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Abstract 

 

“Squash Yourself” is a two-player squash game.   The players have paddles 

whose positions are determined by a filtered video input.  The screen displays the squash 

court, paddles, and the ball as it would appear to the player.  Additionally, the screen 

displays the ball’s heat, the players’ scores and the number of hits in the current rally.  

The ball increases in size as it approaches the player, and decreases in size as it moves 

back towards the virtual walls.  A hit is determined by a swing of the player’s paddle if 

the ball is a certain size (is within the specified hitting range).  If the player double-hits or 

misses the ball with a swing, the player loses the point or the serve.  A player can only 

earn a point on his/her serve.  The angle and power of a hit are determined by the speed 

and direction of the players’ paddles.  Additionally, the harder the ball is hit, the hotter it 

gets, and the faster it moves.  When one player accumulates fifteen points, the other 

player is “TERMAN-ATED,” and the game ends.   
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1. Introduction  
  

For our final project, we created a two-player video input squash game.  The project was 

partially motivated by Nintendo Wii’s innovative approach to making gaming more 

realistic.  We were also motivated by the personal desire to create an interactive game.  

We wanted to create a game that we could appreciate and enjoy playing ourselves. Since 

sports are something of interest to us and we find using a real paddle more interactive 

than pressing buttons, we thought this would be fun. 

  

We found it most practical to divide the game into three basic sections: user inputs, game 

logic, and outputs.   

 

To input paddle locations, we use a camera.  The camera’s YCrCb data is converted to 

RGB data and stored as 18-bit data in the ZBT.  The data is then processed in a video 

input processing unit.  This unit selects a certain pixel on the paddle, sets threshold noise 

levels for the pixel, and filters through the image to get a clear image of the paddle.  By 

averaging these filtered pixel locations, the processing unit determines the center of mass 

of each paddle and displays them on the screen.  The processing unit also looks at the last 

few frames of each swing to determine paddle direction and power (acceleration).  These 

are output to the game logic modules and determine the speed and direction of the ball on 

the screen.   

 

The game logic modules control the ball movement, detect collisions, determine whether 

a point is over, and tracks player scores.  In order to simulate three-dimensional 

movement, the ball increases in size and moves down the screen slightly as it moves 

towards the player, and decreases in size and moves up the screen as it moves away from 

the player towards the back wall.  The walls and ground are sectioned.  In the sections 

closest to the edges (closest to the player), the ball has to be bigger to bounce back.  The 

closer the ball is to the back wall, the ball will only bounce back only if it is smaller.  

Collisions are only detected if the ball is moving towards the user and the radius is within 

a certain range.  Hit priority is given to the player that should be hitting.  

  

If the radius increases beyond the maximum threshold without being hit, the point is over.  

Additionally, if the ball is double-hit by a player, the point is over.  A player can only 

earn a point on his serve.  If a player loses the point on their serve, they lose the serve to 

the other player.  The point tracker adds up points, and when one player score reaches 15, 

the game is over.  A rally counter keeps track of the number of hits per point. 

 

The video output is a layered display of the court, ball, paddles, and scoreboard.  The 

display was created blob by blob, and individual modules were created for each shape 

and reused to make various output components.  The scoreboard consists of an increasing 

rectangular bar for ball heat, and a series of seven-segment displays for the player scores 

and rally.  The paddles are transparent so the player can always see the ball.  

Additionally, an end-game screen appears when the game is over.  All modules were 

pipelined to minimize the number of calculations per clock cycle.   



Audio output was similar to lab 4.  Eight BRAMs were created, one per sound.  The 

audio is programmed with switches on the FPGA.  The audio output allows the user to 

program the FPGA to announce hits, power hits, game reset, indicate serves and game 

winners, and allow players to taunt one another.   

 

 
Figure 1.1 – Block Diagram 
 

 

2. User Inputs 

Sumit Khatod 

 

The inputs to the squash game are handled via a video camera that tracks the position of 

the player’s paddles by keying in on a specific color range. The players can then move 

the paddles controlling location of the paddle and the power of a swing. In order to create 



this functionality, the video input portion of the lab is broken into three segments, the 

camera input, the video processing, and ballspeed.   

 

2.1 Camera Input 

The camera input segment is responsible for creating a pixel stream for the video 

processor to run calculations on. It consists of five main modules, a ZBT  

memory, a camera, the adv7185 chip on the labkit, and a small block in the labkit 

file. Figure 2.1 outlines the data path of this segment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Camera input block diagram 

 

The data from the camera is decoded by the adv7185 chip using the YCrCb color 

scheme. In this color scheme, Y represents luminance and Cr and Cb represent 

red and blue chrominance respectively. Using the staff provided ntsc_decode 

module, the data from the adv7185 is converted into a 30 bit YCrCb pixel stream 

that holds the 10 bits of each Y, Cr, and Cb. This module is needed because the 

data from the adv7185 comes in 10 bit packets rather than a constant stream 

changing only at each pixel.  

 

After being decoded the YCrCb pixel stream goes through the filter module. This 

module looks for two color ranges, bright orange and light blue. If the current 

pixel is in the specified orange color range representing player one’s paddle, it is 

changed to a white pixel. If the current pixel is in the specified blue color range 

representing player two’s paddle, it is changed to a blue pixel. Otherwise, if the 

pixel is in neither color range, it is set to black. The pixel change allows for each 

color to be easily identifiable later by the video processing segment. The various 

thresholds for the color pixels were tested and determined using a calibration 

module that ran through possible filters. Furthermore, it is important to note that 
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color filtering occurs in the YCrCb color scheme rather than in the RGB. The 

motivation for this decision is that the YCrCb color scheme is more immune to 

intensity changes. Thus, by ignoring Y and focusing on Cr and Cb, the filter is 

significantly less sensitive to shadows and light changes.  

 

The filtered data then travels to the color conversion module. This module was 

provided by xillinx and converts YCrCb signals into RGB signals using the 

formulas: 

R’ = 1.164(Y’– 64)+ 1.596(Cr – 512) 

G' = 1.164(Y' – 64)–(0.813)(Cr – 512)– 0.392(Cb – 512) 

B' = 1.164(Y' – 64)+ 2.017(Cb – 512) 

The ten bit YCrCb is broken into 8 bits of red, 8 bits of blue, and 8 bits of green. 

 

The new RGB pixel data is then placed into the ZBT by the ntsc2zbt module. The 

staff provided an initial version of this module to store 4 pixels per address in 6 

bit of Y in ycrcb color space. However, the version used is heavily modified to 

hold 2 pixels per address each with 6 bits of red, green, and blue. The use of a 

ZBT is required since the data from the camera comes in first from odd lines and 

then from even lines rather than sequentially. Futhermore it must be held in 

memory to perform the necessary calculation for the next section without 

delaying the stream and losing data. The addresses are determined using the 

hcount and vcount of the data. 

 

The data from the ZBT is accessed by the vram_display module. Like the ntsc2zbt 

module, the staff provided an initial version that red 4 pixels per address; 

however, the version used has been modified to read two pixel’s worth of RGB 

data per address. While the option scaling the camera input in this to match the 

screen resolution was considered, it was rejected since the camera data is internal 

and not sent to the VGA and thus hidden from the users. The result is an 18 bit 

RGB pixel stream that is synchronized with hcount and vcount. However, since 

the addresses are determined by the hcount and vcount, there are numerous empty 

addresses that are read from the ZBT in the spaces where there is no matching 

camera data. This creates a problem since the ZBT is populated with random data 

in these locations. Therefore, before going to the video processing segment, the 

data is filtered once more. The pixels outside the camera window are turned black 

in this filter. 

 

2.2 Video Processing  

The video processing segment is responsible from converting the raw pixel stream 

from the camera input segment and using it to determine the location of the 

paddles, the power of swings, and the direction of the paddle movement. These 

calculations are made by a combination of three modules: cofm, velocity, and 

gamelocation. Figure 2.2 shows their interactions: 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Video Processing Block Diagram 

 

The first stage of the video processing segment is the center of mass module 

(cofm). This module takes in the pixel data along with hcount, and vcount and 

uses them to find the center of paddle1 (now white pixels) and paddle2 (now blue 

pixels). At each pixel, the module looks to see if the pixel is white. If it is, it 

increments the pixel count and then adds the hcount and vcount to two registers 

that stores the running sum of the x and y coordinates of the white pixels. It does 

the same thing for the blue pixels. Once the data finishes going through the 

camera window, it sends the counts and sums to a pipelined divider created using 

coregen. Since the game logic and display only need this data on frame changes, 

the new values of the location (p1x, p2x, p1y, p2y) are reset when vsync goes low 

signaling a new frame. At the same time, the sum registers and count registers are 

reset.  

 

The important design element to notice with the cofm module is the timesharing 

of the divider module. Rather than creating several divider modules. Only one is 

used. Since the camera window ends at vcount = 500, the first of the four 

calculations is done at vcount = 501 and the last is done at vcount = 504. To 

accommodate latency, the sum and count values are constantly sent to the divider 

for the over thousand clock cycles per each vcount and then retrieved 500 cycles 

later (hcount=500). 

 

The data from the cofm module is then sent to two modules, the gamelocation and 

the velocity modules. The gamelocation modules convert the location of the 

center of mass of each paddle in the camera window to the appropriate value for 
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the game. This is important for two reasons. First, the camera window is smaller 

than the full screen and second, the camera’s x coordinates are inverted (when 

you move left the camera displays a movement to the right). The formula used to 

convert the center of mass is roughly: 

Ygamelocation = 1.5*Ycofm 

Xgamelocation = 1024- 1.5*Xcofm 

Since the multiplication is by a factor of 1.5, rather than use a divider or 

multiplication module, the calculation occurs by adding Ycofm or Xcofm to itself 

shifted to the right one bit. 

 

The final module in this section is the velocity module. This module is 

responsible for determining the speed and direction of the paddle. In order to 

compute these values, the module stores the last five frames’ values of the two 

paddle’s center of mass. To calculate the speed, it takes the difference of the 

current center of mass and the oldest stored center of mass. Since the range of 

possible differences is so large and spread out, the module uses the raw difference 

data to place the movement in one of six power buckets according to magnitude 

for both x and y movement. 

 

The module also determines the direction by using the old data and the new data 

to determine if the paddle is moving up, down, left, or right. Like in the cofm 

module, the calculations occur on different hcounts and vcounts to limit the 

number of simultaneous calculations.  Combined with the paddles’ x and y 

powers, the result is a fairly accurate detection of swing vectors. The choice of 

using vectors rather than angles to calculate swings was made in an effort to 

eliminate any unnecessary timing delays. 

 

2.3 Ball Speed 

The ball speed section is unique from the other user input sections that exist in a 

vacuum from the gamelogic, the ball speed section is very heavily dependent on 

the game logic. It comprises of one module that is responsible for determining the 

speed the ball will travel on a hit based on the hitter, power, and direction. The 

figure below shows the various inputs and outputs to the module: 

 

 

 

 

 

 

 

 

  

 

 

 

 



 

 

Figure 2.3 Ball Speed Block Diagram 

 

This module works by taking in all the data computed by velocity and assigns 

powerx, powery, movin_up, moving_right based on the value of power and the 

direction of the current hitter. If the power is above a certain threshold (either 

power x is 5, power y is 5, or both powerx and powery are 4), the hitter is making 

a power hit and the ballheat increments. If power x and powery are below a 

threshold (both equal or less than 1), ball heat decreases by one. The purpose of 

the ballheat is to allow the game to speed up as rallies get longer. Using both the 

ball heat and the powers of the current hitter, the module sets a ball speed variable 

equal to the three times the sum of the power and the ballheat (note: 

xxx_ballspeed uses powerx and yyy_ballspeed uses powery). While the power 

might fluctuate between hits, the game logic only takes in the values on a hit so 

the fluctuations are acceptable.  

 

The outputs on the bottom of the diagram (dpx, dpy, dmu, dmr, and dhitter) are 

outputs that are frozen on a datapause button press and hooked up to the hex 

display for debugging purposes. 

 

2.4 Debugging the User Input Segments 

The debugging of the User inputs was conducted differently for each segment. 

For the fist segment, the camera input, the debugging was primarily done using 

the logic analyzer and the VGA to test if the ZBT was being read and written into 

properly. This captured an error on the writing of data to the ZBT as a few 

registers were set to a wrong size. However, the largest effort for this segment 

was dedicated to calibrating the filter. Originally, filtering took place after the 

conversion to RGB; however, this led to numerous problems as the colors were 

too sensitive to light. This was corrected by moving the filter to the YCrCb space. 

In order to set the thresholds, a calibration module that tested various filters and 

tolerances was created. In addition, a round paddle was decided upon so that 

tilting the paddle did not drastically change the color. 

 

The video processing module debugging and testing was broken into two sections, 

the cofm and game location module testing and the velocity testing. To test the 

cofm module, two methods were used, first attaching the counts and the sums to 

the hex display to see if the module was properly counting and second creating 

output blobs at the center of mass of each paddle. Figure 2.4 illustrates the blobs 

being drawn on the screen. The white represents player1 paddle and the represents 

player2’s paddle. Each has a blob at its center of mass. The blue and red blobs 

correspond to the game locations respectively.  

 

To test the velocity module, the debugging method was confined to using the hex 

display to show the speed, direction of swings. These were then used to determine 

appropriate buckets for the power. 



 

The final section of debugging was the ballspeed module. For this, since tweaking 

inputs was important, the debugging occurred almost entirely of using writing test 

benches to simulate several combinations of inputs. Once integrated with the rest 

of the lab, the testing moved to using the hex display and buttons to freeze output 

values. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Filter and Cofm Debugging Screen 

 

 

3. Game Logic 

Azadeh Moini 

 

Game Logic (GL) encompasses ball movement, collision detection, point over, and point 

tracker modules.  GL takes inputs from the camera and input modules.  It controls how 



the ball moves on the screen, when the radius of the ball should change (important for 3-

D movement), and when the ball should “bounce” off a wall. It outputs a signal when a 

paddle collides with the ball, and awards points to the server based on double-hits or 

misses.  The GL keeps track of the rally score (hits per point), as well as each individual 

players’ score.  As soon as a player has fifteen points, the GL sends a signal to the output, 

indicating a screen-change.  The four modules that comprise Game Logic are, to some 

extent, inter-dependent.  Often, one module depends on the outputs of another module to 

operate correctly.  All modules take the global reset and the 65 MHz clock as inputs, and 

all operate on the frame change (with the small exception of a delay in the ball movement 

module).   

 

3.1 Ball Movement 

The ball movement module began with a ball on the screen with nothing more 

than a changing radius.  Depth and planar movement were then added, and 

after the ball was able to move continuously in a predetermined direction.  

Once the other modules started coming together, the ball could move 

according to various inputs and more details were added in terms of 

constraints. 

 

In addition to the global inputs to Game Logic, this module takes as inputs x 

and y speeds (determined from the paddle motion), as well as whether the 

swing was up/down and right/left.  It also takes the point over signal and the 

hit signal as inputs.  Its outputs include the direction the ball is moving, and 

the location of the center of the ball, as well as the size of the ball radius. 

 

This module operates on a four clock-cycle-delayed frame change.  This was 

crucial to this module’s functionality because of the hit input from the 

collision detection module.  Before this change was added, this module 

operated off the frame change (as the other modules in GL do).  However, at 

that rate, a hit in the collision detection module would not be detected in the 

ball movement module, and the appropriate change of direction would not 

take place.  Delaying a few clock cycles ensures the high hit value is held long 

enough for the ball movement module to detect it and use it accordingly. 

 

Upon reset, the ball movement module assigns the ball a location and radius 

within acceptable hitting range.  The x and y speeds are held at zero; thus, the 

ball does not move initially.  The same conditions apply to a point over.  

When a point is over, the ball is held at a different location than at reset.  This 

was more for the purpose of debugging, so we could clearly see the difference 

between a reset and a point over and identify any errors in signals.   

 

If the game is neither reset nor is the point over, the ball movement module 

goes on to check hit status and location of the ball.  Much is determined by the 

radius of the ball.  For instance, if the radius of the ball is small (one pixel or 

less), it means the ball is very far from the players and has hit either the back 

wall or the farthest corners of the side walls and should bounce back towards 



the players.   Otherwise, at a hit, the ball begins moving away from the players 

with speed and direction as indicated by the paddle swing.   

 

The ball movement module also checks to see where the ball is along the 

walls.  Rather than using a z-coordinate, I chose to simulate 3-D motion using 

only the x and y coordinates and the size of the radius.  When the ball is 

moving away from the player, it is constantly decreasing in radius (opposite if 

moving toward players) and constantly (but in small increments) moving 

towards the bottom of the screen to indicate depth.  Additionally, I essentially 

divided each wall (right and left) and the ground into several sections.  If the 

ball is in one of these sections, it will bounce back based on the size of the 

radius.  The inner portions of the walls and ground are farthest from the user, 

and the ball must be very small before it will bounce off from those locations.  

A similar (but opposite) statement is true for the outer portions of the walls.  

One of the challenges with this portion of the module was aligning the 

boundaries with the boundaries of the drawn court.  Care was taken to include 

every pixel of the display in some boundary condition.  Furthermore, the 

equations of the lines in the bottom left and bottom right corners were critical 

to accurate wall detection.  The screen is set up as a normal coordinate plane, 

and equations of lines were manipulated to match the screen.  Additionally, it 

was important to avoid negative numbers when calculating the equations of 

the lines.  None of the variables are signed, and handling of negative numbers 

with unsigned variables is clearly unreliable.  Therefore, the equations were 

manipulated and boundaries declared to avoid any negative numbers 

whatsoever. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 3.1: Wall/ground division 

 

When in motion, the y-coordinate of the ball is constantly moving for 3-D 

simulation.  However, there is also a y-speed element, as input from the 

paddle swing, that allows the ball to move in all planes in the court.   

 

Furthermore, I added a one-bit counter to this module that changes its value 

every frame change.  Before the x or y-speed is incremented, the counter must 

have a high value.  Using this counter allowed me to slow the ball movement 

somewhat, as it will now only increment every two frames (rather than every 

frame).  This is still faster than the player can detect, but avoids absurdly high 

ball speeds and outbursts of movement.  

 

The ball movement module outputs the size of the radius, location of the 

center of the ball, and direction the ball is moving in to various other modules. 

 

3.2 Collision Detection 

The collision detection module is able to identify when a paddle and the ball 

overlap, which paddle is overlapping, and more specifically whether they 

overlap when the ball is both coming towards the player and the radius is 

within a specified hitting range. 

 

This module inputs the radius, location of the ball, and ball direction from the 

ball movement module.  Additionally, it uses the game and point over signals, 

the server signal, and paddle locations.  The paddle locations come from the 

video input.  The collision detection module sends two pulses: one when the 

ball is hit, and one when it is missed, and also indicates the current and 

previous hitters. 

Smallest radius 

Largest radius before bounce 



 

The reset values for the current and previous hitter are based on the server.  

They must both be reset to different values because a double-hit results either 

in the loss of a point or the loss of the serve; both cases are undesirable at 

reset.  Because the first player to hit a ball at reset or after the loss of the point 

should be the server, the hitter is initially assigned to the non-serving player.  

 

Before this module compares the ball’s location to that of the paddles, it 

checks to make sure the ball is indeed coming towards the user and within the 

acceptable hitting range.  If so, it compares the locations of the ball and 

paddles.  It is conceivable that both players will have their paddles in the same 

location; thus, both players could potentially hit the ball.  To make the hit less 

arbitrary and a bit clearer, precedence was given to the person who did not hit 

last.  That is, if both paddles overlap, the hit is given to the person who, 

according to the last hit, should have been hitting this time. 

 

Furthermore, a hit is not registered if the game over or point over signals are 

high.  When game over is high, the court is no longer displayed on the screen; 

however, audio output continues, and clearly the game should not continue at 

this time until the game is reset.  Additionally, when the point is over, a hit 

should not be registered.  The ball resets its location at point over; if the non-

server’s paddle were to be at the reset location when the ball moves there, it 

will not move (recall that the ball is still while the point is over), but will still 

incorrectly register as a hit for the non-server.  Not allowing a hit to be 

registered while the point-over signal is high avoids this problem.   

 

The collision detection module is limited in that it only checks the center of 

the ball.  For simplicities sake, a hit is registered only if the center of the ball 

is within the boundaries of the paddle.   

 

The module continues to check the location of the paddles and ball until the 

ball is larger than the maximum threshold level.  At this point, the ball has 

essentially moved too close to the player for it to be hit, and the ball is 

considered “missed.”   

 

3.3 Point Over 

The point over module needs inputs from the collision detection module in 

order to operate correctly.  These inputs include the missed ball signal and the 

current and previous hitters.  Based on these inputs, it outputs whether the 

point is over, who the server is, whether the players’ scores should be 

incremented, and whether a change in server has occurred.   

 

As in the other modules, it is critical to reset point values and point over 

variable to zero at reset.  Also, at reset, the server is set to zero, indicating that 

player one should serve.  This is always the case for the beginning of the 

game. 



 

To avoid problems with collision detection and ball movement, the point over 

signal was made to be held for only one frame length.  Also, this is sufficient 

time for the ball movement module to input this information and reset the ball.  

 

There are several cases in which the point is declared as over.  One of these 

cases is the missed ball case.  This was determined by collision detection and 

occurred when the ball was coming towards the player and its radius had 

exceeded hitting range.  When this is the case, the point is declared as over, 

but point allocation is dependent on the server and hitter.  The point over 

module analyzes two similar cases: one for player one serving, and one for 

player two.  If player one is serving at the time of a missed ball, the module 

checks to see if the hitter was player one.  Because the value held in the hitter 

register at the time of a missed ball would be the last person to hit it, if this is 

zero it is clear that the server was the last person to hit the ball.  Thus, player 

two missed his opportunity to hit the ball and caused the point to be lost.  

Because player one was serving and player two erred, player one keeps the 

serve and earns a point.  Had the last hitter been player two and player one 

missed the ball, no one would earn a point, but player one would lose the 

serve to player two.  The case for player two’s serve is similar. 

 

The only other way to lose a point is on a double-hit.  At every hit, the point 

over module compares the values of the current and old hitters.   If both values 

are equal, one player hit the ball twice in a row, and resulting in the loss of a 

point.  Determining whether a point was earned or whether the serve was lost, 

the module goes through a process very similar to that for a missed ball.  If the 

server double-hit, he loses the serve to the other player.  Otherwise, if the non-

server double hit, the server earns a point and serves again. 

 

When a point is declared as over, the new server output goes high.  This signal 

remains high until a hit occurs.  This was added for two reasons: a) it helped 

to have an audio signal at the beginning of a serve for ease in game play, and 

b) it is crucial in collision detection, and prevents the non-server from hitting 

the ball (and losing the point) on another player’s turn to serve.   

 

Because so much of the game logic depends on the value of the point over 

signal, it is important to set it to zero in any case other than the two described.   

 

3.4 Point Tracker 

As the name suggests, the point tracker module keeps a tab on the number of 

points each player has accumulated, as well as a running tally of the number 

of hits per point.  Its main inputs come from the point over module and 

include the point over signal and whether player one or player two should get 

a point at any given time.  In addition, it takes in the hit input.  Its outputs are 

each players’ scores, the rally score (number of hits per point), whether the 

game is over and a signal identifying the winner of a game. One additional 



input to the point tracker module was intended to be a switch between one- 

and two-player mode.  It is set to be held constantly in two player mode, but 

was set to one-player mode for testing purposes often.  The one player mode 

does not keep track of player scores, only the rally.  

 

The point tracker uses the reset button (as in the other modules) to reset the 

values of the player scores.  The inputs it receives from the point over module 

dictate whether each player should receive a point or not.  The point tracker 

module uses two registers to hold the value of these variables from the last 

frame.  In this module, the register value is compared to the input value.  A 

change in the value is indicated when the input is high (player x should get a 

point) and the old value is low.  At this rising edge of the player point, the 

player’s score can be incremented (one point at a time).  If either player 

reaches fifteen total points, the game is declared as over, and a signal is output 

indicating the winner.  This signal is held until the next game over signal.  The 

game over signal itself is only a frame-length pulse.  This is sufficiently long 

because the output screen does not change from the end screen back to the 

game until the reset button is hit.   

 

The rally keeps track of the number of hits that occur within each point.  It can 

be a larger number than the player score, although realistically it is unlikely 

that it will be too much larger.  The point tracker module takes the hit input to 

calculate the hits per point.  At a hit, this value increases.  It resets at a new 

game, but also each time the point is over.    

 

4. Outputs 

Will Fotsch 

 

I was responsible for designing the court and creating the different images that would 

appear on the screen including the ball, the two paddles, the court, and the scoreboard, 

which keeps track of the ball’s current heat, the number of hits in the current rally, and 

the scores of both Player 1 and Player 2.  I displayed all of the images on the screen using 

combinational logic as the hcount and vcount changed with the vclock as opposed to 

storing sprites into memory.  Because of this, it took a great deal of effort to create an 

image on the screen and it was not as easy to change images as if I had used sprites from 

ROM that could be duplicated and placed anywhere on the screen.  This implementation 

also involved a great deal of pipelining in order to avoid glitches on the screen.  If too 

many calculations were taking place within one clock cycle, registers had to be added in 

order to pipeline the display.  This also limited my ability to create complex images or 

use a wide variety of colors.   

 

With the squash game we were creating, though, the images were sufficient to create an 

attractive display and allowed for easy changing of the ball’s location and size based on 

the game physics and logic.  I was also responsible for adding sound effects to the game 

in order to increase the entertainment value of the game.  Eight BRAMs were created in 

order to handle eight distinct audio clips which could be programmed into the labkit 



using a microphone and switches 5, 6, and 7.  These sounds include a hit sound, a power 

hit sound, a player 1 serve sound, a player 2 serve sound, a player 1 terminated sound, a 

player 2 terminated sound, a new game sound, and a taunt sound.   

 

Most of the work for the video and audio was done inside the large squash_game module.  

This module interacted directly with the recorder, inputs from Sumit’s video processing, 

the recorder (handled audio), and the xvga in order to display pixels on the screen.  The 

squash_game module created an output pixel, hsync, and vsync for the xvga.  It also 

created a pulse signal play_pulse and a three bit signal called play that interacts with the 

recorder module in order to play audio clips from the FPGA. 

 

4.1 Video 

At the lowest level, all of the video display was created with modules similar 

to the blob module from lab 5.  These modules create the appropriate shapes 

to be drawn to the screen based on hcount and vcount.  On the upper levels is 

a series of instantiations of the appropriate modules in order to create the on 

screen displays, including the seven segment digital displays, the paddles, the 

ball, the words displayed, and the court.  These pixels are chosen in order of 

layers so as to give a three dimensional perspective as opposed to combining 

the pixels with just or gates.  This logic all takes place within the module 

squash_game.  The paddles are the top pixel, which create hollow rectangles 

so that one can see the ball through them in order to hit it back.  The ball layer 

is next so that it is bouncing on top of the court and over the scoreboard.  The 

scoreboard goes over the court to display the appropriate rally numbers, player 

numbers, and heat bar with associated text.  The court is the lowest layer as 

the background of the game.  The end screen (Terman) takes precedence over 

any of the other pixels when the game is over so that if the game is over, the 

end screen is all that is displayed.  Figure 4.1 shows the screen during game 

play. 

 



 
 

Figure  4.1:  Display on Monitor During Game Play 

 

4.1.1 Scoreboard 

The Scoreboard is one of the largest display modules inside of squash_game.  It is 

responsible for a number of different elements including the actual words drawn 

out, HEAT, P1 Score, P2 Score, and Rally.  The scoreboard is also responsible for 

the dynamic displays, which include a bar for the heat of the ball, two seven 

segment displays each for player 1’s score and player 2’s score and three seven 

segment displays for the number of hits in the current rally.  In this way, the 

scores are displayed as two digit decimal numbers and the rally is displayed as a 

three digit decimal number.  The Scoreboard takes the inputs for player 1 and 

player 2 scores and breaks the numbers into decimal digits to send to the seven 

segment displays.  For instance, if the number 15 was input as player 1’s score, 

the Scoreboard would check and see that it is greater than or equal to ten and 

would display the first digit as one.  It would then subtract ten from fifteen, 

leaving five as the second digit.  Logic was created like this in order to handle any 

rally number from 0 to 199 and any player 1 or player 2 score from 0 to 19.  

These single digit decimal numbers are decomposed into the proper segments to 

display and sent to seven segment displays in the sevensigdisplay module.  This 

functionality can be seen in Table 4.1.     

 



The hits_per_point signal is an input which represents the number of hits in the 

current rally.  It is a ten bit binary number; thus, it is inherently limited to 512.  

We decided that it is unreasonable to expect two players to be in a rally longer 

than 199 hits; thus, the current combinational logic for displaying the rally only 

supports up to 199.  The game is over when a player gets 15 points, so there was 

no need to create logic for any greater than 19 points for the score of either player 

1 or player 2.  However, it would not be difficult to add the logic so that the rally 

score displayed up to 999 or the scores displayed up to 99.  It would just require 

more logic in the form of if statements. 

 

Originally, the heat bar was going to be another digital display much like the 

scores and rally, but we though it would be neat to have a bar increase in size to 

represent the ball’s heat qualitatively rather than quantitatively.  Thus, the heat bar 

is a rectangle that changes size based on the input of heat to the heat module.   

 

Also in the scoreboard are the words HEAT, P1 Score, P2 Score, and Rally.  

These words were created with a series of blob modules (heat, player1score, 

player2score, and rally, respectively) in order to spell out the words on screen.  

 

4.1.1.1 Seven Segment Display: 

These displays were created with a series of blobs.  The blobs are chosen based on 

logic based on the input number.  A case statement chooses which blobs to write 

based on the input number in the Scoreboard module.  Each seven segment 

display can handle any decimal or hex number from 0 to 15.  Each seven segment 

display has lines two bits wide, with the width of the entire seven segment display 

being 10 pixels and the height of the entire seven segment display being 18 pixels.  

The basic structure of the seven segment displays can be seen in figure 4.2. 

 
 Figure 4.2: Seven Segment Display  
 

 

 

 



 

 

Table 4.1: Numbers Corresponding to the Rectangles of the Seven Segment Display  

 
hex/decimal 
numbers 

Letter rectangles to be 
displayed  

0 abcdef 

1 bc 

2 abdeg 

3 abcd  

4 bcfg 

5 acdfg 

6 acdefg 

7 abc  

8 abcdefg 

9 abcdfg 

A abcefg 

b cdefg 

c deg 

d bcdeg  

E adefg 

F aefg 

 

4.1.1.2 HEAT 

The word HEAT is drawn in white on the scoreboard.  It takes an upper left x,y 

coordinate and draws out the word “HEAT”.  It is drawn using a series of blob 

modules.  The letter H is 7 pixels high and 4 pixels wide.  The letter E is 7 pixels 

high and 3 pixels wide.  The letter A is 7 pixels high and 3 pixels wide.  The letter 

T is 7 pixels high and 5 pixels wide.  The individual rectangles are put together 

pixel by pixel with or gates. 

 

4.1.1.3 Player1score 

The word “P1 Score” is drawn in green on the scoreboard.  It is green to match 

player 1’s paddle.  It takes an upper left x,y coordinate to place P1 Score on the 

screen in the appropriate place according to the numbers input from the 

Scoreboard module.  The letter P is 9 pixels high and 5 pixels wide.  The number 

1 is 9 pixels high and 1 pixel wide.  The letter S is 9 pixels high and 5 pixels wide.  

The letter c is 5 pixels high and 3 pixels wide.  The letter o is 5 pixels high and 4 

pixels wide.  The letter r is 5 pixels high and 3 pixels wide.  The letter e is 5 pixels 

high and 3 pixels wide.  The pixels for these rectangles are put together with or 

gates, just like HEAT. 

 

4.1.1.4 Player2score 

The word P2 Score is drawn in magenta in the same way that P1 Score accepts the 

upper left x,y coordinate.  The 2 is 9 pixels high and 5 pixels wide and all the 

other characters are identical to P1 Score.  Again, the rectangles are put together 

with or gates. 



 

4.1.1.4 Rally 

The word Rally is drawn in white the same way as the other words were drawn on 

the screen with blobs.  The letter R is 7 pixels high and 4 pixels wide.  The letter a 

is 5 pixels high and 3 pixels wide.  The letters l are both 7 pixels high and 1 pixel 

wide.  The letter y is 6 pixels high and 3 pixels wide.  The pixel output of Rally is 

again the result of the different rectangles put together with or gates.   

 

  

4.1.2 Paddles 

Another upper level module within Scoreboard is the Paddle module.  This 

module takes the x,y coordinates of both player 1’s paddle and player 2’s paddle.  

Paddles were created using the blobcheck module.  Player 1’s paddle was drawn 

in green and player 2’s paddle was drawn in magenta.  These colors were chosen 

in order to be easy to pick up over any part of the screen.  Player 1’s paddle 

matches the color of P1 Score and player 2’s paddle matches the color of P2 

Score so that it is very easy for a player of the game to realize which paddle is 

theirs and which player number they are without confusion.  These two paddles 

are each rectangles 200 pixels wide and 100 pixels high.  They were designed to 

be hollow rectangles in order to allow the user to see the scoreboard and the ball 

through the paddles, but still have the paddle clearly on top of the other layers in 

order to show that the paddles are between the user and the court and ball. 

 

 

4.1.3 Court 

Court uses a series of modules in order to draw the background squash court for 

the user to play on.  The walls and floor were chosen to be white with black lines 

representing the corners of walls.  The back wall was drawn with one large white 

rectangle with a small black rectangle over it to be the background of the 

scoreboard using instantiations of the blob module and blobinv module.  On the 

left and right side of the screens are white rectangles 2 pixels away from the back 

wall in order to create the lines representing the corners also using instantiations 

of the blob module.  The middle of the floor was drawn in the same way.  The 

lower right and left corners are actually also rectangular shapes, but were created 

using the blobline and blobline2 modules.  These modules were designed so that 

white pixels would be drawn everywhere except for the corners of the back wall 

to the lower corners of the screen.  This gives the user a three dimensional court 

that displays the floor, side walls, and back wall.  It is the perspective of an entire 

squash court from near the ceiling of the court.   

   

 

4.1.4 Terman 

The Terman Module was created in order to draw a crude pixel of Professor 

Terman’s face with the word “TERMAN-ATED” displayed on screen.  This 

screen is displayed at the end of a game.  It draws Professor Terman’s face as a 

rectangle with rectangular features and circular eyes.  The eyes were created with 



the ball modules and chosen to be blue.  His skin is created with a large white 

rectangle using the blob module so that the other features could be drawn on top 

of the skin.  He was drawn essentially having side burns and no hair with a 

mustache.  His hair was represented with yellow rectangles drawn by 

instantiations of the blob module.  His lips were drawn to be magenta in a 

rectangular fashion (blob module) and his nose was drawn with two thin black 

lines as the outline (instantiations of blobinv module).  He was given green 

rectangular glasses as well (using blobcheck module).  This screen displays from 

squash_game based on the game logic for when a game is over and will stay on 

screen until a user hits the reset button.  The screen can be seen in Figure 4.3. 

 

 
 

Figure 4.3: Game Over Screen, “TERMAN-ATED” 

 

 

 

 

4.1.5 Lower-level Modules 

These modules are the building blocks of the video display.  Each of these 

modules accepts as input an x,y location to draw onto the screen, a color, and the 

vclock (65mhz), vsync, and hsync signals. 

 

 



4.1.5.1 Blob 

Blob is a module that is used for rectangles on the screen.  On the positive edge of 

the video clock (65 mhz) it checks vcount and hcount and if the current vcount 

and hcount are within a set x width and y height, it will draw pixels of the 

appropriate color.  Otherwise, it will leave blank pixels. 

 

4.1.5.2 Blobsize 

Blobsize is a module almost identical to blob, but it accepts width as an input 

instead of having width as a parameter.  This is used for the heat bar display in the 

scoreboard.  When heat changes, the width of the rectangle drawn changes 

appropriately 

 

4.1.5.3 Blobinv 

Blobinv is a module similar to blob, but when hcount and vcount lie outside of a 

certain x and y boundary, the output pixel is white instead of a blank pixel.  In this 

way, black pixels can be drawn on top of white pixels.  Blobinv should create 

output pixels that are white everywhere except within the boundaries of the x, y 

coordinates and the length and width specified.  This way other modules can 

check to see if the pixel created by blobinv is zero and draw a black pixel in those 

places on the screen instead of a color pixel. 

 

4.1.5.4 Blobcheck 

Blobcheck is a module similar to blob, but it only draws pixels in on the border of 

the rectangle, 2 pixels wide.  This is used for the paddles so that the paddles can 

be seen over top of the ball, but the user can still see the ball through the paddles.  

It is also used for the rims of the glasses in the Terman end screen. 

 

4.1.5.5 Blobline 

Blobline is a rectangle drawing module that draws a diagonal line through the 

rectangle created.  It checks hcount and vcount to see if it is within certain x and y 

boundary conditions.  If pixels are, then they are drawn to the screen unless the 

pixels fall on the black line with equation y=3x/2.  Thus, this module creates 

rectangles with diagonal black lines running through them from upper left to 

lower right.  This module was important to pipeline because of the multiplication 

and division that must take place in each clock cycle.   

 

4.1.5.6 Blobline2 

Blobline2 works like blobline, but with the diagonal line through the rectangle 

running across the opposite corners (lower left to upper right).  The line’s 

equation is y0-3x/2 = y where y0 is the y coordinate of the upper left corner of the 

rectangle.  It checks x and y boundary conditions the same way as any of the other 

basic pixel modules. 

 

4.1.5.7 Ball 

The ball module is both an upper level module inside of squash_game as well as a 

basic building block module.  The ball module works like the blob modules in 



drawing pixels based on hcount and vcount being in the appropriate range of 

display.  It uses basic algebra to calculate the pixels in which to draw based on the 

radius and x and y locations of the center of the ball (r^2 = x^2 + y^2).  If hcount 

and vcount fall within the bounds of the circle, the ball module will draw pixels.  

With the extensive math here, this module was important to pipeline in order to 

avoid glitches in the output. 

 

 

4.1.6 Synchronizing/Pipelining 

In order to allow the screen to display properly with no memory and a series of 

modules creating pixels, pipelining was necessary.  This also required delay of the 

hsync, vsync, and blank outputs of the squash_game module in order to match the 

pipelined propagation delay of squash_game’s pixel output.  The pipelining was 

done in order to minimize the number of calculations necessary in each video 

clock cycle (65Mhz).  This was done in order to solve video output glitches, 

particularly with the ball module, but also involved when using a series of many 

or statements when combining the video display.  The total delay from input 

hsync, vsync, and blank signals until the output pixel is displayed is 15 clock 

cycles.  With a 65mhz clock, each clock cycle is approximately 15 ns.  This 

means the total propagation delay is 225ns.  This delay (1/4400000 s) is quick 

enough that as far as a user’s eye can tell, the game is happening in real time.   

 

 

4.2 Audio 

Audio was done in much the same way as in Lab 4.  Instead of 64kx8, the 

BRAMs were 32kx8 to store short sound clips.  Eight of these were created to 

store 8 different audio clips.  These audio clips can be recorded and programmed 

based on pressing and holding button two.  Each clip should play properly based 

on inputs of hit, power_hit, newserve, server, gameover, reset, and buttonL.  

These variables will determine the output of squash_game, play.  Play is a 3 bit 

output that can hold a number from 0-7 corresponding with the appropriate sound 

to be played.  When the appropriate sound should play, squash_game sends a one 

frame length pulse to recorder in order to play an audio clip.  When this pulse is 

high, the soundclip stored in the appropriate BRAM will play once.  As long as 

the sound clip is long enough, the sound will be played exactly once.  The frame 

length pulse is longer than one clock cycle of the audio’s 27 mhz clock.  When 

the soundclip is finished playing, no audio will be played until the next play_pulse 

signal from squash_game is sent to recorder.   

 

The 8 different audio clips are completely programmable.  This allows us to set 

original audio signals, but gives the user the freedom to reprogram audio clips as 

they see fit.  Audio signals are programmed using switches 5-7 and button 2.  

When the user holds button 2 down, that is the signal to record.  The user can hear 

what they speak in the microphones as they program a sound into the BRAMs.  

When button 2 is pressed down, playback is low meaning record mode.  Then the 

recorder selects the appropriate BRAM using the switch values of Switch 7-5.  It 



creates a write enable signal for the proper BRAM to hold the current audio clip.  

This data is held in the BRAM until it is reprogrammed by another press of button 

2 with the same switch values.  See Table for list of sounds, the appropriate 

signals to play them, and the appropriate switches to store them into their 

respective BRAM.   

 

Inside of squash_module is a series of logic to determine the appropriate value of 

play to be sent to the recorder.  The circumstances of when audio clips play can 

be viewed in Table below.  If it is player 1’s turn to serve, the value of new_serve 

goes high and the logic inside squash_module checks to see the value of the 

server (you_serve).  A pulse is created so that the recorder will play the 

appropriate sound, either “Player 1 Serve” or “Player 2 Serve.”  If a hit occurs, the 

logic checks to see that hit is high and sends a pulse with the appropriate value of 

play in order for the recorder to play the clip, “Thwack.”  A power hit takes 

precedence over a hit so that if a power hit occurs, power_hit is high and the value 

of play will correspond to the clip, “Power-up.”  If the reset button is pushed, that 

restarts the game and the clip “New Game!” is played by the recorder.  If the 

game_over signal goes high, that means the game is over and the value of 

who_won will dictate whether the recorder plays “Player 1 Terman-ated” or 

“Player 2 Terman-ated.”  The last audio clip is based on the press of the left 

button on the FPGA.  This will make play take the value that represents the audio 

clip, “You Suck!” 

 

4.2.1 Recorder 

The recorder module is the module used to generate and play audio clips using the 

FPGA’s built in ac97 capabilities.  Inside the recorder, each BRAM has as input 

from_ac97_data and a write enable signal that is based on switches 5-7 and 

pressing of button 2 to record.  The output of the BRAM’s are selected based on a 

case statement inside of an always block.  When the pulse from squash_game is 

high, the recorder sets a variable, doneplaying, to zero to allow the recorder to 

play an audio clip.  This doneplaying value will go high to one once the last used 

address space in the selected BRAM has been output in the form of an audio 

signal.  The case statement selects the current value of the three bit play signal 

that comes from squash_game in order to play the appropriate sound according to 

the game’s logic.  The circumstances under which audio signals can be played, 

along with the appropriate values of the switches in recording can be seen below 

in Table .  

 

 

Table 4.2: Audio Clips, Location, Switches to Program, and Signals to Play 

8 BRAMs Switch[7:5] Play[2:0] 
Situation under which it is 
played 

Signal(s) in 
squash_game Sound programmed 

ram32x8 3'b000 3'b000 A power hit takes place power_hit "Power-up" 

ram32x8_1 3'b001 3'b001 A regular hit takes place hit, not power_hit "Thwack" 

ram32x8_2 3'b010 3'b010 Player 1 wins the game 
game_over goes high, 
not who_won "Player 2 Terman-ated" 

ram32x8_3 3'b011 3'b011 The reset button is pushed for Reset "New Game!" 



a new game to start 

ram32x8_4 3'b100 3'b100 
A point ends and it is Player 2's 
turn to serve 

new_serve goes high, 
you_serve "Player 2 Serve" 

ram32x8_5 3'b101 3'b101 
A point ends and it is Player 1's 
turn to serve 

new_serve goes high, not 
you_serve "Player 1 Serve 

ram32x8_6 3'b110 3'b110 
A player hits button left to taunt 
the other player button_L "You Suck!" 

ram32x8_7 3'b111 3'b111 Player 2 wins the game 
game_over goes high, 
who_won "Player 1 Terman-ated" 

 

Testing/Debugging 

The biggest issue with testing and debugging was with displaying a screen 

without glitches.  This was difficult because of the timing issues with attempting 

to display a screen in real time without using memory.  Each of the modules had 

to be carefully pipelined.  The way I tested and debugged was just to compile the 

code and look at the screen in order to see if anything looked like it had glitches.  

Since my video output was completely created before any integration with 

Azadeh’s logic or Sumit’s inputs, the time of compilation was not a major issue.   

 

A big issue I ran into was forgetting about the phsync, pvsync and pblank signals.  

Since I was pipelining my output, this was creating a delay in which the pixels 

were displayed on screen.  The entire screen was shifted to the left before I 

matched up the delays properly.  Once I delayed the phsync, pvsync, and pblank 

signals properly, this was no longer an issue.  I tested the functionality of my 

logic for the displays by using a series of counters that could display 0-15 for the 

P1 Score and P2 Score and 0-199 for the Rally display.  In this way, I could see 

functionality without waiting for the proper inputs.  I also used a counter to make 

the paddles move in a set way across the screen to see if the movement caused 

any timing issues or glitches in the screen.   

 

Audio was much more difficult to test.  First, I attempted to get basic functionality 

with just one audio clip based on a button press that would play once instead of 

repeating over and over again.  Once I accomplished this with the doneplaying 

variable, I created 7 more BRAMs for a total of 8 BRAMs.  I used a counter to 

change the value of the play signal and played the audio clips from the different 

BRAMs based on changing values of the counter.  This worked well, but the 

problem when integrating was that if the same signal took place twice in a row, it 

would only play once.  Thus, I had to create the pulse signal inside of 

squash_game and create a series of logic to create pulses with the appropriate play 

values based on the game’s logic.   

 

5. Integration and Debugging 

Integration and debuggins was a huge part of our project.  The video inputs and outputs 

could be tested and checked for full functionality on their own, but combining the proper 

inputs and checking the game’s physics and logic posed major challenges.  The game 

logic code was difficult to test while she was creating it, so much of the testing of the 

logic came at the very end through the integration processes.  This was done through 

compiling the code and reprogramming the FPGA.   



 

At first, we had a switch to choose between user input’s output to see the paddles and 

how well his image filtering was working and the game’s video output.  This worked, but 

as we made more changes and additional features, the Xilinx ran into issues when 

compiling.  Timing errors due to the length of wires interacting with the ZBT caused 

glitches with the input paddles and on certain compilations the screen was completely 

black with no output.   

 

After testing several area constraints to no avail, since the user input’s output display was 

unnecessary for user functionality, we commented it out in order to display only the 

actual game with no switch to choose between displays.  This worked, but there were still 

timing errors which resulted in glitches causing a ghost-ing effect that made the paddles 

move rapidly and hard to control on the screen. To solve this we had to use the tool’s 

multipass place and route tool. However, this greatly increased down compilation times. 

 

 

The main testing of the logic was through repeated testing and playing of the game in 

order to see if the ball, scoreboard, end screen, and audio were behaving properly.  There 

were timing issues matching up the audio signal since it operates on a 27mhz clock and 

the video operates on a 65mhz clock.  These issues were solved by creating un 

unnecessarily long frame length pulse to ensure the audio would pick up the signal and 

play the proper audio clip.  The game logic was tested to make sure player serves 

changed appropriately, points were awarded correctly, and the number of hits in a rally 

incremented properly. 

 

 

6. Conclusion 

6.1 Sumit Khatod 

Going through the design process from start to finish taught me a number of 

useful skills. First of all it showed me how to pull together my knowledge 

base and use it create something. Through all the hitches along the way, I 

learned the value of rigorous testing of system and how to identify potential 

problems. However most importantly, I learned to be more resourceful in 

actively seeking out the answer to questions I did not know the answer to. 

This came into play very heavily when using some of the more advanced 

features of the labkit not covered in class such as tweaking area constraints. 

 

Reflecting back on the project, there are few things I would do differently. 

First, I would probably have switched away from using a camera detector and 

uses an infared light so to further reduce noise. I would also have tried to 

create a third dimension of controls as the player can not move forward and 

back. The final thing I do differently if given more time is to learn more about 

the xillinx tools. Due to the timing delays associated with the FPGA’s wiring, 

we were not able to add the function to change the paddle’s size as that caused 

the ZBT timing delay associated with the internal wires to be too great. 

 



6.2 Azadeh Moini 

One of the most important things I think I took away from this lab was a sense 

of dedication and commitment to a long-term project.  This project took an 

immense amount of planning from day one, and it was important to keep 

working on a regular basis to try to keep up.   I found the deadlines provided 

by the course to be extremely helpful guidelines for our final project.   

 

When integrating all three parts of the project, I realized that there were errors 

in my logic due to overlooked cases.  I was reminded of the benefits of 

working in a small group.  Working with team members was beneficial during 

debugging, but also during brainstorming.  In both cases, attention to detail 

and a fresh point of view were extremely helpful.  With a project as large as 

this one, it quickly became challenging to keep track of all the possibilities 

within the game, and having the project guidelines and other group members 

was definitely advantageous. 

 

If I had more time on this project, there are two main features I would like to 

address.  One major one is collision detection.  As I mentioned, the current 

method for collision detection only checks the center of the ball against the 

paddles.  I would have liked to detect a collision when any part of the paddle 

and ball collide.  This could possible effect the angle at which the ball moves 

as well (in addition to the direction of the swing).  I would have like to have 

charted the coordinates for the ball and paddles and compared them to 

determine collision.  Alternatively, it may have been possible (although much 

more complex and challenging due to the layers in Will’s display output) to 

determine collision based on overlapping pixels in the ball and paddles.  

Another change that may have been interesting to add would have been the 

effect of gravity on the movement of the ball.   

 

 

6.3 Will Fotsch 

I learned a number of things from this project.  The importance of outlining 

distinctive roles in a group project became very obvious in addition to 

splitting up the tasks effectively.  Divvying up tasks appropriately so that each 

person could work on his/her section of code independently was key in order 

to complete the project.  Three people working on the same piece of code at 

the same time is a waste of effort.   

 

I also learned the importance of clearly defining goals and collaborating with 

group members.  The project does not work if each person’s section works 

independently of the others.  The project will only work if each person’s 

section works not only independently, but also in conjunction.  The timing of 

each signal and the proper number of bits in each piece of information that 

traveled from one module to another must be very precise.  It is important to 

have overlap in people looking at each other’s code because often it is much 

easier to find a problem if it is your first glance at a section of code rather than 



looking at it for hours on end.  Also, often times someone else will have a 

better idea on how to more elegantly solve a problem or create the desired 

functionality.   

 

Given more time, the audio signals would have been interpolated to give a 

cleaner sound.  This would be a very easy change to make.  I probably would 

have started using sprites for video display in order to show more complex 

images and move them around the screen more easily.  I could have had more 

realistic paddles and a more detailed back court.  I would have made a blob of 

some sort to move along the side of one of the walls and/or the floor going 

along with the radius changing in order to give the user a better idea of depth 

perception on when the ball is within the hitting range.  It could turn red when 

it is near the edge of the screen indicating that the ball is ready to be hit and 

could be another color as it travels away with the ball and comes back after 

the ball bounces off of the wall.  I may have added a start screen and would 

have made the graphics nicer on the end screen.   


