

Writing Recognition
Stephanie Hsu

6.111 Fall 2006
Final Project

Abstract:
Writing recognition programs are an increasing component of electronic tools such as
personal data assistants and document processing suites. However, the challenges of

recognizing a hand-drawn image stems from the myriad of ways each character can be
depicted. The project aims to implement a form of writing recognition by constraining

the user to a specific set of predetermined instructions and searching for the correct
character based on the directional movement of the sketch. In this project, the user draws

a character by moving a mouse

Contents
I. Overview 1
II. Module Descriptions 8
III. Testing and Debugging 13
IV. Conclusion 14

I. Overview

The project aims to recognize a user-drawn letter or number. The user sketches
the character by clicking and moving the mouse within the writing pad displayed on
the monitor. The strategy to recognize the written character is based on techniques
used by writing recognition software installed on personal data assistants and relies
on a predetermined set of stroke rules for each character.

1.1 User Interface

The user interfaces with the project through the mouse and the display monitor.
A mouse cursor moved by the user is displayed on the monitor. The outlines of a
writing pad and the recognized character are also shown on the display. Outlines of
the areas on the display are shown in Figure 1.

The characters the project can recognize are shown in Figure 2. The user must
begin sketching the character on the dot and follow the stroke order displayed in
Figure 2. Lower and upper-case letters are not distinguishable by the order of the
mouse stroke. An upper case letter will be displayed if the right mouse-button is
clicked while a lower-case letter will be displayed if the left mouse-button is clicked
while the user is writing a character. In addition, the user must write the character
within the writing pad outline on the monitor.

Characters recognized displayed

Figure 1: Outline of Display

1.2 Character Recognition Algorithm

The algorithm for recognizing characters relies on a specific set of instructions the
user must follow to write a character. Each character begins and ends in a pre-
determined area of the writing pad, which is divided into eight cells as shown in
Figure 3. Based on the beginning and ending cell of a writing sequence, the
algorithm assigns one of seventeen possible FSMs to attempt to identify the character.
The assigned FSM analyzes the sequence of cells that the mouse travels through to
match the sketched character with the correct ASCII code. If no character match can
be found, the display will output a question mark.

Figure 3: Writing Pad

0000 0001

0010 0011

0100 0101

0111 0110

Figure 2: Recognizable Letters and Numbers: The dot indicates the starting point of
the mouse

This method serves to quickly divide possible matches into sections based on the
broad criteria of the first and last cell entered by the mouse. Each FSM then
sequentially analyzes the sequence of cells the mouse traveled through to identify the
character written. A sample FSM that analyzes sequences beginning in cells 0 or 2
and ending in cells 1 or 3 is shown in Figure 5.

1.3 Implementation

 The project consists of 3 large modules, each of which is broken down into
several smaller submodules. The connections between the modules are shown in Figure
6. The mouse module decodes data input from a PS/2 mouse interfaced with the labkit
and translates the information into x and y position coordinates on the display screen. In
addition, the module also outputs information about the buttons clicked on the mouse.
The character recognition module stores information about the movement of the mouse
when the user is writing by storing the sequence of cells that the mouse passes through
into BRAM. The BRAM is accessed by the character recognition to implement the
algorithm described in section 1.2. Once the character has been identified, the ASCII
code is sent to the display module and output onto the monitor.

A

B

C

D E:
Valid “V”

F

G:
Valid “W”

(2, 4)

(4)

(5, 6)

(7)
(3)

(6)
(5, 7)

Figure 5: FSM 13, which decides between “V” and “W.” Numbers in
() are the input cells from memory that cause the FSM to change
state. Numbers in [] indicate that the input cell is the last of the
sequence.

[1, 3]

[1, 3]

(5, 6)

(3, 5, 7)

Reset

Mouse Module
Mouse_data

Left button

x location

Figure 7: Mouse Module

y location

Right button

II. Modules

2.1 Mouse Module

The mouse module receives data from a PS/2 mouse interfaced with the labkit,
which transmits changes in the x and y position of the mouse as well as information about
the mouse. The mouse module (modified example from the 6.111 code bank) uses the
top right hand corner of the screen as a reset point and determines the actual location of
the mouse on the screen. The x and y coordinates are output to the character recognition
module. Figure 7 outlines the input and output signals of the mouse module.

\

M
ouse M

odule

Left Button

x location

y location

Right Button

mouse
input

reset

C
haracter R

ecognition M
odule

next_char

find_finish

D
isplay G

enerator

To monitor

Figure 6: Block Diagram Major Modules

The mouse module runs continuously and goes to the upper left-hand corner of

the screen once the reset button is pushed. The module was taken from the Fall 2005
6.111 code bank [1].

2.2 Character Recognition Module

The bulk of the project, the character recognition module analyzes the position of
the mouse on the screen, identifies the character the user is sketching, and outputs the
ASCII code for the recognized character to the display module. Figure 8 illustrates the
components of the module.

BRAM:
The 16x8 bit memory block stores the sequence of cells the mouse passes through

while writing a character.

mouse_cell controller:
The mouse_cell controller uses the x and y coordinates extracted from the mouse

input data to identify the area of the display the mouse cursor occupies. If the mouse
cursor is not within the writing pad, mouse_cell is set to 1000. Otherwise, mouse_cell
equals the number of the cell (as shown in Figure 3) it occupies. Mouse_cell is output to
the mouse_finish controller and the BRAM. Parameters within the module determine the
size of the writing pad.

mouse_finish controller:
The mouse_finish signal is only low if the user is clicking within the writing pad.

The controller uses the mouse_cell signal to determine whether or not the user has
finished writing by only remaining low if mouse_cell equals a valid cell number within
the writing pad. In addition, mouse_finish will be high if the number of cells traced by
the mouse within a sequence exceeds the size of the BRAM. The signal is output to the
write_address controller, the read_address controller, and the BRAM.

A low mouse_finish allows the write_address controller to store information into
memory because the inverse of mouse_finish is input into the BRAM as the write enable
signal. Since the user has not finished writing when mouse_finish is low, the cells in the
writing pad that the mouse travels through are stored sequentially into BRAM. Once the
user has stopped writing, either by releasing the mouse button, leaving the writing pad, or
traveling through more than 16 cells, mouse_finish becomes low and the module begins
the process of identifying the character. A high mouse_finish allows the read_address
controller to begin accepting memory addresses from the FSM submodule. In addition,
the signal controls the address input into the BRAM.

write_address controller:
If mouse_finish is high, the write_address controller increments the BRAM write

address each time mouse_cell changes. In addition, the controller keeps track of the
highest address used for any sequence and outputs the signal to the BRAM read_address

controller. Highest_address serves to mark the end of a stored sequence as the BRAM is
not cleared between successive sequences to be stored.

read_address controller:
The read_address controller manages the data read from the BRAM. Once the

user has finished writing and mouse_finish becomes high, the read_address controller
identifies the first and last cell of the stored sequence from the BRAM by using the
highest_address signal. The start_id signal then becomes high for one clock cycle to
trigger the identify FSM submodule. During operation of the FSM, the read_address
controller accepts addresses from the FSM and returns the data stored in the memory to
the FSM.

Identify FSM:
The Identify FSM module uses the begin_cell and end_cell data from the

read_address controller to decide which of seventeen FSMs to use. The module outputs
FSM_num and a signal, idFSM_end, indicating that the correct FSM has been found to
the FSM module. The FSM module will only run if idFSM_end remains high.

FSMs:
The FSMs module contains the main algorithm to determine which character was

written. Using FSM_num, the module identifies the FSM to be used and outputs
fsm_address to the read_address controller to indicate which entry of the memory block
is needed. Once the chosen FSM has reached a conclusion, the ASCII code for the
character is output on next_char to the display module. In addition, the runFSM_end
signal becomes high. The second output of the character recognition module, find_finish,
is determined by the AND of runFSM_end and idFSM_end. Once both signals are high,
the module has finished analyzing the sequence of cells currently stored within the
BRAM, and the user can begin writing another character.

mouse_cell
mouse_cell
controller

x location

y location

left_button

location

right_button

location

mouse_finish
controller

mouse_finish
write_address

controller

BRAM

read_address
controller

highest_address

FSMs

Identify FSM

w
rite_address

NOT

write_address

data_in

start_id

end_cell

begin_cell

idFSM_end

FSM_num

AND

next_char

data_out

find_finish

fsm
_address

cell_in

Figure 8: Character Recognition Module

2.3 Display Module

The display module uses the ASCII codes sent from the character recognition

module to display the character on the computer monitor. Beginning in the upper-left
corner of the screen, the characters recognized are displayed in a string. Figure 9 outlines
the components within the display module.

char_string controller:
 The char_string controller module keeps track of the section of char_string that

should be changed by the next character recognized. In addition, the user can also delete
characters displayed by sketching a backspace.

char_string_disp:
The char_string_disp module decodes the string of ASCII codes from the

char_string controller and sends the correct address to the font_rom. The returned
font_byte contains the pictorial encoding for the desired character. Cx and cy, the
coordinates of the upper left-hand corner of the displayed string, are set to zero.
Char_string_disp generates the image through combinational logic and returns a blank
pixel if hcount and vcount are not within the parameters of the displayed string. The
char_string_disp module was taken from the Fall 2005 6.111 sample code bank [1].

hcount

font_address

location

font_byte

font_rom

char_string_disp

pixel

vcount

nt

C
har_string controller

cx

cy

Inputs from display generator
(hcount, vcount, hsync, vsync)

pixel

Figure 9: Display Module

char_string

B

III. Testing and Debugging

The most serious debugging issues predictably occurred while testing the components
of the character recognition module and while synchronizing the control signals between
the modules. Each component of the module relies on a control signal that exhibits a
specific behavior to trigger the submodule to begin but that could not always be
accurately simulated in ModelSim.

A particular example of this issue occurred with the mouse_finish and find_finish
signals. These signals have a circular relationship in that one triggers the other to go high
or low after some function has been completed. In addition, mouse_finish and
find_finish also act as control signals for other components, such as the BRAM write
enable signal and the read_address controller. Test modules within ModelSim confirmed
that each individual block was fully functional when mouse_finish and find_finish were
input manually into the test cases. However, it was difficult to simulate more than one
writing sequence as the mouse- and find- finished signals were determined by different
components.

The fsm_address also needed to be controlled by more than the idFSM_end signal,
which is only low for one clock cycle. The initial design allowed the fsm_address to
increment if idFSM_end was high, which caused the FSM to cycle rapidly when the
read_address controller was not ready and settle into the null state. Although
fsm_address resets to zero when the Identify FSM module sets idFSM_end to high, the
FSM state remained in the null state because no character had been identified. This
problem was solved by also ensuring that the Identify FSM module had reached the state
in it’s module that accepted fsm_addresses from the FSM before allowing fsm_address to
increase and the FSM to change state.

A second issue arose when reading data from the BRAM. There is a three clock
cycle delay between the output of an address from the FSM module to the input of the
correct data from the BRAM because the address and the return data first pass through
the read_address controller. Therefore, the FSMs were delayed to accommodate the time
lag. In ModelSim, this issue was not caught as the simulator was unable to read from
memory and the data inputs were manually created but was a major source of error when
all modules were connected.

Debugging the FSMs proved to be tedious but relatively simple. The path of the
mouse could be traced through the FSM if an error occurred and the state transition logic
fixed easily. The displays on the labkit were useful as they were set to display FSM_num
and next_char.

VI. Conclusion
The main challenge of the project was the development and implementation of the

writing recognition algorithm. While the current method of dividing the recognizable
characters into seventeen subsets neatly segments a larger pool of possibilities into
smaller, more easily manageable sections, the initial requirement of predetermined
starting and stopping areas decreases the usability of the algorithm. The user must
remember the specific instructions for each character to use the program as the
instructions distort the usual image of the character.

A source of the difficulties with writing recognition lies in the individual nuances

of each character. Using only 8 cell divisions, the writer must exaggerate his movements
with the mouse to ensure that correct character is identified. Dividing the writing pad
into greater numbers of cells would help alleviate this issue but would introduce an added
level of complexity to the algorithm and result in increased memory requirements and
analysis times.

Sources
[1] “6.111 Handouts” <http://web.mit.edu/6.111/www/f2005/index.html>.

http://web.mit.edu/6.111/www/f2005/index.html>

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

