine goes to state 2. State 2
determines interval and skip on a case by case basis. Refer to Figure 19 for a state
transition diagram.

There are 3 basic cases, when BeatPeriod[10:0] is greater than
OriignalBeatPeriod[10:0], when they are equal, and when BeatPeriod[10:0] is less than
OriginalBeatPeriod[10:0]. In the first case, interval is set to equal
NewOriginalBeatPeriod[2:0], interval[2:0] is set to 1, and add is set to equal to 0; in the
2" case, all three signals are set to 0 — this reproduces the original tempo; in the 3
case, interval is set to NewBeatPeriod[2:0], skip[2:0] is set to
NewOiriginalBeatPeriod[2:0]. The result of this is that the playback will be at a
proportional speed to the ratio between BeatPeriod[10:0] and OriginalBeatPeriod[10:0].
Refer to Appendix and Figure 20 for details on special cases of these three cases. Note
that this calculation is merely an estimate of how fast the playback should be. If there
is a large difference between intended playback speed and actual playback speed, the
difference is not a problem because of note extension and beat truncation, which keeps
the playback smooth.

The second part of this module, Division Counter takes the outputs from Division
Converter and converts the inputs into the addrmod[15:0] signal. Division Converter
interacts with the ZBT FSM to count the number of divisions accessed. When
interval[2:0] divisions has been accessed, addrmod[15:0] will indicate the number of
addressed to add. Note that addrmod[15:0] is signed, so when addressed must be
subtracted to slow down the playback, addrmod[15:0] will be negative. Refer to Figure
21 for the block diagram for Tempo Modulator.

26

State 1

(find 3 bitversions of

State 0
(setinitial
settings)

NewOriginalBeatPeri
0d[10.0]) ~(NewOriginalBeatPeriod <= 7) &
(NewBeatPeriod <= 7))

(NewOriginalBeatPeriod <= 7) & (NewBeatPeriod <= 7))

State 2
(finding
interval[2:0] and
skip[2:0] and
add)

beat

~beat

Figure 19: The state transition diagram for Division Converter. Division Converter
converts BeatPeriod[10:0] and MusicBeatPeriod[15:0]/100 into interval[2:0], skip[2:0]
and add.

BeatPeriod [10:0] > OriginalBeatPeriod [10:0] BeatPeriod[10:0] < OriginalBeatPeriod [10:0]

BeatPeriod[10:0] = OriginalBeatPeriod [10:0]

NewBeatPeriod/10:0] == Everything else

BeatPeriod >> 1 >= OriginalBgatPeriad .
Everything else

add <=0;

interval <= 0; Add <=1;
add <= 0; skip <=0;) Interval <=
interval <= interval <=1; NewBeatPeriod2:0];
S0 NewOriginalBeatPeriod] skip <= 7; skip <=
i eal I I0
M= o add <= 1; NewOriginalBeatPeri
skip <=1; skip <=1; 0d2:0) -

ewBeatPeriod2:0];

NewBeatPeriod == NewOriginalBeatPeriod

add <= 0;

interval <=0;
skip <=0;

Figure 20: These are the different cases for the Division Converter for BeatPeriod[10:0]
and OriginalBeatPeriod[10:0]. Note that the Division Converter will make the maximum

speed 8X and the minimum speed "2 X.

27

NewBeatPeriod == NewOriginalBeatPeriod

BeatPeriod[10:0] =
OriginalBeatPeriod

[10:0]

| {

Access_enable AddrMod[15:0]

skip [2:0}——>
——BeatPeriod[10:0}—> Division
——OBeatPeriod[10:0}—»| Converter

interval[2:0—»| Division counter

add——»

Figure 21: Block diagram for the Tempo Modulator. Access_enable and AddrMod[15:0]
interact with ZBT FSM above (refer to Figure 14 for details).

2.15 Volume and Articulation Modulator (Andy)

The Volume and Articulation Modulator simply multiplies one beat of audio by a
function to achieve the results. In theory, multiplying each beat by an envelope function
(coefficient function) will replicate articulation effects such as staccato. This module is
split into two units, one for the treble, and one for the bass. Each Volume and
Articulation Unit divides each existing beat of audio into 16 divisions. Each one of the
16 divisions is multiplied by a coefficient (a function of which is stored in a small ROM).
There are 4 settings of articulation; when Acc[1:0] is 0, this corresponds to the
smoothest playback and coefficients which are constant at 255; when Acc[1:0]is 3, this
corresponds to the choppiest playback and coefficients which change the most. See
Figure 22 for an illustration of this concept.

A

One beat duration)

A(t)

t

Figure 22: This figure illustrates the concept of articulation modulation. A smooth
playback corresponds to an envelope such as the blue one, a medium articulation
playback corresponds to an envelope like the red one, and a staccato playback
corresponds to something like the black envelope.

For volume modulation, each sample of audio is simply multiplied by an
appropriate constant. Note that if the audio is scaled down too much to correspond to a

28

soft sound, the resolution will deteriorate (imagine shifting audio to the right until there is
only 1 bit). This problem is solved by having the volume data scale not only the raw
audio signal, but the AC’97 volume level as well. The Volume and Articulation
Modulator uses the greater of the two (left and right) inputs to determine the AC’97
volume level. See Figure 23 for the block diagram for the Volume and Articulation
Modulator. The results of the audio data from the two units (left and right)
corresponding to bass and treble are then added together to produce the final result.

I_ Articulation Modulator Unit amp_left_fixed [7:0]
I -7 I
—'sample_count[15:0]—> Articulation | coefficient[7:0 I
. Function :
—acceleration_left[10:01»
I

:- LowPassAudio[7:0]| LowPassResult[7:0]

FinalAudio[7:0}——————>

[T 7 7 7 Aticulation Modulator Unit _1 T~ ™ HighPassResul[7:0]
amp_right_fixed[7:0]

sample_count[15:0]—» Articulation | I
4' -) Function Coefficient[7:0
—acceleration_right[10:0p

I

:- HighPassAudio[7:0]

Figure 23: This block diagram represents the Volume and Articulation Modulator.

2.16 HPI/LP Filters (Andy)

The high-pass and low-pass filters used to divide the output of the Tempo
Modulator were generated from the Xilinx Coregen Finite Impulse Response Module.
They take as input the original audio, and a processing enable, and outputs the
resulting audio and a ready signal. Two 31-segment, 16-bit finite impulse response
filters were used for the project. The coefficients for the filters are the impulse response
for a simple Hamming Window that has a cut-off at m/32. A Hamming Window
compared to a Rectangular Window trades off a sharp cut-off for a greater and non-
oscillatory attenuation of stop-band frequencies. A discrete time frequency of 11/32
corresponds to a continuous time cut-off of 750 Hz (11/32) / (211) * 48000). See
Appendix for the coefficients used for the two filters. See Figure 24 and Figure 25 for
the Fourier Transform of the two filters.

29

750 Hz

H(jw)

3\ »

Figure 24: Fourier Transform of high-pass filter with a cut-off frequency of 750 Hz.
A

750 Hz

H(jw)

3\ »

Figure 25: Fourier Transform of low-pass filter with a cut-off frequency of 750 Hz.

2.17 ROM Writer (Andy)

In order to write data onto the ROM, a ROM writer had to be built. The ROM
Writer basically unlocked the flash ROM, erased the necessary blocks, and wrote the
appropriate data onto the ROM at the correct addresses. The FSM needed to build this
was derived from the Flash ROM test example provided on the 6.111 website. Instead
of writing dummy data onto the ROM and testing if it was correct, then erasing it again,
the system was modified to write data from a BRAM, and to not erase the data. The
data from the BRAMS from .coe files. These files were obtained using Matlab to extract
and scale the audio .wav files, and the Xilinx Coregen Memory Tool was used to create
the .coe files. A total of 24 BRAMS were created, each with a depth of 65536, and a
width of 8.

30

3. Testing and Debugging

3.1 Video Component (Brandon)

For the modules involving video, testing and debugging was mostly done on the
monitor. Since the display was such an important part of testing, retrieving the camera
input video was the first important task. The sample code on the 6.111 website was
used for interacting with the ZBT, with certain modifications for this project. The
provided code stored only 8 bits of information per pixel, while this implementation
required 16 bits. Determining how many bits to store per pixel required testing in itself,
involving changing the number of and proportion between stored Y, Cr, and Cb data to
view each modification's affect on display quality. The sample code initially stored only
8 bits of Y information per pixel, while this project required both Cr and Cb bits for color
detection and display. As the modules of the sample code were already organized
nicely, much of the debugging process involved changing parts of the ntsc_to_zbt and
vram_display modules to reflect the new storage scheme of 16 bits per pixel.

Modification of these two modules required thoroughly understanding the sample
code. For a couple of days, changing parts of code and rebuilding repeatedly led to no
good results. The video always had some problem with it, no matter what combination
of changes were tried. It was taking too long to figure out, and there were many other
modules to build, so it was important to move on. Yet, since video was such an
important part of debugging the other modules, using the sample code was
necessary. Extending the storage to 16 bits per pixel was a problem, but changing the
composition of the initial 8 bits in the sample code wasn't a problem. Thus, a storage
scheme of 5 bits of Y and 3 bits of Cb information per pixel was temporarily chosen for
use while testing the other video modules.

The next module to build was the color_decision module. This module was
tested by connecting it between the camera retrieval blocks and the VGA display. This
method of debugging proved to be much simpler than generating simulations in
Modelsim. The output of pixel_video was used to display white pixels when the desired
color was detected, and black otherwise on the monitor. This display allowed for testing
the use of different thresholds on the magnitude of Cb for adjusting sensitivity to the
blue content in a camera image. Using switches, the minimum Cb value was tuned to fit
the output with the best detection of bright blue lights. Having the detected areas
displayed on screen provided a lot of useful feedback for adjusting such color threshold
parameters.

Once this was working, the next module was the video_processor module,
consisting of its two submodules of color_detection and position_calcuator. Testing was
first done on the color_detection module to ensure the correct left_en and right_en
outputs would be sent to the position_calculator. In this case, the first round of tests
were done in Modelsim. After adjusting inputs, simulations were run until the correct
left_en and right_en outputs were displayed. As this module follows from the inputs of
the color_decision module, it was first added to the project with direct connections,
rather than through the enclosing video_processor module. Error correction of
comparing consecutive pixel_video bits was tested at this stage. Again, the results
were evident visually on the screen. Connecting the module to a switch allowed for
comparison between the cases with and without error correction. Through this process,

31

it was found that comparing two consecutive pixels was enough to reduce noise
considerably, while the area of the user's lights still remained large enough to be useful
in position calculations.

Next, the position_calculator was tested to output the result of an average
calculation. First, this was tried in Modelsim, but the method of working directly with the
Labkit proved to be the most effective debugging tool in the end. For one, use of the
Xilinx Pipelined Divider Core was necessary in the actual implementation, so it was
important to test with this particular module included. To test if the divider worked
correctly, an instance of it was first instantiated at the top-level conducting file in Xilinx
and connected to constant inputs. The result was displayed on the 8 LEDs of the
Labkit. Since the divided results for chosen constant inputs were known beforehand,
matching expected results with the LEDs provided evidence to the correct operation of
the divider.

For testing the correct result of the position_calculator modules as a whole,
sprites at output coordinates for the left and right hands were instantiated in the top-
level file of Xilinx to track the hand motions. Initially, the outputs produced unexpected
results. The results would only sometimes match the expected location of the weighted
average positions. It turned out to be the timing of the divide calculations which led to
this problem. The divide calculation takes a total of 28 clock cycles to complete. Code
was written to time a synchronous clear input to the divider to make sure new data
would always be received at output. However, this timing allotment was done assuming
a 65 Mhz clock was used as soon as vsync went low for output results to be ready the
next time vsync asserted high. This was a mistake in that the operation of the divider
was actually on the 27 Mhz clock, so the divide results were not calculated in enough
time for capturing the correct values.

Correcting this problem still led to puzzling results, however. The problem this
time was that the sclr input to divide was disabled by default in Xilinx. As a result, none
of the clear signals were even hooked up to the module. As the module was never
synced with the video display, this led to odd results in the cases when divide results
were misaligned in time. Fixing these problems led to correct display of each hand's
position.

Once both of these submodules of the video_processor module were completed
and tested on the top-level, they were moved into the video_processor module for better
organization.

The motion_analyzer module also consists of two submodules which were each
tested sequentially on the top-level file by viewing the monitor. To test the
beat_markers module, a square block is placed on screen at the coordinates when a
beat start was registered, as well as at the coordinates when a beat end was registered.
The placement of blocks allowed for easy adjustment of the sensitivity of the system to
beat detection. Using switches to adjust parameters described in the beat_markers
section, testing was done to find the best combination of values. No Modelsim
simulation could provide a sense of the user’s actual motion, so it was important to test
this module using the display.

The qualities_generator module was also tested using the display. Firstly, the
find_distance module was tested with constant inputs for correct operation. Displaying
the results on the LEDs allowed for debugging of the module. Next, the

32

qualities_genetator module was tested by displaying the amplitude, beat frequency, and
acceleration outputs as the width of bars displayed on the bottom half of the monitor.
Since amplitude calculations were based on the pixel distance between a beat start and
end, it was easiest to see the module working by these bars. The monitor provided
instant feedback for guaranteeing the calculation was correct. The original idea was to
use the logic analyzer for testing, but this proved unnecessary and even harder to do
since the tester cannot remember every set of motions he made to compare for correct
results on the analyzer. Rather, visually confirming correct calculations while
conducting provides the best feedback.

Once all these calculations were complete, the sprites for testing were all
grouped into the generate_visualization module for better organization. When moving
large amounts of signals to other modules, problems with forgotten or mismatched
signals arose. These issues were eventually resolved, but took time to correct and
debug.

Finally, after completing most of the video portion, the camera input and storage
portion was fixed. After careful examination of the code structure, it became much
clearer as to how to modify the code to support 16 bits per pixel of YCrCb data storage.
As this greater amount of color information became available, it was possible to
generate color video in RGB format for display on the screen. Additionally, new color
threshold tests were done using the new Cr and Cb data to find even better thresholds
for detecting the blue LEDs.

In general, it was particularly time-consuming to debug modifications to the
camera input and display modules. Much time could’ve been saved in taking the extra
time to clearly undertand the operation of the existing code. Making changes with only
half an understanding of the code led to countless compiles which could have been
avoided.

Tuning the system to be responsive enough to the user’s motions yet not too
sensitive was also a long process. The orginal design registered a beat end as soon as
the user’s motion slowed. This led to problems, however, with conducting at a slow
tempo. If the user’'s hand moved slowly, multiple beats would be registered in a row,
leading to a string of unwanted beats in a row.

To remedy this problem, the implemented FSM was used to separate a potential
stop from an actual stop. With this system, the user could move very slowly yet still
produce beat end markers within reasonable time. The many adjustable parameters in
this model were a bit overwhelming at first, but provided the freedom needed to tune the
system for our particular purpose.

3.2 Audio Component (Andy)

Testing and Debugging of the Audio section always maintained an audio input
and output so that an audio signal could be heard at all times. Before embarking on
tackling the design head-on, it was decided that small prototypes should be developed
first. It did not take long to develop a prototype for the high-pass and low-pass filters, as
well as a simple tempo-modulator which was only able to play back the audio twice as
fast or twice as slow. However, the audio data used was directly read from a BRAM, for
simplicity sake.

33

In order to build the actual system, some sort of audio needed to be loaded onto
ROM. This task had proved to be harder than expected, since there was no direct
example of audio being read from the flash ROM available on the website. However,
there were examples of data being written into the flash ROM — and this example was
modified to write data from the BRAM onto the flash ROM. In order to read from the
flash ROM, Lab 4 was modified to include part of the flash ROM testing code available
on the website.

After finally obtaining some audio output from the ROM, the ROM FSM and ZBT
FSM were implemented. This had proved to be more difficult than expected, once
again. The majority of time was spent trying to obtain some sort of output. Since the
incorrectness of a system is hard to judge without any audible output, the use of the
logic analyzer proved quite helpful. The logic analyzer helped display the data that was
read from the flash ROM, as well as the data to be written into the ZBT SRAM. Using
the logic analyzer to display the states of the two finite state machines also proved quite
helpful. At first, the data was being read from the ROM incorrectly because of the
incorrect declaration of the ROM reading commands and insufficient delay between
reads. These two problems were quickly corrected.

The next step to the completing of the audio section of the project was to add the
Beat Generator. For reasons to keep the system simple, the Beat Generator was
originally incorporated in the ROM FSM. However, to make the implementation clean,
the Beat Generator was eventually moved to its own module. The use of ModelSim
was used to determine if Beat Generator operated correctly. See Figure 26 for a
screenshot of ModelSim.

B INEEIRELY

T g e S o 3 e i 2 T e O P Y

Cursor 1 7| [
(3 [0 A[s] T]
[0 pe to 515780 ps [Mow. 1 us Defta: 2 o

Figure 26: ModelSim simulation of Beat Generator Module. This is one of many
ModelSim simulations performed.

Afterwards, the Tempo Modulator was implemented. Since the Tempo

Modulator involved a tricky FSM, it was useful to debug the module by itself in
ModelSim beforehand. ModelSim proved to be a real time-saver because instead of

34

compiling the entire project, the module was simply fed into ModelSim, shortening the
debug cycle time drastically. The use of a logic analyzer was again useful, in
determining if the system was working in actuality, not just in theory.

The completion of the Tempo Modulator was a major milestone in for the audio
section of the project. The high-pass and low-pass filters were then added to the chain
of audio processing. Checking the correctness of these filters was done by comparing
logic analyzer results with Matlab results. See Figure 27 for a Matlab screenshot of the
theoretical results of the low-pass filter and Figure 28 for the simulation for the high-
pass filter. These Matlab results closely matched actual low-pass and high-pass data,
as displayed on the logic analyzer.

% 10° Low Pass Filter Result

0.6 b

0.4r b

0.2 b

low pass result
o

-0.4¢ -

-0.8¢ b

-1 | | | I
0 50 100 150 200 250

n

Figure 27: Matlab simulation of low-pass filter on a sample of audio.

35

X 10° High Pass Filter Theoretical Result

high pass filter result

4 I I I I
0 50 100 150 200 250

n

Figure 28: Matlab simulation of high-pass filter on a sample of audio.

The next module was the Volume and Articulation Modulator. This module was
completed rather quickly mostly because it was simpler than the rest. The scaling of the
audio as a whole required major tinkering to make sure that the audio occupied the
correct bits of the output, and made use of the 8-bit resolution to the fullest. However, it
was apparent that there was a rather grave problem: the articulation modulation
performed as intended from theory, however, did not make the music sound like it had
different articulation. Instead, it just made the beginning parts of beats sound louder
than others.

This problem was derived from the fact that the melody changed notes multiple
times during one beat; the articulation modulation implemented only accounted for 1
note-change per beat. Thus, every note-change needed to be identified to solve the
problem. A large amount of research was then performed to try to correct this problem.

However, it was later discovered that real articulation modulation was quite
difficult. Many algorithms using the Fast Fourier Transform existed to identify note
changes — but those only worked for songs that had no accompaniment (only one
instrument played at once). However, the song we decided to use, Bolero, consisted of
many instruments playing at once. Therefore, a significant change in the FFT spectrum
did not necessarily translate into a change in a note in the melody. Thus, the idea of
correct articulation modulation was abandoned, and the existing articulation modulation
was put into place for completeness.

36

3.3 Overall System

When the audio section was connected, it was discovered that the scaling of
audio signal in the volume modulation was problematic: when the audio signal is
reduced to too great of an extent, the resolution deteriorates and the sound quality
becomes abysmal. To solve this problem, the Volume Modulator not only scaled the
signal — it also scaled the volume of the AC '97 interface. Therefore, to create a soft
audio playback, the audio signal was scaled down — but not to the extent that playback
quality deteriorated, and the AC '97 volume was turned down as well. This resulted in a
much larger gamut of dynamic values possible from the system.

Another problem which occurred: the playback sounded rather choppy because
particularly when there was a large difference between volume levels of neighboring
beats. At first, an averaging technique was put into place to set the current volume to
be the volume of the last 3 beats. However, the response time of volume changes
suffered, but in exchange for a smoother playback.

To also allow for faster response time and even smoother playback, another
technique was used: interpolation. One beat was divided into 32 segments. The first 16
segments consisted of a linear change between the old volume and the new volume,
while the last 16 segments maintained the new volume. The result was an amazingly
improved playback, and a more natural-sounding system.

37

4. Conclusion

The goal of the Virtual Conducting System was to emulate the experience of a
conductor directing an orchestra. A real conductor usually waves his/her hands to
adjust the tempo, the dynamics, and the feelings of the orchestra. Moreover, the
conductor can choose to adjust the balance of the orchestra (how loud each instrument
plays).

Our Virtual Conducting System achieves these objects in many ways. A gesture
given by the user, by blue LEDs in both hands is interpreted into musical qualities: the
beat period and the amplitude and acceleration of the gesture are specified by the
Video Component. The Audio Component takes these signals and reproduces audio
that is played back a different tempo, loudness, and articulation depending on what the
signals provided are. Even the smoothness of volume transitions is implemented using
the Signal Tamer module.

However, there are many ways to improve our system. First of all, the usability
of our system is susceptible to background noise and other light sources. Moreover, the
presence of the color blue may cause our system to behave undesirably. The optimum
conditions would have been operating the system in a dark room — this would be similar
to a real conductor conducting an orchestra during a performance, but we’d prefer to
conduct in normal conditions. If available, a different motion tracking medium could had
been experimented with — for example, maybe the use of a laser-tracking system could
potentially produce better results.

The audio playback also displayed some nondesirable behavior: for example, the
audio seemed particularly noisy for a digital system. This was primarily due to the way
the scaled audio was created: by removing and adding groups of samples, high
frequency noise was added to the system. We tried to eliminate this problem by simply
pointing the balance on the speakers towards the bass; however, a more robust solution
existed: using a low-pass filter. However, in order for this technique to work, we would
have unavoidably lost some high frequency audio since the high frequency noise was in
the same frequency range as some parts of the audio. A way around this could had
been to turn on the low-pass filter only when the division additions or subtractions
occurred, thus only turning on the low-pass filter when needed, and minimizing the
undesirable effect of the low-pass filter.

As discussed before, if time were available, a different approach to the
articulation modulation could have been attempted, though good results do not seem so
easy to obtain. Also, if more time were available, an easier way to load audio onto the
flash ROM could had been implemented. Early on, Andy experimented with loading
audio directly from an AC '97 input to a flash ROM, but did not obtain usable results.
Such a technique could have been researched further. Moreover, other techniques
such as uploading data through the RS232 interface, or using a USB or even Ethernet
connection interface could have been attempted. Such an accomplishment would make
the system more complete, flexible and universal.

Overall, the implementation of the Virtual Conduction System was tedious, yet
enjoyable, and an excellent experience. From the project, it was valuable to understand
how important it was to plan ahead, and have a “masterplan” before the system
implementation was underway. It was also very important to understand that

38

prototyping and experimentation is greatly necessary before creating the “masterplan.”
Working with a partner was a good way to experience real-world situations.

Moreover, the Virtual Conducting Project taught the ways to debug a very
complex system. Usually, when a component did not work, it was useful to reduce the
problem to something simpler, and to get the simpler system to work first.
Implementation of the Virtual Conducting Project required important attention to details,
without losing sight of the big picture.

In many ways, the Virtual Conducting System was a huge success: all planned
features were implemented and worked in practice. User gestures using 2 blue LEDs
due indeed result in different audio that varies in tempo, volume, balance, and
articulation. The potentials of the idea of a Virtual Conducting System are endless. For
example, more emotion can be added to the audio playback. Also, the system could
potentially detect different instruments and allow the user to control specific instruments
instead of only the bass and the treble. A supplementary display could potentially
display a “virtual orchestra” playing the song the user is conducting. No matter how
much could be added to the system, the existing features make a solid base of features
that makes it exciting to dream and aspire to create an even more innovative virtual
conducting system in the future.

39

5. Appendix

5.1 Low Pass Filter Coefficients

Segment # Coefficient Value
0 111
1 132
2 184
3 270
4 388
5 538
6 713
7 907
8 1112
9 1318
10 1514
11 1692
12 1841
13 1954
14 2024
15 2048
16 2024
17 1954
18 1841
19 1692
20 1514
21 1318
22 1112
23 907
24 713
25 538
26 388
27 270
28 184
29 132
30 111

5.2 High Pass Filter Coefficients

Segment # Coefficient Value
0 -111
1 -132
2 -184
3 -270
4 -388
5 -538
6 -713
7 -907
8 -1112
9 -1318
10 -1514
11 -1692
12 -1841
13 -1954
14 -2024
15 30720
16 -2024
17 -1954
18 -1841
19 -1692
20 -1514
21 -1318
22 -1112
23 -907
24 -713
25 -538
26 -388
27 -270
28 -184
29 -132
30 -111

5.3 Verilog Code

R NN NNy

/1

/1 Conducting System

/1

/1 Created: Decenber 10, 2006

to affect the playback of

is used

(black & white).

this frees up tine for
The NTSC decoder

so we synchronize

he NTSC data be

invol ve any cl ock

See zbt_6111.v for nore info.

/1 Author: Andy Lin and Brandon Yoshi noto

/1

I NN NN NNy
/1

/1 Virtual Conducting System Uses canera video input

/1 music. This is the top-level file which connects with the |abkit
/1 Sanple code tenplate information:

Il File: zbt _6111_ sanple.v

/1 Date: 26- Nov- 05

/1 Author: |. Chuang <ichuang@n t.edu>

/1

/] Sample code for the MT 6.111 | abkit denpnstrating use of the ZBT
/1l menories for video display. Video input fromthe NTSC digitizer is
/1 displayed within an XGA 1024x768 wi ndow. One ZBT nenory (ranD)
/1 as the video franme buffer, with 8 bits used per pixel

/1

/1 Since the ZBT is read once for every four pixels,

/] data to be stored to the ZBT during other pixel tines.

/1 runs at 27 MHz, whereas the XGA runs at 65 MHz,

/Il signals between the two (see ntsc2zbt.v) and let t

/] stored to ZBT nmenory whenever it is available, during cycles when
/1 pixel reads are not being perforned.

/1

/1 W use a very sinple ZBT interface, which does not

/'l generation or hiding of the pipelining.

/1

/1 MODI FI CATI ONS: This design includes 16 bits per pi
pi xel s instead.

“include "debounce. v"
“include "video_decoder.v"
“include "zbt_6111.v"
“include "ntsc2zbt.v"

nmodul e conducting(beep, audi o_reset_b,
ac97_sdat a_out,
ac97_bit_cl ock,

ac97_sdata_in,

vga_out _red, vga_out_green,
vga_out _bl ank_b, vga_out _pi xel _cl ock,
vga_out _vsync,

tv_out _ycrch, tv_out_reset_b,
tv_out _i2c_data, tv_out_pal _ntsc,
tv_out _vsync_b, tv_out_bl ank_b,

tv_in_ycrch, tv_in_data_valid,

tv_in_line_clock2, tv_in_aef, tv_in_hff,
tv_in_i2c_clock, tv_in_i2c_data,
tv_in_fifo_clock, tv_in_iso, tv_in_reset_b,

vga_out _bl ue,
vga_out _hsync,

tv_out _cl ock,
tv_out _hsync_b,
tv_out _subcar _reset,

xel, and the ZBT is read once for

ac97_synch,

vga_out _sync_b,

tv_out _i 2c_cl ock,

tv_in_line_cl ockl,

tv_in_aff,

tv_in_fifo_read,

tv_in_cl ock,

ranD_data, ranD_address, ranD_adv_ld, ranD_clk, ranD_cen_b,
ranD_ce_b, ranD_oe_b, ranD_we_b, ranD_bwe_b,
raml_data, raml_address, raml_adv_ld, raml_clk, ranl_cen_b,
raml_ce_b, raml_oe_b, ranl_we_b, raml_bwe_b,

cl ock_f eedback_out, cl ock_feedback_i n,

42

every two

out put
i nput

out put
out put

out put
out put

i nput
i nput

out put
i nout

i nout

out put
out put
out put

i nout

out put
out put
out put

i nput
out put

i nout
out put
out put
i nput

out put
i nput

flash_i
flash_|

rs232_
nouse_
cl ock_

di sp_bl ank, disp_data_out,

data, flash_address,
reset _b, flash_sts,

txd, rs232_rxd,

cl ock, mouse_dat a,

27mhz, clockl, clock2,

di sp_reset _b, disp_data_in,

flash_ce_b,
flash_byte_b,

keyboar d_cl ock,

rs232_rts, rs232_cts,

di sp_cl ock, disp_rs,

flash_oe_b, flash_we_b,

keyboar d_dat a,

di sp_ce_b,

button0, buttonl, button2, button3, button_enter, button_right,
_left, button_down, button_up,

button
switch
| ed,

user1l,

daught

systemace_dat a,
systemace_we_b,

anal yz
anal yz
anal yz
anal yz

beep, audi o_reset_b,

ac97_bit_cl

[7:0] vga_out_red,
vga_out _sync_b,

vga_out _hsy

tv_in_data_valid, tv_in_line_clockl,

user 2, user3, user4,

ercard,

syst emace_addr ess,
systemace_oe_b,

systemace_irgq,

erl data, analyzerl_cl ock,
er2_data, anal yzer2_cl ock,
er3_data, anal yzer3_cl ock,
er4_data, anal yzer4_cl ock);

ac97_synch,

ock, ac97_sdata_in;

vga_
vga_out _bl ank_b,

ac97_sdata_out;

out _green, vga_out_bl ue;

nc, vga_out_vsync;

tv_out _|

cl ock, tv_out_i2c_cl ock,

systemace_ce_b,

syst emace_npbrdy,

vga_out _pi xel _cl ock,

tv_out _i 2c_dat a,

ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_bl ank_b,

ar_reset;
n_ycrcb;

tv_in_aff;

[9:0] tv_out_ycrcb;
tv_out _reset_b,
tv_out _pal _|

tv_out _subc

[19: 0] twv_i
tv_in_hff,
tv_in_i2c_cl ock,

tv_in_reset

tv_in_

fifo_read, tv_in_fifo_clock,

_b, tv_in_clock;
tv_in_i2c_data;

[35:0] ranD_data;

[18: 0] ranD_address;
ranD_adv_l d, ranD_clk,
[3:0] ranD_bwe_b;

[35:0] raml_data;

[18: 0] raml_address;
raml_adv_ld, raml_clk,
[3:0] raml_bwe_b;

cl ock_f eedback_i n;
cl ock_f eedback_out ;

[15: 0] flash_data;
[23:0] flash_address;

flash_ce_b,
flash_sts;

rs232_txd,
rs232_rxd,

flash_oe_b,

rs232_rts;
rs232_cts;

ranD_cen_b,

raml_cen_b,

flash_we_b,

ranD_ce_b, ranD_|

raml_ce_b, raml_|

flash_reset_b,

43

tv_in_line_clock2, tv_in_aef,

tv_in_iso,

oe_b, ranD_we_b;

oe_b, ranl_we_b;

flash_byte_b;

/| *
*/

/*

/*

i nput nmouse_cl ock, nmouse_data, keyboard_cl ock, keyboard_dat a;
input clock_27mhz, clockl, clock2;

out put di sp_bl ank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
input disp_data_in;
out put disp_data_out;

input buttonO, buttonl, button2, button3, button_enter, button_right,
button_l eft, button_down, button_up;

input [7:0] swtch;

output [7:0] |ed;

inout [31:0] userl, user2, user3, user4;
inout [43:0] daughtercard;

inout [15:0] systemace_data;

output [6:0] systenmmce_address;

out put systenmmce_ce_b, systenace_we_b, systemace_oe_b;
input systemace_irqg, systemace_npbrdy;

out put [15:0] analyzerl data, analyzer2_data, analyzer3_data,
anal yzer 4_dat a;
out put anal yzer1_cl ock, anal yzer2_clock, analyzer3_cl ock, analyzer4_cl ock;

NN NN
/1

/1 1/0O Assignnents

/1
NN NN

/1 Audio |Input and Qutput
assign beep= 1'bO;

/] assign audio_reset_b = 1'b0;
/] assign ac97_synch = 1'b0;

/] assign ac97_sdata_out = 1'b0;

/1 ac97_sdata_in is an input

/1 Video Qutput

assign tv_out_ycrcbh = 10' hO;
assign tv_out_reset_b = 1'b0;
assign tv_out_clock = 1'b0;
assign tv_out_i2c_clock = 1'bO0;

assign tv_out_i2c_data = 1'bO;
assign tv_out_pal _ntsc = 1'b0O;
assign tv_out_hsync_b 1' b1;

assign tv_out_vsync_b = 1'bil;
assign tv_out_blank_b = 1'b1l;
assign tv_out_subcar_reset = 1'b0;

/1 Video |nput

/lassign tv_in_i2c_clock = 1'b0;

assign tv_in_fifo_read = 1'b1l;

assign tv_in_fifo_clock = 1'bO;

assign tv_in_iso = 1'bl;

/lassign tv_in_reset_b = 1'bO0;

assign tv_in_clock = clock_27nmhz;// 1" bO;

/lassign tv_in_i2c_data = 1'bZzZ;

/1 tv_in_ycrcb, tv_in_data_valid, tv_in_line_clockl, tv_in_line_clock2,
/1 tv_in_aef, tv_in_hff, and tv_in_aff are inputs

/'l SRAMs

change lines below to enabl e ZBT RAM bank0 */

assign ranD_data = 36' hz;

44

assign ranD_address = 19' hO;

assign ranD_clk = 1'bO;

assign ranD_we_b = 1'bl;

assign ranD_cen_b = 1'b0; // clock enable
*/

//assign vga_out_red = 10' hO;

/] assign vga_out_green = 10' hO;

/'l assign vga_out _blue = 10' hO;
//assign vga_out_sync_b = 1'bil;
/lassign vga_out_blank_b = 1'bil;

// assi gn vga_out _pi xel _clock = 1'bO;
Il assi gn vga_out _hsync = 1'bO0;

/'l assign vga_out_vsync = 1'bO;

/* enabl e RAM pins */

assign ranD_ce_b = 1'bO;
assign ranD_oe_b = 1'bO;
assign ranD_adv_Id = 1'b0;

assign ranD_bwe_b = 4'hoO; ’

/**********/

/* assign raml_data = 36' hz;
assign ranl_address = 19' hO;
assign ranl_adv_Id = 1'b0;
assign ranl_clk = 1'bO;
assign ranl_cen_b = 1'bl;

*/
assign ranl_ce_b
assign ranl_oe_b
assign ranl_adv_| bO;
assign ranl_bwe_b = 4'hoO;

1' bO;
1' bO;

[oRu ||

assign cl ock_feedback_out = 1'b0;
/'l clock_feedback_in is an input

/'l Flash ROM
/* assign flash_data = 16' hz;
assign flash_address = 24'hO;

assign flash_ce_b = 1'b1;
assign flash_oe_b = 1'Db1;
assign flash_we_b = 1'b1;

assign flash_reset_b = 1'b0;
assign flash_byte_b = 1'bil; */
/1 flash_sts is an input

/Il RS-232 Interface

assign rs232_txd = 1'b1;

assign rs232_rts = 1'bl;

Il rs232_rxd and rs232_cts are inputs

/Il PSI2 Ports
/'l mouse_cl ock, nmouse_data, keyboard_cl ock, and keyboard_data are inputs

/1 LED Di spl ays

assign disp_blank = 1'b1;
assign disp_clock = 1'bO0;
assign disp_rs = 1'b0;
assign disp_ce_b = 1'b1;
assign disp_reset_b = 1'b0;

45

assign disp_data_out = 1'bO;
/1 disp_data_in is an input

/] Buttons, Switches, and Individual LEDs

/11 ab3 assign led = 8 hFF;

/1 buttonO, buttonl, button2, button3, button_enter, button_right,
/1 button_left, button_down, button_up, and switches are inputs

/'l User 1/0s

assign userl = 32' hz;
assign user2 = 32' hz;
assign user3 = 32' hz;
assign user4 = 32' hz;

/| Daughtercard Connectors
assign daughtercard = 44' hz;

/'l SystemACE M croprocessor Port

assign systemace_data = 16' hz;

assign systemace_address = 7' hO;

assign systemace_ce_b = 1'bil;

assign systemace_we_b 1' b1;

assign systemace_oe_b 1' b1;

/'l systemace_irq and systenace_npbrdy are inputs

/1 Logic Analyzer
assign anal yzerl data = 16' hO;
assign analyzerl clock = 1'b1l;

assign anal yzer2_data = 16' hO;
assign anal yzer2_cl ock = cl ock_27nmhz;

assign anal yzer3_data = 16' hO;
assign anal yzer3_cl ock = 1'b1l;
assign anal yzer4_data = 16' hO;
assign anal yzer4_cl ock = 1'b1l;

/1 VI DEO CODE BEG NS:
/] Camera input storage and retrieval:

NN NN
/1 Deronstration of ZBT RAM as vi deo nenory

/Il use FPGA's digital clock manager to produce a

/1l 65MHz clock (actually 64.8Miz)

wi re clock_65nmhz_unbuf, cl ock_65nmhz;

DCM vcel k1(. CLKI N(cl ock_27mhz), . CLKFX(cl ock_65nmhz_unbuf));
/1 synthesis attribute CLKFX DI VIDE of vclkl is 10

Il synthesis attribute CLKFX_MJLTIPLY of vclkl is 24

/1 synthesis attribute CLK _FEEDBACK of vclkl is NONE

/1 synthesis attribute CLKIN_PERI OD of vclkl is 37

BUFG vcl k2(. Q(cl ock_65nmhz), .1 (cl ock_65mhz_unbuf));

wire clk = cl ock_65nmhz;

/] power-on reset generation

Wi re power_on_reset; /1 remain high for first 16 cl ocks

SRL16 reset_sr (.D(1'b0), .CLK(clk), .Q power_on_reset),
.A0(1' bl), .AL(1'bl), .A2(1'bl), .A3(1' bl));

def paramreset _sr. INIT = 16' hFFFF;

/1 ENTER button is user reset

W re reset,user_reset;

debounce dbl(power_on_reset, clk, ~button_enter, user_reset);

assign reset = user_reset | power_on_reset;

/] generate basic XVGA video signals

46

wire [10:0] hcount;

wire [9:0] vcount;

wi re hsync, vsync, bl ank;

xvga xvgal(cl k, hcount, vcount, hsync, vsync, bl ank) ;

/Il wire up to ZBT ram

wire [35:0] vramwite_data;
wire [35:0] vramread_data;
wire [18:0] vram addr;

wire Vram we;

zbt 6111 zbti1(clk, 1'bl, vramwe, vram addr,
vramwite_data, vramread_data,
raml_cl k, ranl_we_b, raml_address, ranil_data,

/'l generate pixel value fromreading ZBT nenory
wire [15:0] vr _pi xel ;
wire [18:0] vram addr 1;

vram di spl ay vdl(reset, cl k, hcount, vcount, vr_pi xel ,
vram addr 1, viram read_dat a);

/1 ADV7185 NTSC decoder interface code
/1 adv7185 initialization nodule

adv7185init adv7185(.reset(reset), .clock_27mhz(cl ock_27mhz),

raml_cen_b);

.source(1l'b0), .tv_in_reset_b(tv_in_reset_b),

.tv_in_i2c_clock(tv_in_i2c_clock),
.tv_in_i2c_data(tv_in_i2c_data));

wire [29:0] ycrch; // video data (lum nance, chrom nance)
wire [2:0] fvh; /'l sync for field, vertical, horizontal
wire dv; // data valid

nt sc_decode decode (.clk(tv_in_line_clockl), .reset(reset),
.tv_in_ycrcb(tv_in_ycrcbh[19:10]),
.ycrcb(ycrcb), .f(fvh[2]),
.v(fvh[1]), .h(fvh[0]), .data_valid(dv));

/1 code to wite NTSC data to video nenory
wire [18:0] ntsc_addr;

wire [35:0] ntsc_data;
wire ntsc_we;

ntsc_to_zbt n2z (clk, tv_in_line_clockl, fvh, dv, ycrcbh[29:0],
ntsc_addr, ntsc_data, ntsc_we, 1'b0);//switch[6]);

/1 code to wite pattern to ZBT nenory
reg [31:0] count;
al ways @ posedge cl k) count <= reset ? 0 : count + 1;

wire [18:0] vram addr2 = count[0+18:0];
wire [35:0] vpat = ((1'bl) ? {4{count[3+3:3],4' b0}}
{4{count[3+4:4],4'b0}}); /1swtch[1]

/1l mux selecting read/wite to menory based on which wite-enable is chosen

wire swntsc = 1; // ~switch[7];

wire my_we = sw_ntsc ? (hcount[0]==1'd0) : blank;

wire [18:0] wite_addr = sw.ntsc ? ntsc_addr : vram addr?2;

wire [35:0] wite_data_1 = sw ntsc ? ntsc_data : vpat;
wire wite_enable = sw.ntsc ? (ny_we & ntsc_we) : ny_we;
assign vram addr = wite_enable ? wite_addr : vram addril;
assign vramwe = wite_enabl e;

assign vram addr = ny_we ? wite_addr : vram addril;

assign vramwe = ny_we;

assign viamwite _data = wite_data_1;

/] select output pixel data

47

wire b, hs, vs;

del ayN dnl(cl k, hsync, hs); // delay by 3 cycles to sync with ZBT read
del ayN dn2(cl k, vsync, vs);
del ayN dn3(cl k, bl ank, b);

IR NN NN
/1 Video Modul es:
/1 Modul es for debouncing the button_up and button_down signals:
wi re bup, bdown;
debounce bup_nod(reset, clock_27mhz, button_up, bup);

debounce bdown_nod(reset, clock_27nmhz, button_down, bdown);

/1 MODULE (col or_decision): Decides if a pixel is of the desired color. Also outputs
canera video i mage as RGB

wi re pixel _video; /1 1 if current pixel is of the desired
col or
wire [23:0] cam.i mage; /1 Camera input image in format {R G B}

col or _deci si on col or_deci si on1(
cl k, reset, vr_pi xel , pi xel _vi deo, cam i nage, switch[7:0]);

/1 MODULE (video_processor): Takes in canera video and outputs coordi nates of hands

wire [10:0] left_x, right_x; [/ The average x positions of left and right hands
respectively

wire [9:0] left_y,right_y; /1l The average y positions of left and right hands
respectively
wire desired_col or; /1 desired_color =1 if the current pixel is

regi stered as bl ue

vi deo_processor vp(reset, clock_27mhz,
pi xel _vi deo,
hcount, vcount, vsync,
left_x, left_y,
right_x, right_y,
desired_color);

/1 MODULE (nrotion_analyzer): Takes in hand positions and anal yzes notion over tine

wire beat _start;
/1 Hi gh for one clock cycle when beat starts, |ow otherw se.
wire beat _end;
/1 High for one clock cycle when beat ends, |ow otherw se.
wire [10:0] beat _start_x, beat_end_x; /1 The
X position at the start and end of a beat respectively
wire [9:0] beat _start_y, beat_end_y;

/1 The y position at the start and end of a beat respectively
wire [10:0] anp_l eft, anp_right;
/1 The distance in pixels between a beat start and end

wire [10:0] beat _peri od;
/1 A count of how many 0.04s intervals a beat takes
wire [10:0] accel eration_l eft, acceleration_right; /'l A measure

of the cal cul ated acceleration for a beat

nmoti on_anal yzer notion_anal y1(cl ock_27mhz, reset,
left_x,left_y,

right_x,right_y,
beat _start, beat _end,
beat _start_x, beat _start _y,

beat _end_x, beat _end_y,

48

anmp_|l eft, anp_ri ght, . o
eat _peri od,

accel eration_|l eft,accel eration_right,

switch[7:6],
switch[5:4], switch[3:2], switch[1:0]);
/1 MODULE (generate_visualization): Decides what to output to the screen
/1 The output wires to the vga display:
wire [7:0] di splay_out _r, display_out_g, display_out_b;
generate_vi sual i zati on gen_vi sl(clk, cl ock_27mhz, reset, hcount, vcount,
bup, bdown, cam i mage,
left_x,

left_y, right_x, right_y,
beat _start_x, beat_start_y,
beat _end_x, beat _end_y,
anp_|l eft, anp_right,
beat _peri od,
accel eration_|l eft,accel eration_right,
desired_col or,

di splay_out _r, display_out_g, display_out_b);

/1l VGA Qutput. |In order to neet the setup and hold tines of the
/1 AD7125, we send it ~cl ock_65nmhz.

assign vga_out_red = di spl ay_out _r;

assign vga_out _green = di spl ay_out _g;

assign vga_out _blue = di spl ay_out _b;

assign vga_out_sync_b = 1'bil; /'l not used

assign vga_out _pi xel _cl ock = ~cl ock_65mhz;

assign vga_out_blank_b = ~b;

assign vga_out _hsync = hs;
assign vga_out_vsync = Vs;

FEEEETEEEEE i r i i bbb rrr g
/1 AUDI O

wire [7:0] fromac97_data, to_ac97_data;
wire ready;

/1 allow user to adjust vol une

wire vup, vdown;

reg ol d_vup, ol d_vdown;

debounce bright(reset, clock_27mhz, ~button_right, vup);

debounce bl eft(reset, clock_27mhz, ~button_left, vdown);
debounce bbeat (reset, clock_27mhz, ~buttonO, beatprelin);

11 reg beat;

11 reg beatprelinold;

11 al ways @ (posedge cl ock_27mhz) begin

11 beatprelinmold <= beatprelim

11 beat <= (beatprelim!= beatprelinold) & beatprelim
Il end

wire [6:0] anmp_left_fixed;
wire [6:0] anp_right_fixed;
wire [4:0] volune;

Il reg [4:0] vol ume;

/1 always @ (posedge clock_27mhz) begin

49

if (reset) volume <= 5'd8;
el se begin

if (vup & ~old_vup & volune != 5'd31) volune <= vol unme+l;
if (vdowmn & ~old_vdown & volunme != 5'd0) vol une <= vol ume- 1;
end

ol d_vup <= vup;
ol d_vdown <= vdown;

if (((amp_left_fixed + anp_right_fixed) >> 2) >= 5'b11111)

vol ume <= 5'b11111;
el se

volume <= (anp_left_fixed + anp_right_fixed)>>2;

end
end
/1 AC97 driver

| ab4audi o a(cl ock_27mhz, reset, volunme, fromac97_data, to_ac97_data,

audi o_reset _b, ac97_sdata_out, ac97_sdata_in,
ac97_synch, ac97_bit_cl ock);

/1 push ENTER button reset

wi re playback;

debounce benter(reset, clock_27mhz, button_enter, playback);
debounce bone(reset, clock_27mhz, ~buttonl, program;
debounce btwo(reset, clock_27nmhz, ~button2, which);

debounce bt hree(reset, clock_27mhz, ~button3, reset_netronone);

/1 light up LEDs when recordi ng, show vol unme during pl ayback.
/1 led is active |ow
assign led = playback ? ~{3' b000, volunme} : 8'hO0O;

wire we, din, dout;
wire [22:0] addr;
wire [2:0] counter;

Wi re weZBT;
wire [18:0] addrZBT;

def paramreset _sr.INIT = 16" hFFFF;

wire [1:0] fop;

wire [22:0] faddress;

wire [15:0] fwdata, frdata;

wi re fbusy;

wire [639:0] dots;

wire [7 0] beat audi o;

re [5:0] zbtState;

re [35:0] wite_data, read_data;

re continue;

re access_enabl e;

re signed [15:0] addr_nod;

re [2:0] divisionCount;

re [2:0] skip;

re [2:0] interval;

re begi nning;

re add,

wire [10:0] TenpBeat Peri od, Beat Period, NewBeat Peri od;
/lreg [15:0] offset = 5000;
//reg [15:0] nusi cbeat period = 21900;
wire [15:0] beatcount;

Wi re tenpbeatcount;

£ ££s22ss2s2s

wire nd, rdy, rfd , rdyhp, rfdhp; /1hp I p stuff
wire signed [7:0] to_filter;
wire signed [28:0] filter_out, filter_outhp;
wire signed [8:0] sum
reg signed [7:0] |ow out;
reg signed [7:0] high_out;
wire [15:0] offset;
wire [15:0] nusicheat peri od;
wire firstbeat;

50

ready,

assign beat = beat_start;
wire [1:0] acceleration_left_out, acceleration_right_out;

/I modul e test(sanpl ecount, nusicbeat);
//test nytest(beatcount, nusicheat);

// modul e Beat Generator2(reset, clock_27mhz, beginning, offset, sanplecount, access_enable,
access_reset, nusicheat, beatperiod, toggle);

Beat Gener at or 2 myBeat Gener at or (r eset | ~pl ayback, clock_27nmhz, begi nning, offset, beatcount,
sanpl e_access, access_reset, nusicbeat, nusichbeatperiod, switch[2]);

[/ modul e ROWSM cl ock_27mhz, reset, playback, ready, fromac97_data, outdata, switch, we,
din, dout, addr, counter, playbackchange, faddress, frdata, fwdata, fbusy, fop, dots, beat,
musi cbeat, continue, beginning, offset, beatperiod, access_enable, access_reset, sanplecount);
ROVFSM nyROWFSM cl ock_27mhz, ~pl ayback|reset, playback, ready, fromac97_data, beataudi o,
1, we, din, dout, addr, counter, playbackchange, faddress, frdata, fwdata, fbusy, fop, dots, beat,
musi cbeat, continue, beginning, offset, nusicbeatperiod, sanple_access, access_reset, beatcount,
firstbeat);

[/ modul e ZBTFSM reset, cl ock_27mhz, inaudi o, outaudio, beat, nusicbeat, we, wite_data,
read_data, addr, ready);

ZBTFSM nmyZBTFSM ~pl ayback]| reset, cl ock_27nmhz, beataudio, to_filter, beat, nusicbeat,
weZBT, wite_data, read_data, addrZBT, ready, zbtState, continue, access_enable, addr_nod,
Beat Period, 1, 0, nusicheatperiod, firstbeat);

/1****the Division Converter and the Division Counter nake up the Tenpo Mbdul ator
" Modul e"

/1 DivisionCounter myDivisionCounter(reset, clock_27mhz, access_enabl e, addr_nod,
switch[5:3], switch[2:0], switch[6], divisionCount);

Di vi si onCount er myDi vi si onCount er (~pl ayback| reset, clock_27nmhz, access_enabl e, addr_nod,
skip, interval, add, divisionCount);

/I modul e DivisionConverter(reset, clock_27mhz, BeatPeriod, beat, access_enabl e,
Ori gi nal Beat Peri od, skip, interval, add, NewBeatPeriod, NewOri gi nal Beat Peri od);

Di vi si onConverter nyDivisionConverter(reset, clock_27nmhz, BeatPeriod, beat,
Ori gi nal Beat Peri od, skip, interval, add, NewBeatPeriod, NewOriginal Beat Peri od, TenpBeat Peri od,
musi cbeat peri od) ;

/I modul e Beat Peri odCounter(reset, clock_27mhz, enable, beat, BeatPeriod, offset,
begi nni ng) ;

Beat Peri odCount er nyBeat Peri odCount er (~pl ayback]| reset, cl ock_27mhz, ready, beat,
Beat Peri od, begi nning);

/11p and hp filters
Ipfilter Ipf (ready, rdy, clock_27mhz, rfd, to_filter, filter_out);
hpfilter hpf (ready, rdyhp, clock_27mhz, rfdhp, to_filter, filter_outhp);

[/ modul e Si gnal Tamer (reset, clock_27mhz, volune_in, volunme_out, acceleration_in,
accel eration_out,
11 beat, sanpl e_count, nusicbeat peri od,
i nterpol ati onsw tch);

Si gnal Tamer Signal TanerLeft(reset, clock_27nmhz, anp_left,
anp_|l eft _fixed, acceleration_left, acceleration_|left_out, beat, addrZBT, nusicbeat peri od,
switch[5]);

Si gnal Tanmer Si gnal Taner Ri ght (reset, clock_27nmhz, anp_right,
anp_right _fixed, acceleration_right, acceleration_right_out, beat, addrZBT,
musi cbeat peri od, switch[5]);

11 Articul ati onVol umeModul at or nmyArti cul ati onVol uneMdul at or (cl ock_27mhz, reset, filter_out,
filter_outhp,

11 to_ac97_data, {9 b0, switch[1:0]}, {9 b0, switch[3:2]},
anmp_|l eft _fi xed,

/1

anp_right _fixed, nusicbeatperiod, rfd, rfdhp, {7 b0, switch[1]}, switch[0], addrZzZBT, switch[7],
vol une) ;

/1

51

Articul ati onVol umeModul at or nyArti cul ati onVol uneMdul at or (cl ock_27mhz, reset, filter_out,
filter_outhp,
to_ac97_data, acceleration_left_out, acceleration_right_out,
anmp_|l eft _fi xed,

anp_right _fixed, nusicbeatperiod, rfd, rfdhp, {7 b0, switch[1]}, switch[0], addrZzZBT, switch[7],
vol ume, switch[6]);

[/ modul e MetrononeProgramrer (cl ock_27mhz, reset, program select, program val ue,
musi c_beat _peri od,
11 of fset);
Met r ononePr ogr ammer MyMet r ononePr ogr ammer (¢l ock_27mhz, reset|reset_netronone, which, program
switch[7:0], musicbeatperiod,
of fset);

/1 output useful things to the |ogic analyzer connectors

/lassign anal yzer1_cl ock = cl ock_27nmhz;
/] assign anal yzerl_clock = ac97_bit_cl ock;

/] assign anal yzer1_dat a[0] audi o_reset _b;

/] assign anal yzer1_data[1] ac97_sdata_out;

/] assign anal yzer1_dat a[2] ac97_sdata_in;

/] assign anal yzer1_dat a[3] ac97_synch;
[/ assign anal yzer1_dat a[15: 8] read_data[7:0];
[/ assign anal yzer1_dat a[15: 8] addr _nod[9: 2] ;

/l assign anal yzer1_data[15: 8] = NewBeat Peri od[7: 0] ;
/lassign anal yzer1l_data[7:0] = wite_data;

//assign anal yzer1l_data[7:7] = add;

/lassign anal yzer1l_data[6] = beat;

//assign anal yzer1l_data[5:3] = interval;
/lassign anal yzer1_data[2:0] = skip;

//assign anal yzer1l_data[5: 0] = zbtState;

/1 assign anal yzer2_cl ock = cl ock_27nhz;
/lassign anal yzer2_data = {from ac97_data[7:1], ready, to_ac97_data};
/l assign anal yzer2_data = {beataudi o, addrzZBT[7:0]};
/] assign anal yzer4_data[0] = we;
/l assign anal yzer4_data[15:5] = O;
/lassign anal yzer4_data[3:1] = counter;
11 assign anal yzer4_data[4] = pl aybackchange;

/1 ZBT Stuff
zbt _6111 nyzbt(cl ock_27mhz, 1'bl, weZBT, addrZBT, wite_data, read_data, ranD_clKk,
ranD_we_b, ranD_address, ranD_data, ranD_cen_b);

/1 ROM St uf f
flash_int flashintl (reset, clock_27mhz, fop, faddress, fwdata, frdata,
fbusy, flash_data, flash_address, flash_ce_b,
flash_oe_b, flash_we_b, flash_reset_b, 1'bil,
flash_byte_b);

endnodul e

N NN NNy
/'l xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

52

modul e xvga(vcl ock, hcount, vcount, hsync, vsync, bl ank) ;

i nput vcl ock;
out put [10:0] hcount;
output [9:0] vcount;

out put vsync;

out put hsync;

out put bl ank;

reg hsync, vsync, hbl ank, vbl ank, bl ank;

reg [10:0] hcount ; /1 pixel number on current |ine
reg [9:0] vcount; /1 1ine nunber

/1 horizontal: 1344 pixels total
/1 display 1024 pixels per line

wire hsyncon, hsyncof f, hreset, hbl ankon;
assign hbl ankon = (hcount == 1023);
assign hsyncon = (hcount == 1047);
assign hsyncoff = (hcount == 1183);
assign hreset = (hcount == 1343);

/1 vertical: 806 lines total
/1 display 768 |ines

wire vsyncon, vsyncof f, vreset, vbl ankon;
assign vbl ankon = hreset & (vcount == 767)
assign vsyncon = hreset & (vcount == 776);
assign vsyncof f = hreset & (vcount == 782)
assign vreset = hreset & (vcount == 805);

/1 sync and bl anki ng

Wi

re

next _hbl ank, next _vbl ank;

assign next_hblank = hreset ? 0 : hblankon ?
assign next_vblank = vreset ? 0 : vblankon ?
al ways @ posedge vcl ock) begin

hcount <= hreset ? 0 : hcount + 1,

hbl ank <= next _hbl ank;

hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync;

vcount <= hreset ? (vreset ? 0 : vcount +
vbl ank <= next _vbl ank;
vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync;

bl ank <= next_vbl ank |

end
endnodul e

FEEEEEEEEErrrrrrnrrrd

/1 ROM const ant s

“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi

“defi
“defi
“defi
“defi

“defi

ne
ne
ne
ne
ne
ne
ne
ne
ne

STATUS_RESET 4' ho
STATUS_READ | D 4' hl
STATUS_CLEAR_LOCKS 4' h2
STATUS_ERASI NG 4' h3
STATUS_WVRI TI NG 4' h4
STATUS_READI NG 4' h5
STATUS_SUCCESS 4' hé
STATUS_BAD MANUFACTURER 4' h7
STATUS_BAD_SI ZE 4' h8

STATUS_LCOCK_BI T_ERROR 4' h9
STATUS_ERASE_BLOCK_ERROR 4' hA
STATUS_WRI TE_ERROR 4' hB
STATUS_READ VW\RONG DATA 4'hC

NUM _BLOCKS 128
BLOCK_SI ZE 64*1024

1:
1:

1)

hbl ank;
vbl ank;

/1 active | ow
vcount ;

/1 active | ow

(next _hbl ank & ~hreset);

LAST_BLOCK_ADDRESS ((* NUM_BLOCKS- 1) ** BLOCK_SI ZE)

LAST:ADDRESS (" NUM_BLOCKS* " BLOCK_SI ZE- 1)

FLASHOP_I DLE 2' b0O

53

“define FLASHOP_READ 2'b01
“define FLASHOP_WRI TE 2' b10

NN NN NNy

// ROM FSM reads fromthe flash ROM one beat at a tinme. Beat specifies when a new user
speci fi ed

//beat has arrived. ROMFSMw || stop reading after nusicbeatperiod of sanples has been accessed
/land interacts with BeatCGenerator to deternmine this. ROMFSMalso interacts with RAM FSMto

out put

/11 beat of audio at one time. ROM FSMwill also output useful data such as beginning, firstbeat,
|l access_enabl e, access_reset.

N NNy

modul e ROMFSM cl ock_27nmhz, reset, playback, ready, fromac97_data, outdata, switch, we, din, dout,
addr, counter, playbackchange, faddress, frdata, fwdata, fbusy, fop, dots, beat,
nmusi cheat,
continue, beginning, offset, beatperiod, access_enable, access_reset, sanplecount,
firstbeat);

par anet er SEGVENTS = 16; /I number of segnents of 65536 sanples stored in
t he ROM
input [15:0] frdata; //ROM i nteraction
i nput fbusy; //ROM i nteraction

input [15:0] offset;
i nput [15:0] beatperiod;

i nput clock_27mhz; /1 27mhz system cl ock
i nput reset; /1 1 toreset to initial state
i nput pl ayback; /1 true when playback is enabled (always). if playback is
fal se, playback is reset to address 0.
i nput ready; /1 debug input
input [7:0] fromac97_dat a; /1 debug input
i nput swtch; /1 turns on and off interpolation.
Feature taken out
i nput beat;
out put signed [7:0] outdata; /1 8-bit PCMdata (6.75 MHz) to rest of system

i nput nusi cbeat;
out put begi nni ng;
out put conti nue; /1 high when the next beat should
be out putted

/| ROM St uf f
output [1:0] fop;
out put [22:0] faddress;
out put [15:0] fwdata;

out put [639:0] dots; / / debug out put
out put firstbeat; /11 ets other nodul es know
when first beat is
out put we;

out put [15:0] addr;
output [7:0] dout, din;
output [0:0] counter;
out put pl aybackchange;
out put access_enabl e, access_reset;
out put [15:0] sanpl ecount;

reg [1:0] fop;
reg [22:0] faddress = O;
reg [15:0] fwdata;
reg [639:0] dots;
reg [7:0] state = 5;
reg [3:0] status;
reg signed [7:0] outdata;
reg we,;
//reg [7:0] din, dout;
reg [15:0] addr = O;
reg counter = 0;
reg [15:0] lastaddr = O;
reg [7:0] insanple = 0;
reg signed [7:0] outsanple = O;
/'l previous sanple used for potential anti-aliasing
reg signed [7:0] oldsanmple = O;

54

reg [7:0] to_ac97_data = 0

reg | astpl

reg statewite,
reg [15: 0] sanpl ecount

ayback = 0

reg continue =1

reg read = 1

Wi re nusi cbeat 2;

Wi re begi nni ng

wire switchwitechange;
Wi re nusi cbeat

wire [7:0]

din, dout;

wi re pl aybackchange

switchwiteol d;
:O;

al ways @ (posedge cl ock_27mhz) begin
//reset the nenory address when playback first goes high

continue <= (beat? 1: nusicbeat? 0

if (~pl ayback]| begi nni ng) begin

addr <= 0

faddress <= 0

counter <=0

state <= 5;

sanpl ecount <= offset;
continue <=1

status <= " STATUS_READI NG,
16' hFF; /'l lssue "read array" command
fop <= " FLASHOP_WRI TE

fwdata <=

end

faddress + 1

end

case (state)

0

4

de

endcase

assign access_enabl e = conti nue
new sanpl e is accessed

assign
access
assign
assign

assign

access_res
counts sho
nmusi cbeat 2
begi nni ng

et = ~continue
ul d be reset

= (sanpl ecount
= (faddress ==

/I speci fies begi nni ng of

firstbeat

endnodul e

= (faddress <=

conti nue)

//continue to read from ROM after beat

sanpl ecount + 1

status <= " STATUS_READI NG

0

is declared

//delay to allow right data to be read from ROM

faddress <= (faddress >= 65536*SEGVENTS - 1)? 0

if (continue) begin
sanpl ecount <=
state <= 4;
fop <= " FLASHOP_READ;
end
el se begin
sanpl ecount <=
end
begi n
state <= state+l
end
begi n
state <= state+l
end
begi n
outdata <= frdata[7:0];
state <= 0;
end
fault:

fop <= * FLASHOP_| DLE;

& (state == 0)
& (state == 0)

== beat peri od)
0);
ROM
beat peri od - of fset+4)

//specifies first

beat

R NN NNy

/1 ZBTFSM wites to ZBT SRAM and reads from ZBT SRAM During the wite cycle

55

/1true when

/1true when

dat a

/lis streamed in from ROM FSM at 6.75 MHz. During the read cycle, data is streaned out

/lat 24 KHz. ZBT FSMinteracts with ROM FSMto read out data nusic one beat

/lat a time. ZBT FSMinteracts with Tenpo Mdul ator Mdul e, which provides addr_nod to |et

/1 ZBTFSM know how many addresses to skip or replay in order to nodul ate the tenpo.

/1 ZBTFSM al so creates "note extension" which replays sanples at the end of each beat to create
[/ continuous playback. ExtendOn and Extend2 allow 2 different nodes of note extension to be
enabl ed

//inaudio will be the input fromthe ROM FSM outaudio will be the output to Vol unme and
Articul ati on Mdul at or

N NN NNy

modul e ZBTFSM reset, cl ock_27mhz, inaudi o, outaudio, beat, nusicbeat, we, wite_data, read_data,
addr, ready, state, continue, access_enabl e, addr_npd, BeatPeriod, ExtendOn, ExtendOn2,
musi cbeat peri od, firstbeat);

nput conti nue;
nput reset, clock_27mhz;

i

i

i nput [7:0] inaudio; //from ROM FSM

input [35:0] read_data; /linteraction with ZBT SRAM

i nput beat, nusicbeat;

i nput ready;

i nput [10: 0] Beat Peri od; /] Beat period (user specified)

input firstbeat; //true when first beat is

being witten in
i nput signed [15:0] addr_nod;
i nput ExtendOn, ExtendOn2;
i nput [15:0] nusicbeat peri od;

out put access_enabl e; //true when a new address is
read out

output [5:0] state;

output [7:0] outaudio; //audi o output at 24 KHz

out put we;

out put [3;5: 0] wite_data;
out put [18:0] addr;

reg [35:0] wite_data;
reg signed [7:0] outaudio;
reg read, we;

reg [18:0] tenpoaddr = O;
reg [18: 0] mainfsnmaddr =
reg [18:0] |asttenpoaddr =
reg readcontinue= 1;
reg [5:0] state =0;
reg count = 0;
reg [7:0] tenp_data;
reg [18: 0] readAddr = O;
reg [18:0] witeAddr = O;
reg node= 1;
reg signed [7:0] oldsanmple = O;
reg firstbeatl atch; //latches first beat to use later in cycle
Wi re access_enabl e;

e
e

al ways @ (posedge cl ock_27mhz) begin
readconti nue <= (beat? 1: (~continue & readAddr >= nusicbeat period)? O:
readconti nue);
if (reset) begin
state <= 0;
writeAddr <= 0;
readAddr <= 0;
node <= 1,
ol dsampl e <= 0;
end
if (beat) begin
writeAddr <= 0;
readAddr <= 0;
state <= 0;
end
el se

case (state)
: begi n

56

//wite into RAM
if (continue) begin
we <= 1
//using 8 bit audio format for now
wite_data[7:0] <= inaudio
wite data[35:8] <=0
state <= 1;
firstbeatlatch <= firstbeat;
end
el se
state <= 5;
end
1: //delay
state <= 3;

3. state <= state+l
4: begin
if (~continue) begin
state <= state + 1;
end

el se begin
writeAddr <= writeAddr + 1
state <= 0;

end

end
5: begin

/I pl ayback

we <= 0

if (ready) begin /lonly play back at each

ready cycle from AC97
if (count == 0) begi n /lonly increment when

count == 0 for 24 KHz
if (readAddr + 1+ addr_nod <= 0)
readAddr <= 0
el se
if (readcontinue) /lonly
increment when on read node
readAddr <= (readAddr >=
musi cbeat period - firstbeatlatch * 5000)? - firstbeatlatch * 5000: readAddr + 1+ addr_nod;
else if (~continue) begin
/I note extension option 1.
Pl ays | ast few thousand sanples forward and backward
//firstbeatlatch deals with when
are at the first beat - exceptions
if (ExtendOn) begi n
if (readAddr >=
musi cbeat peri od-500 - firstbeatlatch * 5000) begin

node <= 0;
readAddr <=
musi cbeat peri od-501 - firstbeatlatch * 5000
end
else if (readAddr <=
musi cbeat period - 3000 - firstbeatlatch * 5000) begi n
node <= 1
readAddr <=

musi cbeat peri 0od-2999 - firstbeatlatch * 5000
end
el se begin
readAddr <= npde?
readAddr + 1: readAddr - 1
node <= node
end
end
/I note extension option 2
else if (ExtendOn2)
readAddr <= (readAddr >=
musi cbeat peri od - 500)? nusi cbeat peri od-3000: readAddr + 1;
el se
readAddr <= readAddr
end

57

ol dsanpl e <= tenp_dat a;
tenp_data <= read_data[7:0];
end
out audi o <= tenp_dat a;
count <= count +1,;

end
end
endcase
end
assign access_enable = ready & (count==0) & readconti nue; I/ specifies when a

new address in RAMis addressed
assign addr = continue? witeAddr: readAddr;
//toggl es between witing and readi ng

endnodul e

NN NN
/1 generate display pixels fromreading the ZBT ram
/'l note that the ZBT ram has 2 cycles of read (and wite) |atency

/1 We take care of that by latching the data at an appropriate tine.

/1 Note that the ZBT stores 36 bits per word; we use only 32 bits here,
/1 decoded into four bytes of pixel data.

/1 *NModifications for handling storage of two 16-bit pieces of data per pixel

modul e vram di spl ay(reset, cl k, hcount, vcount, vr_pi xel ,
vram addr, vram r ead_dat a) ;

i nput reset, clk;

i nput [10: 0] hcount;

input [9:0] vcount ;
out put [15:0] vr_pixel;

out put [18:0] vram addr;
input [35:0] vramread_data;

wire [18:0] vram addr = {vcount, ~hcount[9:1]};

wire hc2 = ~hcount[0];
reg [15:0] vr_pi xel ;

reg [35:0] vr _dat a_| at ched;

reg [35:0] | ast _vr_dat a;

al ways @ posedge cl k)
last _vr_data <= (hc2==1'dl) ? vr_data_latched : last_vr_data;

al ways @ posedge cl k)
vr_data_l atched <= (hc2==1'd0) ? vramread_data : vr_data_l atched;

al ways @*) /1 each 36-bit word fromRAMis decoded to 4 bytes
case (hc2)
1'd1: vr_pixel
1' d0: vr_pi xel
endcase

| ast _vr_data[15: 0] ;
| ast _vr_dat a[15+16: 0+16] ;

endnodul e // vramdi spl ay
N NN NN

/] paraneterized delay line

modul e del ayN(cl k, i n, out);

i nput clk;
input in;
out put out;

par amet er NDELAY = 3;

58

reg [NDELAY-1:0] shiftreg;
wire out = shiftreg[NDELAY-1];

al ways @ posedge cl k)
shiftreg <= {shiftreg[NDELAY-2:0],in};

endnodul e // del ayN

THLLLLELELE bbb rrrirrrr
/1

/1 bi-directional nmonaural interface to AC97

/1

THLTELELELE bbb ririiirrrirrrr

nmodul e | ab4audi o (cl ock_27mhz, reset, vol une,
audi o_i n_data, audi o_out_data, ready,
audi o_reset _b, ac97_sdata_out, ac97_sdata_in,
ac97_synch, ac97_bit_cl ock);

i nput clock_27mhz;

i nput reset;

i nput [4:0] vol ume;

output [7:0] audio_in_data;
input [7:0] audi o_out_data;
out put ready;

/1 ac97 interface signals
out put audi o_reset _b;

out put ac97_sdata_out;

i nput ac97_sdata_in;

out put ac97_synch;

i nput ac97_bit_cl ock;

wire [2:0] source;
assign source = 0; /lmc

wire [7:0] conmand_address;

wire [15:0] conmand_dat a;

wi re command_val i d;

wire [19:0] left_in_data, right_in_data;
wire [19:0] left_out_data, right_out_data;

reg audi o_reset_b;
reg [9:0] reset_count;

//wait a little before enabling the AC97 codec
al ways @ posedge cl ock_27mhz) begin
if (reset) begin
audi o_reset _b = 1'b0;
reset _count = O;

end else if (reset_count == 1023)
audi o_reset _b = 1'bil;
el se

reset_count = reset_count +1;
end

wire ac97_ready;

ac97 ac97(ac97_ready, command_address, command_data, command_valid,
left_out_data, 1'bl, right_out_data, 1'bl, left_in_data,
right_in_data, ac97_sdata_out, ac97_sdata_in, ac97_synch,
ac97_bit_cl ock);

/'l ready: one cycle pulse synchronous with cl ock_27nmhz
reg [2:0] ready_sync;
al ways @ (posedge cl ock_27mhz) begin
ready_sync <= {ready_sync[1:0], ac97_ready};
end
assign ready = ready_sync[1] & ~ready_sync[2];

59

reg

[7:0] out_data;

al ways @ (posedge cl ock_27mhz)
if (ready) out_data <= audi o_out_dat a;

ass
ass
ass

ign audio_in_data
ign left_out_data

left_in_data[19:12];
{out _data,

12' b00O0000000000} ;

ign right_out_data = left_out_data;

/] generate repeating sequence of
ac97comrands cnds(cl ock_27mhz,
conmand_val i d,

endnod

ul e

read/ wites to AC97 registers

ready, command_address, command_dat a,

/1 assenbl e/ di sassenbl e AC97 seri al

nodul e

out

ac97 (ready,
conmand_addr ess

left_data, left_valid,
right_data, right_valid,
left_in_data, right_in_data,

ac97_sdata_in, ac97_synch, ac97_bit_cl ock);

ac97_sdat a_out,

put ready;

input [7:0] comrand_address;
i nput [15:0] command_dat a;

inp
inp
inp
out
inp
inp
out
out

reg

reg
reg

reg
reg
reg
reg
reg
reg

i ni

end

ut commmand_val i d;

vol ume, source);

franes

command_dat a, conmand_valid,

ut [19:0] left_data, right_data;
ut left_valid, right_valid;
right _i n_dat a;

put [19:0] left_in_dat
ut ac97_sdata_in;
ut ac97_bit _cl ock;
put ac97_sdata_out;
put ac97_synch;

ready;

ac97_sdata_out;
ac97_synch;

[7:0] bit_count;

[19: 0] | _cnd_addr;
[19: 0] | _cnd_data;

a,

[19:0] I _left_data, |_right_data;
I _cmd_v, | _left_v, | _right_v;
right _i n_dat a;

[19: 0] left_in_data,

tial begin
ready <= 1'bO0;
/1 synthesis attribute

ac97_sdata_out <= 1'bO;

/1 synthesis attribute
ac97_synch <= 1'bO0;
/1 synthesis attribute

bit _count <= 8' h0O;

/'l synthesis attribute
| _cmd_v <= 1'Db0;

/'l synthesis attribute
I _left_v <= 1'b0;

/'l synthesis attribute
| _right_v <= 1'b0;

nit

nit

nit

nit

nit

nit

/1 synthesis attribute init

left_in_data <= 20' h0000O;

/1 synthesis attribute init
right_in_data <= 20' h00000;
/1 synthesis attribute init

of

of

of

of

of

of

of

of

of

ready is "0";
ac97_sdata_out is "0";

ac97_synch is "0";

bit_count is "0000";
| _cnmd_v is "0";
I _left_vis "0";

| _right_v is "0";

left_in_data is "00000";

right_in_data is "00000";

al ways @ posedge ac97_bit_cl ock) begin

60

/'l Generate the sync signal

if (bit_count == 255)
ac97_synch <= 1'bl;
if (bit_count == 15)

ac97_synch <= 1'bO0;

/] Generate the ready signal

if (bit_count == 128)
ready <= 1'bl;
if (bit_count == 2)

ready <= 1'bO0;

/1 Latch user data at the end of each frane. This ensures that the

/1 first frame after reset will be enpty.
if (bit_count == 255)
begi n

| _cnd_addr <= {conmmmand_address, 12'h000};
| _cnd_data <= {conmand_data, 4'hO0};
| _cmd_v <= command_vali d;

| _left_data <= left_data;

I _left_v <= left_valid;

| _right_data <= right_data;

| _right_v <= right_valid;

end

if ((bit_count >= 0) && (bit_count <= 15))

/1 Slot 0: Tags

case (bit_count[3:0])
4' h0: ac97_sdata_out <= 1'bil; /! Frane valid
4' hl: ac97_sdata_out <= |_cnd_v; /1 Command address valid
4' h2: ac97_sdata_out <= 1_cnd_v; /1 Command data valid
4' h3: ac97_sdata_out <= 1_left_v; [/ Left data valid
4' h4: ac97_sdata_out <=1 _right_v; // R ght data valid
default: ac97_sdata_out <= 1'bO

endcase

else if ((bit_count >= 16) && (bit_count <= 35))
/1 Slot 1: Conmand address (8-bits, left justified)
ac97_sdata_out <=1 _cnd_v ? | _cnd_addr[35-bit_count] : 1'bO;

else if ((bit_count >= 36) && (bit_count <= 55))
/1 Slot 2: Conmand data (16-bits, left justified)
ac97_sdata_out <=1 _cnd_v ? | _cnd_data[55-bit_count] : 1'bO;

else if ((bit_count >= 56) && (bit_count <= 75))

begi n

/1 Slot 3: Left channel

ac97_sdata_out <=1 _left_v ? | _left_data[19] : 1'b0;

| _left_data <= { | _left_data[18:0], |_left_data[19] };
end

else if ((bit_count >= 76) && (bit_count <= 95))
/1 Slot 4: Ri ght channel
ac97_sdata_out <=1 _right_v ? | _right_data[95-bit_count] : 1'DbO;
el se
ac97_sdata_out <= 1'bO;

bit _count <= bit_count+1;
end // always @ (posedge ac97_bit _cl ock)

al ways @ negedge ac97_bit_cl ock) begin
if ((bit_count >= 57) && (bit_count <= 76))
/1 Slot 3: Left channel
left_in_data <= { left_in_data[18:0], ac97_sdata_in };
else if ((bit_count >= 77) && (bit_count <= 96))
/1l Slot 4: Ri ght channel
right _in_data <= { right_in_data[18:0], ac97_sdata_in };
end

endnodul e

61

/] issue initialization commands to AC97
modul e ac97commands (cl ock, ready, command_address, command_dat a,
comand_val i d, vol ume, source);

i nput cl ock;

i nput ready;

output [7:0] conmand_address;
out put [15:0] conmand_dat a;
out put conmmand_val i d;

i nput [4:0] vol une;

input [2:0] source;

reg [23:0] command;
reg command_valid;

reg [3:0] state;

initial begin
command <= 4' hO;
/1 synthesis attribute init of command is "0";
command_val id <= 1' b0;
/1 synthesis attribute init of conmand_valid is "0";
state <= 16' h000O;
/! synthesis attribute init of state is "0000";

end

assi gn conmand_address = command[23: 16] ;
assign conmand_data = command[15: 0] ;

wire [4:0] vol;
assign vol = 31-volume; // convert to attenuation

al ways @ posedge cl ock) begin
if (ready) state <= state+1;

case (state)
4'h0: // Read ID
begi n
conmmand <= 24' h80_0000;
command_val id <= 1'bil;
end
4'hl: // Read ID
conmmand <= 24' h80_0000;
4' h3: // headphone vol une
command <= { 8'h04, 3'b000, vol, 3'b000, vol };
4'h5: // PCM vol unme
conmmand <= 24' h18_0808;
4'h6: // Record source select
conmand <= { 8'hlA, 5'b00000, source, 5' b00000, source};
4' h7: // Record gain = max
command <= 24' h1C _OFOF;
4'h9: // set +20db mic gain
conmmand <= 24' hOE_8048;
4' hA: // Set beep vol une
command <= 24' hOA_0000;
4' hB: // PCM out bypass m x1
command <= 24' h20_8000;
defaul t:
conmmand <= 24' h80_0000;
endcase // case(state)
end // always @ (posedge cl ock)
endnmodul e // ac97commands

FEEEEEEEEEEE b r b i r i i nrrd

/1
/] anal yzer_bar: generate rectangle on screen with adjustable w dth
/1 X, y deternmine the upper left hand corner of block

62

/1
NN NN
nmodul e anal yzer _bar (x, y, wi dt h, hcount, vcount, pi xel);

paraneter HEl GHT = 30; /] default height: 30 pixels

paraneter COLOR_R = 8' dO;
paraneter COLOR_G = 8' d255;
paraneter COLOR_B = 8' dO;

input [10:0] x, hcount,width; // Variable width in this sprite
input [9:0] vy, vcount;
out put [23:0] pixel;

reg [23:0] pixel;
al ways @ (x or y or hcount or vcount or wi dth) begin
if ((hcount >= x && hcount < (x+wi dth)) &&
(vcount >=y && vcount < (y+HEIGHT)))
pi xel = {COLOR_R, COLOR_G COLOR_B};
el se pixel = 0;
end
endnodul e

FEEEEEEEEEE b r i i r i i nrrd

/1

/1 beat _markers: Takes in coordinates of right hand and deci des when

/1 a beat starts and ends. CQutputs beat_start and
beat _end

/1 are each high for one clock cycle when there's the
start or end

I of a beat detected.

/1

FEEEEEEPEEEE b r i i b nrrd

modul e beat _markers(clk,reset,right_x,right_y,
beat _start, beat_end,tinme_scale, tol, tol_end,
tol _start);

input clk,reset;
input [10:0] right_x;
input [9:0] right_y;

input [1:0] ti me_scal e;
input [1: 0] tol, tol_end, tol _start;

out put beat_start, beat _end;

/1 Define bound paraneters for detecting the potential end of a beat:
paramet er TOLERANCE_X = 2;
parameter TOLERANCE_Y = 2,

/1 Define bound paraneters for detecting the actual end of a beat:
paramet er TOLERANCE_END_X = 5;
paramet er TOLERANCE_END_Y = 5;

/1 Definte bound paraneters for detecting the start of another beat:
par amet er TOLERANCE_START_X = 25;
par amet er TOLERANCE_START_Y = 25;

par amet er STATI ONARY_TI ME = 7*(1048575/ 8) ;

/1 TESTI NG

/1 Define bound paraneters for detecting the potential end of a beat:
//wire [9:0] TOLERANCE X = tol; //5*tol; //10'd10;
//wire [9:0] TOLERANCE.Y = tol; //5*tol;//9" dl10;

/1 Define bound paraneters for detecting the actual end of a beat:
//wire [9:0] TOLERANCE END X = 5*tol _end; //5*tol _end;// 10" d15;
//wire [9:0] TOLERANCE END Y = 5*tol _end; //5*tol _end;//9" d15;

/1 Definte bound paraneters for detecting the start of another beat:
//wire [9:0] TOLERANCE_START_X = 5*tol _start; //10*tol _start;//10' d25;
//wire [9:0] TOLERANCE_START_Y = 5*tol _start; //10*tol _start;//9' d25;

63

/] Stores previous sanpl es of coordinates:
reg [10: 0] x_preyv;
reg [9:0] y_preyv;

/] Stores potential stop coordinates:
reg [10: 0] tenp_x;
reg [9:0] tenp_y;

reg [21:0] count_stationary; /1 Count how nmany cl k cycles the hand nmust renmin
stationary to register as a beat end

reg [1:0] state = O; /] State of FSM
reg beat_start, beat_end; /1 Holds value for outputs of beat start and end

/1 Define bounds for detecting a potential stop notion:
re [10: 0] upper_x X_prev + TOLERANCE_X;
re [10: 0] | ower_x X_prev - TOLERANCE_X;
re [9:0] upper_y y_prev + TOLERANCE_Y;
re [9:0] Ilower_y y_prev - TOLERANCE_Y;

£ 2=

/1 Define bounds for detecting the end of a beat:
re [10: 0] upper_stop_x tenp_x + TOLERANCE_END_ X;
re [10: 0] |ower_stop_x tenp_x - TOLERANCE_END X;
re [9:0] upper_stop_y tenp_y + TOLERANCE_END Y;
re [9:0] ||ower_stop_y tenp_y - TOLERANCE_ENDY;

£s2z=

/1 Define bounds for detecting the start of a beat:
re [10: 0] upper_start_x tenmp_x + TOLERANCE_START_X;
re [10:0] lower_start_x tenmp_x - TOLERANCE_START_X;
re [9:0] upper_start_y tenp_y + TOLERANCE_START_Y;
re [9:0] lower_start_y tenp_y - TOLERANCE_START_Y;

£ ££zs

/1 Detect potential stop: Check if the current coordinates are within certain bounds of
the previous coordi nates
wire within_bounds = (right_x > lower_x) && (right_x < upper_x) && (right_y > lower_y) &&
(right_y < upper_y);

/] Detect actual stop: Check if current coordinates are within certain bounds of the
coordi nates of the potential stop
wire stationary_test = (right_x > lower_stop_x) && (right_x < upper_stop_x) && (right_y >
| ower _stop_y) && (right_y < upper_stop_y);

/] Detect start: Check if current coordinates are within certain bounds of the
coordi nates at the beat end
wire start_test = (right_x > lower_start_x) && (right_x < upper_start_x) && (right_y >
|l ower _start_y) && (right_y < upper_start_y);

al ways @ (posedge cl k) begin
if (reset) begin

X_prev <= 0;

y_prev <= 0;
tenp_x <= 0;
tenp_y <= 0;
count _stationary <= 0;

state <= 0;

beat _start <= 0;

beat _end <= 0;

end
el se begin
/] Store coordinates like a small nenory
X_prev <= right_x;
y_prev <= right_y;
if (state == 0) begin // State 00: Beat started, wait for stop
beat _start <= 0;

64

if (within_bounds) begin /1 Potential stop detected
state <= 1,
temp_x <= right_x;
temp_y <= right_y;

end
end
else if (state == 1) begin // State 01l: Stop detected, test for real stop
if (stationary_test) begin /1 Still potentially stopped, increase the tine
count
count _stationary <= count_stationary + 1;
end
el se begin /1 Wasn't stopped for |ong enough, return to
state 00
state <= 0,
count _stationary <= O;
end
if (count_stationary == STATI ONARY_TI ME) begin /1l Only if stopped for a long

time, register as beat end
state <= 2,
beat _end <= 1;
count _stationary <= 0;
/1 Update with the beat end coordinates
temp_x <= right_x;
tenmp_y <= right_y;

end
end
else if (state == 2) begin // State 10: Beat ended, wait for novenent.
beat _end <= 0;
if (~start_test) begin// |If movenment in the hand begins again, return to state 00
state <= 0,
beat _start <= 1; /] Start beat
end
end
el se begin /1 For unused state 11
state <= 0;
end
end
end
endnodul e

NN NN
/1

/'l centered_bl ock: generate rectangle on screen centered at x, y
/1
NN
nmodul e cent ered_bl ock(x, y, hcount, vcount, pi xel);

paraneter W DTH = 30; /1 default width: 30 pixels
paraneter HEl GHT = 30; /] default height: 30 pixels
paraneter COLOR_R = 8' dO;

paraneter COLOR_G = 8' d255;

paraneter COLOR_B = 8' dO;

input [10:0] x, hcount;
input [9:0] vy, vcount;
out put [23:0] pixel;

reg [23:0] pixel;
al ways @ (x or y or hcount or vcount) begin
if ((hcount >= (x-(WDTH 2)) && hcount < (x+(WDTH 2))) &&
(vcount >= (y-(HEI GHT/2)) && vcount < (y+(HEI GHT/2))))
pi xel = {COLOR_R, COLOR_G COLOR_B};
el se pixel = 0;
end
endnodul e

FEEEEEEEEEE b r b r i i rrrd

65

/1
/'l col or_decision: Takes in camera fromvideo and outputs a signal

/1 (pi xel _vi deo) whi ch goes hi gh when the desired bl ue
col or

/1 is detected. Also outputs RGB video to be used in
di spl ayi ng

I/ the canera video on screen.

/1

FEEEEEEPEE b r i r i b nrrd

modul e col or _deci sion(clk, reset, vr_pi xel , pi xel _vi deo, cam i mage, swi tch);

i nput clk, reset;
i nput [15: 0] vr_pixel;
i nput [7:0] switch;
out put pi xel _vi deo;

output [23:0] cam.image;
/1 Define mninmmcb (blue chrom nance) and mexi mum cr:

wire [4:0] color_cb_nmin = 5'b10010;
wire [4:0] col or _cr_nax = 5'b10000;

/1 Y and Cb from canera input:

wire [5:0] Y = vr_pi xel [15:10];
wire [4:0] Cr = vr_pixel [9:5];
wire [4:0] Ch = vr_pixel[4:0];

/1 Modul e (YCrCb2RGB): Convert from YCrCb col or space to the RGB col or space:

wire [7:0] R cam G cam B _cam /1 Qutputs for color converter nodule

YCr Cb2RGB col or _convert(R_cam G.cam B_cam clk, reset, {Y, 4'b0000}, {Cr, 5 b00000},
{Cb, 5'b00000});

/'l Detect the desired blue color:
wire col or _found = (Cb >= color_cb_nmin) & (Cr <= col or_cr_max);

/1 Initial processing of canera input data at 65mhz. pixel_video = 1 if blue detected
reg pixel _video;

/lreg [7:0] R camreg, G camreg, B camreg;
reg [7:0] tenp_R1, tenp_Gl, tenp_B1;
reg [7:0] tenmp_R2, tenp_Q&2, tenp_B2;

/1 Dimthe display a little by dividing RG val ues:
wire [7:0] scaled_R cam = (R_cam 2);
wire [7:0] scaled_Gcam= (G cam 2);
wire [7:0] scaled_B cam= (B_cam 2);

/1 Used for display of the canera video input as RGB data:
assign cam.imge = {scal ed_R cam scal ed_G cam scal ed_B cant};

al ways @ posedge cl k) begin
pi xel _video <= (color_found) ? 1'bl : 1'bO;
end

endnodul e

FEEEEEEEEE b i r i r i i nrrd

/1

/'l color_detection: Uses information fromthe canera to detect if the

/1 desired color is in the left or right hand
pl ane.

/1

FEEEEEEEEEEE b r i r i b nrrd

modul e col or _det ecti on(reset, cl k, pi xel _vi deo, hcount, vcount,
left_en, right_en,desired_color);

66

i nput reset, clk;

i nput pi xel _vi deo; /] Camera input. Highif initially
detected as the desired color.
i nput [10: 0] hcount;
i nput [9:0] vcount ;
out put left_en; /1 Highif desired color
detected and pixel is in left hand pl ane
out put right_en; /1 Highif desired color detected and
pixel is in right hand pl ane
out put desired_col or; /1 Highif registered as the

desired col or

/1 Define borders of the video area on screen:

par amet er RI GHT_BORDER = 867;
par amet er LEFT_BORDER = 157;
par anet er TOP_BORDER = 27;

par amet er BOTTOM BORDER = 505;
par anet er CENTER_X = (LEFT_BORDER + RI GHT_BORDER)/ 2; /1 Find the middle of
t he wi ndow

/] Decide if detected pixel is in left half of the screen
wire left_side = (LEFT_BORDER < hcount) && (hcount < CENTER X) && (TOP_BORDER < vcount) &&
(vcount < BOTTOM BORDER) ;

/1 Decide if detected pixel is in right half of the screen
wire right_side = (CENTER_X < hcount) && (hcount < RI GHT_BORDER) && (TOP_BORDER < vcount) &&
(vcount < BOTTOM BORDER) ;

/'l Used for storing old pixel values
reg pix1, pix2;

/1 Error reduction: desired_color only asserts high if three pixels in a row are bl ue:
wire desired_color_tenp = pixl && pix2;

/1 Divide into left and right halves of the screen
assign left_en = left_side && desired_col or_tenp;
assign right_en = right_side & desired_col or_tenp;

assign desired_col or = desired_col or_tenp;
/1 Shift registers to conpare consecutive pixel sanples:

al ways @ posedge cl k) begin
if (reset) begin

pi x1 <= 0;
pi x2 <= 0;

end

el se begin
pi x1 <= pix2;
pi x2 <= pi xel _vi deo;

end

end
endnodul e

THLLELEIEL bbb ririiirirrirrr
/1

/1 Pushbutton Debounce Modul e

/1

THLLLLELELE bbb rrriiiriririrr

modul e debounce (reset, clk, noisy, clean);
i nput reset, clk, noisy;
out put cl ean;

par amet er NDELAY = 650000;
paranmeter NBITS = 20;

reg [NBI TS-1:0] count;
reg xnew, clean;

67

al ways @ posedge cl k)
if (reset) begin xnew <= noisy; clean <= noisy; count <= 0; end
else if (noisy != xnew) begin xnew <= noisy; count <= 0; end
el se if (count == NDELAY) cl ean <= xnew;,
el se count <= count +1;

endnodul e

FEEEEEEEEE b nrrd

/1

/1 find_distance: Calculates the distance in pixels between points
I A and B

/1

FEEEEEEPEE i r i i nrrd

modul e find_di stance(clk, reset, Ax, Ay, Bx, By, di st ance);

i nput clk, reset;
i nput [10: 0] Ax, Bx;
i nput [9:0] Ay, By;
out put [10: 0] distance;
reg [10:0] di st ance;

/1 Differences along x and y axes:
wire [10:0] diff_x = (Ax > Bx) ? (Ax - Bx) : (Bx - AX);
wire [10:0] diff_y = (Ay > By) ? (Ay - By) : (By - Ay);

/1 Cal cul ate sum of squared differences:
wire [19:0] sumof_squares = diff_x*diff_x + diff_y*diff_y;

/Il Wres for square_root nodul e:

wire ce = 1; /1 input: ce = 1 nmeans nodule is
enabl ed

wire aclr = reset; /1 input: aclr will reset the square
root nodul e

wire [10:0] distance_tenp; /1 output: result of square root calcul ation

wire rdy; /1 output: rdy = 1 means new data

is available fromsqgrt

/1 MODULE: Finds the square root of an input
square_root sqrt1l(sumof_squares,clk, ce, aclr, di stance_tenp, rdy);

al ways @ posedge cl k) begin
if (reset) begin
di stance <= 0;

end
else if (rdy) begin /1 Only update the distance cal cul ati on when square root
finishes
di stance <= di stance_tenp;
end
end
endnodul e

FEEEEEEEEE b r i i r b nrrd

/1
/'l generate_visualization: Decides what R G B signals to send for final
/1 di splay on the nonitor
/1
NN NN
nmodul e generate_visualization(cl k, cl ock_27nmhz, reset, hcount, vcount,
button_up,
but t on_down,
cam i mage,

68

left_x, left_y,
right_x, right_y, .
eat _start_x,
beat _start _y,

beat _end_x, beat _end_y,
anp_l eft,
anmp_right,
beat _peri od,

accel eration_|l eft,accel eration_right,
desired_col or,
di spl ay_out _r,
di spl ay_out _g, display_out_b);

i nput clk, clock_27mhz, reset;
i nput [10: 0] hcount;
i nput [9:0] vcount ;
i nput button_up, button_down;
i nput [23:0] cam i mage;
i nput [10: 0] left_x, right_x;
i nput [9:0] left_y, right_y;
i nput [10: 0] beat_start_x, beat_end_x;
i nput [9:0] beat _start_y, beat_end_y;
i nput [10: 0] anp_left, anp_right, beat_period, acceleration_|left,

accel eration_right;

i nput desired_col or;
output [7:0] di splay_out _r, display_out_g, display_out_b;

reg [10: 0] noving_anp_left, noving_anp_right;

/1 Define borders of the video area on screen:

par amet er RI GHT_BORDER = 867;
par amet er LEFT_BORDER = 157;
par amet er TOP_BORDER = 27;

par amet er BOTTOM BORDER = 505;
par anet er CENTER_X = (LEFT_BORDER + RI GHT_BORDER)/ 2; /1 Find the middle of
t he wi ndow

paraneter BORDER W DTH = 10; // The width of the border separating canera from anal yzer
visual i zation

/1 High at pixels along the center line of the video:
wire mddle = (hcount == CENTER_ X);

/1 Hi gh at pixels outside the video frane:
wire outside_frame = (hcount < LEFT_BORDER) || (hcount > RI GHT_BORDER) || (vcount < TOP_BORDER)
|| (vcount > BOTTOM BORDER);

wi re border = ((hcount == LEFT_BORDER) || (hcount == RI GHT_BORDER) || (vcount == TOP_BORDER)
|| (vcount == BOTTOM BORDER));
/1 High at pixels on the border and center of the video:
wire thin_border = (~outside_frane) && (border || mddle);

/1 Signals for the background:

/1 Display border around video section:
wi re border_display = (vcount <= (BOTTOM BORDER + BORDER W DTH)) && outside_frane;

/1 Display bottom bar:
wire bottombar = (vcount > (BOTTOM BORDER + BORDER W DTH)) && (vcount <= (BOTTOM BORDER
+ 2*BORDER_W DTH)) ;

/'l Registers for holding values used in display:

69

reg [23:0] pi xel ; /1 The actual video displayed on

the screen

reg [23:0] bor der _pi xel ; /'l The border of the top video section
reg [23:0] bot t om bar _pi xel ; /1 The bar between the video section and the

nmotion anal yzer visualization

/] Determines the current state of the video display:
reg menu_state = O;

/'l Generate Sprites:

wire [23:0] left_hand_pixel, right_hand_pixel; Il {R,GB} for display of blocks

following left and right hands

wire [23:0] beat_start_pixel, beat_end_pixel; /Il {R,GB} for display of blocks at

start and end of a beat

/1 Block followi ng | eft hand:
centered_bl ock left_hand(left_x,left_y, hcount, vcount, | eft_hand_pi xel);

def param | ef t _hand. W DTH = 20;
def param | ef t _hand. HEI GHT = 20;
def param | ef t _hand. COLOR R = 8'do;

def param | ef t _hand. COLOR G = 8'd255

def param | ef t _hand. COLOR B = 8'do;

/1 Block follow ng right hand:
centered_bl ock right_hand(right_x,right_y, hcount, vcount, ri ght_hand_pi xel);
def param ri ght _hand. W DTH = 20;

def param ri ght _hand. HElI GHT = 20;

def param ri ght _hand. COLOR_R = 8' d255;
def param ri ght _hand. COLOR_G = 8'dO;
def param ri ght _hand. COLOR_B = 8' dO;

/1 Block to display at the start of a beat:
centered_bl ock beat_start_bl ock(beat_start_x, beat_start_y, hcount, vcount, beat _start_pi xel);
def param beat _start_bl ock. W DTH = 10;

def param beat _start _bl ock. HEIl GHT = 10;

def param beat _start_bl ock. COLOR_R = 8'do;
def param beat _start_bl ock. COLOR_G = 8' d255;
def param beat _start_bl ock. COLOR_B = 8'do;

/1 Block to display at the end of a beat:
cent ered_bl ock beat_end_bl ock(beat _end_x, beat _end_y, hcount, vcount, beat _end_pi xel);

def param beat _end_bl ock. W DTH = 10;

def param beat _end_bl ock. HEl GHT = 10;

def param beat _end_bl ock. COLOR R = 8' d255;
def param beat _end_bl ock. COLOR_G = 8'do;
def param beat _end_bl ock. COLOR B = 8'do;

/1 Display nmotion analyzer results:
wire [23:0] anp_left_bar;

wire [10:0] anp_left_x = 11'dO;

wire [9:0] anp_l eft _y = 10' d550;

anal yzer _bar anp_| eft_bl ock(anp_l eft _x, anp_l eft _y, anp_Il eft, hcount, vcount, anp_l eft _bar);

def param anp_| ef t _bl ock. HEl GHT = 20;

def param anp_| eft _bl ock. COLOR_R = 8'do;
def param anp_| eft _bl ock. COLOR_G = 8' d255;
def param anp_| ef t _bl ock. COLOR_B = 8'do;
wire [23:0] anp_right_bar;

wire [10:0] anp_right_x = 11'dO;

wire [9:0] anp_right _y = 10' d580;

anal yzer _bar

anp_right _bl ock(anp_right_x,anp_right_y, anp_right, hcount, vcount, anp_ri ght _bar);

70

def param anp_ri ght _bl ock. HEI GHT = 20;

def param anp_ri ght _bl ock. COLOR_ R = 8' d255;

def param anp_ri ght _bl ock. COLOR_G = 8' dO;

def param anp_ri ght _bl ock. COLOR B = 8' dO;

wire [23:0] beat_period_bar;

wire [10:0] beat_period_x = 11'dO;

wire [9:0] beat _period_y = 10'd610;

wire [10:0] scal ed_beat _period = 4*beat _peri od;

anal yzer _bar
beat _peri od_bl ock(beat _peri od_x, beat _peri od_y, scal ed_beat _peri od, hcount, vcount, beat _peri od_bar);

def par am beat _peri od_bl ock. HEl GHT = 20;

def par am beat _peri od_bl ock. COLOR_R = 8'do;
def param beat _peri od_bl ock. COLOR_G = 8'do;
def par am beat _peri od_bl ock. COLOR_B = 8' d255;
wire [23:0] acceleration_left_bar;

wire [10:0] acceleration_left_x = 11'dO;

wire [9:0] accel eration_left_y = 10' d640;

anal yzer _bar
accel eration_l eft_bl ock(accel eration_|l eft_x, acceleration_|left_y, acceleration_left, hcount, vcount, a
cceleration_left_bar);

def param accel eration_I| eft_bl ock. HEIl GHT = 20;

def param accel eration_I eft _bl ock. COLOR_R = 8'do;
def param accel eration_| eft _bl ock. COLOR_G = 8' d255;
def param accel eration_Il eft_bl ock. COLOR_B = 8'do;
wire [23:0] accel eration_right_bar;

wire [10:0] accel eration_right_x = 11'dO;

wire [9:0] accel eration_right_y = 10' d670;

anal yzer _bar
accel eration_right_bl ock(accel eration_right_x, accel eration_right_y, accel eration_right, hcount, vcou
nt,accel eration_right_bar);

def param accel erati on_ri ght _bl ock. HEI GHT = 20;

def param accel erati on_ri ght _bl ock. COLOR_R = 8' d255;
def param accel erati on_ri ght _bl ock. COLOR_G = 8' dO;
def param accel eration_ri ght _bl ock. COLOR_B = 8' dO;

/1 Al the nmotion anal yzer bars grouped together:
wire [23:0] analyzer_bar_group = anp_l eft_bar + anp_right_bar + beat_period_bar +
accel eration_l eft_bar + acceleration_right_bar;

/'l Generates the menu on the display:

/1 Paraneters for placing the sprites of the nenu buttons on screen:

paranmeter MODE1_X = 970;
paranmeter MODE1l_Y = 570;
parameter MODE2_X = 970;
parameter MODE2_Y = 650;

/] Generating sprites for nenu:

wire [23:0] nodel_pixel;
wire [10:0] nodel_x = MODEl_X;
wire [9:0] model_y = MODEL_Y;

/1 Block to display npde 1:
cent ered_bl ock npdel_bl ock(nodel_x, nodel_y, hcount, vcount, nodel_pi xel);

def param nodel_bl ock. W DTH = 60;
def par am nodel_bl ock. HElI GHT = 60;
def param nodel_bl ock. COLOR_R = 8' d255;
def param npdel_bl ock. COLOR_G = 8' d236;

71

def param npdel_bl ock. COLOR_B = 8'd139;

wire [23:0] node2_pixel;
wire [10:0] node2_x = MODE2_X;
wire [9:0] mode2_y = MODE2_Y;
/1 Block to display npde 2:
cent ered_bl ock npde2_bl ock(node2_x, nnode2_y, hcount, vcount , node2_pi xel);
def param node2_bl ock. W DTH 60;

def par am node2_bl ock. HElI GHT = 60;

def param node2_bl ock. COLOR_R = 8' d255;
def param node2_bl ock. COLOR_G = 8' d236;
def param node2_bl ock. COLOR_B = 8'd139;

wire [23:0] current_npde_pixel;
wire [10:0] current_node_x = (nmenu_state == 0) ? MODEl_X : MODE2_X;
wire [9:0] current _node_y = (nmenu_state == 0) ? MODEL_Y : MODE2_Y;

/1 Block to display the background border around the button of the current node:
cent er ed_bl ock
current _node_bl ock(current_node_x, current _npde_y, hcount, vcount, current _node_pi xel);

def param current _node_bl ock. W DTH = 70;

def param current _node_bl ock. HEl GHT = 70;

def param current _npbde_bl ock. COLOR_R = 8' d255;

def param current _npbde_bl ock. COLOR_G = 8'd127;

def param current _npbde_bl ock. COLOR_B = 8' dO;

wire [23:0] nurmber 1_pi xel , nunber 2a_pi xel , nunber 2b_pi xel ;

parameter NUM W DTH = 8;
par amet er NUM _HElI GHT = 40;

/1 Block to display nunber 1:
cent ered_bl ock number1_bl ock(npdel_x, nodel_y, hcount, vcount, nunber 1_pi xel);

def param nunber 1_bl ock. W DTH = NUM W DTH,;
def param nunber 1_bl ock. HEl GHT = NUM_HEI GHT;
def param nunber 1_bl ock. COLOR_R = 8' d255;

def param nunber 1_bl ock. COLOR_G = 8' d36;

def param nunber 1_bl ock. COLOR_B = 8'do;

wire [10:0] nunRa_x = npde2_x - NUM W DTH,

/1 Block to display nunmber 2a (the first bar of the I1):
cent ered_bl ock number 2a_bl ock(nunmRa_x, node2_y, hcount, vcount, nunber 2a_pi xel) ;

def par am nunber 2a_bl ock. W DTH = NUM W DTH,;
def par am nunber 2a_bl ock. HEl GHT = NUM_HEI GHT;
def par am nunber 2a_bl ock. COLOR_R = 8' d255;

def par am nunber 2a_bl ock. COLOR_G = 8' d36;

def par am nunber 2a_bl ock. COLOR_B = 8'do;

wire [10:0] nunRb_x = nmpbde2_x + NUM W DTH,

/1 Block to display nunmber 2b (the second bar of the I1):
cent ered_bl ock number 2b_bl ock(num2b_x, node2_y, hcount, vcount, nunber 2b_pi xel) ;

def par am nunber 2b_bl ock. W DTH = NUM_W DTH,;

def par am nunber 2b_bl ock. HEl GHT = NUM_HEI GHT;

def par am nunber 2b_bl ock. COLOR_R = 8' d255;

def par am nunber 2b_bl ock. COLOR_G = 8' d36;

def par am nunber 2b_bl ock. COLOR_B = 8'do;

11 Generating blocks to follow the path of the hand notion:

wire [23:0] left_hand_pixell, right_hand_pixell; // {R G B} for display of closer
trailing blocks for left and right hands

wire [23:0] Ieft_hand_pixel2, right_hand_pixel?2; // {R G B} for display of farther
trailing blocks for left and right hands

/] Registers to keep track of the old hand positions:

reg [10:0] left_x_oldl, left_x_old2, right_x_oldl, right_x_ol d2;
reg [9:0] left_y oldl, left_y old2, right_y_oldl, right_y_ol d2;

72

/1 Trailing block 1 following left hand:
centered_block left_handl(left_x_oldl,left_y_oldl, hcount, vcount,|eft_hand_pi xel 1);
def param | ef t _hand1. W DTH = 20;

def param | ef t _handl1. HEl GHT = 20;

def param | eft _hand1l. COLOR_R = 8'dO;
def param | eft _hand1l. COLOR_G = 8' d200;
def param | eft _hand1l. COLOR_ B = 8' dO;

/1 Trailing block 1 follow ng right hand:
cent ered_bl ock right_handl(right_x_ol d1,right_y_ol di, hcount, vcount, ri ght_hand_pi xel 1) ;
def param ri ght _hand1. W DTH

def param ri ght _handl1. HEl GHT = 20;

def param ri ght _handl. COLOR_R = 8' d200;
def param ri ght _handl. COLOR_G = 8'dO;
def param ri ght _handl. COLOR_B = 8'dO;

/1 Trailing block 2 following left hand:
centered_bl ock left_hand2(left_x_old2,left_y_ol d2, hcount, vcount, | eft _hand_pi xel 2);
def param | ef t _hand2. W DTH = 20;

def param | ef t _hand2. HElI GHT = 20;

def param | eft _hand2. COLOR_R = 8'dO;
def param | eft _hand2. COLOR_G = 8'd100;
def param | eft _hand2. COLOR_B = 8' dO;

/1 Trailing block 2 follow ng right hand:
centered_bl ock right_hand2(right_x_ol d2,right_y_ol d2, hcount, vcount, ri ght _hand_pi xel 2);

def param ri ght _hand2. W DTH = 20;

def param ri ght _hand2. HEl GHT = 20;

def param ri ght _hand2. COLOR_R = 8'd100;
def param ri ght _hand2. COLOR_G = 8' dO;
def param ri ght _hand2. COLOR_B = 8' dO;

reg [18:0] «count; // maxi mum 2719, which is about 0.2 of a second

al ways @ posedge cl ock_27mhz) begin
count <= count + 1,
if (count == 0) begin /1 Take position sanples every 0.2 seconds

/1 sShift registers to hold hand positions:

left_x_old2 <= left_x_ol di;
left_y old2 <= left_y_ol di;

left_x_oldl <= left_x;
left_y oldl <= left_y;

right_x_old2 <= right_x_ol di;
right_y old2 <= right_y_ol di;

right_x_oldl <= right_x;
right_y oldl <= right_y;

end
end

al ways @ posedge cl k)
begi n
if (nenu_state == 0) begin /1 State 0: Display black background

in video

pi xel <= ((desired_color && ~outside_franme) || thin_border) ?

24'p111111111111111111111111 : 24' b0; //switch[0]

press,

if (~button_down) begin // On button down
go to state 1
menu_state <= 1,
end
end
else if (nenu_state == 1) begin I/l State 1: Display canmera input in

background of video

73

pi xel <= (thin_border) ? 24'b111111111111111111111111 :
((~outside_frame) ? cam.imge : 24'b0);
if (~button_up) begin // On button up press, return to state O
menu_state <= 0;
end
end

/] Generate the background of the video part of the screen:

bor der _pi xel [23: 16] <= (border _di spl ay) ? 8'd58 : 8'do;
bor der _pi xel [15: 8] <= (border _di spl ay) ? 8'd95: 8'do;
bor der _pi xel [7: 0] <= (border _di spl ay) ? 8'd205 : 8'do;
bot t om bar _pi xel [23: 16] <= (bottom bar) ? 8 d0 : 8'do;
bot t om bar _pi xel [15: 8] <= (bottom bar) ? 8 d0 : 8'do;
bott om bar _pi xel [7: 0] <= (bottom bar) ? 8'd139 : 8'do;
end
wire top_layer_zero = (left_hand_pixel == 0) && (right_hand_pixel == 0);
wi re second_| ayer_zero = (left_hand_pixell == 0) && (right_hand_pixell == 0);
wire [23:0] border_group = border_pi xel + bottom bar_pixel;
/1 Display of background of video section
wire [23:0] hand_pi xel _group = (~top_l ayer_zero) ? (left_hand_pixel +
ri ght _hand_pi xel) : ((~second_|l ayer_zero) ? (left_hand_pixell + right_hand_pi xel 1)
(1 eft _hand_pi xel 2 + right_hand_pi xel 2)); /1 Display of blocks followi ng hands
wire [23:0] beat_markers_group = beat _start_pixel + beat_end_pixel; // Display of

beat start and end bl ocks

/1 Display of the video displayed on screen.

11 Note: to prevent odd colors in overlap, the layers for display are
(fromtop to botton):
11 hand_pi xel _group > beat _narkers_group > pi xel
wire [23:0] camdisplay_vid = (hand_pi xel _group == 0) ? ((beat_markers_group == 0) ?
pi xel : beat_markers_group) : hand_pi xel _group;

/1 Display of the nunbers for the npde buttons:
wire [23:0] nurmber s_group = nunber1_pi xel + nunber2a_pi xel + nunber2b_pi xel ;

/] Tests used for deciding howto |layer the sprites in the nenu display:

wire not_button = (nodel_pixel == 0) && (mode2_pixel == 0); // The current pixel has no
unpressed button area
Wi re not _nunmber = (nunbers_group == 0);

/1 The current pixel has no number area

/1 Display of the unpressed buttons:
wire [23:0] button_group = npdel_pi xel + nmode2_pi xel ;

/1 Display of the final menu:
11 Note: to prevent odd colors in overlap, the layers for display are
(fromtop to botton):
11 nurmber s_group > button_group > current_nopde_pi xel
wire [23:0] menu_vid = (~not_nunber) ? nunbers_group : ((~not_button) ? button_group :
current _node_pi xel) ;

/1 Signals to send to the display, separated into R, G B:

assign display_out_r = camdisplay_vid[23:16] + analyzer_bar_group[23:16] +
bor der _group[23: 16] + menu_vi d[23: 16] ;

assign display_out_g = camdisplay_vid[15:8] + anal yzer_bar_group[15:8] +
bor der _group[15: 8] + nmenu_vi d[15: 8] ;

assign display_out_b = camdisplay_vid[7:0] + analyzer_bar_group[7:0] + border_group[7:0]
+ menu_vid[7:0];

endnodul e

FEEEEEEEEE b i r i r i i nrrd
/1

74

/1 motion_anal yzer:
/1

coordi nat es

/1

/1

Generates qualities of anplitude,

beat period,
and acceleration by interpreting the x and y

of the left and right hands over tine.

FEEEEEEPEE b r i r i i nrrd

modul e notion_anal yzer (

clk,reset,left_x,left_y,right_x,right_y,

beat _start, beat _end,

beat _start_x, beat _start _y,

beat _end_x, beat _end_y,

anmp_| eft, anp_ri ght,

beat _peri od,

accel eration_|l eft,accel eration_right,
time_scale, tol, tol_end, tol_start);

i nput clk, reset;
i nput [10: 0] left_x, right_x;
i nput [9:0] left_y, right_y;
i nput [1:0] ti me_scal e;
input [1:0] tol, tol_end, tol _start;
out put beat _start, beat _end;
out put [10: 0] beat_start_x, beat_end_x;
out put [9:0] beat _start_y, beat_end_y;
out put [10: 0] anp_left, anp_right,

wire beat_start_wre;
| ow ot herwi se.
wire beat_end_wire;
ends, | ow otherw se.
assign beat_start
assign beat_end =

= beat _start_wire;
beat _end_wire;

/1 Coordinates of where the beat started:
reg [10:0] beat _start_x;
reg [9:0] beat _start _y;

/1 Coordinates of where the beat ended:
reg [10:0] beat _end_x;
reg [9:0] beat _end_y;

beat _peri od,

accel eration_l eft, acceleration_right;

/1 Hi gh for one clock cycle when beat starts,

/1 Hi gh for one clock cycle when beat

/1 MODULE: Determines the start and end of a beat
beat _markers beat _nmarkers_nodul e(cl k, reset, right_x, right_y,

beat _start_wire, beat_end_wire,

time_scale, tol, tol_end, tol_start);

/1 MODULE: GCenerates the anplitude,
mar ker s

wire [10:0] anp_left, anp_right,
qualiti es_generator qual _genl(clk,reset,

left_x,left_y,right_x,right_y,
beat _start_wire, beat_end_wire,

anp_| eft, anp_ri ght,

accel eration_l eft,acceleration_right);

75

peri od,

beat _peri od,

and accel eration qualities based on beat

accel eration_l eft, acceleration_right;

beat _peri od,

/1 Update coordi nates of beat start and end:
al ways @ posedge cl k) begin
if (reset) begin
beat _start_x <= 0;
beat _start_y <= 0;

beat _end_x <= 0;
beat _end_y <= 0;
end
el se begin
if (beat_start_wire) begin /]l Only update start coordinates on the

start of a new beat
beat _start_x <= right_x;
beat _start_y <= right_y;

end
if (beat_end_wire) begin /1 Only update end coordinates on the end of
a beat
beat _end_x <= right_x;
beat _end_y <= right_y;
end
end
end
endnodul e
/1
Il File: ntsc2zbt.v
/1 Date: 27- Nov- 05
/1 Author: |. Chuang <ichuang@n t.edu>
/1

/1 Exanple for MT 6.111 | abkit showi ng how to prepare NTSC data
/1 (from Javier's decoder) to be loaded into the ZBT RAM for video

/1 display.

/1

/] **** NODI FI CATIONS: This version uses 32 bits of each location in the ZBT nenory.
11 Each |l ocation stores information for two pixels of 16 bits each.
/1 St orage for each pixel:

/1 Hi ghest 8 bits used for Y

I/ Next 4 bits used for Cr

I/ Loweest 4 bits used for Cb

/1 Code nodifications following (*) in code bel ow
NN NN

/] Prepare data and address values to fill ZBT nenory with NTSC data

modul e ntsc_to_zbt(clk, vclk, fvh, dv, din, ntsc_addr, ntsc_data, ntsc_we, sw);

i nput cl k; /1 system cl ock

i nput vcl k; /1 video clock from canera
i nput [2:0] fvh;

i nput dv;

i nput [29:0] di n;

out put [18:0] ntsc_addr;
out put [35:0] ntsc_data;

out put ntsc_we; /!l wite enable for NTSC data

i nput SW, /1 sw tch which deternines node (for debuggi ng)
par anet er COL_START = 10' d160;

par anet er ROW START = 10' dO;

/1 here put the lum nance data fromthe ntsc decoder into the ram
/1 this is for 1024 x 768 XGA di spl ay

reg [9:0] col = 0;

reg [9:0] row = 0;

reg [15:0] vdata = 0;

reg vwe;

reg ol d_dv;

reg ol d_frarme; /1 franes are even / odd interlaced

76

16-

reg even_odd; /1 decode interlaced frame to this wire

wire frame = fvh[2];
wire frame_edge = frame & ~ol d_frane;

al ways @ (posedge vclk) //LLCL is reference
begi n
old_dv <= dv;
vwe <= dv && !fvh[2] & ~old_dv; // if data valid, wite it
old_frame <= frane;
even_odd = frane_edge ? ~even_odd : even_odd;

if (tfvh[2])
begi n
col <= fvh[0] ? COL_START :
('fvh[2] && !'fvh[1l] && dv && (col < 1024)) ? col + 1 : col;
row <= fvh[1] ? ROW START :
('fvh[2] && fvh[0O] && (row < 768)) ? row + 1 : row,

vdata <= (dv && !fvh[2]) ? {din[29:24],din[19:15],din[9:5]} : vdata; /1l * Store
bit Y C Cb information in form described above
end
end
/'l synchronize with system cl ock
reg [9:0] x[1:0],y[1l:0];
reg [15:0] data[1:0];
reg we[1: 0] ;
reg eo[1: 0] ;
al ways @ posedge cl k)
begi n
{x[1] . x[0]} <= {x[O],col};
{yl[1].y[0]} <= {y[O],row;
{data[1] ,data[0]} <= {data[O0], vdata};
{we[1],we[0]} <= {we[OQ], vwe};
{eo[1],e0[0]} <= {eo[0], even_odd};
end
/] edge detection on wite enable signal
reg ol d_we;
wire we_edge = we[1l] & ~ol d_we;
al ways @ posedge clk) old_we <= we[1];
/1 shift each set of four bytes into a |arge register for the ZBT
reg [31:0] nydata;
al ways @ posedge cl k)
if (we_edge)
mydata <= { nydata[15:0], data[1l] }; /1 *Store 16 bit data per clock
/] conmpute address to store data in
wire [18:0] nyaddr = {y[1][8:0], eo[1], x[1][9:1]}; /1 *NModification to address
/1 alternate (256x192) image data and address
wire [31:0] nydata2 = {data[1l], data[1],data[1],data[1]};
wire [18:0] nyaddr2 = {1'b0, y[1][8:0], eo[1], x[1][7:0]};
/] update the output address and data only when four bytes ready
reg [18:0] ntsc_addr;
reg [35:0] ntsc_data;
wire ntsc_we = sw ? we_edge : (we_edge & (x[1][0]==1"b0)); // *Wite every two tines

al ways @ posedge cl k)
if (ntsc_we)
begi n
ntsc_addr <= sw ? nyaddr2 : myaddr; // normal and expanded npdes
ntsc_data <= sw ? {4'b0, nydata2} : {4' b0, nydata};

77

end

endnodul e // ntsc_to_zbt

FEEEEEEPEE b r i i nrrd

/1

/1 position_calculator: Calculate the average x and y positions of the

/1 hands over a frame. Left_en high
when the current

/1 pi xel should be included in the

wei ght ed aver age

I calculation for the left hand. The
sane for right_en

11 with the right hand

/1

NN
modul e position_cal cul ator(reset, clk,
| eft _en, right_en, hcount, vcount,

vsync, left_x, left_y,
right_x, right_y);

i nput reset, clk, left_en, right_en,vsync;
i nput [10: 0] hcount;

i nput [9:0] vcount ;

out put [10: 0] left_x, right_x;

out put [9:0] left_y,right_y;

/1 Define borders of the video area on screen:

par amet er RI GHT_BORDER = 867;
par amet er LEFT_BORDER = 157;
par amet er TOP_BORDER = 27;

par amet er BOTTOM BORDER = 505;
par anet er CENTER_X = (LEFT_BORDER + RI GHT_BORDER)/ 2; /1 Find the middle of
t he wi ndow

wire [10:0] left_x_1, right_x_1,left_y 1, right_y_1;

/1 Decide if in left half of the screen
wire left_in_left_side = (LEFT_BORDER < left_x_1) && (left_x_1 < CENTER X) && (TOP_BORDER <
left_y 1) && (left_y_1 < BOTTOM BORDER);

/1 Decide if in right half of the screen
wire right_in_right_side = (CENTER X < right_x_1) && (right_x_1 < Rl GHT_BORDER) && (TOP_BORDER
<right_y 1) & (right_y_ 1 < BOTTOM BORDER);

/1 Modules to cal cul ate wei ghted suns:

wei ghted_sum ws1(reset, clk, left_en, vsync, hcount, left_x_1,vcount);
/1 Left hand: x position
wei ghted_sum ws2(reset, clk, left_en, vsync, {1'b0,vcount}, left_y_ 1, vcount); /1 Left
hand: y position
wei ght ed_sum ws3(reset, clk, right_en, vsync, hcount, right_x_1,vcount);
/1 Right hand: x position
wei ght ed_sum ws4(reset, clk, right_en, vsync, {1'b0O,vcount}, right_y_1,vcount); // Right hand:
y position

/! Registers to hold the x and y positions of the hands:
0

reg [10:0] left_x = 0;
reg [10:0] right_x= 0;
reg [9:0] left_y = 0;
reg [9:0] right_y = 0;

/1 Used in distance cal cul ati on between sanpl es:

78

wire [10:0] diff_right_x = (right_x > right_x_1) ? (right_x - right_x_1) : (right_x_1 -
right_x);

wire [10:0] diff_left_x = (left_x > left_x_1) ? (left_x - left_x_1) : (left_x_1 - left_x);

wire [10:0] diff_right_y = (right_y >right_y 1) ? (right_y - right_y 1) : (right_y_ 1 -
right_y);

wire [10:0] diff_left_y = (left_y > left_y 1) ? (left_y - left_y 1) : (left_y_1 - left_y);

/1 Error correction: elimnate junps in light positions for snmpother notion
/] Detecting whether two successive X,y positions are w thin reasonabl e distance of each

ot her.
parameter JUVP_THRESHOLD = 75;
wire no_left_jump = (diff_left_x < JUMP_THRESHOLD) && (diff_left_y < JUMP_THRESHOLD);
// =1 if reasonable distance between successive |eft hand coordi nates
wire no_right_jump = (diff_right_x < JUMP_THRESHOLD) && (diff_right_y < JUVP_THRESHCLD);
/1 =1 if reasonable distance between successive right hand coordinates
/1 Hi gh at pixels outside the video frane:
wire outside_frame_left = (left_x < LEFT_BORDER) || (left_x > RIGHT_BORDER) || (left_y <
TOP_BORDER) || (left_y > BOTTOM BORDER);
wire outside_frame_right = (right_x < LEFT_BORDER) || (right_x > RIGHT_BORDER) || (right_y <

TOP_BORDER) || (right_y > BOTTOM BORDER);

/1 Tests before updating coordi nates:
wire update_left = left_in_left_side & (no_left_junp || outside_frame_left);
wire update_right = right_in_right_side & (no_right_junp || outside_frane_right);

/] FSM state
reg state = 0;

al ways @ posedge cl k) begin
if (reset) begin
left_x <= 0;

right_x<= 0;
left_y <= 0;
right_y <= 0;
state <= 0;
end
el se begin
if (state == 0) begin 11 State 0: Frane ended, wait for new
frame to start
if (vsync == 1) begin /1 When vsync goes high, store results of weighted

aver ages
state <= 1,
if (update_left) begin //

left_x <= left_x_1;
/]l Store the left hand x position
left_y <= left_y_ 1[9:0]; /]l Store the left hand y position
end
if (update_right) begin 11
right _x <= right_x_1;
/] Store the right hand x position
right_y <= right_y_1[9:0]; /] Store the right hand y position
end
end
end
else if (state == 1) begin /] State 1: Frame started, wait for frane to end

if (vsync == 0) begin
state <= 0;
end
end

end
end

79

endnodul e

FEEEEEEEEE bt r b i r i i i rrrd

/1

/1 qualities_generator: Uses beat start and end information to cal cul ate

/1 anpl i tude, beat period, and
accel eration qualities

I/ for each hand

/1

FEEEEEEPEEE i r i r e b nrrd

modul e qualities_generator(clk,reset,
left_x,left_y,right_x,right_y,
beat _start, beat _end,

anp_| eft, anp_ri ght,
beat _peri od,

accel eration_l eft,acceleration_right);

i nput clk, reset;

i nput [10: 0] left_x, right_x;

i nput [9:0] left_y, right_y;

i nput beat _start, beat _end;

out put [10: 0] anp_left, anp_right, beat_period, acceleration_left, acceleration_right;

/1 Holds the notion qualities for output:
reg [10:0] anp_left, anmp_right, beat_period, acceleration_|left, acceleration_right;

/Il Store the location of the hands at beat start and end in these registers:
reg [10:0] left_x1, right_x1, left_x2, right_x2;
reg [9:0] left_yl, right_y1, left_y2, right_y2;

/Il Store 3 sets of sanples of coordinates for each hand for use in accel eration
cal cul ati ons:
reg [10:0] left_xt1, right_xtl, left_xt2, right_xt2, left_xt3, right_xt3;
reg [9:0] left_ytl, right_ytl, left_yt2, right_yt2, left_yt3, right_yt3;

Il Used for generating a slower clock
reg [18:0] count; // maxi mum 2719, which is about 0.2th of a second

/] FSM state
reg state = 0;

/1 Holds a count of time a beat is taking (each count is 2721 clock cycles):
reg [10:0] time_count = O;

/1 Wres for the find_di stance nodul es:
wire [10:0] dist_right, dist_left;
wire [10:0] accel _left_distl, accel_left_dist2, accel _right_distl, accel _right_dist2;

wire dist_calc_clr = (reset || beat_end); /] Reset distance calc on reset button or
end of beat

/1 Amplitude cal cul ation:
find_distance distl(clk,dist_calc_clr,left_x1,left_yl,left_x2,left_y2, dist_left);
find_distance dist2(clk,dist_calc_clr,right_x1,right_y1,right_x2,right_y2,dist_right);

/'l Acceleration cal cul ation
/1 Left hand:
find_distance
dist3(clk,dist_calc_clr,left_xtl,left_ytl,left_xt2,left_yt2 accel_left_distl);
find_distance
dist4(clk,dist_calc_clr,left_xt3,left_yt3,left_xt2,left_yt2, accel _|eft_dist2);

/1 Right hand:

80

find_distance
dist5(clk,dist_calc_clr,right_xtl,right_ytl,right_xt2,right_yt2,accel _right_distl);

find_distance
dist6(clk,dist_calc_clr,right_xt3,right_yt3,right_xt2,right_yt2,accel _right_dist2);

/1 Take the difference to get the change of speed. |f the noverment is slow ng down,
out put O accel eration

wire [10:0] accel _left = (accel _left_distl >= accel _left_dist2) ? 11'b0 :
2*(accel _left_dist2 - accel _left_distl);

wire [10:0] accel _right = (accel _right _distl >= accel _right_dist2) ? 11'b0 :

2*(accel _right_dist2 - accel _right_distl);
al ways @ (posedge cl k) begin

if (reset) begin

anmp_| eft <= 0;
anmp_ri ght <= 0;
beat _peri od <= 0;
accel eration_| eft <= 0;
accel eration_right <= 0;
left_x1 <= 0;
right_x1 <= 0;
left_x2 <= 0;
right_x2 <= 0;

left_yl <= 0;
right_yl <= 0;
left_y2 <= 0;
right_y2 <= 0;

left_xtl <= 0;
right_xt1 <= 0;
left_xt2 <= 0;
right_xt2 <= 0;
left_xt3 <= 0;
right_xt3 <= 0;

left_ytl <= 0;
right_yt1l <= 0;
left_yt2 <= 0;
right_yt2 <= 0;
left_yt3 <= 0;
right_yt3 <= 0;
count <= 0;

state <= 0;

ti me_count <= 0;

end
else if (state == 0) begin // State 0: Beat ended, waiting to start a beat
if (beat_start) begin /Il Switch to state 1 when beat ends

state <= 1;
time_count <= 0;

count <= 0;

/1 Store coordinates of start position:
left_x1 <= left_x;
left_yl <= left_y;
right_x1 <= right_x;
right_yl <= right_y;

/1 Update with new beat qualities:

anmp_| ef t <= dist_left;
anmp_ri ght <= dist_right;
beat _peri od <= tine_count;

accel eration_left <= accel _left;

accel eration_right <= accel _right;

81

end
end
else if (state == 1) begin // State 1: Beat started, waiting to end

/1 Calcul ating acceleration and tine count:
count <= count + 1,

if (count == 0) begin /1 Count only every 0.02 seconds
time_count <= tinme_count + 1;
if (time_count <= 6) begin /Il Only keep sanple info within the first

6*0. 02 seconds

/1 Store successive coordinates for acceleration
cal cul ati ons:

left_xtl <= left_xt2;
left_ytl <= left_yt2;
right_xt1 <= right_xt2;
right_yt1l <= right_yt2;
left_xt2 <= left_xt3;
left_yt2 <= left_yt3;
right_xt2 <= right_xt3;
right_yt2 <= right_yt3;
left_xt3 <= left_x;
left_yt3 <= left_y;
right_xt3 <= right_x;
right_yt3 <= right_y;

end
end

if (beat_end) begin // Switch to state 0 when beat ends
state <= 0;
/] Store coordinates where the beat notion ended
left_x2 <= left_x;
left_y2 <= left_y;
right_x2 <= right_x;
right_y2 <= right_y;
end
end
end
endnodul e

FEEEEEEEEE i i i rrrd

/1

/1 video_processor: Uses the camera input to determ ne the coordinates
I of each hand.

/1

FEEEEEEEEE bbb rrrd

modul e vi deo_processor (reset, cl k, pi xel _vi deo, hcount, vcount, vsync,
left_x, left_y, right_x,
right_y, desired_color);

i nput reset, clk, vsync;

i nput [10: 0] hcount;

i nput [9:0] vcount ;

i nput pi xel _vi deo;
output [10:0] left_x, right_x; /1 The wei ghted average X position of each hand
out put [9:0] left_y,right_y; /1 The wei ghted average Y position of each

hand

out put desired_col or; /1 Used for display of the

coordi nates detected by the col or_detection nodul e

/1 left_en = 1 when a pixel of the desired color is in the left hand pl ane
/1 right_en = 1 when a pixel of the desired color is in the right hand pl ane
wire left_en, right_en;

82

/1 MODULE: Detects when the desired color appears in each half of the screen

col or _detection cdl(reset, clk,

pi xel _vi deo, hcount, vcount,

left_en, right_en,desired_color);

/1 MODULE: Cal cul ates the wei ghted average position of each hand
posi tion_cal cul ator pcl(reset,clk,left_en,right_en, hcount, vcount, vsync,

right_y);

endnodul e

left_x, left_y, right_x,

FEEEEEEEEEE b r i rrr g

/1

/'l wei ghted_sum Cal cul ate the weighted sum of position every frane.

/1
i ncl uded
/1
/1

Only count val ues when enable is high will be

in the cal cul ation.

FEEEEEEPEE b r i i i b nrrd

modul e wei ght ed_sun{reset, cl k, enabl e, vsync, count, avg, vcount) ;

i nput reset, clk, enable,
i nput [10: 0] count;

i nput [9:0]
out put [10: 0] avg;

par amet er BOTTOM BORDER = 505;

vcount;

vsync;

/1 Store how nany pixels of the desired color were detected

reg [17:0] pi xel _count = 0;

/1l Keep a running sumof the x or y coordinate at the detected pixels
reg [27:0] sum = 0;
/] FSM state

reg state = 0,
/] Qutput of divide nodule:

wire [27:0] di vider_result;
/1 The actual result of divide:
assign avg = divider_result[10:0];
/1l Wres for divide nodul e:

wire [17:0] remd; /1 Rermi nder

wire rfd; // Ready for new data

wire aclr = 0; /1 Asynchronous clear, disabled
wire ce = 1; /1 Cock enable, disabled
reg sclr = 0; /'l Synchronous clear, enabled

/1 MODULE: Used for division of the running sumw th the sanple count

di vider divl (
sum
pi xel _count,
divider_result,
remd,
cl k,
rfd,
aclr,
sclr,
ce);

al ways @ posedge cl k) begin

83

if (reset) begin
pi xel _count <= 0;

sum <= 0;
state <= 0;
sclr <= 0;
end
el se begin
if (state == 0) begin /] State 0: Tabulate the running sum and pixel count
if (vcount > BOTTOM BORDER) begin /1l Once the frame is no
longer in the video range, start cal culating divide
sclr <= 0;
end
if (vsync == 0) begin /]l Once the frame is
done, go to state 1
state <= 1,
end
else if (enable) begin /1 1f pixel detected,

i ncrease count and running sum
pi xel _count <= pixel _count + 1;
sum <= sum + count;

end
end
else if (state == 1) begin /] State 1: Wait until the next frame starts.
if (vsync == 1) begin /1l Once a new frame begins,
return to state 0
sclr <= 1;
pi xel _count <= 0;
sum <= 0;
state <= 0;
end
end
end
end
endnodul e

Il File: zbt _6111.v
/1 Date: 27- Nov- 05
/1 Author: |. Chuang <i chuang@n t.edu>

/1 Sinmple ZBT driver for the MT 6.111 | abkit, which does not hide the

/1 pipeline delays of the ZBT fromthe user. The ZBT nenories have

/1l two cycle latencies on read and wite, and al so need extra-long data hold
/1 times around the clock positive edge to work reliably.

NN NN
/1 lke's sinmple ZBT RAM driver for the MT 6.111 | abkit

/1

/1 Data for wites can be presented and clocked in i mediately; the actual
/'l witing to RAMw Il happen two cycles |later.

/1

/'l Read requests are processed imediately, but the read data is not avail able
/1 until two cycles after the intial request.

/1 A clock enable signal is provided; it enables the RAM cl ock when hi gh.

modul e zbt _6111(clk, cen, we, addr, wite_data, read_data,
ramcl k, ramwe_b, ram address, ramdata, ramcen_b);

i nput clk; /1 system cl ock

i nput cen; Il clock enable for gating ZBT cycles
i nput we; /!l wite enable (active H GH)

input [18:0] addr; /1 menory address

input [35:0] wite_data; /] data to wite

out put [35:0] read_data; /] data read from nenory

out put ram cl k; /'l physical line to ram cl ock

out put ram we_b; /'l physical line to ramwe_b

output [18:0] ram address; // physical line to ram address

84

inout [35:0] ramdata; /'l physical line to ramdata
out put ram cen_b; /1 physical line to ramcl ock enabl e

/1 clock enable (should be synchronous and one cycle high at a tine)
wire ramcen_b = ~cen;

Il create delayed ramwe signal: note the delay is by two cycles!
/Il ie we present the data to be witten two cycles after we is raised
/1 this neans the bus is tri-stated two cycles after we is raised.

reg [1:0] we_del ay;

al ways @ posedge cl k)
we_del ay <= cen ? {we_del ay[0],we} : we_del ay;

/] create two-stage pipeline for wite data

reg [35:0] wite_data_ol di;
reg [35:0] wite_data_ol d2;
al ways @ posedge cl k)
if (cen)
{wite_data_old2, wite_data_oldl} <= {wite_data_oldl, wite_data};

/Il wire to ZBT RAM signal s

assign ramwe_b = ~we;

assign ramcl k = ~cl k; /! RAMis not happy with our data hold
/1 times if its clk edges equal FPGA s
/1 so we clock it on the falling edges
/1 and thus let data stabilize |onger

assign ram address = addr;

assign ramdata = we_delay[1] ? wite_data_old2 : {36{1 bz}};

assign read_data = ram dat a;

endnodul e // zbt_6111

“timescale 1ns / 1ps
NN NN NNy
/1 Conpany:

/'l Engi neer:

/] Create Date: 22:23:15 12/ 04/ 06

/1 Design Name:

/1 Modul e Nane: Articul ati onModul at or Uni t

/1 Project Nane:

/| Target Device:

/] Tool versions:

/] Description: This nmodule perfornms the articulation nodulation for the audio. The
nmodul e

/1 outputs a coefficient that is used to multiply the
audio in order to

/1 create a stronger first part of a beat and a weaker second part of a beat.
/1 sanpl e_count shoul d be the sanple nunber that is currently being addressed.

/| Dependenci es:

/1 Revi sion:
/!l Revision 0.01 - File Created
/1 Additional Conments:

NN NN NN
modul e Articul ati onModul atorUnit(reset, clock_27mhz, nusicbeatperiod, Acc,
coefficient, sanple_count, division);
i nput reset;
i nput clock_27mhz;
i nput [15:0] nusicbeat peri od;
i nput [10: 0] Acc;
input [15:0] sanpl e_count;
output [7:0] coefficient;

85

output [7:0] division;
reg [7:0] division;
wire [1:0] NewAcc;

reg [7:0] coefficient;

//figure out what part of beat we are at.
al ways @ (sanpl e_count or rmnusicheatperiod) begin

/ / debug out put

if (sanpl e_count <= nusicbeatperiod >> 4)

el se

else i

else i

else i

else i

else i

else i

else i

else i

else i

else i

else i

else i

else i

el se

end

if

division =0
(sanpl e_count
division = 1
(sanpl e_count
division = 2
(sanpl e_count
division = 3
(sanpl e_count
division = 4
(sanpl e_count
division = 5
(sanpl e_count
division = 6
(sanpl e_count
division = 7
(sanpl e_count
division = 8
(sanpl e_count
division = 9
(sanpl e_count
division = 10
(sanpl e_count
division = 11
(sanpl e_count
division = 12

(sanpl e_count <=(nusi cbeatperiod >> 4)*

<=

<=

<=

= (nusi

= (nusi

= (nusi
= (nusi

= (nusi

= (nusi cheat peri

= (nusi cheat peri

cbeat peri
cbeat peri
(rusi cbeat peri
(rusi cbeat peri
cbeat peri
cbeat peri
cbeat peri
(rusi cbeat peri
(rusi cbeat peri

(rusi cbeat peri

od

od

od

od

od

od

od

od

od

od

od

od

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

Di vi de beat

4)
4)
4)
4)
4)
4)
4)
4)
4)
4)
4)

4)

(sanpl e_count <= (nusicbeatperiod >> 4)

division = 13;
division = 14;
di vision = 15;

//ROMto store the functions that the audio will

articul ation effect

al ways @ (NewAcc or sanple_count) begin
if (NewAcc ==0)

/11 egato

else if (NewAcc

coefficient = 255;
else if (NewAcc == 0)

case (division)
0: coefficient = 153;
1: coefficient = 230;
2: coefficient = 255;
3: coefficient = 255;
4: coefficient = 255;
5. coefficient = 255;
6: coefficient = 255;
7: coefficient = 255;
8: coefficient = 255;
9: coefficient = 255;
10: coefficient = 255;
11: coefficient = 255;
12: coefficient = 230;
13: coefficient = 179;
14: coefficient = 153;
15: coefficient = 102;

endcase

== l)

case (division)

0: coefficient = 153;

86

*

nto 16 sections

2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)

13)

14)

*

15)

be multiplied with to create

1: coefficient = 230;
2: coefficient = 255;
3: coefficient = 255;
4: coefficient = 255;
5. coefficient = 255;
6: coefficient = 255;
7: coefficient = 255;
8: coefficient = 255;
9: coefficient = 255;
10: coefficient = 217;
11: coefficient = 179;
12: coefficient = 153;
13: coefficient = 102;
14: coefficient = 51;
15: coefficient = 26;

endcase
else if (NewAcc == 2)
case (division)

0: coefficient = 26;
1: coefficient = 230;
2: coefficient = 255;
3. coefficient = 255;
4: coefficient = 255;
5. coefficient = 230;
6: coefficient = 179;
7: coefficient = 153;
8: coefficient = 102;
9: coefficient = 51;
10: coefficient = 26;
11: coefficient = 26;
12: coefficient = 26;
13: coefficient = 26;
14: coefficient = 26;
15: coefficient = 26;
endcase
/] staccato
el se
case (division)
0: coefficient = 26;
1: coefficient = 230;
2: coefficient = 255;
3: coefficient = 230;
4: coefficient = 153;
5. coefficient = 51;
6: coefficient = 51;
7: coefficient = 51;
8: coefficient = 26;
9: coefficient = 26;
10: coefficient = 26;
11: coefficient = 26;
12: coefficient = 26;
13: coefficient = 26;
14: coefficient = 26;
15: coefficient = 26;

endcase
end

assign NewAcc = Acc[1:0];
endnodul e

“timescale 1ns / 1ps
NN NNy
/1 Conpany:

/'l Engi neer:

/] Create Date: 21:21:20 12/03/06

/1 Design Name:

/1 Modul e Nare: Articul ati onVol uneMbdul at or
/'l Project Nane:

/| Target Device:

87

/1 Tool versions:

/] Description: Gven left and right velocities and acceleration, the Articulation

/1 And Vol une Modul ator will change the input hp and

I p audi o data

/1 so that greater velocities will result in a greater
anpl i tude out put

/1 and a greater acceleration will result in a

choppi er pl ayback.
/| Dependenci es:

/1 Revi sion:
/! Revision 0.01 - File Created
/1 Additional Conments:

NN NN NN
modul e Articul ati onVol uneMdul at or (cl ock_27nmhz, reset, |p_audio, hp_audio,
Fi nal Audi o, AcclL, AccR, Vell, VelR nusicbeatperiod, rfd,
rfdhp, Ip, hp, sanple_count, volumesw tch, volunme, accelerationswtch);
i nput clock_27mhz;
i nput reset;
i nput signed [28:0] |p_audio;
i nput signed [28:0] hp_audio;
out put signed [7:0] Final Audi o;
input [1:0] Accl;
input [1:0] AccR;
input [6:0] Vell;
input [6:0] VelR;
i nput [15:0] nusicbeat peri od;
nput [15:0] sanple_count;
nput rfd;
nput rfdhp;
nput | p;
nput hp;
nput vol umeswi t ch;
nput accel erati onswi tch;
output [4:0] vol une;

reg [4:0] volune;

reg signed [7:0] low_out, high_out = 0;

reg signed [7:0] low out_articulation, high_out_articulation = 0;
reg [24:0] TenpFi nal Audi o;

wire [7:0] |ow coefficient;
wire [7:0] high_coefficient;
wire [1:0] AcclLlnput;

wire [1:0] AccRInput;

Articul ati onMobdul atorUnit LPUnit(reset, clock_27mhz, nusicbeatperiod, AccLlnput,
| ow_coefficient, sanple_count, division);

Articul ati onMobdul atorUnit HPUnit(reset, clock_27mhz, nusicbeat period, AccRI nput,
hi gh_coefficient, sanple_count, division);

/1 Articul ati onMbdul atorUnit LPUnit(reset, clock_27mhz, BeatPeriod, AccL[0], sanple_count,
| ow_coefficient);
al ways @ (posedge cl ock_27mhz) begin
if (rfd)
low_out <= {lp_audio[28], |p_audio[?22:22-6]};
if (rfdhp)
hi gh_out <= {hp_audi o[28], hp_audi o[22: 22-6]};

/lassign the raw audio volune to be equal to greatest of the two velocities
shifted by 1

/1if velocity exceeds maxi num assign it to be 5 b11111
if (vol umeswitch)

if (VelL > Vel R

volune <= ((VelL >> 1) > 5'b11111)? 5'b11111: (VellL >> 1);
el se
volune <= ((VelR >> 1) > 5'b11111)? 5'b11111: (Vel R >> 1);

88

el se
vol une <= 5'b11000;
end

/] assi gn TenpFi nal Audi o = Vel L* |ow coefficient * |ow out+ Vel R* high_coefficient*
hi gh_out ;
al ways @ (volunmeswitch or VelL or Vel R or | ow coefficient or high_coefficient or
hi gh_out or |ow_ out) begin
if (vol umeswitch)
TenpFi nal Audi o = Vel L* | ow_coefficient * [ow out+ Vel R* high_coefficient*
hi gh_out ;
el se
TenpFinal Audio = 7'b1111111 * | ow coefficient * low out+ 7'b1111111 *
hi gh_coefficient* high_out;
end

assi gn Fi nal Audi o = {TenpFi nal Audi o[24], TenpFi nal Audi o[21: 21-6]};
/lallow switch to switch on and off articulation feature

assign AcclLl nput accel erationswi tch? AccL: 0;
assign AccRI nput accel erationswi tch? AccR 0;

endnodul e

“timescale 1ns / 1ps
NN NNy
/1 Conpany:

/'l Engi neer:

/! Create Date: 18:27:16 12/03/06
/1 Design Name:

/1 Modul e Nane: Beat Gener at or 2

/'l Project Nane:

/| Target Device:

/1 Tool versions:

/] Description: Beat Gener at or produces a 1-cl ock-period nusicbeat signal which signifies
I/ the divisions between beats in the audio in the
flash ROM Access_enabl e

/1 shoul d be a 1 cl ock-period enable signal and

shoul d be on only when a new

/1 address in ROM has been accessed. access_reset is
used to reset the count.

11 (this is done after every beat)

/| Dependenci es:

/1

/1 Revi sion:
/!l Revision 0.01 - File Created
/1 Additional Conments:

NN NN NNy
nmodul e Beat Generator2(reset, clock_27nmhz, beginning, offset, sanplecount, access_enable,
access_reset, nusicheat, beatperiod, toggle);

nput [15:0] sanpl ecount; /1 debug i nput

nput cl ock_27mhz, reset, access_enable, access_reset;

nput begi nni ng;

nput [15:0] offset;

nput [15:0] beatperi od;

nput toggl e; /1 debug i nput

out put rmnusi cbheat ;

reg [15:0] sanple_count;

al ways @ (posedge cl ock_27mhz) begin

if (reset|beginning) begin
sanpl e_count <= offset;

end

el se begin
//regul ar increnent
if (access_enabl e) begin

sanpl e_count <= sanpl e_count + 1;

end

&9

//reset when needed
else if (access_reset) begin
sanpl e_count <= 0;
end
end
end

/I musi cbeat enabl ed only when sanpl e_count reaches beat period
assign nusi cheat = (sanpl e_count == beatperiod);
endnodul e

“timescale 1ns / 1ps
NN NN
/1 Conpany:

/'l Engi neer:

/|l Create Date: 18:09: 36 12/01/06
/1 Design Name:

/1 Mbdul e Nane: Beat Peri odCount er
/'l Project Nane:

/] Target Device:

/1 Tool versions:

/] Description: Beat Peri odCount er counts how | ong the previous user specified beat period
was.

/1 Beat Period is different fromother signals

(musi cbeatperiod) in the fact that it

/1 does not correspond to one data access fromthe ROM
Instead, it is 1 data access

11 fromrommultiplied by 100. BeatPeriod and

musi cbeat peri od/ 100 wi Il give identical

/1 representations.

/| Dependenci es:

/1

/1 Revi sion:
/!l Revision 0.01 - File Created
/1 Additional Conments:

NN NN NNy
nmodul e Beat Peri odCount er (reset, clock_27mhz, enable, beat, BeatPeriod, beginning);
input reset, clock_27mhz, enable, beat;

out put [10:0] BeatPeri od;

reg [10: 0] BeatPeriod = 0;

reg [10: 0] TenpBeat Period = 0;

reg [7:0] count = O;

i nput begi nni ng;

al ways @ posedge cl ock_27mhz) begin

if (reset|beginning) begin

TenpBeat Peri od <= 0;

count <= 0;
end
el se begi n

if (enable) begin

if (count >= 199) begi n
TenpBeat Peri od <= (TenpBeat Peri od >= 2047)? 2047: TenpBeat Period +

1,
count <=0;
end
el se
count <= count +1;
end
if (beat) begin
Beat Peri od <= TenpBeat Peri od;
TenpBeat Peri od <= 0;
count <=0;
end
end
end

90

endnodul e

“timescale 1ns / 1ps
NN NN NN
/1 Conpany:

/'l Engi neer:

/! Create Date: 19:21: 35 11/ 30/ 06
/1 Design Name:

/1 Mbdul e Nane: Di vi si onConverter
/'l Project Nane:

/] Target Device:

/1 Tool versions:

/] Description: Di vi si onConverter Converts the ratio between Origi nal Beat Peri od, and
Beat Peri od

/1 to sonmething nore useful: skip, interval, add.
Every add divi si ons accessed,

/1 skip divisions will be either added, or subtracted
fromthe ZBT address to be

/1 accessed next. This hel ps produce the tenpo
modul ating effect.

11 If add is high, skip divisions will be added. |If
add is low, skip divisions are

I/ subtract ed.

/| Dependenci es:

/1

/1 Revi sion:
/!l Revision 0.01 - File Created
/1 Additional Conments:

NN NNy

nmodul e Di vi si onConverter(reset, clock_27mhz, BeatPeriod, beat, Original BeatPeriod, skip, interval,
add, NewBeat Peri od, NewOri gi nal Beat Peri od, TenpBeat Peri od, nusicbheat peri od);

i nput reset, clock_27mhz;

i nput beat;

i nput [10: 0] Beat Peri od;

out put [10:0] Original Beat Peri od;

out put [2:0] skip;

output [2:0] interval;

out put add;

out put [10: 0] NewBeat Peri od; / / debug out put
out put [10: 0] NewOri gi nal Beat Peri od; / / debug out put

out put [10:0] TenpBeat Peri od; /] debug out put

i nput [15:0] nusicbeat peri od;

reg [10: 0] Original Beat Peri od;

reg [2:0] tenpDifference;

reg [3:0]state = O;

reg [10: 0] NewBeat Peri od =0;

reg [10: 0] NewOri gi nal Beat Period = O;
reg [3:0] LeftBound = 10;

reg [2:0] skip=0;

reg [2:0] interval =0;

reg [10: 0] TenpBeat Period = 0;

reg add=0;

reg [2:0] denom = 7,
reg [2: 0] nom = 6;
reg [4:0] count = O;

al ways @ (posedge cl ock_27mhz) begin
if (reset) begin
state <= 0;
end
if (beat)
state <= 0;
el se
case (state)
0: begi n
Ori gi nal Beat Peri od <= nusi cheat period *10 /1024;
NewBeat Peri od <= Beat Peri od;

91

NewOr i gi nal Beat Peri od <= nusi cbeat period *10 /1024; [/unit
conver si on
state <= 1;

end
1: begi n
if ((NewOriginal Beat Period <= 7) & (NewBeatPeriod <= 7)) begin
state <= 2,
end
el se begin
NewBeat Peri od <= NewBeat Period >> 1,
NewOr i gi nal Beat Peri od <= NewOri gi nal Beat Period >> 1
end
end
2: begi n
/1 sl ower playback
if (BeatPeriod > Original Beat Peri od) begin
add <= 0; /] address are subtracted every
interva
if (BeatPeriod >> 1 >= (Original Beat Peri od) begin
interval <= 2
skip <=1
end
el se if (NewBeat Peri od == NewOri gi nal Beat Peri od) begin
interval <=0
skip <=0
end
el se begin //ratios should be between 1/2 and 1
keep skip at 1
interval <= New(Ori gi nal Beat Peri od[2: 0] ;
skip <=1
end
end
[/ faster playback
else if (BeatPeriod < Original Beat Peri od) begin
if (NewBeatPeriod == 0) begin
interval <=1
skip <=7
add <=1
end
el se if (NewBeat Peri od == NewOri gi nal Beat Peri od) begin
add <= 0
interval <=0
skip <=0
end
el se begin
add <= 1; /] addresses are added every interva
interval <= NewBeat Peri od[2: 0] ;
/[linterval <=1
skip <= NewOri gi nal Beat Peri od[2: 0] -
NewBeat Peri od[2: 0] ;
end
end
el se begin
add <= 0; //same beat period. insure plays at
1x
interval <=0
skip <=0
end
end
default: state <= 0
endcase
/lassign skip = tenpDifference
end
endnodul e

/1 DivisionCounter counts the number of division accessed. Access_enable is high everytinme a new
//address is accessed from RAM The paraneter, DI VI SONLENGTH specifies the | ength of each
di vi si on

92

/1in sanples. 800 sanples corresponds to 800/24000 of a second per division. Addr_nod wll

di spl ay

//the correct value every interval of divisions accessed, in which it will either add or subtract
/1 skip divisions depending on add. |f add is high, addresses are added. |If add is |ow,
addresses are

/] subtracted(sl ows down mnusic).

nmodul e Divi sionCounter(reset, clock_27nmhz, access_enabl e, addr_nod, skip, interval, add,
di vi si onCount) ;

paramet er DI VI SI ONLENGTH = 800;

i nput reset, clock_27nmhz;

i nput access_enabl e, add;

input [2:0] skip;

input [2:0] interval;

out put [15:0] addr_nod;

out put di vi si onCount ; /] debug out put

reg signed [15:0] addr_nod = O;
reg [2:0] divisionCount = 0;
reg [15:0] addr_count;

wi re division_enable;

al ways @ (posedge cl ock_27mhz) begin
if (reset) begin
di vi si onCount <= 0;
addr _nod <= 0;
addr _count <= O;
end
el se begin
if (access_enabl e)
begi n
addr _count <= (addr_count >= DI VI SI ONLENGTH 1) ? 0: addr_count +1;
//count nunber of divisions accessed.
if (division_enable) begin
if (divisionCount < (interval - 1)) begin
addr _nod <= 0;
di vi si onCount <= divi si onCount + 1;
end
el se begin
/1if add is high, skip divisions are added, if low, skip
divisions are subtracted
if (add)
addr _nod <= (DI VI SI ONLENGTH) * ski p;
el se
addr _nod <= -DI VI SI ONLENGTH * ski p;
di vi si onCount <= 0;
end
end
el se
addr _nod <= 0;
end
end
end

assign division_enable = (addr_count >= DI VI S| ONLENGTH- 1) ;

endnodul e

R NN NNy

/1 6.111 FPGA Labkit -- Flash ROM Interface
/1

/1 For Labkit Revision 004

/1

/1

/] Created: January 22, 2005
/1 Author: Nathan I|ckes

R NN NNy

93

“define FLASHOP_| DLE 2' b00
“define FLASHOP_READ 2' b01
“define FLASHOP_WRI TE 2' b10

modul e flash_int(reset, clock, op, address,
flash_address, flash_ce_b,
flash_reset_b, flash_sts,

paraneter access_cycles = 5;
paraneter reset_assert_cycles = 1000;
paraneter reset_recovery_cycles = 30;
i nput reset, clock;
input [1:0] op;
i nput [22:0] address;

i nput [15:0] wdata;

out put [15:0] rdata;

out put busy;

inout [15:0] flash_data;
output [23:0] flash_address;
output flash_ce_b, flash_oe_b,
output flash_reset_b, flash_byte_b;
input flash_sts;

reg
reg
reg
reg
reg
reg
reg

[1: 0]
[15: 0]
busy;
[15: 0] flash_wdata;

fl ash_ddat a;

[23:0] flash_address;
flash_oe_b, flash_we_b,

| op;
rdat a;

assign flash_ce_b

=fla
assign flash_byte_ b =1; // 1 =

wdat a,

flash_oe_b,

rdata, busy, flash_data,
flash_we_b,

flash_byte_b);

/1 Flash operation select (read, wite,

flash_we_b;

flash_reset_b;

sh_oe_b && flash_we_b;
16-bit node (A0 ignored)

assign flash_data = flash_ddata ? flash_wdata :

/1 Reset and clock for the flash interface

idle)

16' hz,

FEEEETEEEE i r i i bbb i rrrd

FEEEEEEEEE b bbb i b i rrrd

initial
flash_reset_b <= 1'bl;

reg [9:0] state;

al ways @ posedge cl ock)
if (reset)
begi n

state <= 0;
flash_reset_b <= 0;
flash_we_b <= 1;
flash_oe_b <= 1;
flash_ddata <= 0;

busy <= 1;
end
else if (flash_reset_b == 0)
if (state == reset_assert_cycl es)
begi n

flash_reset_b <= 1;

state <= 1023-reset_recovery_cycl es;

end
el se
state <= state+l;
else if ((state == 0) && !busy)

/1 The flash chip and this state nachine are both idle.

/1 address and wite data inputs.
/1 the data buss ourselves.

Deassert

If a flash operation (read or wite)

94

Latch the user's
CE and W, and stop driving
is

Il requested, npve to the next state.
begi n
flash_address <= {address, 1'b0};
flash_we_b <= 1;
flash_oe_b <= 1;
flash_ddata <= 0;
flash_wdata <= wdat a;

lop <= op;
if (op !'= "FLASHOP_| DLE)
begi n
busy <= 1;
state <= state+l;
end
el se
busy <= 0;
end
else if ((state==0) && flash_sts)
busy <= 0;
else if (state == 1)

/1l The first stage of a flash operation.

The address bus is already set,

/Il so, if this is aread, we assert CE. For a wite, we start driving
/1 the user's data onto the flash databus (the value was |latched in the

/] previous state.

begi n
if (lop == ~FLASHOP_WRI TE)
flash_ddata <= 1;
else if (lop == " FLASHOP_READ)

flash_oe_b <= 0;
state <= state+l;
end
else if (state == 2)

/1l The second stage of a flash operation.

/Il a wite, we assert WE.
begi n

if (lop == "FLASHOP_WRI TE)

flash_we_b <= 0;

state <= state+l;
end
se if (state == access_cycl es+1)
/1 The third stage of a flash operation.

e

Nothing to do for a read. For

For a read, we latch the data

/1 fromthe flash chip. For a wite, we deassert VE.

begi n
if (lop == ~FLASHOP_WRI TE)
flash_we_b <= 1;
if (lop == " FLASHOP_READ)

rdata <= fl ash_dat a;
state <= 0;
end
el se
begi n
if (!flash_sts)
busy <= 1;
state <= state+l;
end

endnodul e

“timescale 1ns / 1ps

R NN NN NN

/1 Conpany:
/'l Engi neer:

/] Create Date:
/1 Design Name:
/1 Modul e Nare:
/1 Project Nane:
/| Target Device:
/1 Tool versions:
/] Description:
in ROM

20: 50: 04 12/ 04/ 06

Met r onomePr ogr ammer

Al'l ows for the reprogram of the beat

95

period in the nusic that

is | oaded

/1 The nmpbdul e acts as a mini ROM storing values for
musi cbeat peri od, and of fset.

/1 O fset specifies the initial beatperiod count,
whi | e nusi cbeat peri od specifies the

/1 regul ar beat period. Programnust be high to
reprogram t hese signals.

/1 I f programselect is high, nusicbeatperiod is

reprogrammed, if not, offset is reprogranmed.
/| Dependenci es:

/1 Revi sion:
/! Revision 0.01 - File Created
/1 Additional Conments:

NN NN NN
nmodul e MetrononeProgramer (cl ock_27mhz, reset, programselect, program value, nusic_beat_period,
of fset);
i nput clock_27mhz;
i nput reset;
i nput program sel ect;
i nput program
input [7:0] val ue;
out put [15:0] nmusic_beat _peri od;
out put [15:0] offset;

reg [15:0] nusic_beat_period = 21900;
reg [15:0] offset = 5000;

al ways @ (posedge cl ock_27mhz) begin
if (reset) begin
musi c_beat _period <= 21900;
of f set <= 5000;
end
el se begin
// does not change val ue unl ess programis sel ected
if (program
//selects either offset or value to program
if (programselect)
of f set <= val ue*100;
el se
musi c_beat _period <= value * 100;
end
end

endnodul e

“timescale 1ns / 1ps
NN NN NNy
/1 Conpany:

/'l Engi neer:

/] Create Date: 17:12:19 12/ 09/ 06
/1 Design Name:

/1 Modul e Name: Si gnal Taner

/1 Project Nane:

/| Target Device:

/] Tool versions:

/] Description: Si gnal Tamer takes the signals fromthe Video Anal ysis section of the

pr oj ect

/1 and converts theminto signals that are easier to
use in the audio side.

/1 Signals fed in are volune_in, and accel eration_in.
Signhals out are volunme_in

11 and accel eration_out, which will be "tamer" than
the raw i nputs. The volune will be

11 smoot hed. On a beat transition edge, the first
hal f of the

11 beat will be dedicated to snoothing the transition

using linear interpolation.

96

/1 The beat will be divided into 32 sections, and the
first 16 will be used to snooth.

/1 Prior to snoothing, choppy playback had resulted.

/1 The acceleration data will be averaged with the
previous result. Both signals are

I/ scal ed to be easier to use on the audio side.
/| Dependenci es:

/1

/1 Revi sion:
/! Revision 0.01 - File Created
/1 Additional Conments:

NN NN NNy
/Il perforns a rudinmentary |low pass filtering, and sets a mninumlevel for the vol une

modul e Si gnal Tamer (reset, clock_27mhz, volune_in, volume_out, acceleration_in, acceleration_out,
beat, sanpl e_count, nusicbeat peri od,
i nterpol ati onsw tch);

i nput reset, clock_27mhz, beat;
input [10: 0] vol une_in;

i nput [10: 0] acceleration_in;

i nput [15:0] sanpl e_count;
output [1:0] accel eration_out;
output [6:0] volume_out;

i nput [15:0] nusicbeat peri od;

i nput interpolationsw tch;

wire [6:0] volunme_out;

reg [6:0] vol ume_out _noni nter pol at ed;

reg [6:0] vol unme_out _interpol at ed;

reg [6:0] tenp_vol une;

reg [6:0] current_vol ume;

reg [6:0] vol une_out_ol d;

reg [1:0] acceleration_out;

reg [1:0] tenp_accel eration;

reg [1:0] current_accel eration;

/lreg [6:0] tenp_ vol une2;

wire [8:0] sum

reg [4:0] division;

al ways @ (posedge cl ock_27mhz) begin
if (beat) begin

//vol unme stuff

//tenmp_vol ume2 <= tenp_vol une;
//tenmp_vol ume <= current_vol une;
current _vol ume <= volune_in >>4;

/ averages vol une_out and gives it a mninmumvalue so audio is always audible
if (sum> 7'b1111111)
vol ume_out _noninterpol ated <= 7'b1111111;
else if (sum < 7' b0010000)
vol ume_out _noni nt er pol ated <= 7' b000000O;
el se
vol ume_out _noni nt er pol ated <= sun{6:0] ;

vol ume_out _ol d <= vol ume_out _noni nt er pol at ed;
/laccel eration/articulation stuff

if (acceleration_in > 100)
current _accel eration <= 3;
else if (acceleration_in > 75)
current _accel eration <= 2;
else if (acceleration_in > 50)
current _accel eration <= 1;
el se
current _accel eration <= 0;

97

tenp_accel eration <= current_accel eration

// averages vol une_out and gives it a mninmmvalue so audio is always audible
accel eration_out <= ((tenp_acceleration + current_accel eration) >>1)

end

/linterpolates volunes so it sounds better in beat transitions

/1 vol unme_out _i nt er pol at ed

vol ume_out _i nter pol ated <= (vol une_out _noni nt er pol at ed*di vi si on + vol ume_out_old * (16-
di vi sion))>>4
end

/linterpolates volunes so it sounds better in beat transitions. divides beat into 32's and
I/ changes vol unes ever 1/32 of a beat. End transition at niddl e of next beat
al ways @ (sanpl e_count or rmnusicheatperiod) begin
if (sanpl e_count <= nusicbeatperiod >> 5)
division =0
el se if (sanple_count <= (nusicbeatperiod >> 5) * 2)
division =1
el se if (sanple_count <= (rnusicbeatperiod >> 5) * 3)
division = 2
else if (sanple_count <= (rnusicbeatperiod >> 5) * 4)
division = 3
el se if (sanple_count <= (rnusicbeatperiod >> 5) * 5)
division = 4
el se if (sanple_count <= (rnusicbeatperiod >> 5) * 6)
division =5
else if (sanple_count <= (rnusicbeatperiod >> 5) * 7)
division = 6
el se if (sanple_count <= (nusicbeatperiod >> 5) * 8)
division = 7
el se if (sanple_count <= (rnusicbeatperiod >> 5) * 9)
division = 8
el se if (sanple_count <= (nusichbeatperiod >> 5) * 10)
division = 9
el se if (sanple_count <= (nusichbeatperiod >> 5) * 11)
division = 10
el se if (sanple_count <= (nusichbeatperiod >> 5) * 12)
division = 11
el se if (sanple_count <= (nusichbeatperiod >> 5) * 13)
division = 12
el se if (sanple_count <=(nusicbeatperiod >> 5)* 14)
division = 13
el se if (sanple_count <= (nusichbeatperiod >> 5) * 15)
division = 14
el se
division = 15
end

//scaling

assign sum = (current_volume) * 5

//can potentially turn off interpolation

assign volume_out = interpolationswitch? vol ume_out _interpol ated: vol unme_out _noni nter pol at ed

endnodul e

98

