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Abstract 

 
This project implements a windows manager program responsive to a user’s hand 
movements. Windows can be opened, moved, minimized, and closed by four different 
hand gestures. The XVGA display contains two windows, two icons, and a task bar to 
which both windows can be minimized. The project was developed in two parts, one that 
analyzed the video input and determined the center of mass of the user’s hand and the 
action the user is performing, and another that generates the XVGA display seen by the 
user and performs the actions determined in the other part. During debugging, common 
problems had to do with windows not responding to the user’s actions. This was due to 
several factors such as the center of mass going off the screen, logic in the gesture 
interpreter, and glitching with displaying the BRAM data. These problems were resolved 
by wiring inputs and outputs to the hex display and observing what actions caused logic 
problems.
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1 Windows Manager Overview 
 
 
1.1 Introduction 
 
For this project, a windows manager that is responsive to hand movements in front of the 
screen was designed and implemented.  The idea originated from the major motion 
picture, Minority Report, in which Tom Cruise manipulated windows on a screen simply 
by moving his hands. Our project emulates this concept by recording the movements of 
the user’s hands with an NTSC camera and translating these movements into commands 
that change windows displayed on a 1024x768 XVGA screen. 
 
1.2 Setup 
 
The camera faces the computer screen. The user manipulates windows with his or hand 
between the camera and the screen. A picture of the setup can be seen in Figure 1.1. 
 

 
Figure 1.1 Setup – hand between camera and computer screen. 

 
1.3 Configuration 
 
To use the windows manager, the user’s hand sizes must first be configured with the 
system. In order for the windows manager to work, the user must be wearing a black 
glove. Bright lighting also helps because dark shadows interfere with the video 
processing. The hand gestures are determined based on hand sizes so calibration of the 
program to the user’s hand is important. 
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There are four hand gestures to calibrate, open, move, minimize, and close. The user’s 
hand should be in a fist shape for all four actions. The four actions are differentiated by 
the distance between the hand and the camera. The open gesture should be furthest away 
from the camera and the close gesture the closest. The four gestures should be a 
significant distance apart (~ 1.5 inches). Otherwise the windows manager will be difficult 
to use. 
 
To calibrate a hand shape, hold the hand in the desired position and press the calibrate 
button for a few seconds. Then program this area into the windows manager by using two 
switches to select the gesture and pressing the reprogram button. This should be repeated 
for all four gestures. The hand area and area to be reprogrammed into the windows 
manager are both displayed on the hex display if switch[4] is off. The user can then check 
if the area to be programmed is the desired area. See Figure 1.2 for a labeled diagram of 
the hex display. A table of the switches and the corresponding gestures is shown in Table 
1.1. Figure 1.3 shows a diagram of the buttons and switches used for configuration. 
 

 
Figure 1.2 Hex display if switch[4] is off. Boxes represent a set of four digits in hex. 

 
Table 1.1 Hand size select switches and associated hand gestures. 
Switch[2:1] Gesture 

00 OPEN 
01 MOVE 
10 MINIMIZE 
11 CLOSE 

 
In addition to hand size calibration, the screen size may also need to be calibrated. Screen 
size calibration requires adjusting parameters in the Verilog file. The Verilog files will 
need to be recompiled. To calibrate the screen, flip on switch[7] to see the camera 
window. Next, find the minimum and maximum x and y values the hand can move to 
without part of the hand leaving the camera window. A 10x10 blob can be moved with 
the directional buttons and turning on switch[4] will display the x and y coordinates of 
this blob on the hex display. See Figure 1.4 for a labeling of the different values 
displayed on the hex display. The xmin, xmax, ymin, and ymax values must be input into 
the center of mass module. 
 

 
Figure 1.3 Buttons and switches used for configuration. 
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Figure 1.4 Hex display if switch[4] is on. 

 
1.4 Display 
 
Once the user’s hand shapes are stored into the system, she is ready to use the windows 
manager. The screen first displays two icons on the top right corner and a task bar on the 
bottom. The left side of the task bar will show minimized windows. When a window is 
selected, a small square corresponding to the window selected will appear on the right 
side of the task bar. (See Appendix A.1 for photo) 
 
A colored dot will follow the user’s hand around the screen. The color of the dot reflects 
the command the user’s hand is communicating to the system. The user controls the 
windows manager by the relative size of her hand according the camera. So as the user 
moves her hand closer to and farther from the camera, she will be indicating different 
commands to the system. 
 
1.5 Usage 
 
Selecting 
 
To open a window, the user must perform the operation open on the icon. To do this, the 
user will move her hand towards one of the icons so that the curser dot is exactly on top 
of the icon. The user will put her hand approximately 2-3 inches from the screen or when 
the curser turns yellow. Her hand should be in a fist. After 2 seconds, the system will 
register the user’s request and the window will open in its default location. The square on 
the right side of the taskbar will appear accordingly. (See Appendix A.2) If the window is 
already open, the above steps will bring the selected window on top at its current 
location. Opening a window from its minimized state requires the same steps as above 
except the curser will be pointing to the minimized box on the bottom of the task bar. 
However, opening a window from the task bar will return the window to its last opened 
location. 
 

Table 1.2 A colored dot follows the user’s hand around the screen. The color of the dot corresponds to 
the gesture hand performs. 
Color Gesture 
Green • Idle 
Yellow • Select/Open 
Blue • Move 
Red • Minimize 
Light Blue • Close 

 
The user may also perform the select operation on the window itself. This is important 
because the other functions cannot be performed to a window unless it is selected. When 
the user moves his hand so that a yellow curser appears on a window for 2 seconds, she 
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will have selected this window and have brought the window to the foreground. The user 
may also choose to deselect all windows by holding a yellow curser above a space that 
has no windows, icons, or minimized objects for 2 seconds.  
 
Moving 
 
In this windows manager, the user can only move windows around. The icons, taskbar, 
and minimized objects are all stationary. To move a window, the window must first be 
selected. The user can see if the window is selected if the corresponding window color is 
lit on the right side of the task bar. (See Appendix A.3) 
 
Moving a window begins when the user first gives the windows manager the move 
signal. Her hand should be about 3-4 inches away from the screen. The curser dot will 
turn blue when she is at the right distance. After the curse has stayed blue for 2 seconds, 
the window will follow the user’s hand around the screen.  
 
The user will be able to move the window to any location as long as her hand does not 
return to the move position. As a helpful hint, the user can open her hand so that all five 
fingers are out when she is moving the window around. Because the system registers 
commands by the size of the user’s hand, an opened hand will cover more area and stop 
the windows manager from recognizing the move position. To active make sure the hand 
does not enter the move position, the user will need to watch the curser on the screen 
carefully. As long as the curser does not stay blue for 2 seconds, the user will be able to 
freely move the window around. 
 
Once the user has found the new location of the window, the user must enter the move 
position again. The hand, now a fist again, must be about four inches away from the 
screen and the curser will be blue again. After 2 seconds, the window will no longer 
follow the hand around the screen. 
 
Minimizing 
 
The minimize function can only be performed on windows. Specifically, the user can 
only minimize the selected window. The selected window will be obvious to the user by 
the color of the box on the right side of the taskbar. To perform the operation, the user’s 
hand must be around 4-5 inches away from the screen in. After holding her hand in this 
position for 2 seconds, the window will disappear and a flat rectangle will appear on the 
left side of the taskbar. (See Appendix A.4) 
 
There is space on the taskbar for both windows to minimize. The first window minimized 
will appear on the first location from the left side of the screen. If a second window is 
minimized, the minimized object will show up to the right of the first minimized object. 
If the first window minimized is selected to be opened again, the second minimized 
object will move to the first minimized object’s location. 
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When an object is minimized, the system remembers the location where the window last 
resided so that if the user chooses to open the window again, it will be at the same 
location as before. 
 
Closing 
 
The user can only close a selected window. If no window is selected, holding the hand in 
the select position will reflect no changes on the screen. When a window is selected, the 
corresponding box will appear on the right side of the task bar. The user will then place 
her fist approximately 5-6 inches away from the screen. The user will know her hand is in 
the right location when the curser turns light blue. After holding her hand in the close 
position for 2 seconds, the window will disappear. The last location of the window will 
be lost in the system. The user can open the window again only if she performs the select 
operation on the corresponding icon. Then the window will appear at its default location. 
 
1.6 Other 
 
The windows manager can also be reset by the enter button on the 6.111 lab kit  
(see Figure 1.2). The user must be careful to not press this button unless a complete reset 
is needed. Resetting the system will result in deleting all the stored hand sizes of the user 
and closing all the windows.  
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2 Modules / Implementation 
 
The implementation of this project was split into two parts, the video processor and the 
windows manager. The video processor section determines the action the user is 
performing by analyzing the video input and outputs this action allow with the 
coordinates of the center of mass of the hand to the windows manager section. The 
windows manager section takes the action and coordinates and moves the windows 
accordingly. It also outputs the windows, icons and taskbar to the XVGA display. In 
addition, the windows manager section sends xvga signals to the video processor. 
 
Video Processor 
 

 
Figure 2.1 Block diagram of the video processor section. 

 
2.1  Video Decoder 
 
The video decoder module is taken from the 6.111 website and was not modified.1 The 
module takes the video input from the video composite-in port on the 6.111 labkit and 
outputs a 24-bit number containing the luminance and chrominance values. It also 
outputs field, vertical and horizontal sync signals and a data valid signal. 
 
 
 
                                                 
1 Ike Chuang and Chris Terman, 6.111 sample code, Fall 2005. 
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2.2  YCrCb to RGB Converter 
 
A YCrCb to RGB converter module was already written. The module takes in 10-bit Y, 
Cr, and Cb signals and outputs 8-bit red, green and blue signals. This 18-bit rgb signal is 
input into the ZBT write module. 
 
2.3  Write and Read from ZBT RAM 
 
The 18-bit rgb signal is input into the ntsc_to_zbt module, which prepares this data for 
storage into the ZBT RAM. The incoming signals also include the 65 MHz system clock, 
the 25 MHz video clock and field, vertical, and horizontal sync, and data valid signals 
from the video decoder module. This module outputs an address, data, and a write enable 
for the write to ZBT module. The incoming video frames are even/odd interlaced, but the 
even lines are thrown out by the ntsc_to_zbt module and the odd lines are displayed 
twice. 
 
The 6.111 website’s ntsc_to_zbt module wrote only luminance values to the ZBT RAM.2 
The module was modified to display color as well. The width of the ZBT RAM is 36 bits. 
Originally, each location stored the four pixels worth of data (i.e. 8 bits per pixel of 
luminance data). In order to store color data as well, each location was modified to hold 
only two pixels, each with 6-bits of red, green and blue data. 
 
The data from the ntsc_to_zbt module is written into the ZBT RAM by the ZBT driver 
module, zbt_6111. The write enable is delayed by two clock cycles. This module also 
contains a two-stage pipeline for the write data. 
 
Data is read from the ZBT RAM by the vram_display module. Since the ZBT RAM has 
two cycles of read and write latency, the data must be latched at the appropriate time. 
This module was also modified to handle two pixels per ZBT location instead of the 
original four. The vram_display module outputs 18-bit pixel data at 65 MHz, and this 
data is analyzed by the following modules to interpret the user’s hand gestures. 
 
2.4  Center of Mass Finder 
 
The center of mass finder module takes in the 18-bit pixel data signal from the ZBT read 
module as well as hcount and vcount from the xvga module. It outputs the x and y 
coordinates of the center of mass and the area of the user’s hand. 
 
The module compares each incoming pixel with the set threshold rgb values. If the pixel 
rgb values are below the threshold values, the pixel’s hcount is added to the sum of x-
coordinates and the vcount to the sum of y-coordinates. These threshold values were 
determined to be 6’b001111 for red, green and blue to work with the black glove used in 
this project. These values can be easily modified for different colored gloves. A 
hand_count register also stores the number of pixels that fall below this threshold. 
                                                 
2 Ike Chuang and Chris Terman, 6.111 sample code, Fall 2005. 
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Not all pixels are compared with the threshold values. The pixels are limited by their 
hcount and vcount. Only those with hcounts and vcounts that fall within the range of the 
camera window are compared. The ZBT outputs a 1024x768 screen but the camera 
window is only 720x480 pixels. 
 
To determine the x and y coordinates of the center of mass, this module instantiates four 
dividers. Two (divider1 and divider2) divide the sum of the coordinates by the value in 
the hand_count module, for x and y separately. The other two dividers (divider3 and 
divider4) adjust the coordinates for the 1024x768 display in the windows manager 
section. At the end of each frame, when vcount is equal to the maximum vcount of the 
camera window, the divider enable for divider1 and divider2 is set to 1. Hand_count is 
written to hand_area, which is output to the hand_shape module. Also, a 1 is written to a 
user register if the hand_area is greater than a minimum size. This is used to decide if the 
user’s hand is present or not. If a hand is not detected, the coordinates are set to (0,0). 
The quotient of divider1 and divider2 are the x and y coordinates of the center of mass on 
the 1024x768 output of the ZBT. However, the camera window only occupies a portion 
of the screen. If the center of mass were to be output to the 1024x768 display of the 
windows manager, the center of mass would not be centered. 
 
To adjust for this, the x and y coordinates are stretched to match a 1024x768 pixel screen 
using the x and y ranges of the user’s hand movement. The x and y coordinates are 
multiplied by 1024 and 768 and divided by the x and y ranges, respectively. This is 
implemented with divider3 and divider4. The x and y ranges are determined by the view 
of the camera. The ranges must allow all of the user’s hand to be shown in the camera. 
Otherwise, the hand sizes needed for the hand shape module would be incorrect. 
 
In addition, this module also checks if the adjusted x and y coordinates will be out of the 
range of the windows manager display. If so, then the center of mass is kept at the edge 
of the screen and stopped from falling off the screen. This feature is important because 
otherwise, glitching would occur in the memory readouts from the BRAM in the 
windows manager module due to the negative x, y coordinates. 
 
2.5  Screen Size Calibration 
 
The move_blob and blob modules are used to calibrate the screen size. As mentioned in 
the center of mass section, all of the user’s hand must be in the camera view or the hand 
size would be skewed. To find this range of x and y values, there’s a 10x10 pixel blob 
that can be moved with the up, down, left, and right buttons. The hex display will show 
the x and y coordinates of the top left hand corner of the blob. These values should then 
be input into the center of mass modules under x and y minimum and maximum values 
for the windows manager screen. 
 
The blob module takes in x and y coordinates and hcount and vcount. It outputs a 3-bit 
pixel. This module displays pixels for the length of the parameters WIDTH and HEIGHT 
starting at the input x and y coordinates. 
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The move blob module takes as input the four directional buttons on the lab kit and vsync 
from the xvga module. It outputs the x and y coordinates, which are then input into the 
blob module. The module stores the vsync from the previous clock cycle into a register, 
old_vsync, and compares this with the current vsync to find the edge of vsync. At the 
edge of vsync, the x and y coordinates are updated. The speed of the blob is currently set 
to 1 so it can be maneuvered more precisely, but this speed can be changed. The 
directional buttons increase or decrease the corresponding coordinate by the speed. 
 
2.6 Hand Shape Detector 
 
The hand shape detector module determines what the user’s hand gesture is based on the 
hand area output from the center of mass finder module. There are default parameters set 
for each of the four gestures, select/open, move, minimize, and close. These default 
values are written to registers at reset. 
 
At each positive clock edge, the input hand area is compared to the four hand sizes. If the 
input falls within the margin of error of one of the sizes, that hand shape is output to 
hand_shape. Otherwise, hand_shape is set to IDLE. 
 
The different sizes can also be reprogrammed using the reprogram button, the size select 
switches, and the area output from the hand size calibration module. The two switches are 
used to select which hand shape to reprogram. The area to be programmed is the output 
of the hand calibration module. Pressing reprogram sets the shape selected to the new 
area and this area will be used until reset is pressed. 
 
Table 2.1 Hand size select switches and associated hand gestures. 
Switch[2:1] Gesture 

00 OPEN 
01 MOVE 
10 MINIMIZE 
11 CLOSE 

 
2.7  Hand Size Calibration 
 
The hand calibration module is used to measure a new hand size. The module takes in a 
calibrate signal, a reset signal, and an 18-bit hand_area signal from the center of mass 
finder module. An 18-bit old hand register stores the area of the hand from the previous 
clock cycle. A 19-bit hand register stores the sum of the old hand and the input 
hand_area. At reset, these two registers are set to zero. At every positive edge of the 65 
MHz clock, if the calibrate button is pressed, the new hand_area is added to the old_hand 
value and this sum is written to the hand register. 
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2.8  Gesture Interpreter 
 
The gesture interpreter module determines the action the user wishes to perform based on 
the series of hand shapes he or she uses. This module uses a finite state machine to 
transition between the different commands. Figure 2.2 shows the state transition diagram. 
A legend for the abbreviations is given in Table 2.2. This module receives a hand_shape 
from the hand shape detector module and x and y coordinates from the center of mass 
module. In addition, it receives a hand_ready signal that goes high once a frame and a 2-
bit select signal from the windows manager module. The module outputs a 4-bit action to 
the windows manager module. 
 
At reset, the state is set to RESET. It remains in RESET if hand_shape is 3’b000, and 
action is set to 4’b0000. At every positive clock edge, the module checks if reset has been 
pressed. If not, then the module checks if it is at the rising edge of hand_ready. If so, state 
transitions are made and counters are incremented. The rising edge of hand_ready is 
checked by comparing a stored hand_ready signal from the previous clock cycle with the 
hand_ready in the current clock cycle. 
If hand_shape becomes one of the four recognized shapes, the state transitions to the 
corresponding state. However, the action is still set to 4’b0000. In the new state, the 
hand_shape must be held for a set number of frames before the desired action is output. 
This is to ensure that random user hand movements do not result in an action. Only 
shapes that are held for around two seconds will be recognized by the windows manager. 
Each action has a counter that increments at every rising edge of hand_ready. These 
counters are stored in open_wait, hold_wait, min_wait, and close_wait. At reset, all of 
these registers are set to zero. The length of time the user is required to hold each shape 
before an action is output can be set in the parameters section of the module. Currently, 
the length is set to 60 frames for all of the shapes. 
 
Table 2.2 Legend for state transition diagram 

hs hand shape 
OL open length 
CL close length 
ML minimize length 
HL hold length 
OW open wait 
CW close wait 
MW minimize wait 
HW hold wait 

 
 
Open, minimize, and close are very similar states.  All three require the appropriate hand 
shape for the FSM to transition into the state from RESET. Once in the state, if the hand 
shape stays the same, the state’s corresponding counter is incremented every frame. The 
module also checks if the movement of the center of mass is within the margin of error 
before incrementing the counter. Therefore, actions are not recognized if the user’s hand 
is continuously moving. This check is implemented by storing the previous clock cycle’s 
coordinates in registers and comparing them with the new coordinates. If the hand shape 
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changes from that of the state’s anytime before the required length of time has passed, the 
FSM transitions back to RESET. If the required length of time has been completed, the 
FSM outputs the desired action and transitions to RESET. The counter is also reset to 
zero. 
 

 
Figure 2.2 State transition diagram for the gesture interpreter module. 

 
Move is a more complex action, since the user requires that the window follow his or her 
hand for an indefinite amount of time. When hand shape first becomes the move shape in 
the RESET state, the FSM transitions to the HOLDING state. In HOLDING, the FSM 
checks for three criteria before it increments the hold counter. The hand shape must be 
the hold shape and the movement of the center of mass must be within the margin of 
error. In addition, the select signal from the windows manager module must be nonzero. 
A nonzero select signal means that one of the windows has been selected. This check is 
important because if no window is selected, the user has no feedback that he’s in the 
HOLDING state and it becomes difficult to leave that loop. 
 
Once the hold shape has been held for the required length of time, the FSM transitions to 
the HELD state as soon as the user changes to a different hand shape, and the counter is 
reset to zero. This is so the user does not have to maintain the hold hand shape while 
moving the window around. If the user has not yet changed to a different hand shape, the 
FSM stays in the HOLDING state, but does not increment the counter, and the action 
signal is set to HOLD_WINDOW. In the HELD state, a hold shape transitions the FSM 
into RELEASE. Any other hand shape keeps the FSM in HELD. The action is set to 
HOLD_WINDOW the entire time. In RELEASE, the user must once again keep the hold 
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shape for a length of time to release the window. This sets action to IDLE. If the hold 
shape is not held for long enough, the FSM goes back to HELD and the counter is reset to 
zero. Table 2.3 contains a list of the various variables and registers mentioned in this 
section. 
 
Table 2.3 List of FSM states, counters, and actions. Actions occur when a counter has been incremented to 
the required length of time. 

State # State Counter Actions 
000 RESET n/a IDLE 
001 OPEN open_wait OPEN_WINDOW 
010 HOLDING hold_wait HOLD_WINDOW
011 MIN min_wait MIN_WINDOW 
100 CLOSE close_wait CLOSE_WINDOW
101 HELD n/a HOLD_WINDOW
110 RELEASE hold_wait IDLE 

 
 
Windows Manager 
 
2.9 Display 
 
The screen of the windows manager displays 1024x768 pixels. To drive this many pixels 
with a refresh rate of 60Hz, a 65-Mhz clock was used throughout the display. The 
FPGA’s digital clock manager was used to make the 65-Mhz clock from the normal 27-
Mhz clock. With the 65-Mhz clock, the XVGA module produces the hcount, vcount, 
hsync, vsync, and blank signals required to drive the video output. The hcount signal 
sweeps horizontally across the screen while the vcount signal sweeps vertically down the 
stage. Hsync and vsync signals are high when hcount and vcount reaches the end of the 
screen respectively. 
 
The color of the screen is made up of three signals: vga out red, vga out green, and vga 
out blue. These three signals, each an 8-bit number operate at 65-Mhz and put together 
represent the color at the pixel location indicated by the hcount  and vcount.  
 
The second module in the display component of the system is the windows manager 
module. The windows manager determines the red, green, and blue values (RGB) at each 
pixel as indicated by hcount and vcount. To simplify matters for the display, instead of 
outputting  a 24-bit number, the windows manager module will only output a 4-bit 
number. This allows the screen to display 16 different colors, enough for the system. The 
4-bit number is finally mapped to the corresponding 24-bit RGB value to be sent to the 
screen.  
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Figure 2.3 Hcount increments by one as it sweeps across the screen and vcount increments by one as it 
sweeps down the screen. At the end of each horizontal sweep, hsync pulses. At the end of each vertical 
sweep, vsync will pulse.3

 
 

 
Figure 2.4 The color at each pixel is the combination of three colors: red, green, blue. The intensity of 
each color is determined by the signals vga out red, vga out green, and vga out blue respectively.4

                                                 
3 Chris Terman., 6.111 Lecture 16, Fall 2006, p. 15 
4 Chris Terman, 6.111 Lecture 16, Fall 2006, p. 2. 
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Figure 2.5 The display component uses two modules XVGA and windows manager. The XVGA 
module creates signals that produce a 1024x768 screen that refreshes at 60Hz. The windows manager 
takes the video signals produced from the XVGA module and coordinate and command signals to 
determine a 4-bit pixel that can be translated into 16 different colors. 

 
The phsync, pvsync, and pblank signals are the same signals as hsync, vsync, and blank 
inputs to the windows manager. They go into the windows manager module in case there 
exists a delay between the hcount and vcount signals and the pixel signal. In this system, 
the pixel signal is synchronized with hcount and vcount so phsync, pvsync, and pblank 
are assigned the same values as hsync, vsync and blank signals. 
 
The selected windows and visibility signals are debugging lines used during the design 
stage. The are connected to led[7:6] and led[5:4] respectively. The selected window 
signal is also fed back to the video processor. The feedback stops the video processor 
from sending out a moving command when no windows are selected. Without the 
selected window feedback, the FSM in the video processor would enter the moving state 
without the user knowing thus preventing all other hand gestures to be recognized 
 
The video processor gives the window manager four signals to determine the RGB value 
at each pixel: x, y command, and color. The color signal corresponds to the hand shape 
the video processor recognizes. The x and y signals represent the location of the center of 
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the hand. The windows manager displays a 5 pixel by 5-pixel square at the pixel location 
given. The curser image is created by a blob sprite that takes as input x, y, color, hcount, 
and vcount. The blob creates a colored square when hcount is between x and x+5 and 
when vcount is between y and y+5. The color of the square changes according to the 
color signal given by the video processor. The purpose behind the color of the cursor is to 
give feedback to the user about what command the windows manager system sees from 
her hand shape. 
 
The windows manager is in charge of two windows, window0 and window1. There is 
also a task bar on the bottom of the screen, made by a sprite like the curser. Other objects 
that interact with the windows are the icons, icon0 and icon1, minimized objects, 
minimized0 and minimized1, and the selected box, selected0 and selected1. All eight of 
these objects that are displayed on the screen by modules that read from a Read Only 
Memory. Like the blob sprite that creates the curser, each of these modules know the 
width and height of their respective objects. The windows manager feeds each module 
the x and y coordinates of their respective objects. The module then returns the necessary 
pixel colors when hcount and vcount are between x and x+width, and y and y+width. 
When hcount and vcount are outside the object boundaries, the modules return a blank 
pixel, which is the background color purple. 
 
Each memory is four bits wide and contains the color information about the object 
displayed. The memory is created in BRAM and requires only three ports: a clock, 
address, and data. The data lags the address given by one clock cycle. Each module resets 
the address signal to zero after an entire screen has printed, or when vsync is high. Then 
address increments when hcount and ycount are within the given limits.  
 
The size of the windows were limited by the size of the BRAM available on the labkit. 
Each ROM was initialized by a .coe file through Xilinx’s core generator. Microsoft Paint 
was used to create each of the objects. The images were saved as a 16 color Bitmap. Then 
a Matlab script created .coe files for each Bitmap file (see Appendix B). The color map 
from Matlab is the color map used to convert the 4-bit pixel signal into the 24-bit RGB 
signal.  
 

Table 2.4 Each object’s pixel information is stored in a 4-bit wide read only BRAM. Each pixel in the 
picture is an address in the memory. 
Object Size (width x height) Memory 
Window0 200x350 280k 
Window1 350x400 560k 
Icon0 50x50 10k 
Icon1 50x50 10k 
Minimized0 100x30 12k 
Minimized1 100x30 12k 
Selected0 30x30 3.6k 
Selected1 30x30 3.6k 
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Icons are stationary objects on the screen. They do not move, but are always there as long 
as windows do not cover them. The icons are physically located at the top right corner of 
the screen. 
 
There are four sets of signals that together determine if a select object needs to appear on 
the bottom right of the screen, if a minimized object needs to appear on the taskbar, or if 
a window is opened on the screen. Selected window, visibility, location0, and location1 
each is 2-bits wide and store all the information necessary,.  
 

Table 2.5 The four signals together control which windows, minimized objects, and select box to display. 
Note that location0 and location1 can be the same only if their values are both 2’b00. 

Bit Selected window Visibility Location0 Location1 
00 No windows 

selected; No 
selected boxes 
displayed. 

No windows are 
displayed on the 
screen 

No objects 
minimized at the 
first minimized 
location. 

No objects 
minimized at the 
second minimized 
location. 

01 Window0 is 
selected; window0 
should be on top; 
select0 is 
displayed. 

Only window0 
should be 
displayed on the 
screen. 

Window0 is 
minimized at the 
first minimized 
location. 

Window1 is 
minimized at the 
second minimized 
location. 

10 Window1 is 
selected; window1 
should be on top; 
select1 is 
displayed. 

Only window1 
should be 
displayed on the 
screen. 

Window1 is 
minimized at the 
first minimized 
location. 

Window1 is 
minimized at the 
second minimized 
location. 

11 N/A Both window0 and 
window1 should 
be displayed on the 
screen. 

N/A N/A 

 
The selected objects share one space, so only one module is needed for the two objects. 
The select box modules contains both the select0 and select1 picture memories with two 
sets of addresses inputs and two sets of data outputs. The select box module receives the 
selected window signal so that when window0 is selected, the select0 picture appears on 
the bottom right corner of the screen. Likewise, when window1 is selected, the select1 
picture appears on the screen. When neither window is selected, there will be no select 
box displayed, and the bottom right corner will just contain the right side of the task bar.  
 
There are two spots in the taskbar where windows can be minimized to. The first window 
minimized will reside on ½ inch from the left edge of the screen on the taskbar. If the 
second window is also minimized, then it will reside 1 inch to the right of the first 
location. The windows manager module controls the minimized object by the two signals, 
location0 and location1. Location0 is the first place a minimized object will reside, and 
location2 is the second place. Each minimized module, on the other hand, stores the 
minimized picture that corresponds to the window to be minimized. So each minimized 
module receives both signals location0 and location1.  
 
For example, when window0 is the first window to be minimized, location0 will store the 
value 2’b01 while location1 will remain at 2’b00. When the module minimized0 sees the 
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change in location0 and will put the corresponding minimized object in the first location. 
When window1 is minimized, locatoin1 will change to 2’b10 and thus minimized1 will 
appear in the second minimized space on the taskbar. If window0 is to be opened again, 
location0 changes to 2’b10 while location1 changes to 2’b00. 
 
Windows have the ability to appear, disappear, and move around all over the screen. So 
the signals that dictate how the windows show up on the screen are visibility, selected 
window, and the x and y coordinates of each window. Visibility corresponds to if either 
or both the windows are opened on the screen. The selected window signal dictates which 
window is on top and if a command is called, which window the action is performed on. 
The x and y coordinates determine the location of the windows on the screen.  
 
The move function works by storing at all times two sets of the cursor’s x and y 
coordinates: the current coordinates and the coordinates at the previous clock cycle. 
When move is performed, the difference in the two coordinates are subtracted and added 
to the x and y coordinates of the window. Precautions are made so that the windows does 
not go off the screen when moving. Of course, windows are given the option to cover 
icons and the task bar. 
 

Table 2.6 Each action affects the properties of the window in different ways.  
Action Prerequisite Selected 

window 
Visibility Location0/ 

Location2 
Coordinate State 

Select The cursor 
on top of the 
icon, 
window, or 
minimized 
object 

Changes Changes if 
select icon/ 
minimized 

Changes if 
select icon/ 
minimized 

No Change Changes 

Move A window 
must be 
selected 

No 
Change 

No Change No change Changes 
accordingly 

No 
Change 

Minimize A window 
must be 
selected 

Changes 
to 2’b00 

Changes 
accordingly

Changes 
accordingly

No change Changes 
when 
another 
window 
is still 
open 

Close A window 
must be 
selected 

Changes 
to 2’b00 

Changes 
accordingly

Changes 
accordingly

No change Changes 
when 
another 
window 
is still 
open 

 
The windows manager functions lastly as a simple two-state finite state machine. The two 
state, STATE_0over1 and STATE_1over0, corresponds to if window0 or window1 is on 
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top. This information could easily be recovered without using a finite state machine, but 
having the layer information stored in registers eliminates additional delays that might 
have been implemented. 
 
Finally, each of the above properties can change when the video processor give a 
command. When a window is closed, the selected windows signal returns to 2’b00, the 
visibility changes to reflect the window closing, and the state may change depending if 
there are other windows are still open. Refer to Table 4 for the full list of how each 
command can affect windows properties. 
 
The windows manager module receives a 4-bit color signal from each object module. The 
manager then uses combinational logic to determine which signal should be sent to the 
color map and finally translated into the 24-bit RGB value. The combinational logic first 
detects if the cursor is located at that pixel, then if windows reside at the pixel (the order 
depends on the state the module is currently in), followed by if icons, minimized objects, 
and selected box are at the pixel, and finally if the taskbar is at the pixel location. If the 
object does not reside at the pixel location, then the 4-bit color value will be the same as 
the background color. The combinational logic then outputs the first signal it detects to be 
an object. 
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3 Testing and Debugging 
 
The order the modules were created or modified was ZBT RAM, center of mass finder, 
hand shape, gesture interpreter, screen size calibration and hand calibration. Some 
modules could be tested individually using ModelSim, but others such as the center of 
mass finder had to be connected with the ZBT RAM and the xvga signals to be tested. 
For such modules, debugging was done using the hex display and switches. 
 
3.1 Read and Write from ZBT RAM 
 
The ZBT RAM module from the 6.111 website already displayed the data read from the 
RAM onto a 1024x768 XVGA screen, but in black and white. The changes to color could 
be displayed on the XVGA screen, so if the module worked, this could be immediately 
recognized by connecting a camera and a screen to the labkit. 
 
3.2  Center of Mass Finder 
 
The biggest problem with the center of mass finder was forgetting to check the divider 
enable option when generating the divider. Though there was an enable signal, it was 
being ignored by the divider and the divider continuously divided, instead of just at the 
end of a frame. The center of mass was therefore constantly changing, even when the 
black object in the camera view didn’t move. This problem was solved by displaying the 
x and y coordinates, hand area and the divider enable signals on the hex display. While 
the divider enable and hand_area signals seemed correct, the coordinates kept looping 
from zero to a very large number. This indicated that the problem might be with the 
divider and not with the calculations for x and y sum or hand_area. 
 
In addition, a 10x10 pixel blob is generated at the center of mass coordinates to indicate 
where the calculated center of mass is. This made testing this module very easy. The 
accuracy of the center of mass finder can be judged by comparing the blob location to the 
black object in the screen. The center of mass module was tested always with the ZBT 
RAM and camera connected. To test this module, black objects were placed in front of 
the camera. A switch also toggled between a normal camera view and a view where all 
the pixels above the black threshold were turned into white. In the latter view, all the non-
white pixels were pixels included in the center of mass calculations. 
 
Later, a few adjustments were made to this module, such as the adjustment of the center 
of mass to match the 1024x768 XVGA screen and the limiting of the x and y ranges to fit 
within the screen. To debug these adjustments, black objects were placed in front of the 
camera and the center of mass could be seen in the ZBT display. The bounding of the 
center of mass can be tested by bringing the hand to the edges of the screen. When a hand 
is not present, the 10x10 blob goes to (0,0). 
 
One problem was that the maximum x and y coordinates had to take into account the 
width of the 10x10 pixel blob. The blob is 10x10 pixel in the 1024x768 screen, but is 
much smaller in the camera window. Initially, the maximum x and y coordinates took 
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into account a 10x10 pixel blob in the camera window, but this prevented the center of 
mass from reaching the edges of the screen in the 1024x768 screen. Reaching the edges 
of the screen is very important for opening the icons and minimized windows because the 
icons and taskbar are located very close to or at the edge of the screen. 
 
3.3  Hand Shape 
 
The hand shape module is relatively simple and it could be debugged using ModelSim. 
To find the correct areas for the different hand shapes, the hex display was programmed 
to display the area output of the center of mass module. These values are input into the 
hand shape module as parameters. To test in ModelSim, a testbench was created that 
input values within the error margin of the hand sizes to test if the correct shape is output. 
A screenshot of the ModelSim clocking diagram is shown in Figure 3.1. 
 

 
Figure 3.1 Screenshot of ModelSim simulation of hand_shape module. 

 
This module was further tested by connecting it to the video camera and center of mass 
module. The pixel output was wired to turn all non-black pixels different colors 
depending on the hand shape output by this module. The reprogramming feature was 
tested using the hex display. The hand size registers were rewired to be outputs displayed 
on the hex display. These outputs could then be compared with the hand area values just 
programmed into the module.  
 
3.4  Gesture Interpreter 
 
This module was debugged both in ModelSim and with the hex display. FSM was tested 
with a testbench run in ModelSim. The state transitions were mostly bug-free. While 
testing in ModelSim, the wait lengths were adjusted to 3 pulses of hand_ready instead of 
60. This made the state changes must faster, making them easier to observe in ModelSim. 
 
Later, when the gesture interpreter was connected with the other modules, the state and 
action signals were wired to the hex display. These values could then be checked while 
testing the various hand gestures. 
 
One change from the original design was in the hold action. It is very difficult for the user 
to maintain the hold hand shape while moving the window around. If the FSM required 
the user to maintain this shape the entire time, windows would often be dropped in 
unintended places. To fix this, the FSM required the hold hand shape only to pick up and 
drop the window. While moving, the user can use any hand shape except the hold shape, 
which would drop the window. 
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3.5 Hand Calibration 
 
The hand calibration module was tested using the hex display as well. The calibration 
area output was compared to the hand_area output of the center of mass module. If the 
hand did not move, the two numbers should be similar. 
 
3.6  Determining Parameters 
 
To determine the threshold values for the center of mass module, red, green and blue 
masks were created. The threshold values of these masks can be adjusted using the up 
and down buttons on the labkit. Pixels above these threshold values were set to white. 
This allowed the threshold values for black to be easily determined. The rgb comparisons 
can also be easily modified to black out all pixels above these threshold values to find 
objects of different colors. This was used to calibrate the screen size. A red box was 
drawn in the middle of the screen. Mask was used to black out all the other pixels, and 
the edges of the red box were determined using the move_blob and blob modules 
mentioned in the screen calibration section. 
 
3.7 Display 
 
The display component was built function by function. The first stage of the display was 
to just have windows open, close, and move around. No icons or taskbars existed at this 
point. Two switches were connected to open and close the two windows. The up, down, 
left, and right buttons controlled the movement of the windows, without following a 
cursor. In the next stage, icons and the taskbar, and minimized objects were added to the 
screen.  
 
Switches became unreliable because their edge wasn’t fast enough. So the commands 
were wired to buttons zero through three. Button0 controlled the move command; 
button1 controlled the open/select command; button2 controlled the close function; and 
button3 controlled the minimize function. Switches, instead determined which window 
was selected for the commands. The cursor was still not implemented. For example, if 
switch0 was closed and the button 1 was pushed, then the directional buttons would be 
able to control the movements of the window0. If switch0 stayed closed and button3 was 
pushed, then window0 would be closed. 
 
A big realization was that the select, close, and minimize button can only be a single 65-
Mhz clock. This was decided when the minimize function was tested. When trying to 
restore the window at the first minimized location, the other window would also restore. 
The rationality behind this is that opening the first window results in the second window 
moving to the first location. However, the buttons cannot be held for at exactly 65-Mhz. 
Likewise, the signals coming from the video processor is a 30-Hz pulse and would cause 
the same problems. So the three commands were changed so that they each pulsed for 1 
65-Mhz clock cycle on a positive edge. 
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The last step of creating the display was making a test x and y coordinate for the cursor. 
The coordinates would start in the middle of the screen. When a directional button is 
pressed, the cursor would along with the direction. This changed the display because the 
windows module now needed to know where cursor is at certain commands. For 
example, for the select command, it was crucial to figure out which object the cursor was 
on each time it was pushed. Logic was also added to the move function so that the 
difference in the cursor coordinates would be added to the current x and y coordinate of 
the object itself. 
 
Originally, a frame buffer was to be deployed along with the display. The frame buffer 
would have been stored in ZBT and required a 2-port read/write interface. However, a 
couple days into the design process, it was decided that a frame buffer wasn’t crucial to 
the system. So the implementation started without the frame buffer. If at the end, glitches 
existed in the display, then a frame buffer would have been added. Fortunately, the 
display did not have any glitches. 
 
3.8 Putting It Together  
 
Even though both sides ran perfectly well by themselves, putting them together helped 
solve a lot of usability issues. The first version of the windows manager system was 
impossible to use. The user couldn’t tell what shape her hand was in; the cursor moved 
around too much and was hard to track; and the select function would not work at times. 
 
The first thing added was a method to debug the problems. The two components each 
already had checking methods implemented, so the trick was to put them together. With 
the use of the switches, the screen can be turned into a shot of what the camera was 
reading. Another switch changes the screen so that the hand shape of the user would 
change the color of the screen. Two more switches on the lab kit can change how the user 
input her commands. Instead of inputting the coordinates and commands using hand 
shapes, debugging can take place by using the numbered buttons to simulate commands 
and the directional buttons to simulate cursor movement. These additions allowed us to 
test the system more thoroughly. 
 
The first thing realized after many test runs was that the hand shapes all had roughly the 
same sizes. It was frustrating for the user to guess which hand shape the camera was 
reading. Instead of creating hand shapes, the user would simply adjust the position of her 
hand relative to the camera. Moving it closer would result in a bigger hand area and 
farther a smaller hand area. A design choice was made to completely throw out the hand 
shapes idea and to just use distance to send commands. By using distance, the difference 
in the hand areas read by the camera became much higher. To add usability to the system, 
the color of the cursor now changes to provide feedback to the user. Instead of focusing 
on commands given, the color of the cursor preludes commands and simply lets the user 
know the shape that is recognized by the computer. So the user can adjust her hand 
accordingly before a command is read. 
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The select box was the next feedback component added to the windows manager system. 
It was easy to tell which window was selected and which wasn’t when the windows were 
on top of each other, but extremely hard when they were side by side. Furthermore, to 
emulate real operating systems, selecting over the desktop area would result in 
deselecting the windows such that other commands would be rendered useless. To ease 
the confusion, the select box was put in the right side of the taskbar so that the user can 
see which window she has or has not selected.  
 
One last problem detected in the system was the fact that select sometimes seemed not to 
work. Many times, no matter how long the select hand shape was held on top of a 
window, icon, or minimized object, it just would not be selected. After sifting through the 
code, it was determined that the FSM in the video processor would enter a moving state 
without the user knowing. In a moving state, all other commands are ineffective until the 
move hand shape is recognized again. While it is easy to tell when the system is in the 
moving state when a window is selected (a window would follow the hand around), the 
FSM would enter the moving state even without a window selected, making it impossible 
to detect the error. So a feedback was created between the display and the video 
processor. When there are no windows selected, the FSM in the video processor cannot 
enter the move state. The problem was solved. 
 
The last component of the windows manager system was to add the ability for multiple 
users. We all know that everybody’s hands are different sizes and the original windows 
manager was made only for one set of hand shapes. However, a configuration stage was 
added so that the hand shapes for each command could be recorded into the video 
processor each time a reprogram button is programmed. So the system now allows other 
users to use the windows manager simply by reconfiguring the hand sizes needed for 
each command. 
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4 Conclusions 
 
The objective of this project was to implement a user hand-controlled windows manager 
with the 6.111 FPGA labkit. The desired functionality of this program is outlined in the 
project checklist. The final project achieved all of the basic functionality as well as some 
of the additional functionality such as hand size calibration. 
 
When putting the two sections of the project together, there were very few glitching 
problems. A few errors we had dealt with the center of mass falling off the screen and 
giving windows manager negative coordinates to display the BRAM data. This caused 
the image to display incorrectly. However, these issues were fixed by limiting the range 
of the center of mass and also by adjusting some BRAM read code. 
 
However, we did have some usage issues with the gesture interpretation design. Soon 
after we put the two parts together, we noticed that the usability of the program was low. 
It was very difficult for the program to interpret the correct gesture. This had to do with 
the limited area differences between hand gestures such as fist and open hand. Fingers are 
simply not large enough to alter the area by a significant amount. This idea was thrown 
out and replaced by distance movements instead. The hand is always in a fist and is 
simply moved closer or further away from the camera for different gestures. This 
significantly increased usability. 
 
The next time we have a project like this, one of the improvements we would make in the 
video processor section is to create good debugging code from the start. We didn’t have 
the masking code until later into the project, whereas that would have helped a great deal 
with re-evaluating our design at the onset of the project. 
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Appendix A. Screenshots of Windows Manager Display 
 
A.1 Screen at reset 
 

 
 
 
A.2 Screen with one window open 
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A.3 Moving a window 
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Appendix B. Matlab Script 
 
Matlab script to convert Bitmap files to .coe files that can be uploaded into BRAM. 
 
function BMPtoCOE(image_name) 
%Converts a bitmap that stores up to 256 color bitmap a Xilinx .COE 
file 
%monitor 
 
%read bmp data in and display it to the screen 
[imdata,immap]=imread(image_name); 
image(imdata); 
colormap(immap); 
numpixels=numel(imdata); 
 
%create .COE file for image data 
COE_file=image_name; 
COE_file(end-2:end)='coe'; 
fid=fopen(COE_file,'w'); 
 
%write header information 
fprintf(fid,';*********************************************************
*********\n'); 
fprintf(fid,';****                 BMP file in .COE Format                 
*****\n'); 
fprintf(fid,';*********************************************************
*********\n'); 
fprintf(fid,'; This .COE file specifies initialization values for 
a\n'); 
fprintf(fid,'; block memory of depth= %d, and width=8. In this 
case,\n',numpixels); 
fprintf(fid,'; values are specified in binary format.\n'); 
 
%start writing data to the file 
fprintf(fid,'memory_initialization_radix=2;\n'); 
fprintf(fid,'memory_initialization_vector=\n'); 
%convert image data to row major 
newimdata=transpose(double(imdata)); 
%write image data to file 
for j=1:(numpixels-1) 
    fprintf(fid,'%s,\n',dec2bin(newimdata(j), 4)); 
end 
%last data value supposed to have a semicolon instead of a comma 
fprintf(fid,'%s;\n',dec2bin(newimdata(numpixels))); 
%clean shutdown 
fclose(fid) 
 
 
% immap_size = size(immap); 
% COE_map_file = 'colormap.coe'; 
% fid2=fopen(COE_map_file, 'w'); 
%  
% %write header information 
% 
fprintf(fid2,';********************************************************
**********\n'); 
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% fprintf(fid2,';****           BMP Colormap file in .COE Format              
*****\n'); 
% 
fprintf(fid2,';********************************************************
**********\n'); 
% fprintf(fid2,'; This .COE file specifies initialization values for 
the\n'); 
% fprintf(fid2,'; associated color path. \n'); 
%  
% %start writing data to the file 
% fprintf(fid2,'memory_initialization_radix=2;\n'); 
% fprintf(fid2,'memory_initialization_vector=\n'); 
%  
% for j=1:(immap_size(1)*immap_size(2)-1) 
%     fprintf(fid2, '%s,\n', dec2bin(immap(j)*255, 8)); 
% end 
%  
% %last data value supposed to have semicolon instead of a comma 
% fprintf(fid2, '%s;\n', 
dec2bin(immap(immap_size(1)*immap_size(2))*255, 8)); 
% fclose(fid2); 
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