A Theatre Lighting Board

Maura Cordial and Irene Zhang

Introductory Digital Systems Laboratory
December 13, 2006

Abstract

The goal of this project was to design and implement a lighting board controller. The lighting board
can be used to control eight dimmers, each of which can power up to two theater lights. Each dimmer
is assigned to a channel that can be programmed at different intensities(0%-100%) for each of the 127
cues. Each cue has an up time and down time, up to 255 seconds, indicating how long it takes to bring
the channels up to their respective intensities for the cue and back down at the end. There are also some
optional parameters for each cue: wait, follow and link. Wait indicates a period of time to wait before
bringing up the new cue after the go signal. Follow indicates a time period to keep the cue up before
automatically continuing to the next cue. Link indicates the next cue to go into. Link can be either
sequential or used to create loops and jump between cues. The user will program cues using a standard
computer keyboard and screen. The screen will display detailed information for a single cue and basic
information for the previous and next cue. The board will operate in two modes: blind and live. In live
mode, changes to a cue will affect actual channel intensities in real time. In blind mode, the changes will
not be visually seen until that cue is in live mode.

Contents

1 Introduction

2 Overview

2.1 Board Specifications e
2.2 SCTEEN . . . v v vt
2.3 Keyboard
3 Design
3.1 System Overview e e
3.2 Screen Display by Maura L e
3.2.1 XVGA Module (Xvga.v) o oo
3.2.2 Blob Module (blobv.v and blobh.v) Lo L
3.2.3 Character String Display Module (cstringdisp.v and cstringdisp2.v)
3.2.4 Static Sprites Module (static_sp.v)
3.2.5 Binary to String Converter (bin_string.v)
3.2.6 Color tracking Modules (color_tracking.v and color_tracking2.v)
3.2.7 Dynamic Sprites Module (dynamicsp.v) L
3.3 Keyboard Handler by Maura
3.3.1 PS2 to ascii Module (ps2-ascii-input.v) 0oL
3.3.2 Keyboard Interpreter Module (keyboard_interp.v)
3.4 Processor by Irene (ProCessor.v) i i i e
3.4.1 Imstruction Buffer
3.4.2 Control Logic (ctrllogic.v)
3.4.3 Arithmetic Logic Unit (alu.v) o
3.4.4 Registers e e
345 Cue Memory L e e
3.4.6 Macros ROM e
3.5 DMX Controller by Irene (dmx.v) e
3.5.1 Channel Twiddler Module (channeltwiddler.v), ...
3.5.2 DMX output (dmxcontroller.v)
4 Testing
4.1 Screen Display Testing L
4.2 Keyboard Handler Testing L
4.3 Processor Testing L e e
4.3.1 Control Logic Testing
4.3.2 ALU testing e
4.3.3 Processor Integration Testing Lo
4.4 DMX controller Testing L
4.5 Integration Testing L e

5 Conclusion

5.1
5.2
5.3
5.4
5.5

Keyboard Interpreter L
SCreenl e
Processor e e e e e
DMX e
Overall Reflections e

6 Appendix 31

6.1
6.2

6.3

6.4

6.5

6.6

6.7

Theatre Lighting Term Definitions o 31
Instruction Set 32
6.2.1 Instruction Formats L L 32
6.2.2 0Opcodes e e 32
Screen Display Verilog Files o 34
6.3.1 Binary to String Converter e 34
6.3.2 Color Tracking e 37
6.3.3 String Display 39
6.3.4 String Display with Color Tracking 40
6.3.5 Dymnamic Sprites e 42
6.3.6 Static Sprites L e 49
6.3.7 XVGA . . . e 52
Keyboard Handler Verilog Files 53
6.4.1 Keyboard Debounce L e 53
6.4.2 PS2to ASCIL e e 59
6.4.3 Keyboard Interpreter L e 57
6.4.4 Keyboard Interpreter Test Bench 0oL 63
Processor Verilog Files o 67
6.5.1 Processor Module 67
6.5.2 Control Logic e 70
6.5.3 ALU e e 71
6.5.4 Right Shift e 72
DMX Controller Verilog Files 73
6.6.1 Channel Twiddler e 73
6.6.2 DMXoutput e 75
6.6.3 Divider e e 77
6.6.4 DMX controller 78
6.6.5 Timer e 80
Labkit Verilog Files o e 81
6.7.1 Debounce e 81
6.7.2 Follow TImer o . e 82
6.7.3 Labkit e e 83

List of Figures

0O Ui Wi

[S G = T S (=)
Gl WD~ O

Module Diagram L e 6
Example Screen Display 8
Example of Color Tracking e 9
Example Error Message Display 10
Blind Mode e 11
Live Mode e 11
Keyboard Interpreter State Diagram o 13
Processor Block Diagram L e 17
Basic Cue Data L e 19
Extended Cue Data L e 19
Channel Data e 20
Load Cue Timing Diagram e 21
DMX-512 timing diagram e e e e 22
Recording acue L e e 24
ADDC instruction o e 26

16 ADD Instruction o 0 e e e e e e e e 26
17 ADMX-512 packet e e 28

List of Tables

1 Color Values e e 10
2 Key Assignments 12
3 Error Messages L e e 14
4 Reserved Registers in the Processor o o 19
5 DMX-512 packet specifications 23
6 Control Logic Test Cases e 25
7 ALU Test Cases v v v e e e e e e 26
8 Lighting Board Test Cases e 27
9 More Lighting Board Test Cases e 28
10 Imstruction Set L 33
11 Opcode Table e 34

1 Introduction

This document details the design of a lighting board console. Lighting boards are used mainly in theatre and
entertainment settings to program the lighting for an event. A lighting board allows the user to manipulate
channel intensities to produce different looks and effects with the lighting instruments. These looks can then
be made into a cue and saved in the lighting board’s memory. The lighting design for a theatre production is
composed of multiple preprogrammed cues that are run during the show from the board’s memory. During
a show, the lights transition between cue to cue either manually or automatically on a timer. Most cues are
run manually by pressing the go button, which tells the lighting board to go to the next cue in the sequence.
If the cue transition happens automatically, there is no need to press the go button to transition into the
next cue.

2 Overview

The lighting board described in this document is similar to ones used in theatres around the world. The
board can control eight channels on two dimmer boxes. These channels control the intensity of lights that are
be plugged into the dimmer boxes. Each channel can control up to two lights. The dimmers are controlled
by the labkit through the use of DMX-512 protocol. DMX-512 is the industry standard for communication
between dimmers and the lighting board. Our lighting board stores up to 127 cues. Each cue has its own
special parameters such as an up/down time, follow, link, and wait. Our lighting board utilizes a computer
screen and keyboard for programming cues instead of the standard lighting board interface. The keyboard
has special key bindings that implement standard lighting board buttons. The special key binding allow
us to implement all of the functionalities of a real lighting board without the specialized interface on real
lighting boards.

2.1 Board Specifications

The lighting board is used both to design cues and to program a show. The board controls 8 channels, which
can be set to any percentage value between 0% and 100%. Any channel that is changed becomes captured
until the user saves and releases the channel. That way the lighting technician does not have to worry about
losing channel values before they are saved. An intensity value for each of the 8 channels can be stored for
a cue along with uptime, downtime, wait time, follow time and link. The downtime and uptime dictate the
period over which the lights gradually change. This gradual change can be seen on stage as well as on the
screen. Wait time delays the uptime of the cue that is being loaded. Follow automatically loads the next
cue after the given period of time. Link indicates the number of the following cue. The default numerically
sequential but cues can also be linked out of order and in loops. The board can operate in blind mode,
where the user can play with different cues but not alter the look on stage. The board stores the cue that
was current when entering blind mode, so that it can return there when going back into live mode.

2.2 Screen

The user will use the screen to view the different parts of the cue as they are programming. The screen will
display the current cue number and the intensity levels of the 8 channels in that cue. The channels values
will be color coded to indicate whether the channel was used in the previous cue, at either the same or a
different level. Also, the channel value will display a different color if the channel has been captured. The
screen will show all of the other parameters for the current cue: uptime, downtime, wait time, link and follow
time. The screen will contain the previous and next sequential cue numbers and the basic data, uptime,
downtime and wait time, for those cues. At the top the screen shows the current mode, either live or blind.
Since many parameters are set by a sequence of keys, the screen will show prompts to help the user and
error messages if an incorrect key has been hit. All of these functionalities are implemented by the Screen
Display.

2.3 Keyboard

The keyboard uses 28 keys to replicate the buttons on a lighting board. The goal is the make the functionality
of the keyboard as similar to a commercial lighting board as possible. Many buttons are directly mapped to
a selected button on the keyboard such as 'go’,’channel’,’at’. All the key mappings are listed in the Keyboard
Handler section, which describes the implementation of the keyboard. In general to program a value, keys
are needed to disambiguate the numerical values. This makes some keys invalid once certain keys are hit.
This functionality is implemented with a large finite state machine. At the end of the sequence an instruction
is issued to the Processor, which performs the operations needed to save or set the appropriate parameters.

3 Design

This section discusses the design of the lighting board. The board consists of 4 major subsystems: Screen
Display, Keyboard Handler, Processor and DMX Controller. The System Overview will describe how the
four subsystems integrate together and then each subsystem will be discussed in more detail individually.

3.1 System Overview

We are using a shared memory, processor-based implementation for the lighting board controller. Most
of the functionalities will be handled as instructions in the processor. The modules for the lighting board
controller fall into four subsystems: Keyboard Handler, Screen Display, Processor and DMX controller. All
the modules in each subsystem are shown in Figure 1 except for the Processor, which is detailed in another
diagram in the Processor section.

Every time a user hits a key, the Keyboard Handler decides what action needs to be performed. On
most key strokes the Keyboard Handler will send an instructions to the Processor. The Processor uses the
instruction to coordinate the rest of the response to the user input. The Processor also contains the cue
memory, so it will store any paramters that have been entered. The Screen Display will show the new value
and the user can continue programming the board.

3.2 Screen Display by Maura

The screen is composed of three subsystems: the static sprite module, the dynamic sprite module, and the
XVGA module. The XVGA module takes the pixel data from the dynamic and static sprite modules and
displays this data onto the screen. The screen is composed of fifty-two sprites, thirty-two which change
depending on the state the lighting board is operating in and the current cue. The other twenty static
sprites are headings describing the dynamic data.

3.2.1 XVGA Module (xvga.v)

The purpose of this module is to display the sprite pixels to the screen. This module is a slight modification
of the XVGA module that is available online via the fall 2005 website. This module has been modified for
a screen resolution of 800 x 600 pixels. By reducing the resolution of the screen, the module was able to be
clocked off of a 40mhz clock, instead of the 65mhz clock. The slower clock allowed the module more time
to complete all of the necessary logic to display the sprites. The extra time was needed due to the color
tracking logic of the sprites and to overcome the propagation delay of the combinational logic being used
to display the sprites. The reduced screen resolution caused the values of the horizontal and vertical syncs
and blanks to change from the original version of this module so that the screen would actually display the
proper pixels. The correct values were calculated and inserted into the module for it to be fully functional
in the 800x600 pixel resolution.

BES

13[]0JIU0D XA

13|puey Indino XWQ

i

| [o:]lgkno |

|eLias

DIM] [aUTRYD |

paldx

Pwi] jem

[oieg]Buliss

dsi

XWp Uels

L

IBWI] mo||o})

ZAl 23w
plecg
Bunyfn sneayl

25d

1

125V 0] £5d

mummLu__UmWJﬁo_m___Umm _
pad|dxa _

EAEILBERT]

@c_.:mAj

1055220.1d

8;25&3#5

pJeoqAsy

oot}

pbuLps3

|
([0 2]12)eyo’[o £ Jwnu s o Jerea

Ele]

Bury um._ﬂ.ﬁ_ﬂu |
.

i B

so]11ds J1weuAg
[0:z]p 1axid

Dz]Exid Jops _
A [0]aunosa ToioT3uncoy
_

eDAX

sojlds Jnels

zd<ipbuiyso

[oels xid

I9|pUeH pieOgADY

1

Figure 1: Module Diagram

3.2.2 Blob Module (blobv.v and blobh.v)

This module is used to divide the screen into different visual areas by creating lines. This module is based off
of the blob module from Lab 4. The original module is modified into two modules, one to create a horizontal
line across the length of the screen and another to create a vertical line down the bottom half of the screen.
The modified blob modules are simplified and use the hcount and vcount position to determine the color
of the pixel at each hcount and vcount position. The width and height parameters were removed from the
module since the module was used to create a line across the screen and not a large blob.

3.2.3 Character String Display Module (cstringdisp.v and cstringdisp2.v)

The character string display module is used to display a character string on the screen through the use of the
font rom module. This module is based off of the version of the character string display module found on the
fall 2005 class website. This project uses two versions of this module. The first version is used exactly as it
was originally written on the website, while the second version modifies the module to account for different
font colors.

The basic functionality of the module is that it takes each character in the character string and looks
up that character in the font rom module. Each ascii character is 8 bits and 12 bytes. The pixels for each
character are assigned either a one or zero depending on whether or not the character is in the right hcount
and vcount area. If the position is correct, then it is assigned a one, otherwise it is blank (zero). This process
is done for each character in the string until all characters have been assigned a pixel value. This pixel data
is then outputted to the appropriate screen module to be displayed on the screen.

The modification of this module, version 2, operates in the same way as the original module, but the
color of the pixel can be altered depending on the value of the color_pixel variable that is inputted into the
module. This color_pixel value facilitates color tracking of the channel intensity sprites as well as highlighting
the sprite that being altered. The color of the character string is changed by altering the cpixel assignment.
The default cpixel value is 7 for each character which will display the character white. By altering the cpixel
value, the string is able to change colors depending on the value of color_pixel. The value of cpixel can now
be either, 2, 3, 4, 5, 6, 7, which corresponds to green, blue, red, magenta, yellow, and white. Each color has
a special meaning, which will be discussed in the color tracking module.

3.2.4 Static Sprites Module (static_sp.v)

This module creates the headings for all the static sprites on the screen. The headings do not change in our
project and are therefore separate from the dynamic sprites. As seen from the screen shot in Figure 2, all of
the headings are neatly arranged in the screen and allows the user an easy way to read off the appropriate
data from the screen.

The static sprite module displays 22 sprites. Out of theses 22, 20 of the sprites are character strings.
These character strings are headings that are assigned a static value in the module. These sprites correspond
to the Mode, Channel label at the top of the screen, the channel headings, and the headings for the two
boxes in the bottom half of the screen. The module calls upon the character string display and the blob
module to obtain the static pixel data the module needs to output to the XVGA module.

3.2.5 Binary to String Converter (bin_string.v)

The purpose of this module was to convert an 8-bit binary number into a string of three characters. Each
character is looked up separately and then all three single characters are concatenated together before
outputting the character string to the dynamic sprites module.

Each character string is broken down into a hundreds place, tens place, and an ones place to represent
the corresponding digit. The character for each digit placement is obtained through a series of if-statements.
To obtain the character that corresponds to the correct value of the binary number, the module subtracts
the value 100 from the binary number and then tests to see if the resulting value is greater than 100, 0, or
neither. If the value is greater than 100, the module knows that the hundreds character digit must be a 2,

Cue Number Down Uait

Up Time 8
Doun Time 34
Follow pAS
Hait 3
Link 78

Figure 2: Example Screen Display

and then correspondingly if the resultant was greater than 0, the hundreds character digit was a one, or the
number was less than 100 and therefore the hundreds character will be empty. The resultant value is then
stored in the signed register, temp_num. This number will be used to calculate the tens character digit. The
tests to obtain the hundreds character digit are limited to only two if-statements since the upper bound of
any number that will be displayed will not be any greater than 256. There are error tests in the keyboard
interpreter module to catch any data that is an invalid entry.

The tens character digit is obtained in a manner similar to that of the hundreds character digit. There
are a series of ten if-statements that are evaluated only when the value of temp_num has changed. The first
if-statement subtracts 90 from temp_num and if it is greater than 0, the tens character digit must be a 797,
otherwise the next if-statement evaluates. This statement subtracts 80 from temp_num and compares that
value to 0, if true then the tens character digit is an 78", otherwise the next if-statement evaluates. This
series of comparisons continues until the statement is true. The last if-statement is a bit different from the
first nine in this block. The last if-statement is evaluated if the character digit for the tens place is less
than 10, which would make the character digit a 0. The last if-statement tests the value of the hundreds
character digit. If the character digit was ” ” (so the number was less than 100, and now less than 10), the
tens character digit will also be a blank character digit. This prevents a number from being displayed as 001
(or another variation), instead it will be displayed as a 1. The first two character digits are empty. If the
hundreds character digit is not blank, then the tens character will be a 0. Similar to the hundreds digit, the
resultant value from the subtraction is stored in another register, temp_num2, to calculate the final character
in the string, the ones character digit.

The ones character digit is obtained in a manner very similar to the tens digit. It also is a series of ten
if-statements that are evaluated only when temp_num2 changes. The if-statements for the ones character
digit are designed so that when you subtract a number if temp num?2 is equal to zero, the ones character
digit is assigned to the value that you subtracted. This means that when 6 was subtracted from temp_num?2
and it was equal to 0, the ones character digit is assigned ”6”. The ones character digit also has the same
zero testing as the tens character digit, though the test in the ones block tests the character of the tens
character digit.

After each block has been evaluated, the three character digits are then combined together in a 3 character
string and outputted to the dynamic display module. This module is called for each of the dynamic sprites
to accurately display the binary number as a character string on the screen.

3.2.6 Color tracking Modules (color_tracking.v and color_tracking2.v)

The purpose of the color tracking modules is to change the font of the character display depending on the
state of the sprite and the current past history of the data for the sprite. The color of the character strings is
used as a way for the user to quickly tell a few key characteristics about the previous and current cue. The
color tracking modularity is broken down into two color tracking modules, one for channel intensity data
and the other for the extended data of the current cue.

The color tracking module used for tracking the channel intensity data is more complicated than the
extended data module. This module uses the current state, channel, release_flag, the current value of the
channel, and the previous value of the channel. The color of the character string is determined after a series
of tests concerning this data are evaluated. This module is evaluated eight times, once for each channel.
This is important to note when testing to see if a channel intensity is currently being selected, the value of
the parameter channel _test is compared to the channel value passed into this module. This makes sure that
the channel that you are editing is the only channel that gets highlighted, otherwise it is possible for other
channels to be selected if their intensity value is the same.

Cue Number Down Wait
Up Time 8
Down Time 34
Follow 255
Vait 3

Figure 3: Example of Color Tracking

The screen capture above illustrates each color option that the lighting board can handle. To determine
the color of the data multiple tests are done upon each set of data. The first test is to see if a channel is
captured. If the channel is captured, then it will be colored green. If the channel is not captured, the next
test evaluates if the channel state is equal to channel test and if you are in the AT state of the keyboard
interpreter. This means that you are currently editing the value of the channel and the color of the character
string should be yellow. If this test is false, then the current value of the channel is compared to the previous
value of the channel. If the two values are the same, then the character display is assigned the color red.
Otherwise if the two values are different and previous channel is not equal to zero, the value of the character
string will be magenta. If the value of the previous channel data was zero, then the character string will be
assigned the color white. This color data is stored in the color_pixel register and outputted to the character
string display module which actually implements the color assignment to the character string.

The color tracking module for the extended data only deals with the current data that you are editing.
It does not track the history of the data, like the other module does. This variation of the module turns the
character string yellow if the user is currently editing the data, otherwise the character string is white. The
color is assigned based off of the comparision between the state and the state test value. The state value
tells the module which state the user is currently in from the keyboard module. If this state corresponds
to one of the states of the extended data, then the user is currently editing the data for that corresponding
extended data value; otherwise the color_pixel is set to a value that corresponds to white.

Table 1: Color Values
Color Code | Color Meaning

Red Same level in previous cue and Live Mode
Magenta | Different level in previous cue

Yellow Currently Editing

White Default

Blue Error Messages and Blind Mode

Green Captured

QY | W N = O

3.2.7 Dynamic Sprites Module (dynamic_sp.v)

The purpose of the dynamic sprites module is to obtain and display all of the data that will be changing
through out the project and displaying the current value onto the screen. This module is able to achieve
this through the character string display module, the binary to string module, both color tracking modules,
and logic included inside the module itself. The dynamic sprites module calls each of its subsystem modules
multiple times depending on the characteristics of each sprite.

The dynamic sprites module has to complete a three-input mux for each of the channels to determine
which value the module needs to calculate and then display to the screen. This mux first tests to see if
you are currently editing the value of the channel, and if so you display the param value for that channel,
otherwise it tests to see if you are loading a cue. If you are loading a cue, the current value of the channel
will be assigned to the temporary register value for that channel. If the dmx module is currently not loading
a cue, the value displayed will be the value that is stored in the channel register. The outcome of the mux
is stored in a temporary register for that channel and then that temporary register undergoes the binary to
string conversion and then the color tracking module.

The dynamic sprites module undertakes a similar process for the extended data. The value of the
temporary register for the extended data is assigned from the outcome of a two-input mux. If the user is
editing the value of the extended data, then the dynamic sprites module will use the value of param for all of
its display calculations, otherwise it uses the value stored in the register for the appropriate extended data
for the current cue.

The next set of logic that the dynamic sprite module must do is to assign the error messages and to
display the mode that the board is operating under. An example of an error message is seen in Figure 4.

Ch 2 Ch 3
67 67

Ch 6 Ch ?

Enter a num 1-127

Cue Number Cue Up Down Wait

Up Time 8
Doun Time 34
Follow 255
Vait a
Link 78

Figure 4: Example Error Message Display

The error messages are assigned through a case statement. The error messages that should be displayed

10

are sent to the dynamic sprites module in a 3-bit flag, so the dynamic sprites module looks up the correct
messages to displays and then sends the correct character strings to the character string display module to
output them to the screen. The mode of the board is determined by a 1-bit flag. If the flag is a zero, the
lighting board is operating in live mode and the “Live” character string and color_pixel are displayed to the
screen, otherwise the character string is assigned to “Blind” and the color_pixel for that character string.
The screen captures below illustrates how the screen looks in each mode.

e —

Mode: Blind

Cue Number Cue Up Down Wait
Up Time

Doun Time

Follow

Vait

Link

Figure 5: Blind Mode

Cue Number Down Uait

Up Time

Down Time
Follow
Vait
Link

Figure 6: Live Mode

3.3 Keyboard Handler by Maura

The Keyboard handing subsystem is composed of two modules: the ps2 to ascii input module and the
keyboard interpreter module. The ps2 to ascii module was obtained from the fall 2005 class website, while
the keyboard interpreter module is unique to this project. The purpose of this subsystem is to allow the
user to input data that will correspond to actions in the lighting board. This input is converted into an
ascii value and interpreted by the keyboard interpreter module. This module allows the user to program the
lighting board and execute those cues.

11

3.3.1 PS2 to ascii Module (ps2_ascii_input.v)

This module was obtained from the fall 2005 class website. There were no modifications to the file. This
module is used to output the ascii value that corresponds to a keystroke. This ascii value is then used in
the keyboard interpreter to complete the proper function. The key bindings have changed for the purposes
of this project. A list of the purpose of each key is listed in the appendix.

3.3.2 Keyboard Interpreter Module (keyboard_interp.v)

The keyboard module translates the ascii input from the user into meaningful instructions to the processor.
The keyboard interpreter is a large finite state machine that properly handles the functionality of the lighting
board. This module is integral in issuing the proper instructions to the processor for the lighting board to
function in the manner in which the user intended by their keystroke pattern.

As seen in the finite state diagram of the keyboard interpreter module (see Figure 7), the module contains
ten states. You enter each of the ten states by entering in a specific ascii value which corresponds to the
key binding of several of the keys used on a normal keyboard. The meaning of the key has changed for this
project, but the ascii value for each key has not. The ascii value of the key is inputted into the interpreter
from the ps2 to ascii input module, along with an ascii ready signal. This signal is only high when a key has
been entered. A list of the ascii values along with their normal assignment and lighting board assignment is
included in the table below.

Table 2: Key Assignments

ASCII (in hex) | Key Button Name
41 A At

42 B Blind

43 C Cue

44 D Downtime

45 E Clear Entry

46 F Follow

47 G Go

48 H Channel

4A J Release

4C L Link

4F) Full Intensity (100%)
51 Q Clears the cue
52 R Record

53 S Live Mode

55 U Uptime

5A Z Reset

0D Enter Enter

08 Backspace | Previous Cue
30-39 0-9 0-9

Before discussing the individual states of the keyboard interpreter, a few key elements used throughout
the finite state machine must first be examined. The main element is the functional parameter register,
register 16. This register holds all numerical (value) data that the user inputs, which must then be sent to
the processor at the correct stage in the finite state machine. The value of the functional parameter register
is updated whenever the keys 0-9 are inputted by the user. This value gets stored in the temporary value
register which will be used in a few of the instructions sent to the processor. The temporary value register
gets updated as stated before whenever a number is entered by the user. The correct value gets stored in
the temporary value register by multiplying the value of parameter by 10 and adding the number that was

12

“Enter”
) Number
“Downtime” :
Cue State Powntime Statk
4'b000L 4'b1o0l
“Record”

Wait State | Number

“Enter” \ 4'B0100

Record State Wait
4'b0110
“Record”

Number

Link State

4'h0101

Default State
4'b0000
Channel State
4'b0010 “Enter”
“Channel”
MNu

"Follow" Number

Follow State
4'h0111

AT State
4'b0011

Number

Figure 7: Keyboard Interpreter State Diagram

13

just entered. The functional parameter register will store this temporary value in its register, so that when
a third keystroke is entered, the functional parameter already has the previous two keystrokes accounted for
and the proper value can be outputted to the instruction buffer.

The keyboard module communicates to the processor through an instruction set and macros. The different
between an instruction and a macro is simply that a macro is a series of instructions that need to happen at
the same time. The keyboard module can only output one instruction at a time, so macros are necessary for
certain functions such as loading a cue, recording a cue, releasing captured channels, setting the intensity of
a channel, setting the up, down, wait, follow time of a cue, setting the link of a cue, aborting the current
operation, transitioning into blind mode, and transitioning into live mode. All of these macros are explained
in depth in the macro section. Each macro and instruction is sent to the processor only when write enable
is high. This ensures that an instruction is not accidentally sent. The keyboard interpreter module makes
sure that only the correct instructions are sent based on the input from the user at the correct point in the
finite state machine. Each of the assigned keys sends the corresponding instruction to the instruction buffer.

In addition to sending out an instruction on most keystrokes, an error message flag is sent to the dynamic
sprites module to display helpful messages to the user at certain states. The messages and the corresponding
flags are listed in Table 3. These error messages alert the user if they have input data that is not in the
valid range for the type of functionality they are trying to implement. The error message is sent out after a
check on the functional parameter is done at each state if that state depends on the value of parameter for
a valid instruction to be sent to the instruction buffer.

Table 3: Error Messages

Error Code | Message Use

0 Enter a num 1-127 | Displayed for cue selection and when entering a cue to link to
1 Enter a num 1-8 Displayed for channel selection

2 Enter a num 0-100 | Displayed if an incorrect channel intensity has been entered

3 Enter a num 0-255 | Displayed for entering uptime, downtime and wait time

4 Enter a num 1-255 | Displayed for entering follow time

5 Enter to confirm Displayed after record has been hit

6 Enter intensity Displayed after ’at’ has been hit

The lighting board has a special functionality that will allow the lighting cues to automatically follow
each other if the user so desires. When this happens, the follower timer sends the signal, expired, high for a
clock cycle to alert the keyboard module that the Go macro needs to be issued. Once this instruction has
been sent, the module goes back into the default state.

As stated before, the keyboard interpreter is composed of ten states. The first state is also the default
state. In this state it is possible to access eight of the other nine states. The transition to another state
happens simply on the appropriate keystroke. To enter into the Cue State (4’b0001) you would enter the
key that corresponds to 'Cue’, which is the letter C. The user can enter the other seven states (Channel,
Record, Up time, Down time, Wait, Follow, Link) in a similar fashion. The keys needed to be inputted by
the user to enter each state is included in Figure 7. When the state machine transitions into one of these
eight states, the appropriate error message is displayed to remind the user the type of valid data that each
state can take as input.

In addition to being able to transition into the previously named eight states, the default state also allows
the user the functionality of seven other keys. These keys are reset, blind mode, live mode, release, clearing
the current cue, loading a previous cue, and loading a cue through the use of the go button. These seven
buttons output an instruction whenever they are entered by the user. The only buttons that are usable in
the other states are the reset button and the go functionality is used in the Cue State. If the user accidentally
presses a key that is not usable in the default state (a key that doesn’t correspond to the eight transitioning
states or the seven special key inputs) the finite state machine will default to itself.

The cue state is entered whenever the cue button is pressed from the default state. In the cue state, the
user is allowed to enter in a cue number 1-127 and then edit that cue through certain characteristics. The

14

functionalities of this state is that you can enter the Record state if you press the record button, you can
load a cue to the stage and screen by pressing enter, you can select a specific cue if you type in the cue
number and hten you can load the cue in show mode if you press go. There is a valid entry check when you
enter in a cue number to make sure that it is between 1 and 127. If the number the user entered does not fit
inside this range, an error message will be displayed, the functional parameter register will be cleared, and
the user will be promoted to enter in a valid number. If a key is entered that is not assigned a function in
this state, the state defaults back to the default state.

The next state to be examined is the channel state. This state allows the user to select one of the eight
channels at a time. If the user tries to select an invalid channel number, an error message appears, the
functional parameter register is cleared, and the user is prompted to input a valid channel number. The
channel state will then logically transition to the At state whenever the At key is entered, which will allow
the user to set an intensity level for that channel. The other keystroke that is valid in this state is the reset
key.

In the At state the user enters in an intensity level for the channel they chose in the channel state. The
user is allowed to enter in a value up to 100%. If the value of the functional parameter is greater than 100,
an error message is sent and the user is prompted to enter in a valid intensity level. The other functionalities
of this state are that you can use the full button to automatically set the intensity of the channel to 100%,
instead of entering in 100 with three keystrokes. The channel intensity is highlighted yellow while the channel
is being edited and as soon as the user presses enter to confirm the intensity level the Channel Intensity
should turn green to illustrate that the channel is captured. As noted above, captured channels can be
released when Release is entered. The user is only allowed to enter this state through selecting a channel
number. This is the one state that the user is not allowed to enter through the default state since it only is
used to assign a value to a specific channel.

After channel intensities have been recorded, these changes should be saved in a cue if the user so desires.
There are two ways to record a cue. If the user wants to record the current cue, the user can press record
enter to save the current cue. If the user desires to save the current channel intensities in a cue that is
different from the current cue number, the user has to press Cue, number (between 1-127), record, and enter
to save the cue to that cue number. If the user enters a number that is out of the valid range the screen will
display and error message and the user is prompted to enter in a valid number. If a key is entered that is
not enter or reset, the module resets the registers and defaults to the record state.

The user is allowed to link a cue to another cue that is not sequentially the next cue in the sequence.
The user is allowed to link any cue with any other valid cue number. The link functionality is defaulted to
automatically link to the next sequential cue, unless it is assigned to link to a different cue. The link state
checks the data saved in the function parameter to check the validity of the data inputted by the user. If
the number entered is not between 1-127 an error message is displayed and the user is prompted to enter in
a valid number. Once a valid number has been entered the state moves to default state; otherwise the state
keeps asking the user for valid input data. The user can choose to abort any state at any time by pressing
reset.

The rest of the states in the keyboard interpreter module allow the user to set the timing parameters of
cues. Each cue has a wait, follow, up, and down time that is individually associated to each cue. The user is
allowed to set the value of each of the timers and save those changes for each cue. Each state checks to make
sure that the number entered in is in the valid range for the state the user is operating in. The valid data
ranges for up time, down time, and wait are 0-255 seconds and the follow time valid data range is 1-255.
The user is not allowed to set a 0 follow time, since 0 is used as a design test to make sure that the cue is
not set to auto-follow to the next cue. Each state has a reset, enter, and a clear entry key function. Any
other key functionality will cause the state to reset back to itself.

Each state in the keyboard module contributes to the overall functionality of the lighting board. This
module allows the user to manipulate the board in the manner in which is most useful to their purposes.
The keyboard module is the module that bridges the user to the functionality of the board.

15

3.4 Processor by Irene (processor.v)

The Processor coordinates interactions between the other three modules in the lighting board. The registers
in the processor also serve to store information about the current state of the lighting board, such as the
current cue number, the current channel intensities and other data. This data is placed in reserved registers,
which are then wired out to the Screen Display and DMX controller. On specific keystrokes, the Keyboard
Handler places an instruction into the Instruction Buffer, so that the processor can coordinate the appropriate
response to the user input. Some of these instructions may call a macro, a prewritten series of instructions,
that handle the more complicated operations such as loading a cue. In addition to coordinating interactions
between the other modules, the processor is also responsible for retrieving and storing cues because the
processor is the only module with access to the Cue Memory. The processor module itself also contains 2
other modules, the Control Logic module and the Arithmetic Logic Unit, which implement some specific
parts of the processor.

The processor used for the lighting board is a very general, unpipelined 32-bit processor. The instruction
set and architecture are based on the 6.004 5. The instruction set is documented in §6.2 of the Appendix.
The processor can perform all arithmetic operation except multiply and divide, comparisons and branches.
Multiply and divide were removed to increase the speed of the processor and because they are not used for
any lighting board operations. The processor was clocked at 20Mhz, half of the screen refresh rate. The
processor could not be clocked at the screen refresh rate of 40Mhz because that did not allow enough time
for the logic to finish before the data was written to memory and to register. The speed of the processor
is not especially important for the lighting board because the processor still runs much faster than a user
would notice.

3.4.1 Instruction Buffer

The Instruction Buffer is a 32-bit x 64-bit FIFO buffer. When the Keyboard Handler receives a keystroke that
requires the processor to handle, the keyboard interpreter module sends the instruction to the instruction
buffer and issues a write enable. If the processor is not working on a macro and the instruction buffer is not
empty, the processor will issue a read enable to get the instruction. Since instructions are only issued by key
strokes, there is little chance of the instruction buffer filling up because the processor run much faster than
a person can type.

3.4.2 Control Logic (ctrl_logic.v)

The Control Logic module is responsible for setting the control signals given an instruction opcode, the mode
of the processor, and z, the signal indicating whether the value coming out of the first register file port is 0.
The module is entirely combinational logic. The signals are mostly for the processor, but also include the
start and update signal for the DMX controller. The signals are:

e mpcsel — address selection for the macros ROM, previous+1 by default, it changes to the macro or
branch address for the macro and branch instructions

e bre — instruction buffer read enable

e bsel — selects between a register value or the sign extended constant for the second argument in
arithmetic operations

e ra2sel — selects the register number for the second instruction, usually bits 15-11 of the instruction,
but changed to bits 25-21 for a store instruction

e wdsel — selects the data going into the register file, usually the data coming out of the ALU, except
for a load instruction, the data is from the Cue Memory

e alufn — a 4-bit operator selector for the ALU

16

ZA D3N

JossEa0Ud
_ ajepdn
_ Hegs i
_ - G i
- |
[@sodu
| -
- doj|! |
_ ™ Alowa 2nD Jppe [0TElno nje - [aszed
N1y [@spm |
-~
_ Ejn_d_
_ [0:TE]g weded =59 i
- Liam i
: -
| 0TE]ZR [0S TIUo NS Ul [0 TE] T R BARLLID i
| R— = 01607 jo3uoD
3] 3] == =
LI —— ep M._m_\ i 5
_ [TE]RMm o . 9z TTUoD IS —
P D] Doy g [1zigz]uononiasul |
_ = 1€
zel Ted \ i
| _ _ dojl. [oiTE]ucimnuisu) e7695/an0L
S e [oeopenase =
_ ﬁr"m_eem.a [0 TN cuoeLl [0 TEhno 4hng
ﬁo_%m_u_mmgmxmc i
[0:4][2]uey and
: - [] 1no no
LA IMO||0L AN + B nop
Hm ...kuv_r_h___lu_..hju [Tz:gz]uoporisu) _.w|_ A A 7
S_m#m_u__mmﬂul_:u [TT:6TJuoriIsu) v +3d o uig
ﬁo"h%m_cmcud&.ﬁ AppY Jayng ‘TE 41 3onasu)
: - UGS 3ons Ul
8& m% ﬁ_;m%ﬂmk,uwa [o:gTlwomonasu) | S0.DEI o
SAEE:cﬂ:u _P i
| [Bsodi g

- e M — — — — — — — — — — — — — — — — —_— —

Figure 8: Processor Block Diagram

e werf — write enable register file, writes data to a register on the rising edge of the clock

e cmwe — cue memory write enable, writes data to cue memory on the next rising edge of the clock
e start — starts the loading of a cue in the DMX controller. Also starts the follow and wait timers
e update — updates the channel intensity on stage to reflect the registers.

The two write enable signals are only set when the module detects that there is a valid instruction, otherwise
the signals are always 0 and the processor is idling. The valid instruction flag comes from the instruction
buffer when not executing a macro, otherwise it is always 1. This is so that the processor does not execute
1 instruction from the instruction buffer over and over.

3.4.3 Arithmetic Logic Unit (alu.v)

The ALU performs arithmetic operations on two operands. The ALU also receives a 4-bit signal that selects
the operation to be performed. The operations are:

e addition

e bit-wise and

e bit-wise or

o left shift

e right shift

e signed right shift
e subtraction

e bit-wise xor

e equal to

e less than

e less than equal to

The right shift is done by a module taken from the g written by Prof. Terman. The right shift has to be
done carefully to ensure that the highest bit or 0 is used for the shift depending on whether a signed or
unsigned right shift is needed. The output of the module is the result of the operation.

3.4.4 Registers

There are 32 32-bit registers in the processor. In addition to being used as temporary storage for calculations,
the registers of the processor were also used to store information to be shared with the other module. For
example, certain registers are directly wired to the Screen Display. When instructions are issued changing
the values in those registers, the screen automatically reflects the new values. The table below lists all of the
reserved registers that are used. Registers 1-19 are all used by the Screen Display for displaying a current
value or doing color tracking.

Register 16, the first macro parameter, is sent to the screen for display when the user is inputting a new
value, so that each digit is shown as the user is typing it in. The current cue channel values, up time, down
time and wait time, are used by the DMX controller to load cues and update what is on stage.

18

Table 4: Reserved Registers in the Processor

Use Register Num.
Zero register 0
Previous/Current cue address 1
Previous cue basic data 2
Previous cue chl-ch4 3
Previous cue ch5-ch8 4
Current cue basic data 5
Current cue extended data 6
Next cue basic data 7
Current cue chl-ch8 8-15
Macro parameter 1 16
Macro parameter 2 17
Captured channels 18
blind mode 19
blind mode cue address 20
illop instruction 31

3.4.5 Cue Memory

The Cue memory is a 32-bit x 512-bit BRAM. The data for each cue takes up 4 lines. The higher 7 bits of
the address are also the cue number, while the lower 2 bits address the lines of data for each cue. The first
line is basic data about the cue such as up and down time and wait time. The second line holds extended
data such as follow and link.

uptime(8) | downtime(8) [wait(8) | followflag(1) | linkflag(1) | unused(6) |

Figure 9: Basic Cue Data

| follow(8) | link(7) | unused(17) |

Figure 10: Extended Cue Data

The last 2 lines hold the channel intensities. The channel intensities range from 0-100, so only 7 bits are
needed for each channel. The 4 channels are evenly spaced over 32-bits.

All values are defaulted to 0 and a link or follow of 0 is ignored. By default cue 0 is a special cue that is
never changed. It is the first cue loaded when the lighting board is turned on and is used as a scratch cue.

The cue memory is clock on the falling edge of the clock as opposed to the rising, so that there is time
for the data to come out of the memory before being written to register.

3.4.6 Macros ROM

The Macros ROM is a 32-bit x 256-bit ROM. It contains 244 instructions, for 13 macros. The macros are:

e Load cue — loads the cue in register 16 to screen. Issues the start signal to the DMX controller if the
macro was called from the Go macro. Otherwise issues the update signal to the DMX controller if in
live mode.

e Record — stores a cue to memory. Packs up all of the channels and saves them along with the basic
and extended data. If register 16 is 0, record to the current cue address, otherwise record to the cue
indicated in register 16.

19

| Channel 1(7) | unused(1) | Channel 2(7) | unused(1) [Channel 3(7) | unused(l) [Channel 4(7) | unused(1) |

[Channel 5(7) | unused(1) | Channel 6(7) | unused(1) [Channel 7(7) | unused(l) [Channel 8(7) | unused(1) |

Figure 11: Channel Data

e Release — Reverts all current channel intensity level back to what is stored in the cue memory. Sets all
captured channel flags (register 18)to 0.

e Set channel — sets the channel in register 17 to the value in register 16. Updates the channel intensity
on stage if in live mode. Set the captured channel flag for that channel. Does not store the channel
value to memory.

e Set up — sets the uptime for the current cue to the value in register 16. Stores the value to cue memory
if the current cue is not cue 0.

e Set down — sets the downtime for the current cue to the value in register 16. Stores the value to cue
memory if the current cue is not cue 0.

e Set wait — sets the wait time for the current cue to the value in register 16. Stores the value to cue
memory if the current cue is not cue 0.

e Set link — links the current cue to the cue in register 16. Stores the linked cue if the current cue is not
cue 0.

e Set follow — sets the follow time for the current cue to the value in register 16. Stores the value to cue
memory if the current cue is not cue 0.

e abort — clear out the two macro paramter registers, registers 16 and 17.

e Go — sets a flag to indicate a Go macro call and calls the load cue macro. If register 16 is 0, the linked
cue number is placed into the parameter register (register 16) for the load cue macro. If the linked cue
is 0, the next sequential cue is put into register 16.

e Blind — stores the current cue in the blind mode cue register (register 20). Sets the blind mode flag to
1.

e Live — loads the cue number in the blind mode cue register by placing it into register 16 and calling
load cue.

Each macro does some number checking, but the bulk of the error checking is done in the Keyboard
Handler, so that the appropriate error messages can be sent without bothering the processor.

3.5 DMX Controller by Irene (dmx.v)

The DMX controller sends data out to the dimmer boxes to bring the cues to stage. The controller receives
8 channel values from the registers in the processor as well as the uptime, downtime and wait time. The
controller uses these values to set the intensity of the lights on stage. The DMX output module outputs the
single bit that sends the serial data to the dimmer boxes to set light intensities.

The DMX controller contains a Channel Twiddler for each channel to manage the intensity of each
channel. Update signals are just passed on to each channel twiddler module to handle. Start signals indicate
that the controller needs to begin loading a cue. The start signal also starts the wait timer. The values
coming from the registers on a start signal are treated as the new cue to be loaded. Each channel that is zero
in the new cue needs to be brought down for the new cue. The period inputted into the channel twiddler
is set as the downtime and the start signal is issued right away. The channels that are non-zero need to be
brought up in the uptime after waiting for the wait time. The period for those channels is set to the uptime
and the start signal is the set to the expired signal coming out of the wait timer.

20

- uptime -

downtime
|
ﬂgit tigﬁ
- follow time -
il il
fer]
3 3

Figure 12: Load Cue Timing Diagram

3.5.1 Channel Twiddler Module (channeltwiddler.v)

The channel twiddler manages the intensity level of one channel. The module receives the intensity level
as a 0-100 percentage from a register and converts to a 0-255 intensity level to send to the DMX output
module. This conversion is approximated compactly by summing each 1 in the binary number weighted by
its position times 2.55. In other words,

dmx_value = (percentage_value[6])?7163 : 0 + (percentage_value[5])?82: 0+ - - - (1)

On an update signal from the processor, the module stores the new value that is coming in from the
value in the register and begins sending that to the DMX output module. On a start signal from the DMX
controller, the module gradually changes the channel intensity from the current intensity level to the new
level over the period supplied by the DMX controller. The gradual change is achieved by calculating the
period between changes of 1 in the intensity level and using a timer to alert the module when it is time to
increase or decrease the intensity level. The clock frequency is 20 mhz for this module so the equation to
calculate the period of the timer was,

2025

count_to = - 10000 - period (2)
|current_value — new_value]

The module keeps a loading flag to keep track of when a gradual increase in intensity level is taking place.
When the flag is high and expired is issued, the intensity level is increased or decreased by 1 depending on
whether the end intensity is higher or lower than the beginning intensity level.

3.5.2 DMX output (dmxcontroller.v)

The DMX output module takes intensity values in from the Channel Twiddler module for each channel.
Using these values, the module outputs the correct serial data at 250 khz to a user pin on the labkit. This
user pin is then connected to a chip that converts the output from labkit to standard RS-485 differential
output. The output from the chip is wired to a 5-pin XLR connecter that plugs into the first dimmer box.
The second dimmer box is daisy-chained with a XLR, cable to the first box. A switch is flipped on the second
dimmer box indicating the addressing of the channels on that box starts at 4 instead of 0.

The serial output from the DMX output module follows the DMX protocol as detailed in the DMX-512
standard. Data is sent in packets consisting of slots. Each packet consists of a mark before break, break,
mark after break and up to 513 slots. Each slot contains the intensity value of a channel, while the first slot
in each packet is reserved for the start code. The null start code for dimmer class data is just 8 zeros. The
timing diagram from the DMX-512 standard is included below.

21

3 3 3
- 10 =] 10—
"‘10 2 5 5+ Pr 6 o 6 s
F}(F'F'F'F“FHF‘_Q_I J'fl'_l"l"!'"l“r-\rr oy rﬁ'r—r-r-r'r'r\-.
A A AR A R A BT (R R R A
T T Y O O A A | I T Y O N | I S T T A A B |
A I A [O A I I A [|
T Y O O Y A A | | A O Y Y O | T T A R A I B |
SV LT LT B
N (O I A I I I LR
U TR O R O D o | OO S Y O | i A O O) =] |
} i } } |5_—.-{ |—-—164—|
9 29
4 78 4 b 4 [
Figure Key

1-“SPACE" for BREAK

2 - "MARK" After BREAK (MBA)

3 - Slot Time

4 - START Time

5 - LEAST SIGNIFICANT Data Bit

6 - MOST SIGNIFICANT Data Bit

7 - STOP Bit

8 - STOP Bit

9 - “MARK” Time Betwsen Slots

10 - "MARK" Before BREAK (MBE)
11 - BREAK to BREAK Time

12 - RESET Sequence (BREAK, MAB, START Code)
13 - DMX512 Packet

14 - START CCODE (Slot 0 Data)
15-SLOT 1 DATA

16 - SLOT nnn DATA (Maximum 512}

Figure 13: DMX-512 timing diagram

22

Since this lighting board only controls 8 channels, the DMX output module sends packets with only 9
slots, the null start code and 8 channel intensities. The minimum break-to-break time of 1204 ps,mandated
by the DMX-512 standard, is met by padding the marks before and after each packet break and the marks
after each slot. The table below contains the timing specifications for the packets sent by this lighting board.

Table 5: DMX-512 packet specifications

Description value # of bits | period
Mark before Break 1 52 208us
Break 0 44 176us
Mark after Break 1 52 208us
Start bit 0 1 4ps
Channel Intensities | LSB to MSB 8 32us
Mark after Data 1 11 44us
Slot - 20 80us
Packet - 332 1328us

4 Testing

This section describes our testing strategy for the board. In general the module were individually tested in
simulation, then integrated and tested as subsystems on the labkit. The final step was integration testing
which verified that the lighting board met all the specifications listed in our proposal.

4.1 Screen Display Testing

The static sprites module was fairly easy to debug since I could clearly see what was wrong on the screen.
A lot of the errors that I ran into when I first created the module were problems with the instantiation
of character string display and not inputting the current parameters into each instantiation of the module.
This was the first module that I built, so when I first displayed all of the headings to the screen I did not
run into any screen glitches that came along later in the process as I add more combinational logic to the
screen display. At this point in the process, the screen had a resolution of 1024x768 and all of the vertical
and horizontal positioning was based off of this coordinate system.

After the dynamical sprites module was added, the screen became very glitchy and we tried a few methods
to get rid of the glitches. One of the methods was to save the static data into a ROM. When the labkit was
first reset, the static data would have been stored glitch free into the memory block and then after the first
clock cycle, the data would only be read from the memory block. We thought that this would reduce the
amount of sprites that were ored together for the screen display. This did not cut down on any time at all
and we aborted this method to try and find a better way to get the screen to stop glitching.

The next thing that we tried was to reduce the resolution of the screen. This helped a lot, but it didnt
fix all of our problems. We changed the resolution to 800x600 pixels so that the screen would be clocked on
off of a 40mhz clock. There was just simply too many sprites and logic to be displayed in one clock cycle
without pipelining the screen. So, we began to pipeline the screen. The screen is pipelined through 3 stages,
which helped reduce the glitching except for a few parts in the screen. The parts that were still not perfect
after pipelining was caused by illogical logic to obtain the error messages and the screen mode display. Once
this logic was cleaned up, the screen display was perfect.

We did not try the screen at a resolution of 800x600 because that would shift the placement of all of the
sprites yet again and we were not positive if the pipelining would have fixed the resolution problem at the
higher resolution.

In the modules that made up the dynamic sprite module, the modules that I had errors was color tracking.
The problem with this module was that it would select all of the sprites on the screen that had the same

23

value that the parameter was currently equal to. This problem was caused by not correctly isolating the
data that the user was editing by checking the channel and state to a set value for each instantiation of the
color tracking module. Once this logic was modified so that it tested both the test state and the state being
modified in the keyboard interpreter state, the parameter would only highlight the sprite that the user was
currently editing.

The binary to string module was at first a huge case statement where it would look up the binary number
(0-255) and would then assign the character string to be the appropriate string representation of that binary
number. This was highly inefficient, so the module underwent a radical change. The new design broke
the binary number into three character digits and used three always blocks to find the value of the binary
number. This was a much more elegant way of finding the character string since it involved only about 25
if statements in comparison to 256 case statements.

4.2 Keyboard Handler Testing

The keyboard handler was fairly easy to debug through the use of a test bench. After the module was
created, I created a test bench for each state of the keyboard interpreter. There were a lot of errors at
first, which were mainly caused by typos and not paying close enough attention to the code. Most of these
bugs surfaced during the test bench, but a few were not apparent until the processor and screen modules
were integrated with the keyboard interpreter. The test bench was useful in making sure that the right
instruction was being sent at the correct time and that the key inputs were taking the finite state machine
to the right state. Once the test bench confirmed that the keyboard handler was transiting states properly,
we connected the keyboard interpreter to the processor and to the screen display. This allowed us to see
if the macros and instructions were actually manipulating the data correctly and that the dynamic sprites
were displaying the proper data. When we integrated all three modules together, we realized that the macro
coe file was incorrect and we started debugging the macros until they were doing the correct thing for each
state. During this stage, we also caught a few state transition errors that caused the keyboard module to
call the wrong instruction at a particular state. This caused us to double check all of the instructions and
caused the keyboard interpreter module to become more streamlined. In Figure 14 it can be seen that the
keyboard interpreter module correctly transitions from state to state and issues the instruction at the proper
moment.

il 43 kil 52

0000001 0001017

00— —— L]
{11 000 111

Figure 14: Recording a cue

The initial version of the keyboard module was over 1500 lines and not very efficient. This was due to
the fact that there was a case statement for each number 0-9 for every state, which added a considerable
amount of coded lines (about 800 lines). This logic became simplified in a single if statement that checked
the hex input since all of the numbers were sequentially numbered from 8h30 to 8’h39. This allowed for a
lot of unnecessary logic to be removed and lessened the propagation delay of the module. This also made it

24

easier to see all of the keys used in each state on the screen at the same time and made it easier to double
check the logic and instructions.

4.3 Processor Testing

The Processor could not be tested in ModelSim because of the 3 memory modules. The Control Logic and
ALU were each individually tested using ModelSim, but the integration testing was done entirely on the
labkit.

4.3.1 Control Logic Testing

The Control Logic Module was tested in ModelSim to verify the signals were correct for the given opcodes,
state, and valid and invalid instructions. The state indicates whether the processor is executing a macro or
is waiting for instructions from the instruction buffer. Instr_ready was always high, so that the processor
would not idle. The table below lists the correct signals for all instructions. Remember that z is the signal
indicating whether the value out of the first port of the register file is 0 or not. Not all instructions were

Table 6: Control Logic Test Cases

Instruction | Opcode | mpcsel | bsel | ra2sel | wdsel | alufn | werf | cmwe | start | update

Buffer Mode Tests

op 10%*** - 0 0 0 HAAH 1 0 0 0
OoprPC T1HHk* — 1 0 0 AR 1 0 0 0
MACRO 001000 1 0 0 0 - 0 0 0 0
Macro Mode Tests

(0) 10%*** 0 0 0 0 HAAH 1 0 0 0
OopPC 11HH** 0 1 0 0 HAAk 1 0 0 0
RET 001001 0 0 0 0 1001 0 0 0 0
BEQ 001010 Z 0 0 0 1010 0 0 0 0
BNE 001011 Z 0 0 0 1011 0 0 0 0
LOAD 001000 0 1 0 1 0000 1 0 0 0
STORE 001000 0 1 1 0 0000 0 1 0 0
START 010000 0 0 0 0 0000 0 0 1 0
UPDATE 01001 0 0 0 0 0000 0 0 0 1

tested in ModelSim, but at least one instruction from each category below was tested in simulation. Some
instructions such as macro or branch are only used in either macro mode or buffer mode and were only
testing in those modes. Others are used in both and were tested in both modes. Much of the testing was
left to the processor and integration testing due to the simplicity of the module.

4.3.2 ALU testing

All ALU operations were just tested with two operands using ModelSim. More extensive testing was not
necessary or possible because the module is basically a case statement. Also, the ALU is thoroughly tested
by the processor testing in addition to the integration testing. The tests are listed below.

4.3.3 Processor Integration Testing

The processor was tested on the labkit by placing the test instructions into labkit.v file. Different instructions
could be selected using the switches on the labkit. One of the button on the labkit was used to place an
instruction into the instructions buffer every time it was pressed. The control signals and some of the
registers were hooked up to the logic analyzer to check the tests. Some test macros were also written and

25

Table 7: ALU Test Cases

Op alufn | a b | Output
addition 0000 |20 | 10 | 30
bitwise and 1000 31 |20 20
bitwise or 1001 20 | 10 | 30

left shift 1100 | 4 2 |16

right shift 1101 | -31 |30 | 3

signed right shift | 1110 | -31 | 30 | -2147483648
subtraction 0001 |20 | 10 | 10
bitwise xor 1010 | 20 | 10 | 30

equal 0100 |20 |30 10

less than 0101 20 |20 |0

less than equal to | 0110 20 |20 |1

placed into the ROM for testing of the macros. Figures 15 and 16 show an ADDC and an ADD instruction
on the logic analyzer.

oK)

R8

RS

R10

instruction

R&

Ra

R10

instruction [

Figure 16: ADD Instruction

4.4 DMX controller Testing

There was no way to usefully test the DMX controller in ModelSim, subsequently the only testing performed
on the controller was done using the labkit. Both the logic analyzer and the oscilloscope were used. Labkit
testing was done by hooking up the 8 switches on the labkit to a channel and using the switches to control
the channel intensity. Then some channels were wired to constants as reference.

Figure 17 shows a DMX-512 packet on the logic analyzer. The long periods of high/low /high is the mark
before break, the break and the mark after break. The faster changes after those are the slots being sent.

4.5 Integration Testing

Integration testing was done with the labkit and both dimmer boxes. The screen and lights were checked
for the correct behavior for each of the valid key sequences. The valid key sequences are included below.

26

Key

| Result

Test Case: Record current cue to cue #

Cue (C) Message: Enter a num 1-127

number (1-127) | number appears in upper right corner of screen
Record (R) Message: Enter to Confirm

Enter Cue is recorded to indicated number

if originally in the scratch cue, goes to recorded cue

Test Case: Record current cue

Record (R) Message: Enter to confirm
if in scratch cue, Message: Enter a num 1-127
Enter Cue is saved

Test Case: Alter the intensity of a Channel

Channel (H)

Message: Enter a num 1-8

number(1-8)

no visual

At (a)

message: Enter intensity

number(1-100)

number appears below the channel selected

Enter

channel intensity is changed and channel is captured

Test Case: Set

the intensity of a Channel at 100%

Channel (H)

Message: Enter a num 1-8

number(1-8)

no visual

At (a) Message: Enter intensity
Full (O) 100 appears below the channel selected
Enter channel intensity is changed and channel is captured

Test Case: To release the captured channel intensities

Release (J)

\ All captured channels are released and are no longer green

Test Case: To clear the current entry

Clear Entry (E)

\ The entry that you were editing is cleared

Test Case: To reset back to the default state

Reset (Z)

\ registers are cleared and sent to default state

Test Case: To set the uptime of a cue

Uptime (U)

Message: Enter a num 0-255

number(0-255)

number appears in the uptime slot in the bottom boxes

Enter

uptime is saved for the current cue

Test Case: To set the downtime of a cue

Downtime (D)

Message: Enter a num 0-255

number(0-255)
Enter

number appears in the downtime slot in the bottom boxes
downtime is saved for the current cue

Test Case: To set the wait time of a cue

Wait Time (W)
number(0-255)
Enter

Message: Enter a num 0-255
number appears in the wait time slot in the bottom boxes
wait time is saved for the current cue

Test Case: To set the follow time of a cue

Follow time(F)
number(1-255)
Enter

Message: Enter a num 1-255
number appears in the follow time slot in the bottom boxes
follow time is saved for the current cue

Test Case: To link a cue to another cue

Link (L)
number(1-127)
Enter

Message: Enter a num 1-127
number appears in the link slot in the bottom boxes
link is saved for the current cue

Table 8: Lighting Board Test Cases

27

Figure 17: A DMX-512 packet

Key

Result

Test Case: To

change the mode to live

Live(S)

Live is displayed by the Mode header at the top of the screen
restore last cue in live mode

Test Case: To

change the mode to blind

Live(B) ‘ Blind is displayed by the Mode header at the top of the screen
Test Case: To clear the cue from the stage

Clear Q (Q) ‘ The cue is cleared from the screen and stage and cue 0 is loaded
Test Case: To load the previous cue onto stage

Backspace previous cue number appears in the top right corner of the screen
Enter cue is loaded to the stage

Test Case: To load a cue immediately to stage

Cue (C) Message: Enter a number 1-127

number(1-127)
Enter

cue number is displayed at the top right of the screen
the cue is loaded to the stage with an uptime of 0

Test Case: To

load a cue to stage

Cue (C)
number(1-127)
Go (G)

Message: Enter a number 1-127
cue number is displayed at the top right of the screen
the cue is loaded to the stage with the correct timing

Test Case: To

load a cue to stage

Go (G)

\ the cue is loaded to the stage with the correct timing

Table 9: More Lighting Board Test Cases

28

5 Conclusion

5.1 Keyboard Interpreter

The keyboard interpreter module the user to effectively use the lighting board console to the fullest ability of
the board. The keyboard was the gateway to making sure that the lighting board would be able to be used.
This module did not have that many huge design decisions that would have made it difficult to implement
our project. A lot of the original problems that were run into dealt with simple logical errors when the finite
state machine for the whole module was implemented. The part of this subsystem that took the most time
was making sure that the correct instruction was being sent at the right clock cycle. It was very important
to make sure that the instruction was being sent correctly otherwise the lighting board would not function
in the manner that was expected. Creating the states for each instance of the special key assignment was the
easiest part of this module. This meant making sure that all of the necessary steps that needed to happen
whenever a key was pressed. This was a lot of booking, but it was very important to make sure that all
information was being handled properly inside the module, so that when it was combined with the other
modules they would work together smoothly to create a lighting board.

5.2 Screen

The screen was the window for the user to see what was actually being processed by the lighting board. The
screen displayed the information for each cue that was relevant to the user. It took many tries to try and
get the screen to function without showing any glitches. The two sprite modules together are displaying
over fifty sprites and this amount of combinational logic was too much for the xvga module to calculate in
a 65mhz clock cycle. To fix the glitching the module was run off of a 40mhz clock that supported a screen
resolution of 800x600 that went through 3 levels of pipelining. The part of this module that took the most
time was trying to remove all of the glitches from the screen display. The intriguing part of this subsystem of
the project was creating a manner in which the relevant data was displayed to the screen since the channel
data had the potential of three sources of data input. It was very interesting developing an algorithm that
would allow the channel data to be tracked and displayed properly.

5.3 Processor

In spite of being a responsible for integrating the whole project, the processor was the easiest part. There
was not a lot of design involved since the architecture is based on the 5. The processor was also fairly easy
to isolate and test to ensure that it was functioning properly without the other modules. One problem that
came up was that since the processor was unpipelined, the data came out of the memory at the same time
the register was being written, on the next clock cycle. This was solved by clocking the memory on the
falling edge of the clock, so that the first half of the clock period could be used to calculate the address and
the second half could be used to get the data out of the memory and to the register. This meant that we
had to clock our processor a bit slower than we intended because all calculations for a load instruction had
to happen in the first half of the clock cycle.

54 DMX

The DMX module was the unknown factor at the beginning of our project. Initially we thought we would
use the RS-232 serial port on our labkit to talk to the dimmer box. This plan did not work because we would
not find a low cost RS-232 to 5-pin XLR RS-485 converter. In the end, the final solution was much easier
that a converter. We purchased a T1 converter chip that would take the output from one of the labkit’s user
pins and supply the correct differential voltage for the RS-485 architecture used by the dimmer boxes. Then
all that was needed was a 5-pin XLR connector for plugging into the dimmer box. That ended up being a
good solution because the interface with the labkit was so simple.

29

The other risk in using DMX was the serial protocol because there is no way to debug the dimmer box.
We just had to hope that the boxes would recognize the serial data we were sending. Initially we forgot that
the first slot in each packet is a code for the following data and the dimmer box would refuse the data unless
the first channel was set to 0. Thankfully, there were no other problems after the initial mistake with the
serial protocol and the lights started displaying properly.

5.5 Overall Reflections

Maura I thought that this project was a great experience. I really learned a lot about how to go about
implementing a real life application. It was very useful being able to break everything down into specific
subsystems and then tackle each subsystem on its own. I feel like this class and especially this project has
really made me realize the value in handling big tasks in smaller chunks. I was really excited that we were
able to make our project fully functional and easy to use. It was really exciting for me personally to be able
to create a lighting board since I work with them all the time in theatres and never really thought that I
would be able to create a fully functional lighting board. I was very impressed with our ability to do so.

Irene I thought this project worked out very well. It was a lot of work but that meant that it was better
when it finally worked in the end. The hardest part for me was learning how a lighting board works and then
being able to replicate it. The best we could do was use a real lighting board to figure out the specifications
and then take a guess at how it was doing it. I was very impressed by how many features of a real lighting
board we could implement with our labkit.

30

6 Appendix

6.1

Theatre Lighting Term Definitions

This section summarizes some important theater lighting terms.

blind mode — when the light board is in this mode, you can edit future cues without altering the current
light intensities (i.e. the current cue)

channel — a label for a dimmer so that the light intensity can be set; in our design the dimmer and the
channel are synonymous

clear cue — clears the current cue from the stage and resets the current cue to 0
cue — specific combination of light intensities for one stage scene

dimmer — the power source for stage lights that controls the intensity of up to two lights; controlled
by DMX

dimmer box — the physical box for powering theatre lights; A dimmer box contains 4 dimmers
down time — the amount of time it takes to fade a cue down

follow — a way to have the next cue follow the present cue after a certain period of time

go — signal to the lighting board to transition to the next cue

intensity — a percentage of the maximum light brightness

link — a way to link cues non—sequentially

live mode — when the lighting board is in this mode, any changes made to the current cue will affect
the current light intensities

release — this releases the channels that have been captured which happens after you record a cue, but
don’t reset the intensity of the channels to 0

up time — the amount of time it takes to fade a cue up to the final level

wait — the amount of time the lighting board waits to load the cue after the go signal.

31

6.2 Instruction Set

This section contains information about the processor architecture used for this project.

6.2.1 Instruction Formats

Arithmetic Operations without Literal
[31 — 10xxxx(6) — 26 | 25 —re(5) — 21 [20 —ra(5) — 16 | 15 — rb(5) — 11 [10 — unused(11) — 0 |

Arithmetic Operations with Literal
[31 — 11xxxx(6) — 26 [25 —re(5) — 21 | 20 —ra(5) — 16 | 15 — signed literal(16) — 0 |

Cue Memory Access
[31 — 0lxxxx(6) — 26 | 25 — rc(5) — 21 [20 — 00001 — 16 | 15 — signed literal(16) — 0 |

Macro Operations
[31 — 00xxxx(6) — 26 | 25 — unused(18) — 8 [7 — address(8) — 0 |

6.2.2 Opcodes

32

Table 10: Instruction Set

Instruction \ Opcode \

Description

Arithmetic Operations without Literal

ADD 100000 rc < ra + rb
AND 101000 rc — ra & rb

OR 101001 rc < ra || rb

SHL 101100 rc «— ra << rb
SHR 101101 rc «—ra >>rb
SRA 101110 rc — SEXT(ra >> rb)
SUB 100001 rc < ra-rb

XOR 101010 rc «— ra ® rb
Comparison Operations without Literal
CMPEQ 100100 rc « ra==rb
CMPLT 100101 rc « rajrb
CMPLE 100110 rc « raj=rb

Arithmetic Operations

with Literal

ADDC 110000 rc «— ra+SEXT(literal)
ANDC 111000 rc — ra&SEXT (literal)
ORC 111001 rc «— ra||SEXT (literal)
SHLC 111100 rc «— ra<<literal

SHRC 111101 rc <« ra>>literal

SRAC 111110 rc — SEXT (ra>>literal)
SUBC 110001 rc « ra-SEXT/(literal)
XORC 111010 rc — ra ® SEXT(literal)
Comparison Operations with Literal
CMPEQC | 110100 | rc — ra==SEXT literal)
CMPLTC 110101 rc < rajSEXT (literal)
CMPLEC 110110 rc «— raj=SEXT(literal)

Cue Memory Access

LD 011000 rc «— Mem[ra+SEXT(literal)]
ST 011001 Cue_Mem|[ra+SEXT (literal)] « rc
Macro Operations

MACRO 001000 MPC « address

RET 001001 Return to instruction buffer
Branch

BEQ 001010 MPC « address if 1

BNE 001011 MPC « address if 0

DMX

START 010000 Starts the load cue timer
UPDATE 010001 Updates the lights on stage

33

Table 11: Opcode Table

2:0 | 000 001 010 011 100 101

5:3

110

111

000

001 MACRO | RET BEQ BNE

010 START | UPDATE

011 LD ST

100 ADD SUB CMPEQ CMPLT

CMPLE

101 AND OR XOR SHL SHR

SRA

110 ADDC SUBC CMPEQC | CMPLTC

CMPLEC

111 ANDC ORC XORC SHLC SHRC

SRAC

6.3 Screen Display Verilog Files

This section contains the Verilog files used to create the screen for this project.

6.3.1 Binary to String Converter

‘timescale 1ns / 1

Ps
VN A N NN N aa

Enginecer: Maura Cordial

// Create Date:
// Module Name:
// Project Name:
// Description :
// into a character

//
N S Va

21:26:51 12/03/06

bin_string

Theatre Lighting Board

This module takes in an 8 bit
string .

binary number and converts it

module bin_string (b-in, cstring-out);

//imput
input signed [7:0] b_in; //hinary number input
//it is signed because it is wused in subtraction and the number should
//stay positive .
//output
output [23:0] cstring-out ;
//registers that will be wused to convert binary into a character string
reg [7:0] hun;
reg [7:0] ten ;
reg [7:0] one;
reg signed [8:0] temp._num ;
reg signed [8:0] temp_num?2 ;
wire signed [8:0] data_signed ;
assign data.signed = {1’b0, b_in };
assign cstring-out = {hun, ten, one};
//we only want to convert the binary input into a character string whenever the
//binary number has changed. This module deals with signed numbers so that all
//of the numbers will be positive once we assigned data-signed to always have
//its first number be a zero.
always @(data_signed)
begin
//this will collect the hundreds character for the string based on comparing
//the walue of the binary input after subtrating 100. This determines whether
//the hundreds character is a 2, 1, or nothing. After 100 is subracted this wvalue
//is stored in a temporary register. If the walue is less than 100, the temporary
//value equals itself.
if ((data_signed —100) >= 100)
begin
hun = 727 ;
temp_num = data_signed — 200;
end
else
if ((data_signed —100) >= 0)
begin
hun = 717
temp-num = data-signed — 100;
end
else
begin
hun = 7.7 ;
temp_num = data_signed ;
end
end
// This always block gets evaluated after the wvalue of temp-num has changed, which happens
//after the binary number has changed. This always block determines the walue of the tens

34

//digit and the appropiate character string. The tens wvalue is found by subtracting a tens
//value starting from 90 and working down to 10. If after you subtract the multiple of ten
//the number is greater than zero, the tens place is assigned the appropiate character
//string and temp_num2 is assigned a new value. If the wvalue of temp_num is less than 10
//then mnothing gets displayed and temp.num is equal to temp_num?2.

always @(temp-num)

begin
if ((temp-num — 90) >= 0)
begin
ten = 797
temp_-num2 = temp.num — 90;
end
else
if ((temp-num — 80) >= 0)
begin
ten = 787
temp-num?2 = temp-num — 80;
end
else
if ((temp-num — 70) >= 0)
begin
ten = 777
temp_num2 = temp.num — 70;
end
else
if ((temp_-num — 60) >= 0)
begin
ten = 767 ;
temp-num2 = temp-num — 60;
end
else
if ((temp_-num — 50) >= 0)
begin
ten = 757
temp.num2 = temp_num —50;
end
else
if ((temp-num — 40) >= 0)
begin
ten = 747 ;
temp-num2 = temp-num — 40;
end
else
if ((temp_-num — 30) >= 0)
begin
ten = 737
temp-num?2 = temp_num — 30;
end
else
if ((temp-num — 20) >= 0)
begin
ten = 7273
temp-num2 = temp-num — 20;
end
else
if ((temp-num — 10) >= 0)
begin
ten = 17 ;
temp-num2 = temp-num — 10;
end
else
if (hun == ".7)
begin
ten = 7.7
temp-num2 = temp_num ;
end
else
begin
ten = 707 ;
temp-num?2 = temp-num;
end
end
// This always blocks figures out the one digit. It is moduled wvery similiarly to
//the tens block above, but it subtracts 9 through 0 and if the result is equal to
//zero , then the ones digit gets assigned to that corresponding characer string.
always@ (temp-num?2)
begin
if ((temp_.num2 — 9) == 0)
one = ”9”;
else
if ((temp-num2 — 8) == 0)
one = "8”;
else
if ((temp-num2 — 7) == 0)
one = "77;
else
if ((temp_-num2 — 6) == 0)
one 76" ;
else
if ((temp_.num2 — 5) == 0)
one = "57;
else
if ((temp-num2 — 4) == 0)
one = ”47;
else
if ((temp-num2 — 3) == 0)
one = "37;
else
if ((temp_-num2 — 2) == 0)
one = 727
else

35

end

endmodule

if ((temp.num2 — 1) ==

one = 7173

else

if(ten
one =

else
one =

0)

36

6.3.2 Color Tracking

‘timescale 1ns / 1p

;///

/ Engineer: Maura Cordial

//

// Create Date: 16:37:37 11/29/06

// Module Name: color_tracking

// Project Name: Lighting Board

// Description : The purpose of this module is to change the color of the dynamic
//sprites on the screen. The color that the sprite is depends on a few conditions.

//The manner in which is changes font is by passing a pizel-color walue to the
//char_string-display , which alters the color of the font, based on the conditions

//for each sprite. The first condition 4is that if you are currently editting a sprite ,
//that sprite will refect the real time changes that you are editing. The font color
//will be yellow. If you have ’captured ' channels on stage , then the font color for
//everything that is captured will be green.

//As captured channels are released , the font color will then depend on the past
//value. If the wvalue of the channel is the same as it was in the previous cue, then
//the color of the font will be red. If the channel is set at a different intensity level
//then the font color will be magenta. If the channel was not wused in the previous cue,
//then the font color is white.

//

//The Color_-Tracking2 module the module only keeps track of the current data that you are
//editing. It would show the data that you are currently editing would be yellow , otherwise
//the data would be displayed as white .

//
VN NV

module color_tracking (clock, d_ch,

channel, release_flag ,

prev_ch ,
state);

pixel_color_ch ,

//parameters
parameter CHANNEL_TEST

3'b000; //default channel
//inputs

input
input
input
input

clock; //20mhz clock
[7:0] d-ch, prev_ch;
release_flag;
[2:0] channel;
input [3:0] state;
//output
output reg
//this outputs
//this output
//to pick the

[2:0] pixel_-color_ch;
the appropiate color choice
will be wused in the character
right font color.

channel
module

for each
display

will test the
is captured ,
that you are
are in the state
If the prev_ch data the
while , the prev-ch was not

always block
If the channel
If the channel
that you

following
and if that
editing is the same
for; and if that
current channel data are
equal to 0, if this is false then
If the previous channel and the current channel and not equal
but the current channel wvalue is mnot zero, otherwise
The default color of the channel is white .

// This cases

. is false
channel
is false

and equal

always@ (posedge clock)
begin
if(release_flag) //if the
pixel_color_ch <= 3°'b101;
else

if ((

are captured
green

channels

//color

state == 4’'b0011) && (channel
//if you are editing a channel
pixel_color_-ch <= 3’b010; //color

else

if ((d-ch == prev_ch) && (prev_ch))
//prev channel and cur channel value
pixel_color-ch <= 3'b000: //color red

else
if ((prev_ch) && (d_ch!=0))

//If there was a previous channel

//cur channel data was not 0
pixel_color_ch <= 3'b001; //color

else
pixel_color_ch //color

CHANNEL_TEST))
currently
yellow

are the same

data and the

magenta

<= 3’b011; white , default

end
endmodule

///
// This module is similiar to the module above, the
//is that this deals wzth the for the
//parts of the lighting board. This changes the color
//of the sprite when you are currently It turns it
//yellow. It checks to make sure that the state that you are
//editing is also correct so that not all of the data
//that has the same walue lights up yellow .

module color_tracking2 (clock ,

difference
data timing
module

editing .

module

data, state, pixel_color-d);

parameter STATE_TEST = 4’'b0000;

input clock ; clock
input [7:0] data;
input [3:0] state;

output reg [2:0] pixel_color_d;

// 20mhz

always@ (posedge clock)

37

begin
if(state == STATE_TEST) //so you are editing the sprite
pixel_color_d <= 3'b010; //color = yellow
else
3'b011; //color = white

pixel_color_d <=

end
endmodule

6.3.3 String Display

//

// File: cstringdisp2 . v

// Date : 24— Oct—05

// Awuthor: I. Chuang, C. Terman

//

// Display an ASCII encoded character string in a video window at some
// specified z,y pizel location .

//

// INPUTS :

//

// velock — wvideo pizel clock

// hcount — horizontal (z) location of current pizel

// veount — wertical (y) location of current pizel

v/ cstring — character string to display (8 bit ASCII for each char)
vy cz, cy — pizel location (upper left corner) to display string at
//

// OUTPUT:

//

// pizel — wideo pizel wvalue to display at current location
//

// PARAMETERS :

//

// NCHAR — number of characters in string to display

// NCHAR-BITS — number of bits to specify NCHAR

//

// pizel should be OR’ed (or XOR’ed) to your wvideo data for display.
//

// Each character is 8x12, but pizels are doubled horizontally and vertically
// so fonts are magnified 2z. On an XGA screen (10242768) you can fit
// 64 x 82 such characters .

//

// Needs font-rom .v and font_-rom .ngo

//

// For different fonts , you can change font_-rom. For different string
// display colors , change the assignment to cpizel.

?;//
// wideo character string display

//

L1117 7 7770777777777 77 7777777777777/ 7777777777777 77777777777777777777777777/
module char_string_display2 (vclock ,6hcount,vcount, pixel ,cstring ,cx,cy);

parameter NCHAR = 38; // mumber of 8—bit characters in cstring
parameter NCHAR._BITS = 3; // number of bits in NCHAR

input vclock; // 4OMHz clock

input [10:0] hcount; // horizontal index of current pizel (0..799)
input [9:0] vcount; // wertical index of current pizel (0..599)
output [2:0] pixel; // char display s pizel

input [NCHAR%8 —1:0] cstring; // character string to display

input [10:0] cx

input [9:0] cy;

// 1 line x 8 character display (8 = 12 pizel—sized characters)

wire [10:0] hoff = hcount—1l—cx;
wire [9:0] voff = vcount—cy ;
wire [NCHAR.BITS—1:0] column = NCHAR-1—hoff [NCHAR.BITS—1+44:4]; // < NCHAR
wire [2:0] h = hoff[3:1]; J/ 0 .. 7
wire [3:0] v = voff[4:1]; // 0 11
// look wup character to display (from character string)
reg [7:0] char ;
integer n;
always @(x*)
for (n=0 ; n<8 : n = n+l) // 8 bits per character (ASCII)

char[n] <= cstring [column*8+n];
// look up raster row from font rom
wire reverse = char [7];
wire [10:0] font_addr = char[6:0]%12 + v; // 12 bytes per character
wire [7:0] font_byte;

font_rom f(font_addr ,vclock ,h font_byte);

// generate character pizel if we’'re in the right h,v area

wire [2:0] cpixel = (font_-byte[7 — h] °~ reverse) ? 7 : 0;
wire dispflag = ((hcount > cx) & (vcount >= cy) & (hcount <= cx+NCHARx*16)
& (vcount < cy + 24));
wire [2:0] pixel = dispflag ? cpixel : 0;
endmodule

39

6.3.4 String Display with Color Tracking

//

// File : cstringdisp . v

// Date : 24— Oct—05

// Awuthor: I. Chuang, C. Terman with modifcations by Maura Cordial

//

// Display an ASCII encoded character string in a video window at some

// specified z,y pizel location .

//

// INPUTS :

//

// velock — wvideo pizel clock

// hcount — horizontal (z) location of current pizel

// vecount — wertical (y) location of current pizel

// cstring — character string to display (8 bit ASCII for each char)
// cx , cy — pizel location (upper left corner) to display string at
//

// OUTPUT:

//

/) pizel — wvideo pizel wvalue to display at current location

//

// PARAMETERS :

//

// NCHAR — number of characters in string to display

// NCHAR_BITS — number of bits to specify NCHAR

//

// pizel should be OR’ed (or XOR’ed) to your wvideo data for display.

//

// FEach character is 8xz12, but pizels are doubled horizontally and wvertically
// so fonts are magnified 2. On an XGA screen (1024z768) you can fit

// 64 m 82 such characters .

//

// Needs font_.rom.v and font_-rom .ngo

//

// For different fonts , you can change font_-rom. For different string

// display colors , change the assignment to cpizel.

//

//

// Description: This module will display a character string. This module has
// been modified to take in a color_pizel input which will look wup the correct
// color of the character string. FEach color has a specific meaning that is
// important in interpreting the sreen.

%//

//

video

character string

display

//
A N N N N NN VNI a

module

char_string_display (vclock , hcount , vcount , pixel

//parameters

,cstring ,cx,cy,color_pixel);

parameter NCHAR = 8; // mumber of 8—bit characters in cstring
parameter NCHAR.BITS = 3; // number of bits in NCHAR
//inputs
input vclock; // 40MHz clock
input [10:0] hcount; // horizontal indez of current pizel (0..799)
input [9:0] ~vcount; // wvertical index of current pizel (0..599)
input [NCHAR%8 —1:0] cstring; // character string to display
input [10:0] cx;
input [9:0] cy;
input [2:0] color_pixel; //color choice
//outputs
output [2:0] pixel; // char display s pizel
// 1 line x 8 character display (8 =z 12 pizel—sized characters)
wire [10:0] hoff = hcount—1l—cx;
wire [9:0] voff = vcount—cy;
wire [NCHAR._BITS—1:0] column = NCHAR-1—hoff [NCHAR.BITS—1+44:4]; // < NCHAR
wire [2:0] h = hoff[3:1]; /)0 T
wire [3:0] v = voff[4:1]; // 0 11
// look up character to display (from character string)
reg [7:0] char ;
integer n;
reg [2:0] cpixel;
wire reverse = char [7];
wire [10:0] font_addr = char[6:0]x12 + v; // 12 bytes per character
wire [7:0] font_byte ;
//this always blocks selects the cpizel that will be used for this character string.
//it basically is a color selector for the string.
always@ (color_pixel)
begin
case(color_pixel)
3'b101: cpixel = (font_byte[7 — h] ~ reverse) ? 2 : 0; // release — green
3’b100: cpixel = (font_byte[7 — h] ~ reverse) ? 3 : 0; // error and blind — blue
3°b011: cpixel = (font_byte[7 — h] " reverse) ? 7 : 0; // default— white
3'b010: cpixel = (font_byte[7 — h] ° reverse) ? 6 : 0; //param (current item sclected) — yellow
3°'b001: cpixel = (font_byte[7 — h] ~ reverse) ? 5 : 0; //channel is in a prev cue, but at a different level —
3°'b000: cpixel = (font_byte[7 — h] ~ reverse) ? 4 : 0; //channel is in a prev cue, but at the same level — red
default: cpixel = (font_byte[7 — h] °~ reverse) ? 7 : O0;
endcase

end

always @ x

40

magenta

for (n=0 ; n<8 ; n = n+fl) // 8 bits per character (ASCII)
char [n] <= cstring [column#8+n];

// look up raster row from font rom
font_rom f(font_addr ,vclock,font_byte);

generate character pizel if we’re in he righ v, v area
t h t izel ’ i th ight h

wire dispflag = ((hcount > c¢cx) & (vcount >= cy) & (hcount <= cx+NCHARx*16)
& (vcount < cy + 24));
wire [2:0] pixel = dispflag ? cpixel : 0;
endmodule

41

6.3.5 Dynamic Sprites

‘timescale 1ns / 1

ps
%//

Engineer: Maura Cordial

// Create Date: 22:12:11 11/09/06

// Module Name: dynamic_sp

// Project Name: Theatre Lighting Board
// Description :

//

//
A N v aa

module dynamic-sp (vclock ,hcount ,vcount ,6hsync,vsync, blank,

d-hsync ,d-vsync ,d-blank , pixel-d , cur-cue_-num , prev_num,
prev_wait , cur_wait ,

chl, ch2, ch3, ch4, ch5, ch6, ch7, chs8,

prev_.chanl ,prev_chan2, prev_.chan3, prev_chan4,

prev_chan5, prev_chan6, prev_chan7, prev_chan8,

prev_uptime , prev_.downtime, cur_uptime, cur-downtime,

cur_link , cur_follow , next_uptime, next_downtime, next_wait ,
live-mode , state, channel, param, error, captured_flags ,
loading_flag , loading_valueO , loading_valuel , loading_value2,
loading-value3 , loading-valued4 , loading-valueb5 , loading-value6 ,

loading-valueT7);

//INPUT

input vclock; // 40MHz clock

input [10:0] hcount; // horizontal index of current pizel (0..799)
input [9:0] ~vcount; // wvertical index of current pizel (0..599)
input hsync; // XVGA horizontal sync signal (active low)
input vsync; // XVGA wertical sync signal (active low)
input blank ; // XVGA blanking (1 means output black pizel)
input 6:0 cur-cue-num , prev_num;

input 7:0 chl, ch2, ch3, ch4, ch5, ch6, ch7, ch8;

input 7:0 prev_.chanl , prev_chan2, prev_chan3, prev_chan4;
input 7:0 prev_.chanb5, prev_.chan6, prev_chan7, prev_chan8;
input 7:0 prev_uptime; //uptime of the previous cue

input [7:0 prev_downtime; //downtime of the previous cue
input [7:0 prev_wait; //wait time of the previous cue

input [7:0 cur_uptime; //uptime of the current cue

input [7:0 cur_downtime; //downtime of the current cue

input [6:0 cur_link; //link of the current cue

input 7:0 cur-follow; //follow time of the current cue

input 7:0 cur_wait ; //wait time of the current cue

input [7:0 next_-wait; //wait time of the next cue

input 7:0 next_uptime; //uptime of the mnext cue

input [7:0 next_-downtime; //downtime of the mnext cue

input live-mode; //mode

input [2:0] channel; //channel state

input [3:0 state; //state (from the keyboard)

input [7:0 param ;

input [2:0 error; //error message flag

input 7:0 captured_flags; //channel captured flags

//Inputs for Real time tracking for the Channel Intensities

input 7:0 loading-flag ;

input [7:0 loading-valueO;

input [7:0 loading-valuel;

input [7:0 loading-value2;

input [7:0 loading-value3;

input [7:0 loading_valued ;

input [7:0 loading_value5 ;

input [7:0 loading_value6 ;

input 7:0 loading_valueT;
// Outputs
output d_-hsync; // dynamic sprites horizontal sync
output d_vsync; // dynamic sprites wvertical sync
output d_blank; // dynamic sprites blanking
output [2:0] pixel_d; // dynamic sprites pizel

// Wires

//used for the real value of the channel as a cue is loading

wire [7:0] loading_-value_ch [7:0];

wire [6:0] next-num; //used to calculate the number of the nexzt cue

// Wires for the Channel Strings and their pizels

wire [23:0] cstring_chl;

wire [2:0] cdpixel_chl;

wire [23:0] cstring-ch2;

wire [2:0] cdpixel_ch2;

wire [23:0] cstring_ch3;

wire [2:0] cdpixel_ch3;

wire [23:0] cstring_-ch4 ;

wire [2:0] cdpixel_ch4 ;

wire [23:0] cstring-chb5 ;

wire [2:0] cdpixel_chb;

wire [23:0] cstring-ch6;

wire [2:0] cdpixel_ch6;

wire [23:0] cstring-ch7;

wire [2:0] cdpixel_ch7;

wire [23:0] cstring_ch8;

wire [2:0] cdpixel_ch8;
//Wires for the strings of the nezt, previous
//and current cues (link , follow , up, down, wait) and
//their pizels

wire [23:0] cstring_-prev_uptime ;
wire [2:0] cdpixel_prev_uptime;

42

wire [23:0] cstring-prev_-downtime;
wire [2:0] cdpixel_prev_downtime ;
wire [23:0] cstring.prev_wait;
wire [2:0] cdpixel_prev_wait ;
wire [23:0] cstring_prev_num ;
wire [2:0] cdpixel_-prev_num ;
wire [23:0] cstring-next-uptime;
wire [2:0] cdpixel_next_uptime;
wire [23:0] cstring-next_.downtime;
wire [2:0] cdpixel_next_-downtime ;
wire [23:0] cstring-next-wait;
wire [2:0] cdpixel_next-wait ;
wire [23:0] cstring_-next_num ;
wire [2:0] cdpixel_next_num ;
// Wires for the Current Cue
wire [23:0] cstring-cur-uptime ;
wire [2:0] cdpixel_cur_uptime;
wire [2:0] cdpixel_cur_uptime2;
wire [23:0] cstring_cur_downtime ;
wire [2:0] cdpixel_cur_downtime;
wire [2:0] cdpixel_cur_downtime?2;
wire [23:0] cstring_-cur_link;
wire [23:0] cstring-link_f2;
wire [2:0] cdpixel_cur_link ;
wire [23:0] cstring_.cur_follow ;
wire [2:0] cdpixel_-cur-follow ;
wire [23:0] cstring-cur_f2;
wire [23:0] cstring-cur_wait ;
wire 2:0] cdpixel_cur_wait ;
wire [2:0] cdpixel_-cur-wait2;
wire [23:0] cstring_cur_cue_num ;
wire [23:0] cstring_cur_cue_-num-top ;
wire [2:0] cdpixel_cur_cue_num ;
wire [2:0] cdpixel_cur_cue_num? ;
wire [2:0] cdpixel_cur_cue_numa3 ;
// Wires for the pizel-color for each Channel to be wused
//in color tracking of each channel
wire [2:0] pixel_color_chl;
wire [2:0] pixel_-color_ch2;
wire [2:0] pixel_color_ch3;
wire 2:0] pixel_color_ch4;
wire [2:0] pixel_color_chb ;
wire [2:0] pixel_color_ché6 ;
wire [2:0] pixel_color_ch?;
wire [2:0] pixel_color_ch8;
// Wires/Regs for the pizel-color of the data of the current cue
//and for the operation mode and cue number
reg [2:0] pixel_color_mode ;
wire [2:0] pixel_color_num ;
wire [2:0] pixel_color_wait;
wire [2:0] pixel_color_link ;
wire [2:0] pixel_color_follow ;
wire [2:0] pixel_color_up ;
wire [2:0] pixel_color_down ;
reg [39:0] cstring_-mode;
wire [2:0] cdpixel-mode;
// Wires wused to calculate the current value of the channel after
//series of comparisons
wire [7:0] d-chl;
wire [7:0] d_ch2;
wire [7:0] d_ch3;
wire [7:0] d_ch4;
wire [7:0] d_ch5;
wire [7:0] d_ch6;
wire [7:0] d_ch7;
wire [7:0] d-ch8;
// Wires wused to calculate the current wvalue of the parameters of
//current cue after testing to see if you are currently editing
//data .
wire [7:0] d_cur_uptime ;
wire [7:0] d_cur_downtime ;
wire [7:0] d_cur_link;
wire [7:0] d_cur_follow ;
wire [7:0] d_cur_wait ;
wire [7:0] d_cue_num ;
// Wires/Regs wused for the error message displays

reg
wire
reg

wire

[39:0]
[2:0]
[127:0]
[2:0]

cstring_error?2;
cdpixel_error2;
cstring_error ;
cdpixel_error ;

?é///

ssignments

assign
assign
assign

assign

reg [2:0]
reg [2:0]
reg [2:0]

d_hsync = hsync;
d_vsync = vsync;
d_-blank = blank;
next-num = cur_-cue_num -4 1;
temp [1:0];
templ [7:0];
tempO [29:0];

N N N N Y VN Va4

sect
part

// This
// This

check
the

the
channel

been
being

has
is

channel

if it

ion is to and

assigns

see

of

if

value the

43

a

the
that

changed from
currently

//allows the screen to be continously updated along with what the lights show on stage.

assign loading_value_ch [0] = ((loading_-value0[7]) ? 50:0) + ((loading_-value0[6]) ? 25:0) +
((loading_value0 [5]) ? 13:0) + ((loading_valueO[4]) ? 6:0) +
((loading_value0 [3]) ? 3:0) + ((loading_value0[2]) ? 2:0) +
((loading_-value0O [1]) 7 1:0);

assign loading-value_-ch [1] = ((loading-valuel [7]) 7 50:0) + ((loading-valuel[6]) ? 25:0) +
((loading-valuel [5]) 7 13:0) 4+ ((loading-valuel [4]) ? 6:0) +
((loading-valuel [3]) 7 3:0) 4+ ((loading-valuel [2]) ? 2:0) +

((loading-valuel [1]) 7 1:0);

assign loading_value_ch [2] = ((loading_value2[7]) ? 50:0) + ((loading_value2[6]) ? 25:0) +
((loading_value2 [5]) ? 13:0) + ((loading_value2[4]) ? 6:0) +
((loading_value2 [3]) ? 3:0) + ((loading_value2[2]) ? 2:0) +
((loading_value2 [1]) ? 1:0);

assign loading_value_ch [3] = ((loading_-value3[7]) ? 50:0) + ((loading_-value3[6]) ? 25:0) +
((loading_value3 [5]) ? 13:0) + ((loading_value3 [4]) ? 6:0) +
((loading_value3 [3]) ? 3:0) + ((loading_value3[2]) ? 2:0) +
((loading-value3 [1]) 7 1:0);

assign loading-value_.ch [4] = ((loading-value4[7]) 7 50:0) + ((loading-value4[6]) ? 25:0) +
((loading_-value4 [5]) 7 13:0) 4+ ((loading-value4[4]) ? 6:0) +
((loading-value4 [3]) ? 3:0) + ((loading-value4[2]) 7 2:0) +
((loading-value4 [1]) 7 1:0);

assign loading_value_ch [5] = ((loading_value5[7]) ? 50:0) + ((loading_value5[6]) ? 25:0) +
((loading_value5[5]) ? 13:0) + ((loading_valueb[4]) ? 6:0) +
((loading_value5 [3]) ? 3:0) + ((loading_value5[2]) ? 2:0) +
((loading_value5 [1]) ? 1:0);

assign loading-value_ch [6] = ((loading-value6([7]) 7 50:0) + ((loading_-value6[6]) ? 25:0) +
((loading-value6[5]) 7 13:0) + ((loading-value6[4]) ? 6:0) +
((loading-value6[3]) 7 3:0) 4+ ((loading-value6[2]) ? 2:0) +
((loading-value6[1]) 7 1:0);

assign loading_-value_ch [7] = ((loading-value7[7]) 7 50:0) + ((loading.-value7[6]) ? 25:0) +
((loading-value7 [5]) ? 13:0) + ((loading_-value7[4]) ? 6:0) +
((loading_value7 [3]) ? 3:0) + ((loading_value7[2]) ? 2:0) +
((loading_value7 [1]) ? 1:0);

NI a

//displays the channel value

//The wvalue of each channel depends on if the channel is currently being edited , which the first mux
//tests. If the channel is not being edited , the second muz tests to see if the channel is currently
//loaded to the screen. If the channel is not being loaded, the wvalue wused is the walue stored in the

//appropiate register for each channel.

assign d_chl = ((state 4°b0011) && (channel == 3°b000)) ? param
(loading_flag [0]) ? loading_value_ch [0] : chl;

assign d_ch2 = ((state == 4°b0011) && (channel == 3’b001)) ? param
(loading_flag [1]) ? loading_-value_ch[1] : ch2;

assign d_ch3 = ((state == 4°b0011) && (channel == 3°b010)) ? param
(loading.flag [2]) ? loading_value_ch [2] : ch3;

assign d_ch4 = ((state == 4°b0011) && (channel == 3°'b011)) ? param
(loading-flag [3]) ? loading-value_.ch[3] : ch4;

assign d_ch5 = ((state == 4°b0011) && (channel == 3’'b100)) ? param
(loading_-flag [4]) ? loading-value_.ch[4] : ch5;

assign d_ch6 = ((state == 4°b0011) && (channel == 3°b101)) ? param

(loading-flag [5]) loading-value-ch [5] : ch6;

assign d_ch7 = ((state 4°b0011) && (channel == 3°b110)) ? param
(loading_flag [6]) loading_value_ch [6] : ch7;

assign d_ch8 = ((state == 4°b0011) && (channel == 3’b111)) ? param
(loading_flag [7]) ? loading_value_ch [7] : ch8;

A N

//The extended data for the current cue is handled in a manner similiar to the data of the channel,
//though the exztended data is only checked to see if it is currently being edited. If it is currently
//being edited , then that walue is displayed in the param register , otherwise the screen displays the
//that is stored in the extended data register

assign d_cur_uptime = (state == 4’b1000) 7?7 param : cur_uptime;
assign d_cur_downtime = (state == 4’b1001) ? param : cur_downtime ;
assign d_cur_link = (state == 4°b0101) ? param : {1°'b0,cur_link };
assign d_cur_follow = (state == 4’b0111) ? param : cur_follow;
assign d-cur_-wait = (state 4°b0100) ? param : cur-wait;

assign d-cue_num = (state == 4°b0001) ? param : {1’b0,cur_cue_num };

//this is where everything will be outputed back to the screen
//if follow is equal to

//this muz only allows cur and link to display a value on the screen if the data is not 0
assign cstring-cur-f2 = (d-cur_follow) ? cstring-cur-follow : 7___.”;

assign cstring_link_f2 = (d-cur_-link) ? cstring_cur-link e

//this is the pizel output for the dynanic sprites module
assign pixel-d = temp[0] | temp[1l];

A e
// This always block takes in the error message from the keyboard module and displays the appropiate
//error message to the screen .

always@ (error)
begin

case(error)

3'b000: begin

cstring_error2 = 7"1—-127";

cstring-error = "Enter_a_num—___._ ”; end
3’b001: begin

cstring_-error2 = "1-8..7";

cstring_error = "Enter_.a_numea.__._. 7 end
3°b010: begin

cstring_-error2 = 70-1007;

cstring_error = "Enter_a_nume—__. 7. end

3°b011: begin
cstring_error2 = "0—-255";
cstring_error = "Enter_a_numc_____ ”; end

3’b100: begin

44

being

value

cstring_error2 = 71-255";

cstring_error = "Enter_a_nume—__. ” . end
3’b101: begin

cstring_error = ”Entcruto_‘conflrm”;

cstring_error2 = "_____ ”; end
3’b110: begin

cstring-error = 7Enter—intensity-";

cstring_-error2 = " o ”; end
3’b111: begin

cstring_error = 7 7

cstring_error2 = "o .. ”; end
default: begin

cstring_error = 7 ”

cstring_error2 = " . 7. end

endcase
end

;//

/ This block allows the correct module with the correct color to
//be displayed depending on the live_flag that is input into the
//module from the processor.

always @(live_mode)

begin
if(“live_mode)
begin
cstring-mode = 7 Live
pixel_color-mode = 3° bOOO //red
end
else
begin
cstring-mode = ”Blind”;
pixel_color_mode = 3’b100; //blue
end
end

%{///{//////é////////////////////////////////

Pipelining creen

s

// This always block pipelines the screen so that it reduces the
//amount of glitches that are preset by giving the module more time
//to complete the mnecessary logic

always @ (posedge vclock) begin

temp0[0] <= cdpixel_cur-cue_num ;
temp0[1l] <= cdpixel_-mode;
temp0 [2] <= cdpixel_cur_cue_num?2 ;
temp0 [3] <= cdpixel_cur_cue_num3 ;
temp0[4] <= cdpixel_-ch8;
tempO [5] <= cdpixel_-chT7;
temp0[6] <= cdpixel_ch6;
tempO [7] <= cdpixel_chb5;
tempO [8] <= cdpixel_ch4;

tempO[9] <= cdpixel_ch3;

temp0[10] <= cdpixel_ch?2;

temp0[11] <= cdpixel_chl;

temp0 [12] <= cdpixel_prev_uptime ;
temp0 [13] <= cdpixel_prev_downtime
temp0[14] <= cdpixel_-cur-uptime ;
temp0O[15] <= cdpixel_cur_-downtime ;
temp0[16] <= cdpixel_-cur_-link;
tempO[17] <= cdpixel_-cur_-follow ;
tempO[18] <= cdpixel_-next_uptime;
tempO[19] <= cdpixel-next_-downtime ;
temp0[20] <= cdpixel_cur_wait;
temp0[21] <= cdpixel_next_-wait ;
temp0 [22] <= cdpixel_prev_wait ;
temp0 [23] <= cdpixel_next_num;
temp0 [24] <= cdpixel_prev_num ;
tempO0[25] <= cdpixel_-cur-wait2;
temp0[26] <= cdpixel_-cur_uptime?2;
tempO0[27] <= cdpixel_-cur_downtime2;
tempO[28] <= cdpixel_error;

temp0 [29] <= cdpixel_error2;

templ[0] <= tempO[0] | tempO[1l] | tempO[2] | tempO[3];
templ [1] <= tempO[4] | tempO[5] | temp0[6] | tempO[7];
templ[2] <= tempO[8] | tempO[9] | temp0[10] | tempO[11];
templ [3] temp0[12] [tempO[13] | tempO[14] |tempO[15];
templ [4] temp0[16] | tempO[17]| tempO[18] | tempO[29];
templ [5] temp0[19] | tempO[20]| tempO[21] | tempO[22];
templ [6] <= tempO0[23] | tempO[24]| tempO[25] | tempO[26];
templ [7] <= tempO[27] | tempO[28];

temp [0] <= templ [0] templ [1] templ [2] templ [3];
temp[1] <= templ[4] | templ[5] | templ[6] | templ[T7];

end

e

//COLOR TRACKING

117177

//this block of code is wused to color track the data of the channels

//and changes the color of whatever data the wuser is editing by turning that data yellow

//until the information is saved in the registers. If the person is editing a channel, when the wuser
//presses enter the channel data is turned green to represent it being captured.

//Below is a quick summary of the colors , though it is ewplained in detail in the actual color_tracking

//red is the same intensity in the past and current cue
//magenta is that they both were used, but at different intensitiecs
//white not wused in past cue

//param — yellow

//Mode — live is red and blind is blue

45

module

color_tracking
defparam chlc.CHANNEL_TEST =
color_tracking
defparam ch2c.CHANNEL_TEST =
-tracking
defparam ch3c.CHANNEL_TEST
color_-tracking
defparam ch4c.CHANNEL_TEST
color_tracking
defparam ch5c.CHANNEL_TEST =
color_tracking
defparam ch6c.CHANNEL_TEST =
color_tracking
defparam ch7c¢c.CHANNEL_TEST =
color_tracking
defparam ch8c.CHANNEL_TEST

color

color_tracking2 cur_upc(vclock, d_cur_uptime, state, pixel_color_up);
defparam cur_upc.STATE.TEST = 4’b1000;

color_-tracking2 cur-downc(vclock, d-cur_-downtime, state, pixel_color_-down);
defparam cur_-downc.STATE.TEST = 4’b1001;

color_tracking2 cur_followc (veclock, d_cur_follow , state, pixel_color_follow);
defparam cur_followc .STATE.TEST = 4°b0111;

color_tracking2 cur_linkc (vclock, d_cur_link, state, pixel_color_link);
defparam cur_linkc .STATE.TEST = 4’b0101;

color_tracking2 cur-waitc(vclock, d-cur-wait, state, pixel_color_-wait);
defparam cur-waitc . STATE.TEST = 4°b0100;

color_tracking2 cur-numc(vclock, d-cue-num , state, pixel_-color_-num
defparam cur_numc.STATE_TEST = 4’b0001;

//J/V//////////

//BINARY TO STRING

CONVERSION INSTANTIATI

v

// This module converts an 8 bit binary number into a
//that is 3 characters long. This character string is
//character string display instatiations below .

bin_string
bin_string
bin_string
bin_string

bin_string
bin_string
bin_string
bin_string
bin_string
bin_string
bin_string
bin_string

bin_string
bin_string
bin_string

bin_string
bin_string
bin_string
bin_string
bin_string

bin_string
bin_string
bin_string

cur-cue_num.string_-top (d-cue_num ,
cur_cue-num-_string ({1’b0,cur_cue_num},
next_-num-_string ({1’b0,next_num},
prev_-num._string ({1’b0, prev_num},

chl_string (d_chl ,
ch2_string (d_ch?2 ,
ch3_string (d_ch3 ,
chd_string (d_chd ,
chb5_string (d-ch5 ,
ch6_string (d-ch6 ,
ch7_string (d-ch7,
ch8_string (d-ch8,

cstring_chl);
cstring_ch2);
cstring_-ch3);
cstring_ch4);
cstring-chb);
cstring_-ch6);
cstring_-ch?7);
cstring_ch8);

prev_uptime_string (prev_uptime ,
prev_downtime_string (prev_-downtime ,
prev_wait_string (prev_wait, cstring_prev

cur_uptime_string (d_cur_uptime ,
cur-downtime_-string (d-cur-downtime ,
cur_-link_string (d-cur_-link ,
cur_follow_string (d-cur-follow ,
cur_-wait-string (d-cur_wait ,

next_-uptime_string (next_uptime ,
next-downtime_string (next-downtime ,
next_-wait_string (next_-wait, cstring-next

cstring.
cstring.

character
displayed

string
in the

cstring_cur_cue_-num-_top);
cstring-cur_cue-num);

next_num);
prev_num);

cstring_prev_uptime);
cstring_prev_downtime);
_wait);

cstring_.cur_uptime);
cstring-cur-downtime);
cstring-cur-link);
cstring-cur_-follow);
cstring_cur_wait);

cstring_next_uptime);
cstring_next_downtime);
_wait);

A Ve
//CHARACTER STRING DISPLAY INSTANTIATIONS

%///

These character string display instantionations display the error sprites.
// These sprites are located between the second row of the channel intensity and
//the dividing line across the screen. The data is recieved from a case statement
//from above .

char_string_display

defparam
defparam

char_string_display

errordisplay .NCHAR =
errordisplay . NCHAR_BITS =

11°d350,10°d300,3
// number of 8—bi
5; // number of

16;

errordisplay (vclock , hcount , veount ,

cdpixel_error ,cstring.error ,

"b100);
t characters in cstring
bits in NCHAR

chlc(veclock, d.chl, prev_chanl, pixel_color_chl , channel, captured_flags[7], state);
3’b000;

ch2c(veclock , d_ch2, prev_chan2, pixel_color_ch2 , channel, captured_flags[6], state);
s .

ch3c(veclock , d?chb\’;](,jll,prev,chanS, pixel_-color_-ch3 , channel, captured-flags[5], state);
— 3> .

ch4c(vclock,_df’c}?ﬁ?%oi)revfchanél, pixel_color_ch4 , channel, captured_flags[4], state);
— 3> .

chbc(velock ,7d?c}?g%1;>rev,chan5, pixel_color_ch5 , channel, captured_flags[3], state);

ch6e (velock , d?cl?é;l?oiorev,chane, pixel_color_ch6 , channel, captured_flags[2], state);

ch7c(velock , disc]:)’;?ll;arcv,chan7, pixel_color_ch7 , channel, captured_flags[1], state);

ch8c(veclock , d?c}?Sl}O;)rev,charJS, pixel_color_ch8 , channel, captured_flags[0], state);
= 3’blll;

errordisplay2 (vclock ,hcount ,vcount,cdpixel_error2 ,cstring_error2 ,

11°d550,10°d300,3°b100);
defparam errordisplay2 .NCHAR = 5; // number of 8—bit characters in cstring
defparam errordisplay2 .NCHAR-BITS = 3; // number of bits in NCHAR
N N N N AN
//These character string display instantiations display the mode and current cue number
//sprites at the top of the screen. There values are also assigned at the top depending
//on the blind.mode flag value.
char_string_-display cur-cue-num-.display-top (vclock ,hcount,vcount,cdpixel_-cur-cue_-num3 ,
cstring-cur_cue_-num-top ,11°d750,10°d40, pixel_-color_num);
defparam cur_cue_.num-._display_-top .NCHAR = 3; // number of 8—bit characters in cstring
defparam cur_cue_.num_display_top .NCHAR.BITS = 2; // number of bits in NCHAR

char_string_display mode.display_-top (vclock ,hcount,vcount,cdpixel_mode,

cstring_mode , 1
defparam mode_display_top .NCHAR = 5; // number of
defparam mode_display_top .NCHAR.BITS = 3; // number

1°d450,10°d40,
8—bit characters
of bits in NCHAR

_color_mode);
cstring

pixel
in

L1111 07077 7777777777777 7 7777777777777 777777777777777777777777

46

//These character string display instantiations display the sprites for ¢ information
//for each channel intensity level. They are displayed under the appropiate channel
//header .

char_string_display chl_display (vclock ,hcount,vcount,cdpixel_chl ,cstring_chl ,
11°d100,10°d185, pixel-color-chl);

defparam chl_display .NCHAR = 3; // number of 8—bit characters in cstring

defparam chl_display .NCHAR.BITS = 2; // number of bits in NCHAR

char-string_display ch2.display (vclock ,hcount,vcount,cdpixel-ch2 ,cstring-ch2,
11°d300,10°d185, pixel_color-ch2);

defparam ch2.display .NCHAR = 3; // number of §—bit characters in cstring

defparam ch2_display .NCHAR.BITS = 2; // number of bits in NCHAR

char_string_display ch3_display (vclock ,hcount ,vcount ,cdpixel_ch3 ,cstring_.ch3 ,
11°d500,10'd185, pixel_color_ch3);

defparam ch3_display .NCHAR = 3; // number of 8—bit characters in cstring

defparam ch3_display .NCHAR.BITS = 2; // number of bits in NCHAR

char_string_display ch4,display(vclock ,hcount ,vcount ,cdpixel_-ch4 ,cstring_-ch4 ,
11°d700,10°d185, pixel_color_ch4);

defparam ch4_display .NCHAR = 3; // numb?r of 8=bit characters in cstring

defparam ch4_display .NCHARBITS = 2; // number of bits in NCHAR

char_string_display chb5_display (vclock , hcount ,vcount ,cdpixel_ch5 ,cstring_.ch5 ,
11°d100,10'd265, pixel_color_ch5);

defparam chb5_display .NCHAR = 3; // number of 8—bit characters in cstring

defparam chb5_display .NCHAR.BITS = 2; // number of bits in NCHAR

char_string_-display ch6_display (vclock ,hcount,vcount,cdpixel_-ch6 ,cstring_-ch6 ,
11°d300,10°d265, pixel_color_ch6);

defparam ch6_display .NCHAR = 3; // number of 8—bit characters in cstring

defparam ch6_display .NCHAR.BITS = 2; // number of bits in NCHAR

char_string_display ch7_display (vclock ,hcount ,vcount ,cdpixel_ch7 ,cstring_.ch?7 ,
11°d500,10°d265, pixel_color_ch?7);

defparam ch7_display .NCHAR = 3; // number of 8—bit characters in cstring

defparam ch7_display .NCHAR-BITS = 2; // number of bits in NCHAR

char_string_-display ch8_display (vclock ,hcount,vcount,cdpixel_-ch8 ,cstring-ch8 ,
11°d700,10°d265, pixel_color_ch8);

defparam ch8_display .NCHAR = 3; // number of 8—bit characters in cstring

defparam ch8_display .NCHAR.BITS = 2; // number of bits in NCHAR

?//

/These character display instantiations display the sprites for the information

//for the curremt cue in the bottom left box on the screen. The information that
//gets displayed is the current cue number, the up time, the down time, the wait
//time , the follow time, and if it is linked to another cue or mot.

char_string_-display cur_cue_num-_display (vclock ,hcount,vcount,cdpixel_cur_cue_num ,

cstring-cur_-cue_-num ,11°d265,10°d350, 3’b011);
defparam cur_.cue_num.display .NCHAR = 3; // number of 8—bit characters in cstring
defparam cur_.cue_num.display .NCHAR.BITS = 2; // number of bits in NCHAR

char_string_display cur_uptime_display (vclock ,hcount,vcount,cdpixel_cur_uptime ,
cstring_cur_uptime ,11°d215,10°d390, pixel_color_up);

defparam cur_uptime_display .NCHAR = 3; // number of 8—bit characters in cstring

defparam cur-uptime-display .NCHAR-BITS = 2; // number of bits in NCHAR

char_string_-display cur_.downtime_display (vclock ,hcount,vcount,cdpixel_cur_downtime ,
cstring_cur_.downtime ,11°d215,10°d430, pixel_-color_-down);

defparam cur_-downtime_display .NCHAR = 3; // mumber of 8—bit characters in cstring

defparam cur-downtime_display .NCHAR.BITS = 2; // number of bits in NCHAR

char_string_display cur_follow_display (vclock ,hcount,vcount,cdpixel_cur_follow ,
cstring_cur_f2 ,11°d215,10°d470, pixel_color_follow);

defparam cur_follow_display .NCHAR = 3; // number of 8—bit characters in cstring

defparam cur_follow_display .NCHAR.BITS = 2; // number of bits in NCHAR

char_string_-display cur_-wait_display (vclock ,hcount,vcount,cdpixel_cur_wait ,
cstring_cur_-wait ,11°d215,10°d510, pixel_color_wait);

defparam cur_wait-display .NCHAR = 3; // mumber of 8—bit characters in cstring

defparam cur-wait-display .NCHAR-BITS = 2; // number of bits in NCHAR

char-string_display cur-link_display (vclock ,hcount,vcount,cdpixel_cur-link ,
cstring_link_f2 ,11°d215,10°d550, pixel_-color_link);

defparam cur-link_display .NCHAR = 3; // number of 8—bit characters in cstring

defparam cur._link_display .NCHARBITS = 2; // number of bits in NCHAR

A A e aa

// These character display instantiations display the sprites that contain
//the information for the previous , current , and nexzt cue in the bottom right
//box. It displays the cue number, wait, up time, and downtime for those
//three cues.

char_string_display cur-cue-num-display_-boxR (vclock ,hcount,vcount,cdpixel_cur_cue-num2 ,

cstring_cur_cue_num ,11°d420,10°d450, 3'b011);
defparam cur_cue_num_display_boxR .NCHAR = 3; // number of 8—bit characters in cstring
defparam cur_cue_num_display_boxR.NCHAR.BITS = 2; // number of bits in NCHAR

char_string-display prev_num-.display_-boxR (vclock ,hcount,vcount,cdpixel_prev_num ,

cstring_-prev_num ,11°d420,10°d400, 3'b011);
defparam prev_num-_display_boxR .NCHAR = 3; // number of 8—bit characters in cstring
defparam prev_num-_display_boxR .NCHAR.BITS = 2; // number of bits in NCHAR

char-string_display next-num-display-boxR (vclock ,hcount,vcount,cdpixel_-next-num ,

cstring-next-num ,11°d420,10°d500, 3’'b011);
defparam next_num_display_-boxR .NCHAR = 3; // number of 8—bit characters in cstring
defparam next_num._display_boxR.NCHAR.BITS = 2; // number of bits in NCHAR

char_string_display next_uptime_display (vclock ,hcount,vcount,cdpixel_next_uptime ,

47

cstring-next_uptime ,11°d525,10°d500, 3’b011);
defparam next_uptime_display .NCHAR = 3; // number of 8—bit characters in cstring
defparam next_uptime_display .NCHAR.BITS = 2; // number of bits in NCHAR

char_string_display cur_uptime_display2 (vclock ,hcount,vcount,cdpixel_cur_uptime2 ,
cstring-cur-uptime ,11°d525,10°d450, pixel_-color_up);

defparam cur-uptime_display2 .NCHAR = 3; // number of 8—bit characters in cstring

defparam cur_-uptime_display2 . NCHAR.BITS = 2; // number of bits in NCHAR

char-string-display prev-uptime-display (vclock ,hcount,vcount,cdpixel-prev_uptime ,

cstring-prev_uptime ,11°d525,10°d400, 3’b011);
defparam prev_uptime-display .NCHAR = 3; // number of 8—bit characters in cstring
defparam prev_uptime_display .NCHAR.BITS = 2; // number of bits in NCHAR

char_string_display next.downtime_display (vclock ,hcount ,vcount,cdpixel_next_downtime ,

cstring_next_downtime ,11°d615,10°d500, 3'b011);
defparam next_-downtime_display .NCHAR = 3; // number of 8—bit characters in cstring
defparam next_-downtime_display .NCHAR-BITS = 2; // number of bits in NCHAR

char_string_-display cur_.downtime_display2 (vclock ,hcount,vcount,cdpixel_-cur_downtime2 ,
cstring.cur_-downtime ,11°d615,10°d450, pixel-color-down);

defparam cur_-downtime.display2 .NCHAR = 3; // number of 8—bit characters in cstring

defparam cur_downtime_display2.NCHAR.BITS = 2; // number of bits in NCHAR

char_string_display prev_.downtime_display (veclock ,hcount ,vcount,cdpixel_prev_downtime ,

cstring_prev_downtime ,11°d615,10°d400, 3'b011);
defparam prev-downtime_display .NCHAR = 3; // number of 8—bit characters in cstring
defparam prev_-downtime_display .NCHAR-BITS = 2; // number of bits in NCHAR

char_string_-display prev_-wait_-display (vclock ,hcount,vcount,cdpixel_prev_wait ,

cstring_prev_wait ,11°d715,10°d400, 3’b011);
defparam prev._-wait-display .NCHAR = 3; // number of 8—bit characters in cstring
defparam prev._-wait_-display .NCHAR-BITS = 2; // number of bits in NCHAR

char_string_display next_wait_display (vclock ,hcount,vcount,cdpixel_next_wait ,
cstring_next_wait ,11°d715,10°d500, 3°b011);
defparam next_wait_display .NCHAR = 3; // number of 8—bit characters in cstring
defparam next_-wait_-display .NCHAR-BITS = 2; // number of bits in NCHAR
char_string_-display BRcur_wait_-display2(vclock ,hcount,vcount,cdpixel_cur_wait2 ,
cstring_cur_wait ,11°d715,10°d450, pixel_color_wait);

defparam BRcur_wait_display2 .NCHAR = 3; // number of 8—bit characters in cstring
defparam BRcur_wait_display2 . NCHAR.BITS = 2; // number of bits in NCHAR

endmodule

48

6.3.6 Static Sprites

‘timescale 1ns / 1

ps
;///

/ Engineer: Maura Cordial

//

// Create Date: 20:55:01 11/07/06

// Module Name: static_sp

// Project Name: Theatre Lighting Board

// Description : This module displays all of the labels on the screem. The lables
// include the channel 1 through 8 headings , the mode you are operatimg in, cue number

// in the top right of the screen , the headings for the bottom boxzes on the left and

// right .
//
A N A Va

module static_sp (vclock ,hcount,vcount , hsync,vsync,blank,
static-hsync ,static_vsync ,static_blank ,pixel_s);

//inputs

input vclock; // 40MHz clock

input [10:0] hcount; // horizontal index of current pizel (0..799)
input [9:0] ~vcount; // wvertical index of current pizel (0..599)

input hsync; // XVGA horizontal sync signal (active low)
input vsync; // XVGA wertical sync signal (active low)
input blank; // XVGA blanking (1 means output black pizel)

//outputs

output static_hsync; // static sprites horizontal sync
output static_vsync; // static s wertical sync
output static_blank; // static s blanking
output [2:0] pixel_s; // static sprites pizel

/) Wires

//the Border Bozes
wire [2:0] blob_pixel, blob_pixel2;

//Wires for the Headings for the Bottom Left Bowx
//The Character string and the pizel for each string

wire [79:0] cstring_.BLnumcue = ”Cue_Number” ;
wire [2:0] cdpixel_BLnumcue;

wire [55:0] cstring.BLup = ”Up_Time” ;
wire [2:0] cdpixel_BLup;

wire [71:0] cstring-BLdown = ”"Down_-Time” ;
wire [2:0] cdpixel_-BLdown ;

wire [47:0] cstring-BLfollow = ”Follow”;
wire [2:0] cdpixel_BLfollow ;

wire [31:0] cstring-BLwait = ”Wait”;

wire [2:0] cdpixel-BLwait;

wire [31:0] cstring_.BLlink = ”Link”;

wire [2:0] cdpixel_-BLlink;

// Wires for the headings for the Bottom Right Bow
//The Character string and the pizel for ecach string

wire [23:0] cstring-BRnumcue = ”"Cue”;
wire [2:0] cdpixel-BRnumcue ;

wire [15:0] cstring-BRup = ”"Up”;

wire [2:0] cdpixel_BRup;

wire [31:0] cstring-BRdown = ”Down” ;
wire [2:0] cdpixel_BRdown ;

wire [31:0] cstring_.BRwait = ” Wait”;

wire [2:0] cdpixel . BRwait;

// Wires for the Channel Headings
//The Character string and the pizel for ecach string

wire 31:0] cstring-chl = "Ch_1";
wire [2:0] cdpixel_-chl;

wire 31:0] cstring-.ch2 = "Ch.2”;
wire [2:0] cdpixel_ch2;

wire [31:0] cstring_.ch3 = ”"Ch.3";
wire [2:0] cdpixel_ch3;

wire [31:0] cstring_.ch4 = 7"Ch.4”;
wire [2:0] cdpixel_ch4;

wire [31:0] cstring.ch5 = "Ch_5";
wire [2:0] cdpixel_chb5;

wire [31:0] cstring_.ch6 = "Ch_6";
wire [2:0] cdpixel_-ch6 ;

wire 31:0] cstring-ch7 = "Ch.7";
wire 2:0] cdpixel_chT;

wire [31:0] cstring_.ch8 = ”"Ch.8";
wire [2:0] cdpixel_ch8;

// Wires for the Mode and Cue Header on the Top of the Screen
//The Character string and the pizel for each string
wire [39:0] cstring.mode = ”Mode:" ;
wire [2:0] cdpixel_mode;

wire [23:0] cstring-cue = "Cue”;
wire [2:0] cdpixel_-cue;

// Registers for pipelining the screen
reg [2:0] temp[1:0];
reg [2:0] templ[5:0];
reg [2:0] temp0[21:0];

//assigments for the wvideo sync

assign static_hsync = hsync;
assign static_.vsync = vsync;
assign static-blank = blank;

//for the pizel output
assign pixel_s = temp[1l] | temp[O0];

49

?;//

This is to pipeline the sprites to prevent glitchi
// It is a three stage pipelining system

always @ (posedge vclock) begin

tempO [0] <= cdpixel_chl;

tempO [1] cdpixel_ch2;

tempO [2] <= cdpixel_ch3;

temp0 [3] <= cdpixel_ch4;

temp0[4] <= cdpixel_ch5;

tempO[5] <= cdpixel_ch6;

tempO0 [6] <= cdpixel_ch7;

tempO0 [7] <= cdpixel_ch8;

tempO0 [8] <= cdpixel_-BLnumcue;

temp0[9] <= cdpixel_BLup ;

temp0[10] <= cdpixel_-BLdown ;

temp0[11] <= cdpixel_-BLfollow;

temp0[12] <= cdpixel_-BLwait;

tempO[13] <= cdpixel_-BLlink;

temp0[14] <= cdpixel_BRup ;

tempO[15] <= cdpixel_.BRdown;

temp0[16] <= cdpixel_BRnumcue ;

tempO0 17] <= cdpixel_cue;

temp0[18] <= cdpixel_-mode;

temp0[19] <= cdpixel_.BRwait ;

temp0[20] <= blob_pixel;

temp0[21] <= blob_pixel2;

templ [0] <= tempO[0] | tempO[1]| tempO[2] | tempO[3];
templ[1] <= tempO[4] | tempO[5]| tempO[6] | tempO[7];
templ[2] <= tempO[8] | tempO[9]| tempO[10] | tempO[11];
templ [3] <= temp0[12] | tempO[13]| tempO[14] | tempO[15];
templ[4] <= tempO[16] | tempO[17]| tempO[18] | temp0O[19];
templ [5] <= tempO[20] tempO [21];

temp [0] <= templ[0] | templ[1l] | templ[2];

temp[1] <= templ[4] | templ[5] | templ[3];

end

;//

/This section below is the character display instantion for each sprite to be displayed

//Channel Headers

char_string_display2 chl(vclock ,h hcount,vcount,cdpixel_chl ,cstring_chl ,11°d100,10°d150);

defparam chl.NCHAR = 4; // number of 8—bit characters in cstring
defparam chl.NCHAR.BITS = 3; // number of bits in NCHAR

char_string.-display2 ch2(vclock ,hcount,vcount,cdpixel_-ch2 ,cstring-ch2 ,11°d300,10°d150);

defparam ch2 .NCHAR = 4; // number of 8—bit characters in cstring
defparam ch2.NCHAR.BITS = 3; // number of bits in NCHAR

char_string_.display2 ch3(vclock ,hcount,vcount,cdpixel_ch3 ,cstring_ch3 ,11°d500,10°d150);

defparam ch3 .NCHAR = 4; // number of 8—bit characters in cstring
defparam ch3.NCHAR.BITS = 3; // number of bits in NCHAR

char_string._display2 ch4(vclock ,hcount,vcount,cdpixel_ch4 ,cstring_ch4 ,11°d700,10°'d150);

defparam ch4 .NCHAR = 4; // number of 8—bit characters in cstring
defparam ch4 .NCHAR.BITS = 3; // number of bits in NCHAR

char_string._.display2 ch5(vclock ,hcount,vcount,cdpixel_.ch5 ,cstring_-ch5 ,11°d100,10°d230);

defparam ch5 .NCHAR = 4; // number of 8—bit characters in cstring
defparam ch5.NCHAR-BITS = 3; // number of bits in NCHAR

char_string_.display2 ch6(vclock ,hcount,vcount,cdpixel_.ch6 ,cstring_ch6 ,11°d300,10°d230);

defparam ch6.NCHAR = 4; // number of 8—bit characters in cstring
defparam ch6.NCHAR.BITS = 3; // number of bits in NCHAR

char_string-display2 ch7(vclock ,hcount,vcount,cdpixel_-ch7 ,cstring-ch7 ,11°d500,10°d230);

defparam ch7 .NCHAR = 4; // number of 8—bit characters in cstring
defparam ch7.NCHAR.BITS = 3; // number of bits in NCHAR

char_string-display2 ch8(vclock ,hcount,vcount,cdpixel-ch8 ,cstring-ch8 ,11°d700,10°d230);

defparam ch8 .NCHAR = 4; // number of 8—bit characters in cstring
defparam ch8 NCHAR.BITS = 3; // number of bits in NCHAR

?;é//g///é/////1////////////////////////////////////
order ines mstanation
blobv blob (hcount ,vcount , blob_pixel);
blobh blob2 (hcount ,vcount ,blob_pixel2);

A A A N s

// Character String Display Instantations for the headers for the bottom left box

char_string_.display2 boxL_numcue(vclock ,hcount,vcount,cdpixel_BLnumcue, cstring_-BLnumcue ,

11°d75,10°d350);
defparam boxL_numcue .NCHAR = 10; // number of 8—bit characters in cstring
defparam boxL_numcue.NCHARBITS = 4; // number of bits in NCHAR

char_string_display2 boxL_up(vclock ,hcount,vcount,cdpixel_-BLup ,cstring_BLup ,
11°d60,10°d390);

defparam boxL_up .NCHAR = 7; // number of 8—bit characters in cstring

defparam boxL_up.NCHAR.BITS = 3; // number of bits in NCHAR

char_string_-display2 boxL_down (vclock ,hcount,vcount,cdpixel-BLdown ,cstring-BLdown ,
11°d60,10°d430);

defparam boxL_down .NCHAR = 9; // number of 8—bit characters in cstring

defparam boxL_down.NCHAR.BITS = 4; // number of bits in NCHAR

char_string_display2 boxL_follow (vclock ,hcount ,vcount,cdpixel_BLfollow ,cstring_BLfollow ,

11°d60,10°d470);

50

defparam boxL_follow .NCHAR = 6; // number of 8—bit characters in cstring
defparam boxL_follow .NCHAR.BITS = 3; // number of bits in NCHAR

char_string_display2 boxL_wait(vclock ,hcount ,vcount,cdpixel_BLwait ,cstring_.BLwait ,
11°d60,10°d510);

defparam boxL_wait .NCHAR = 4; // number of 8—bit characters in cstring

defparam boxL_wait.NCHAR.BITS = 3; // number of bits in NCHAR

char_string_-display2 boxL_link(vclock ,hcount,vcount,cdpixel_-BLlink ,cstring_-BLlink ,
11°d60,10°d550);

defparam boxL_link .NCHAR = 4; // number of 8—bit characters in cstring

defparam boxL_link .NCHAR_BITS = 3; // number of bits in NCHAR

A A N N N s

// Character String Display Instantations for the headers for the bottom right box

char_string_-display2 boxR_numcue(vclock ,hcount,vcount ,cdpixel-BRnumcue ,cstring-BRnumcue ,
11°d415,10°d350);

defparam boxR_numcue .NCHAR = 3; // number of 8—bit characters in cstring

defparam boxR-_numcue.NCHAR-BITS = 2; // number of bits in NCHAR

char_string_-display2 boxR_up(vclock ,hcount,vcount,cdpixel_-BRup ,cstring-BRup ,
11°d523,10°d350);

defparam boxR_up .NCHAR = 2; // number of 8—bit characters in cstring

defparam boxR_up.NCHAR.BITS = 2; // number of bits in NCHAR

char_string-display2 boxR.down(vclock ,hcount,vcount ,cdpixel-BRdown ,cstring-BRdown ,
11°d610,10°d350);

defparam boxR_down.NCHAR = 4; // number of 8—bit characters in cstring

defparam boxR_down.NCHAR.BITS = 3; // number of bits in NCHAR

char_string-display2 boxR_wait(vclock ,hcount,vcount,cdpixel-BRwait ,cstring-BRwait ,
11°d710,10°d350);

defparam boxR_wait .NCHAR = 4; // number of 8—bit characters in cstring

defparam boxR_wait .NCHAR.BITS = 3; // number of bits in NCHAR

A A s

// Chardcter String Display Instantations for the headers at the top of the Screen

char_string_-display2 mode(vclock ,hcount,vcount,cdpixel-mode ,cstring_-mode ,11°d360,10°d40);
defparam mode.NCHAR = 5; // mumber of 8—bit characters in cstring
defparam mode.NCHAR-BITS = 3; // number of bits in NCHAR

char_string_display2 cue(vclock,hcount,vcount,cdpixel_cue ,cstring-cue ,11°d690,10°d40);
defparam cue .NCHAR = 3; // number of 8—bit characters in cstring
defparam cue.NCHAR.BITS = 2; // number of bits in NCHAR

endmodule

S A N ada
//blob gnerate rectangle on screen
Ve

// This module creates the horizontal line across the screen to divide
//between the channel headings and the bozes of information in the
//bottom half of the screen

module blobh (hcount ,vcount , blob_pixel2);

input [10:0] hcount;
input [9:0] vcount;
output reg [2:0] blob_pixel2;

always @ (hcount or vcount) begin
if ((hcount <= 383) && (hcount >= 380) && (vcount >= 339))
blob_pixel2 = 3’bl1l1;
else blob_pixel2 = 0;
end

endmodule

LILLLLIL /077777777777 /7777777777777

/ This module creates the vertical line across the screen to divide
//between the bozes in the lower half of the screen

module blobv (hcount ,vcount, blob_pixel);
input [10:0] hcount;
input [9:0] vcount;
output [2:0] blob_pixel;

reg [2:0] blob_pixel;
always @ (hcount or vcount) begin
if ((vcount <= 339) && (vcount >= 336))
blob_pixel = 3’bl111;
else blob_pixel = 0;
end

endmodule

51

6.3.7 XVGA

‘timescale 1lns

/ 1ps
L1717 7777777777777) S S S SSSSSSSSSSSSSSSS

// Company :

// Engineer: 6.111 Fall 2005 Version of this module with edits by Maura Cordial
//

// Create Date: 21:25:28 11/07/06

// Module Name: zvga

// Project Name: Theatre Lighting Board

// Description: This module will generate XVGA display signals for a screen with
// a resolution of 800xz600 clocked at a 40mhz clock. The changes to this module
// that I made were a result of changing the module from a 1024/z768 resolution
// screen to the 800xz600. To make this change I had to change the wvalues of

// hcount , wvcount, h and y sync, h and v blank , and their reset values.

//

/

// zvga: Generate XVGA display signals (800 =z 600 @ 40Hz)

/
%//

//
N Ve

module xvga(vclock ,hcount,vcount,hsync,vsync, blank);
input vclock;

output [10:0] hcount;

output [9:0] vcount ;

output vsync;

output hsync;

output blank ;

reg hsync ,vsync , hblank , vblank , blank ;

reg [10:0] hcount ; // pizel number on current line

reg [9:0] vcount ; // line number

// horizontal: 1088 pizels total

// display 800 pizels per line

wire hsyncon , hsyncoff ,hreset ,hblankon;

assign hblankon = (hcount 799);

assign hsyncon = (hcount 831);

assign hsyncoff = (hcount == 959);

assign hreset = (hcount == 1088);

// wertical: 619 lines total

// display 600 lines

wire vsyncon , vsyncoff , vreset , vblankon ;

assign vblankon = hreset & (vcount == 599);

assign vsyncon = hreset & (vcount 600);

assign vsyncoff = hreset & (vcount 604);

assign vreset = hreset & (vcount == 619);

// sync and blanking

wire next_hblank ,next_vblank ;

assign next_-hblank = hreset ? 0 hblankon ? 1 hblank ;

assign next_vblank = vreset ? 0 vblankon ? 1 vblank ;

always @(posedge vclock) begin
hcount <= hreset 7 0 hcount + 1;
hblank <= next-hblank;
hsync <= hsyncon ? 0 hsyncoff 7 1 hsync; // active low
vcount <= hreset 7 (vreset ? 0 vcount + 1) vcount ;
vblank < next-vblank ;
vsync <= vsyncon ? 0 vsyncoff ? 1 vsync; // active low
blank <= next_vblank | (mext_hblank & ~hreset);

end

endmodule

52

6.4 Keyboard Handler Verilog Files
This section contains the Verilog files used to handle keyboard input for this project.

6.4.1 Keyboard Debounce

//

// File: ps2_kbd.v

// Date : 24— Oct —05

// Awuthor: C. Terman / I. Chuang with modifications by Maura Cordial
//

// PS2 keyboard input for 6.111 labkit

//

// Description: This module takes in data from the keyboard and outputs
V/the appropiate ascii value for that character. The module also outputs
V/a ready signal when a key is hit along with the value of the key hit.
//The only real change that I made was to clock this module at 20mhz.

Ve
module ps2_ascii_-input (clk, reset, clock, data, ascii, ascii_-ready);

// module to generate ascii code for keyboard input
// this is module works synchronously with the system clock

input clk; //20mhz clock

input reset /) Active high asynchronous reset

input clock ; // PS/2 clock

input data; // PS/2 data

output [7:0] ascii; // ascii code (1 character)

output ascii_-ready ; // ascii ready (one clock-27mhz cycle active high)
reg [7:0] ascii-val; // internal combinatorial ascii decoded wvalue

reg [7:0] lastkey ; // last keycode

reg [7:0] curkey ; // current keycode

reg [7:0] ascii; // ‘ascii output (latched & synchronous)

reg ascii-ready; // synchronous one—cycle ready flag

// get keycodes

wire fifo_rd ; // keyboard read request
wire [7:0] fifo_data; // keyboard data

wire fifo_empty ; // flag: no keyboard data
wire fifo_overflow; // keyboard data overflow

ps2 myps2(reset , clk, clock, data, fifo_-rd , fifo_-data ,
fifo_empty , fifo_overflow);

assign fifo.rd = ~fifo_empty; // continous read
reg key-ready ;

always @(posedge clk)
begin

// get key if ready

curkey <= “fifo_.empty ? fifo_-data : curkey;
lastkey <= ~fifo_empty ? curkey : lastkey;
key.ready <= ~fifo_empty ;

// raise ascii_ready for last key which was read

ascii_ready <= key_ready & ~(curkey [7]]lastkey [7]);
ascii <= (key.-ready & 7~ (curkey [7]|lastkey [7])) ? ascii_val : ascii;
end

always @(curkey) begin //convert PS/2 keyboard make code == ascii code

case (curkey)

8 h1C: ascii_val = 8'hdl; //A
8’h32: ascii_-val = 8’h42; //B
8’h21: ascii_val = 8’h43; //C
8’h23: ascii_val = 8’h44; //D
8'h24: ascii_-val = 8'hd5; J/E
8 h2B: ascii-val = 8'h46; J/F
8 h34: ascii-val 8 'h47; //G
8°h33: ascii-val 8 h48; //H
8'h43: i 8'h49; //1
8 h3B: 8 h4A; //J
8 h42: = 8'h4B; /K
8 h4B: = 8'h4C; //L
8 h3A : = 8'h4D; /M
8 h31: = 8 h4E; J/N
8’h44: ascii_val = 8’ h4F; //0
8'h4D: ascii_-val = 8'h50; /P
8 h15: ascii-val = 8'hb51; //Q
8’h2D: ascii-val = 8'h52; //R
8’h1B: ascii-val = 8'h53; //S
8'h2C: ascii-val 8'hb54; //T
8’h3C: ascii-val 8’h55; //U
8 h2A: ascii-val 8 h56; Vv
8’hlD: ii 8'h57; J /W
8’h22: = 8’h58; //X
8 h35: = 8'h59; VY
8 h1A: = 8'h5A; i
8'h45: ascii-val = 8'h30; /)0
8’h16: ascii-val = 8'h31; //1

53

8'h1E: ascii-val = 8 'h32; /2

8’h26: ascii_-val = 8’h33; //3

8’ h25: ascii_val = 8’h34; //4

8 h2E: ascii_val = 8’h35; //5

8'h36: ascii-val = 8'h36; //6

8'h3D: ascii-val = 8 h37; s

8 h3E: ascii-val = 8'h38; //8

8'h46: ascii-val = 8'h39; /)9

8’hOE: ascii-val = 8'h60; //

8 h4E: ascii-val = 8’h2D; // =

8 h55: ascii_val = 8'h3D;) =

8 h5C: ascii_-val = 8 h5C; // \

8'h29: ascii_val = 8'h20; // (space)

8'h54: ascii-val = 8'h5B; Y

8'h5B: ascii_-val = 8'h5D; 7/

8'h4C: ascii-val = 8 'h3B; Y

8'h52: ascii-val = 8 h27; N

8’h41l: ascii-val = 8'h2C; //

8’h49: ascii-val = 8'h2E; //

8'h4A: ascii-val = 8 h2F; s

8 h5A: ascii_-val = 8 h0D; // enter (CR)

8’h66: ascii_-val = 8’h08; // backspace

// 8'hF0: ascii-val = 8 hF0; // BREAK CODE

default: ascii-val = 8'h23; /) #
endcase

end
endmodule // psZ2toascii

VN S A NN aa

// mew synchronous ps2 keyboard driver , with built—in fifo , from Chris
module ps2(reset, clk, ps2c, ps2d, fifo.rd , fifo_data ,
fifo_empty , fifo_overflow);
input clk ,reset; //20mhz clock
input ps2c; // ps2 clock
input ps2d; // ps2 data
input fifo_rd; // fifo read request (active high)
output [7:0] fifo_data; // fifo data output
output fifo_empty; // fifo empty (active high)
output fifo_overflow; // fifo overflow — too much kbd input
reg [3:0] count ; // count incoming data bits
reg [9:0] shift; // accumulate incoming data bits
reg [7:0] fifo [7:0]; // 8 element data fifo
reg fifo_overflow ;
reg [2:0] wptr, rptr; // fifo write and read pointers
wire [2:0] wptr_inc = wptr + 1;
assign fifo_empty = (wptr == rptr);
assign fifo_data = fifo [rptr];
// synchronize PS2 clock to local clock and look for falling edge
reg [2:0] ps2c-sync;
always @ (posedge clk) ps2c.sync <= {ps2c_sync[1:0],ps2c};
wire sample = ps2c_sync[2] & “ps2c_sync[1];
always @ (posedge clk) begin
if (reset) begin
count <= 0;
wptr <= 0;
rptr <= 0;
fifo_overflow <= 0;
end
else if (sample) begin
// order of arrival: 0,8 bits of data (LSB first),odd parity ,1
if (count==10) begin
/) just received what should be the stop bit
if (shift[0]==0 && ps2d==1 && (" shift[9:1])==1) begin
fifo [wptr] <= shift [8:1];
wptr <= wptr_inc;
fifo_overflow <= fifo_overflow | (wptr_inc == rptr);
end
count <= 0;
end else begin
shift <= {ps2d,shift [9:1]};
count <= count + 1;
end
end
// bump read pointer if we’re dome with current wvalue.
// Re also resets the overflow indicator
if (fifo_rd && !fifo_empty) begin
rptr <= rptr 4+ 1;
fifo_overflow <= 0;
end
end
endmodule

54

Terman

6.4.2 PS2 to ASCII

‘timescale 1ns / 1lps

//

// File: ps2_-kbd . v

// Date : 24— Oct —05

// Author: C. Terman / I. Chuang

//

// PS2 keyboard input for 6.111 labkit

//

// INPUTS :

//

7/ clock_27mhz — master clock

// reset — active high

Vs clock — ps2 interface clock

// data — ps2 interface data

//

// OUTPUTS:

//

// ascii — 8 bit ascii code for current character
7/ ascii-ready — one clock cycle pulse indicating new char received

A e

module ps2_ascii-input (clock, reset , keyboard-clock, data, ascii, ascii—-ready);
// module to generate ascii code for keyboard input
// this is module works synchronously with the system clock
input clock; //27 mhz clock
input reset ; // Active high asynchronous reset
input keyboard_clock ; // PS/2 clock
input data; // PS/2 data
output [7:0] ascii; // ascii code (1 character)
output ascii-ready ; // ascii ready (one clock-27mhz cycle active high)
reg [7:0] ascii-val; // internal combinatorial ascii decoded wvalue
reg [7:0] lastkey ; // last keycode
reg [7:0] curkey V) current keycode
reg [7:0] ascii; Y/ ascii output (latched & synchronous)
reg ascii_-ready ; // synchronous one—cycle ready flag
// get keycodes
wire fifo_rd; // keyboard read request
wire [7:0] fifo_data; // keyboard data
wire fifo_empty ; // flag: mo keyboard data
wire fifo_overflow ; // keyboard data overflow
ps2 myps2(reset , clock, keyboard_clock, data, fifo_rd , fifo_data ,
fifo_empty , fifo_overflow);
assign fifo.rd = “fifo_empty; // continous read
reg key-ready ;
// keyboard_interp key(clock , ascii, ascii-ready , we, instr.out ,reset ,param);
always @(posedge clock)
begin
/) get key if ready
curkey <= ~fifo_empty ? fifo_data curkey ;

lastkey <=

“fifo_empty ? curkey

lastkey ;

key-ready <= ~fifo_empty;
// raise ascii_-ready for last key which was read
ascii_ready <= key.ready & ~(curkey [7]]|lastkey [7]);
ascii <= (key-ready & ~(curkey[7]]lastkey [7])) ? ascii_val ascii;

end

always @(curkey) begin //convert PS/2 keyboard make code ==> ascii code
case (curkey)

8’h1C: ascii-val = 8’h4l; J/A — At button

8°'h32: ascii-val = 8'h42; //B — blind

8 h21: ascii-val = 8'h43;//C — Cue button

8 h23: ascii-val = 8’h44; //D downtime

8°'h24: ascii_val = 8'h45;//E — clear button (empty)

8'h2B: ascii-val = 8'h46; //F — follow

8’h34: ascii-val = 8'h47; // G — go button

8'h33: ascii-val = 8'h48;//H — Channel button

8’h43: ascii_-val = 8’'h49; /1

8 'h3B: ascii_-val = 8'h4A; //J — j/k — Release

8'h42: ascii-val = 8 h4B; J/K

8'h4B: ascii-val = 8'h4C;// L — link

8 h3A: ascii-val = 8'h4D; J /M

8’h31: ascii-val = 8'h4E; //N

8 h44: ascii-val = 8 h4F; /) O— full power (on)

8’h4D: ascii = 8’h50; //P

8 h15: asci = 8'h51;//Q — clears a cue

8’h2D: ascii-val = 8’h52;//R — Record

8 'hlB: ascii-val = 8'h53; //S — Stage Mode

8'h2C: ascii_-val = 8'h54; /)T

8 'h3C: ascii_-val = 8'h55; //U — uptime

8 h2A: ascii-val = 8 h56; Voa%

95

8 h1D: ascii_val = 8'h57; //W wait

8’h22: ascii_-val = 8’hb8; //X

8’h35: ascii_val = 8’hb59; /)Y

8 hl1A: ascii_val = 8'h5A; //Z — reset

8°h45: ascii-val 8 h30; //0

8 h16: ascii-val 8 h31; //1

8 ’hlE: ascii-val 8'h32; //2

8 h26: ascii-val = 8’h33; //3

8'h25: ascii-val = 8 'h34; /)4

8’h2E: ascii-val = 8’h35; //5

8’h36: ascii-val = 8'h36; //6

8'h3D: ascii_-val = 8 h37; VX

8 h3E: ascii_-val = 8 h38; //8

8'h46: ascii_-val = 8'h39; /79

8 hOE: ascii-val = 8'h60; Y

8 h4E: ascii-val = 8'h2D; /) =

8’h55: ascii-val = 8'h3D; // =

8 h5C: ascii_val = 8 h5C; 77\

8’h29: ascii-val = 8’h20; // (space)

8 h54: ascii_val = 8 h5B; VaN

8 h5B: ascii_-val = 8 h5D; V!

8'h4C: ascii_-val = 8 'h3B; Y

8’hb52: ascii_val = 8’h27; //

8°h4l: ascii_-val = 8’h2C; Y

8°h49: ascii-val = 8 h2E; // .

8 hd4A: ascii-val = 8 h2F; Y

8 hB5A: ascii-val = 8’h0D; //Enter (CR) — Enter

8 h66: ascii_val = 8'h08; //backspace — go to prev cue

// 8’hF0: ascii-val = 8 hFO0; // BREAK CODE

default: ascii_val = 8'h23; /) #
endcase

end
endmodule // ps2toascii

A N aada

// mew synchronous ps2 keyboard driver , with built—in fifo , from Chris
module ps2(reset , clock, ps2c, ps2d, fifo.rd , fifo_-data ,
fifo_empty , fifo_overflow);

input clock ,reset ;

input ps2c; // ps2 clock

input ps2d; // ps2 data

input fifo_rd // fifo read request (active high)

output [7:0] fifo_data; // fifo data output

output fifo_empty ; // fifo empty (active high)

output fifo_overflow ; // fifo overflow — too much kbd input

reg [3:0] count ; // count incoming data bits

reg [9:0] shift ; // accumulate incoming data bits

reg [7:0] fifo [7:0]; // 8 eclement data fifo

reg fifo_overflow ;

reg [2:0] wptr, rptr; // fifo write and read pointers

wire [2:0] wptr-inc = wptr + 1;

assign fifo_empty = (wptr == rptr);

assign fifo_.data = fifo [rptr];

// synchronize PS2 clock to local clock and look for falling edge

reg [2:0] ps2c_sync;

always @ (posedge clock) ps2c.sync <= {ps2c_sync[1:0], ps2c};

wire sample = ps2c_sync [2] & “ps2c_sync[1];

always @ (posedge clock) begin
if (reset) begin
count <= 0;
wptr <= 0;
rptr <= 0;
fifo_overflow <= 0;
end
else
// order
if (count 10) begin
// just received what should be the
if (shift[0]==0 && ps2d==1 && (" shi
fifo [wptr] <= shift [8:1];
wptr <= wptr_inc;
fifo_overflow <=
end
count <= 0;
end else begin
shift <= {ps2d,shift [9:1]};
count <= count + 1;

if (sample) begin
of

arrival: 0,8 bits of data

fifo_.overflow |

end
end

// bump read pointer if we’ re done with
// Read also resets the overflow indica
if (fifo_-rd && !fifo_empty) begin

rptr <= rptr 4 1;

fifo_overflow <= 0;
end

end
endmodule

(LSB first),odd parity ,1

stop bit

ft [9:1])==1) begin
(wptr_inc == rptr);
current value .

tor

56

Terman

6.4.3 Keyboard Interpreter

‘timescale 1lns
//Maura Cordial
// Keyboard_interp module

/ 1ps

// Theatre Lighting Board
J/# xxxxxx SPECIAL REGISTERS % % s s % % %
/) # zero register: RO
/) # current cue address: RI1
/) # previous basic data: R2
/) # previous chi—chj: R3
J/# previous ch5—ch8: RY
J/# current basic data: RS
J/# current extended data: R6
J/# next basic data: R7
//# current chl—ch8: R8—RI5
/) # function parameter: RI16
/) # additional param: R17
/) # captured channels: RI18
/) # live mode flag: R19
J/# illop instr: RS31
//
// This module takes the input from the wuser that was entered in by the keyboard
//takes the keystroke to send out the proper instruction the the processor. The
//outputs flags (mode, error , channel) to the dynamic sprites module.
module keyboard.interp (clk, ascii, ascii-ready ,expired ,cur_cue,h blind-mode,
we,instr_out ,reset ,param,state ,error ,channel);
// k%%« MACRO ADDRESSES s s s s s s s s s s s s s s s s s 5 s s s s * *
parameter LOAD_.CUE = 8°dO0;
parameter RECORD = 8’'d63;
parameter RELEASE = 8°’d88;
parameter SET_CHAN = 8'd92;
parameter SET_UP = 8’d166;
parameter SET_DOWN = 8’'d178;
parameter SET_-WAIT = 8°d190;
parameter SET_FOLLOW = 8’d202;
parameter SET_LINK = 8°d214;
parameter ABORT = 8°'d226;
parameter GO = 8°'d228;
parameter BLIND = 8’°d237;
parameter LIVE = 8'd241;
// k%%« MACRO ADDRESSES sk s %
//Input Wires
input clk; //20mhz clock
input [7:0] ascii; // ascii code (1 character)
input ascii-ready ; // ascii ready (one clock-20mhz cycle active high)
input reset ;
input [7:0] param; //register to store the current data that you are editing
input [6:0] cur_cue; //the current cue
input expired; //timer signal from the timer module
input blind-mode; //tells which mode we are operating in
//outputs
output reg we; //the write enable to the processor
output reg [31:0] instr_out; //the instruction to the processor
output reg [2:0] error; //error message flag to the dynamic sprites module
output reg [3:0] state; //current state sent to the dynamic sprites module
output reg [2:0] <channel; //the current channel that you are editing
reg [15:0] temp_value; //a temporary value register
//this always block calculates the wvalue of the series of numbers that
//the wuser can enter. It stores this value in temp-value after each keystroke.
always @ (ascii) begin
case(ascii)
8°h30: temp_value = param*10; //for 0
8’h31: temp-value = param=10+1; //for 1
8’h32: temp-value paramx1042; //for 2
8°'h33: temp_value = paramx10+3; //for 3
8°'h34: temp_value paramx10+4; //for 4
8°'h35: temp._value paramx10+5; //for 5
8°'h36: temp_value = param=10+6; //for 6
8°'h37: temp_value = param=10+7; //for 7
8°'h38: temp-value = param=10+8; //for 8
8°'h39: temp-value = param=10+9; //for 9
default: temp-value = temp-value;
endcase
end
// This always block is set up like a finite state machine.
//It transitions to another state through a series of
//keystrokes. At each state there is an abort, clear entry,
//and then the functions that are appropiate to the state.
//The state is chosen from the keystrokes entered by the
//user through the keyboad and this ascii value is wused
//in part to determine the appropiate state to enter.
always @ (posedge clk) begin
we <= 0;
if (reset) begin
state <= 4’b0000;
error <= 3’b1l11;
end
else begin
if (expired) begin //if ezpired is high the next cue needs to load
we <= 1’bl;
instr_out <= {24°b001000000000000000000000, GO};

end

o7

and
module

then

also

else begin

if(ascii-ready) begin //if a key has been sent
error <= 3'b111; //default error message — blank
case(state)
4°b0000: //default
case(ascii)
8'h43: begin
state <= 4’b0001; //cue, C
error <= 3’b000; //Enter a number 1—127
end
8'h48: begin
state <= 4°b0010; //channel, H
error <= 3°'b001; //Enter a number between 1—38
end
8 h57: begin
state <= 4°b0100; //wait, W
error <= 3'b011; //Enter a number between 0—255
end
8’'h4C: begin
state <= 4’°b0101; //link , L
error <= 3’b000; //Enter a number between 1—127
end
8'h52: begin
state <= 4'b0110; //record , R
error <= 3°'b101; //Press enter to confirm
end
8 'h46: begin
state <= 4'b0111; //follow , F
error <= 3’b100; //Enter a number between 1—255
end
8’h55: begin
state <= 4’b1000; //uptime, U
error <= 3°'b011; //Enter a number between 0—255
end
8’h44: begin
state <= 4'b1001; //downtime , D
error <= 3'b011; //Enter a number between 0—255
end
8°h5A: state <= 4°b0000; //reset, Z
8 h53: begin //live mode, S
we <= 1’bl;
instr_out <= {24°b001000000000000000000000, LIVE};
end
8 h42: begin //blind mode, B
we <= 1°bl;
instr_out <= {24°b001000000000000000000000 , BLIND };
end
8 'h4A: begin //release ,J
we <= 1’'bl;
instr-out <= {24°b001000000000000000000000 ,RELEASE};
end
8 h51: begin //Q, clears a cue
we <= 1’bl;
instr_out <= {24°b001000000000000000000000 ,LOAD_CUE};
end
8 h47: //G, go
if (“blind_mode) begin //because live is default low
we<=1'b1;
instr-out <= {24°'b001000000000000000000000 ,GO};
end
8'h08: //backspace — load previous cue
begin
we <= 1’bl;
instr_out <= {25b1100001000000000000000000 , prev_num };
state <= 4’'b0001;
end
default: state <= 4°'b0000;
endcase
4°b0001: begin //cue
if ((ascii >=8h30) && (ascii <=8h39)) begin //enters 0—9
we<=1'b1;
if (temp-value <= 127) //makes sure that it is in a wvalid range

instr-out <= {16’°b110000-10000-00000-,temp-value };

else begin

state <= 4’°b0001; //takes you back to this state
error <= 3'b000; //Enter a number between 1—127
instr_out <= 32’b10000010000000000000000000000000; //clears the
end //for the else
end //of the begin after the if statement
else begin
case (ascii) //this will handle the key inputs that are
8°h52: begin //Record
state <= 4’'b0110; //record state
error <= 3’b1l01; // Press enter to confirm
end
8'h5A: begin //reset
we <= 1°bl;
state <= 4°b0000; //Default
instr_out <= 32’b10000010000000000000000000000000; //Clears the
end
8 'h45: begin //clears the entry
we <= 1’b1l;
state <= 4’'b0001; //Cue State
instr-out <= 32’b10000010000000000000000000000000 ;
end
8'hOD: begin //Enter
we <= 1’bl;
//this checks to make sure that the number entered is inside
//the range of wvalid cue assignments

if ((param<128) && (param>0)) begin
//load cue

instr_out <= {24°b001000000000000000000000 ,LOAD_CUE};

o8

not

registers

numbers

registers

//clears

the

registers

state <= 4°'b0000; //default state
end
else begin
state <= 4’b001; //Cue State
error <= 3'b000; //Enter a number between 1—127

instr_out <=
end //for else
end
8 h47: //G, go
if(“blind-mode) begin //because
we<=1"bl;
instr_out <= {24°b001000000000000000000000 ,GO};
state <= 4’b0000; //Default state
end
default :
endcase
end
end

32’b10000010000000000000000000000000 ;

live is default low

state <= 4°b0000;

4’b0010:
case(ascii)

begin //Channel — keeps track of the

8°h31: channel <= 3’b000; //Channel 1
<= 3'b001: //Channel
<= 3°b010; //Channel
<= 3'b011; //Channel
<= 3°b100; //Channel
<= 3°'b101; //Channel
channel <= 3°b110; //Channel
channel <= 3°b111; //Channel
begin //reset

state <= 4’b0000;
3°b000; //Channel 1

8’h32:
8’ h33:
8’h34:
8’h35:
8 h36:
8 h37
8’ h38
8 h5A :

channel
channel
channel
channel
channel

0 N> T e

//default state
channel <= is the default
we <= 1’bl;
instr_out <=

end

8’h41l:

32’b10000010000000000000000000000000 ;

begin //At key
instr_out <=
state <= 4'b0011; //at

we <= 1°bl;
error <= 3°b110; //Enter
the

{29°b110000-10001_-00000-000
state

intensity
end

8 ' h45: begin //clears
we <= 1’bl;

state <= 4’b0010;
channel <= 3’b000;

entry

// Channel State

//Defaulted to Channel 1

channel

//clears

//clears the

registers

that you are editing

the registers

00-00000-000 ,channel };

instr_out <= 32’b10000010000000000000000000000000; //clears the registers
end
default: begin
channel <= 3’b000; //Channel 1 is the default channel
error <= 3'b001; //Enter a number between 1—8
end
endcase
end //of the channel state
4°b0011: //At State— sets the intensity level of a channel
begin
if ((ascii >=8h30) && (ascii <=8'h39)) begin //Keystroke between 0—9
we<=1'b1;
if (temp_value <= 100) //Tests to make sure that it is a valid intensity level
instr_out <= {16°b110000-10000-00000_-,temp-value };
else begin //if an inwvalid entry
state <= 4°b0011; //back to the At State
error <= 3’b010; //Enter a number between 0—100
instr_out <= 32°b10000010000000000000000000000000; //clears the registers
end //of the else begin
end //of the if
else begin
case (ascii) //Handles all of the keystrokes that are not 0—9
8 h5A: begin //RESET
we <= 1'bl;
state <= 4°b0000; //Default State
//set_abort
instr_out <= {24°b001000000000000000000000 ,ABORT}; //resets the registers
end
8'h45: begin //clears the entry
we <= 1’bl;
state <= 4'b0011; //At STATE
instr_out <= 32’b10000010000000000000000000000000; //clears the registers
end
8 h4F: begin //Full power (100%)
//this sets the channel intensity level to 100
we <=1'bl;
instr-out <= 32’b110000-10000-00000-0000-0000-0110-0100;
end
8 'hOD: begin //Enter
if (param<=100) begin //Tests to make sure that is is a valid entry
we <= 1’bl;

//set_chan
instr.out <=

{24’b001000000000000000000000 ,SET_CHAN };

state <= 4’b0000; //Default state
end
else begin
we <= 1°bl;
state <= 4’b0011; //At State
error <= 3’b010; //Enter a number 0—100
instr-out <= 32’b10000010000000000000000000000000; //resets the register wvalue
end //of else
end //of Enter State
default: state <= 4’b0011; //At State
endcase
end //of else
end //of the state
4°b0100: begin //WAIT STATE — this allows you to set the wait time to load the mnext cue
if ((ascii >=8h30) && (ascii <=8h39)) begin //Enter in a value 0—9

59

(0—255)

we<=1"bl;
if (temp_value <= 255) //If the temp-value is within the range of wait
instr_out <= {16’°b110000.10000.00000_ ,temp_value}; //store that wvalue
else begin
state <= 4°b0100; //Wait State
error <= 3°'b011; //Enter a number between 0—255
instr_out <= 32’b10000010000000000000000000000000; //clears the registers
end //of the else
end //of the if
else begin
case(ascii) //This handles the other keystrokes
8 h5A: begin //Reset
we <= 1°bl;
state <= 4’b0000; //Default State
instr_out <= 32’b10000010000000000000000000000000; //clears the registers
end
8 'h45: begin //clears the entry
we <= 1’'bl;
state <= 4°b0100; //Wait State
instr_out <= 32°b10000010000000000000000000000000; //clears the registers
end
8°hOD: begin //Enter
if (param<256) begin //if the wvalue stored in wait is within bounds
we <= 1°bl;
//set wait
instr_.out <= {24°b001000000000000000000000 ,SET_-WAIT };
state <= 4°b0000; //Default State
end //of if
else begin //the value entered is not within the bounds of wait
we <= 1’bl;
state <= 4’b0100; //Wait State
error <= 3’b011; // Enter a number 0—255
instr-out <= 32’b10000010000000000000000000000000; //clears the registers
end //of else
end
default: state <= 4°b0100; //Wait State
endcase
end //of the else
end //of the wait state

4°b0101: begin //LINK state — this allows you to link a cue unsequentially to another cue (1—127)
if ((ascii >=8h30) && (ascii <=8h39)) begin //keystrokes between 0—9
we<=1’b1l;

if (temp_value <= 127) //tests to see if the number entered is within bounds
instr_out <= {16’b110000-10000-00000- ,temp_value };
else begin //if the wvalue is out of bounds
state <= 4°b0101; //LINK state
error <= 3°b000; //Enter a number between 1—127
instr_out <= 32’b10000010000000000000000000000000; //clears the registers
end //of the else
end //of the if
else begin
case(ascii) //Handles all of the other keystrokes
8'h5A: begin //Reset
we <= 1’bl;
state <= 4°b0000; //Default state
instr_out <= 32’b10000010000000000000000000000000; //clears the registers
end
8°h45: begin //clears the entry
we <= 1'bl;
state <= 4'b0101; //Link State
instr_out <= 32°b10000010000000000000000000000000; //clears the registers
end
8 'hOD: begin //Enter
// This tests to make sure that the number entered is within bounds
if ((param >0) && (param<128)) begin
we <= 1°bl;
J/set_link
instr_out <= {24°b001000000000000000000000 ,SET_LINK };
state <= 4°'b0000; //Default state
end
else begin
we <= 1’bl;
state <= 4’b0101; //Link State
error <= 3'b000; //Enter a number between 1—127
instr_.out <= 32’b10000010000000000000000000000000; //clears the registers
end //of else
end
default: state <= 4°'b0101; //LINK state
endcase
end //of else begin
end //of link state
4°b0110: begin //RECORD STATE — this allows you to record a cue
case(ascii)
8 hOD: begin //Enter
//this tests to make sure that the cue number that you have entered is between 1 and
if (((param < 128) && (cur-.cue != 0)) || ((param > 0) && (param < 128)))
begin
we <= 1'bl;
//record
instr_out <= {24°b001000000000000000000000 ,RECORD};
state <= 4°b0000; //Default State
end
else begin
we <= 1’b1;
state <= 4’b0110;
error <= 3'b000; //1—127
instr_out <= 32’b10000010000000000000000000000000 ;
end //of else
end //of enter state
8 h5A: begin //Reset
we <= 1°bl;
state <= 4°b0000; //Default State

60

127

instr_out <= 32°b10000010000000000000000000000000; //clears the
end
default: begin
state <= 4°'b0110; //RECORD state
instr_out <= 32’b10000010000000000000000000000000; //clears the
we <= 1’'b1l;
end
endcase
end //of record
4°b0111: begin //FOLLOW state this allows you to set the auto follow for t
if ((ascii >=8h30) && (ascii <=8'h39)) begin //Enter a number 0—9
we<=1'b1;
if (temp_value <= 255) //tests to make sure that it is within bounds
instr.out <= {16°b110000.10000_00000_ ,temp-_value };
else begin //if it is out of bounds
state <= 4'b0111; //FOLLOW state
error <= 3'b100; //Enter a number 1—255
instr_out <= 32’b10000010000000000000000000000000; //clears the
end //of the else
end //of the if
else begin
case(ascii)
8 h5A: begin //Reset
we <= 1°bl;
state <= 4°b0000; //Default state
instr_out <= 32’°b10000010000000000000000000000000; //clears

end
8 'h45: begin //clears the entry
we <= 1’'bl;
state <= 4’b0111; //FOLLOW state
instr_out <= 32’b10000010000000000000000000000000; //clears
end
8°hOD: begin //Enter
//checks to make sure a valid number was entered
if (param<256) begin
we <= 1°bl;
//set_follow
instr-out <= {24°b001000000000000000000000 ,SET-FOLLOW };
state <= 4°b0000; //Default state
end
else begin
we <= 1’bl;
state <= 4°b0111; //Follow State
error <= 3°b100; //Enter a number 1—255

registers

regisers

he next cue (1—255)

registers

the registers

the registers

instr_out <= 32’b10000010000000000000000000000000; //clears the registers

end //of else
end
default: state <= 4°b0111; //FOLLOW State
endcase
end
end //of the follow state

4°b1000: begin //UP TIME STATE — this allows you to set the wuptime of a cue (0—255)
if ((ascii >=8h30) && (ascii <=8h39)) begin //enter a keystroke between 0—9

we<=1’b1l;
if (temp_value <= 255) //if the number entered was below 255
instr.out <= {16°b110000-10000-00000- ,temp-_value };
else begin
state <= 4'b1000; // UP TIME state
error <= 3°'b011; //Enter a number 0—255
instr-out <= 32’b10000010000000000000000000000000; //clears the
end //of the else
end //of the if
else begin
case(ascii) //to handle the other keys entered
8’h45: begin //clears the entry
we <= 1°bl;
state <= 4°b1000; //UP TIME STATE

registers

instr_out <= 32’b10000010000000000000000000000000; //clears the registers

end
8 h5A: begin //Reset
we <= 1’'bl;
state <= 4°b0000; //Default State

instr-out <= 32’b10000010000000000000000000000000; //clears the registers

end
8 'hOD: begin //Enter

if (param<256) begin //checks to see if it is within the bounds

we <= 1’bl;
//set_up
instr_.out <= {24°b001000000000000000000000 ,SET_UP };
state <= 4°b0000; //Default state

end

else begin
we <= 1’bl;
state <= 4'b1000; //UP TIME STATE
error <= 3’b011; //Enter a number 0

255

instr.out <= 32’b10000010000000000000000000000000; //clears the registers

end //of else
end //of enter
default: state <= 4’b1000; //UP TIME STATE

endcase
end
end
4°b1001: //DOWNTIME STATE — this allows you to set the downtime of a cue
begin
if ((ascii >=8h30) && (ascii <=8h39)) begin //keys entered 0—9
we<=1"bl;

if (temp-value <= 255) //if the number entered is less than 256
instr-out <= {16°b110000-10000-00000-, temp-value };
else begin
state <= 4'b1001; //DOWN TIME STATE
error <= 3'b011; //Enter a number 0—255
instr_out <= 32°b10000010000000000000000000000000; //clears the

61

registers

end //of the else
end //of the if
else begin
case(ascii) //handles the other
8 'h45: begin //clears the
we <= 1°'bl;
state <= 4°b1001; //DOWNTIME STATE
instr_out <= 32’b10000010000000000000000000000000; //clears
end
8 h5A: begin //Reset
we <= 1’bl;
state <= 4°b0000; //Default State
instr_out <= 32’b10000010000000000000000000000000; //clears
end
8°hOD: begin //Enter
if (param<256) begin //tests

keystrokes
entry

to make sure that it

the registers

the registers

is within bounds
we <= 1’bl;
//set_down
instr_.out <= {24°b001000000000000000000000 ,SET.DOWN };
state <= 4’b0000; //Default State
end
else begin
we <= 1’bl;
state <= 4°b1001; //DOWNTIME STATE
error <= 3°'b011; //Enter a number 0—255
instr_.out <= 32’b10000010000000000000000000000000; //clears
end //of else

end //of enter state

default: state <= 4°'b1001; //DOWNTIME STATE
endcase

end //of the else
end //of the downtime state
default: state <= 4’b0000; //DEFAULT STATE

endcase

end
endmodule // keyboard_interp

62

the registers

6.4.4 Keyboard Interpreter Test Bench

‘timescale 1ns / 1ps

%//

Company :
// Engineer :
//
// Create Date: 18:18:85 12/12/2006
// Design Name: keyboard_interp
// Module Name: keyboard_tb . v
/) Project Name: lightboard

// Target Device :
// Tool wersions :
// Description :

//

// Verilog Test Fizture created by ISE for module: keyboard_-interp
//

// Dependencies :

//

// Revision :

// Revision 0.01 — File Created

// Additional Comments:

//
A A s

module keyboard_tb.-v;

// Inputs

reg clk;

reg [7:0] asciij;
reg ascii_-ready ;
reg expired;

reg [6:0] cur_cue;
reg blind_-mode;
reg [6:0] prev_num;
reg reset ;

reg [7:0] param;

// Outputs

wire we;

wire [31:0] instr_out;
wire [3:0] state;
wire [2:0] error;

wire [2:0] channel;

// Instantiate the Unit Under Test (UUT)
keyboard_interp uut (
Cclk (clk),
Lascii(ascii),
.ascii_ready (ascii_ready),
.expired (expired) ,
.cur_cue(cur_cue),
.blind_mode (blind_mode) ,
.prev_num (prev-num) ,
.we(we),
.instr_out (instr_out),
.reset (reset),
. param (param) ,
.state(state),
.error(error),
.channel (channel)

)

always #100 clk = “clk;
initial begin
// Initialize Inputs

clk = 0;

ascii = 0;
ascii-ready = 0;
expired =

cur_cue =
blind_mode
prev_num =

reset = 0;
param = O0;

#300;
clk = 0;
ascii = 0;
ascii-ready = 0;
expired = 0;
cur_cue = 0;
blind_mode = 0;
prev_num = 0;
reset = 1;
param = O0;
#300;
ascii = 8’h43; // cue
ascii-read = 1;
reset = 0;
param = 0;
expired = 0;
cur_cue = 0;
blind_mode = 0;
prev_num = 0;
#200;
ascii = 8’h31; //1
ascii—-ready = 1;
reset = 0;
param = O0;

63

expired = 0;
cur_cue = 0;

blind_mode = 0;
prev_num = O0;

#200;

ascii = 8’h31; //1
ascii—-ready = 1;
reset = 0;

param = 1;

expired = 0;
cur_cue = 1;
blind_-mode

prev_num = O0;

#200;

ascii = 8°'h52;//record
ascii_ready = 1;
reset = 0;

param = 11;

expired = 0;
cur-cue = 11;
blind-mode = 0;
prev_num = 0;

#200;

ascii = 8’hOD; //enter
ascii_ready = 1;
reset = 0;

param = 0;

expired

cur-cue

blind-mo =
prev_num = O0;

#500;

ascii = 8’h48; //channel
ascii_ready = 1;
reset = 0;

param = 0;

expired = 0;
cur-cue = 11;
blind-mode 0;
prev-num = 0;

#200;

ascii = 8’h35; /)5
ascii-re y = 1;

param =
expired

cur_cue =
blind_mode
prev_num =

ad
reset = 0;
0;

#200;
ascii = 8’ // at
ascii-read
reset = 0;
param = 0;
expired =

cur_cue = 11
blind_-mode = 0;
prev_num = 0;

#300;
ascii = 8’h34; // 4
ascii—-ready = 1;
reset = 0;
param = O0;
expired = 0;
cur_cue = 11;
blind_-mode = 0;
prev_num = 0;
#300;
ascii = 0;
ascii—-ready = 0;
reset = 0;
param = 4;
expired = 0;
cur-cue = 11;
blind-mode = 0;
prev_num = 0;
#200;
ascii = 8’hOD; //enter
ascii_ready = 1;
reset 0;
param = 4;
expired = 0;
cur-cue = 11;
blind_-mode = 0;
prev_num = 0;

#500;
ascii = 8’h57; //wait
ascii_ready = 1;
reset = 0;
param = 0;
expired = 0;
cur-cue = 113
blind-mode = 0;
prev_-num = O0;
#300;
ascii = 8’h37; /)T
ascii-ready = 1;
reset = 0;
param = 0;
expired = 0;
cur_cue = 11;

blind_mode = 0;

prev_num = O0;

#300;

ascii = 03
ascii_ready = 0;
reset = 0;
param = 7;
expired =
cur_-cue =

blind-mode
prev_num =
#200;

ascii =
ascii_ready ;
reset =

param =
expired
cur-cue = ;
blind-mode 0;

prev_-num = O0;
#300;

ascii = 8’h55;
ascii-ready = 1;
reset = 0;
param = 0;

expired

cur_cue =
blind-mode = 0;
prev_-num = O0;
#300;

ascii

reset

param = 0;
expired = 0;
cur_cue = 11;
blind_mode 0;
prev_num = 0;
#300;

ascii = 0;
ascii-ready = 0;
reset = 0;
param = 2;
expired = 0;
cur_cue = 11;
blind_mode = 0;
prev_num = O0;
#200;

ascii = 8°h0d;
ascii-read = 1;
reset = 0;
param = 2;
expired 0;
cur_-cue = 11;
blind_-mode = 0;
prev_num = 0;
#300;

ascii = 8’h44;
ascii_ready = 1;
reset 0;
param = O0;
expired = 0;
cur-cue = 11;
blind_-mode 0;
prev_num = 0;
#300;

ascii = 8'h32;
ascii_ready = 1;
reset = 0;
param = 0;
expired = 0;
cur-cue = 11;
blind-mode 0;
prev_num = O0;
#300;

ascii = 0;
ascii-ready = 0;
reset = 0;

param = 2;
expired =

= o

i
1

cur_cue = 3
blind-mode = 0;
prev-num = 0;
#200;

ascii = 8’h0d;
ascii-ready = 1;
reset = 0;
param = 2;
expired = 0;
cur_cue = 11;
blind_mode 0;
prev_num = O0;
#300;

ascii = 8’h4C;
ascii—-ready = 1;
reset 0;
param = 0;
expired = 0;
cur_cue = 11;
blind_mode = 0;
prev_num = O0;
#200;

ascii = 8’h38;

//enter

//uptime

//2

//enter

//downtime

//2

//enter

//link

//8

65

ascii-ready = 1;
reset = 0;
param = 0;
expired = 0;
cur_cue = 1

blind-mode = 0;
prev_-num = O0;

#300;

ascii = 0;
ascii-ready = 0;
reset = 0;
param = 8;
expired = 0;
cur_cue = 11;
blind_mode = 0;
prev_num = 0;
#200;

ascii = 8’h0d;
ascii-read = 1;
reset = 0
param = 8;
expired = 0;
cur_cue = 11;
blind_mode 0;
prev_num = O0;
#500;

ascii = 8'h46;
ascii-ready = 1;
reset = 0;
param = O0;
expired = 0;
cur_cue = 11;
blind_-mode 0;
prev_num = O0;
#200;

ascii = 8'h39;
ascii_ready = 1;
reset = 0;
param = O0;
expired = 0;
cur-cue = 11;
blind-mode = 0;
prev_num = 0;
#200;

ascii = 8'h39;
ascii = 1;
reset = 0;
param = 9;
expired = 0;
cur-cue = 11;
blind-mode 0;
prev_num = O0;
#300;

ascii = 0;
ascii-ready = 0;
reset = 0;
param = 99;
expired = 0;
cur-cue = 1

blind-mode = 0;

prev-num = 0;
#200;

ascii = 8’h0d;
ascii-ready = 1;
reset = 0;
param = 99

expired :
cur_cue = 1
blind-mode = 0;
prev-num = O0;
#300;

end

endmodule

//enter

//follow

//9

/79

//enter

66

6.5 Processor Verilog Files

This section contains the Verilog files for the processor used for this project.

6.5.1 Processor Module

/) —%— Mode: Verilog —x—
// Filename : processor.v
// Description : Processor used to coordinate between modules

// responsible for store cues
// responsible for sending signals to the dmz module to load cues
// and update channel values

‘timescale 1ns / 1ps

module processor (clk, reset, instr_.in , bwe,
//current cue num
cue_num , prev.num ,
//previous cue basic data
prev_up, prev.down, prev_wait ,
//previous cue channels
prev_chl, prev_.ch2, prev_ch3, prev_.ch4,
prev_ch5, prev_ch6, prev_ch7, prev_ch8,
//current cue basic data
cur-up, cur-down, cur-wait,
//current cue extended data
cur-link , cur_-follow ,
//mext cue basic data
next_up, next_down, next_wait ,
//current cue channels
chl, ch2, ch3, ch4, ch5, ch6, ch7, chs,
//function paramter
param ,
//flag indicating we are in blind mode
blindmode-flag ,
//instruction buffer full

full ,

//load cue to stage signal

start ,

//update dmz channel intensities signal
update ,

//captured flags
captured);

//clock , reset, instruction buffer write enable inputs
input clk, reset, bwe;

//instruction into buffer

input [31:0] instr_in;

//current cue num

output [6:0] cue_num ,prev_num;

//previous cue basic data

output [7:0] prev_up, prev.down, prev_wait;

//previous cue channels

output [7:0] prev_chl, prev_ch2, prev_ch3, prev_ch4,
prev_ch5, prev_ch6, prev_ch7, prev_ch8;

//current cue basic data

output [7:0] cur_up, cur-down, cur_wait;

//current cue exztended data

output [6:0] cur-link;

output [7:0] cur_follow ;

//mext cue basic data

output [7:0] next_up, next_down, next_wait;

//current cue channels

output [7:0] chl, ch2, ch3, ch4, ch5, ch6, ch7, chS8;

//function paramter

output [7:0] param;

//blind mode flag

output blindmode_flag ;

//captured flags

output [7:0] captured;

/) %% %k x REGISTERS %% % % % % %
reg signed [31:0] registers [31:0];
Jx ok xknk SPECIAL REGISTERS %% % % % %

zero register RO
current cue address : R1
previous basic data : R2
previous chl—chi : R3
previous ch5—ch8 : R4
current basic data : RS
current exztended data: R6
next basic data : R7
current chl—ch8 : R8—RI15
function parameter : R16
additional param : R17
captured channels : R18
blind mode flag : R19
illop instr (debug) : R31
*/
//output assignments
//current cue number
assign cue_num = registers [1][8:2];
assign prevonum = registers [1][17:11];

//previous cue basic data

67

assign prev_up = registers [2][31:24];
assign prev_.down = registers [2][23:16];
assign prev._wait = registers [2][15:8]
//previous cue channels

assign prev_chl = registers

assign prev-ch2 = registers

assign prev_ch3 = registers

assign prev_ch4 registers

assign prev_chb5 = registers

assign prev_ch6 = registers

assign prev_ch7 = registers

assign prev_ch8 = registers

//current cue basic data

assign cur_up = registers [5][31:24];
assign cur_.down = registers [5][23:16];
assign cur_wait = registers [5][15:8];
//current cue estended data

assign cur_follow = registers [6][31:24];
assign cur-link = registers [6][23:17];
//mnext cue basic data

assign next_up = registers [7][31:24];
assign next_down = registers [7][23:16];
assign next_wait = registers [7][15:8];
//current channels

assign chl = registers [8][7:0];

assign ch2 = registers [9][7:0];

assign ch3 = registers [10][7:0];
assign ch4 = registers [11][7:0];
assign chb5 = registers [12][7:0];
assign ch6 = registers [13][7:0];
assign ch7 = registers [14][7:0];
assign ch8 = registers [15][7:0];
//function paramter

assign param = registers [16][7:0];
//blind mode flag

assign blindmode_flag = registers [19][0];
//captured flags

assign captured = registers [18][7:0];
//state

reg state ;

//instruction buffer full

output full ;

//control signals

wire empty, bre, instr_ready , illop;
wire werf ;

//control signals

wire bsel, cmwe, ra2sel ,mpcsel, wdsel;
//dmz control signals

output wire start ,update;

//alu control signal

wire [3:0] alufn ;

//macro address

wire [7:0] maddr ;

//previous macro address

reg [7:0] prev_maddr ;

//instructions

output wire [31:0] instruction ;
wire [31:0] binstr;
wire [31:0] minstr;
//split up instruction

wire [31:0] c;

wire [15:0] sext ;
//parameter register numbers
wire [4:0] ra,rb,rec
//register file outputs

wire [31:0] rdl,rd2
//is ra 07

wire z;

// ALU second parameter

wire [31:0] param.b ;
J/ALU output

wire [31:0] alu_out ;
//memory out

wire [31:0] mem_out ;
//write data

wire [31:0] wd ;

//instruction
instr-buffer

buffer

buff (.clk(clk), .sinit(reset),
.din(instr_-in),.wr_en(bwe) ,.rd-en(bre),
.dout (binstr),. full (full) ,.empty (empty),
.rd_.ack (binstr_ready));

//macro pc

assign maddr = (mpcsel) ? instruction [7:0]

// (MACROS)TODO: get rid of control signals

macros m.inst (maddr, clk , minstr);

//select wvalid instruction signal

assign instr-ready = (state) 7 1 binstr-ready ;
//select instruction out

assign instruction = (state) ? minstr binstr ;
/%% split up instruction

//replicate highest bit of constant

assign sext = {16{instruction [15]}};

//make 82 bit constant

assign c {sext ,instruction [15:0]};

68

(prev_maddr+41);

instruction [20:16];
instruction [15:11];
instruction [25:21];

sters [ral];

sel) 7 registers[rc]

//register selections

assign ra =
assign rb =
assign rc =
//value out of the reg file
assign rdl = regi
assign rd2 = (ra2
//is rdl 0

assign z = (rdl==0);
//control logic

ctrl_logic decode (.reset(reset),.

.start (start) ,.update(update));
//select sign—ecatended constant or reg file wvalue for
assign param_b = (bsel) ? ¢ rd2;
//alu
alu arthunit (. param.a(rdl), .param_b(param-b), .alufn(alufn),
//cue memory
cue_mem mem(alu_out [8:0],clk ,rd2,mem_out ,cmwe);
J//register file write data
assign wd = (illop) ? instruction ((wdsel)
//counter for register instantiation
integer index ;
//sequential logic
always @ (posedge clk) begin
if(reset) begin
state <=0;
for (index=0;index <32;index=index-+1)

.empty (empty)
.state(state)
//output cont
.werf(werf) ,.
.cmwe (cmwe) , .

.mpcsel (mpcsel) ,.bre(bre) ,.

registers [index]<=0;

opcode (instruction [31:26])
,.instr_ready (instr_ready)
Ca(a),

rol signals

bsel(bsel) ,. wdsel (wdsel),
ra2sel(ra2sel),

s
s

end
//switch to macro mode for illop handling
if (illop)
state <=1;
if(instr_ready) begin
//switch to macro mode on macro instruction
if (instruction[31:26]==6"b001000)
state <=1;
//switch to buffer mode on return instruction
if (instruction[31:26] == 6’b001001)
state <=0;
end
//save previous macro address
prev_.maddr <= maddr;
//write to reg file
if (werf)

registers [(illop) ?

end

if (rc!=0)

31 re]

endmodule

<= wd;

69

illop (illop) ,.

registers [rb];

alufn (alufn),

?

second parameter

mem_._out

.out (alu-out));

alu_out);

6.5.2 Control Logic

—*— Mode :
ctrli_-logic .v

Takes in an

Verilog

// R
// Filename

// Description opcode and sets all of the control

‘¢timescale 1lns / 1ps

signals

0 : opcode[3:0];

module ctrl_logic (reset ,opcode,empty, instr_.ready ,state ,z,
//output control signals
werf , bsel , wdsel ,cmwe, ra2sel ,
mpcsel ,bre,illop ,alufn ,start ,update);
input [5:0] opcode;
input reset ,empty,instr_ready ,state ,z;
//control signals
output reg werf,cmwe, illop ;
output mpcsel , bre, bsel ,ra2sel , wdsel ;
output [3:0] alufn;
output start ,update;
//address selection for the macros ROM
//0 by default , 1 for macro and branch instructions
assign mpcsel = (opcode == 6’b001000) 7 1:
//instruction buffer read enable
//1 if mot executing a macro and the buffer isn 't empty, 0 otherwise
assign bre = (state) ? 0 (empty) ? 0 : 1;
//select whether to use the wvalue from the register file
//or the sign extended constant as the second operand in operations
assign bsel = opcode [4];
//selects which register to get the second instruction from
//usually ra, but rc on a store instruction
assign ra2sel = (opcode == 6’b011001);
//selection of where the data out comes from
//usually the alu, except on load instructions
//when it comes from the memory
assign wdsel = (opcode == 6°b011000);
//alu operator selection
//uswally the last 4 bits of the opcode, ezcept load and store
//which both require add
assign alufn = ((opcode==6'b011000) | (opcode==6b011001)) ?
//start signal to the dmz module
//only high on a start instruction
assign start = (opcode == 6°b010000);
//update signal to the dmz module
//only high on an wupdate instruction
assign update = (opcode==6'b010001);

always @ (reset or opcode) begin

illop = 0;
//if in buffer mode and buffer is empty
//lock down processor and idle

if (Tinstr_.ready) begin

werf = 0;
cmwe = 0;
end
else begin
//write enable register file
//true for any arithmetic operation or LD
werf = (opcode[5] | (opcode == 6°'b011000));
//cue memory write enable
Y/only true for store
cmwe = (opcode == 6’'b011001);
//illop checks

if (opcode[5])

if ((opcode[1:0]==2'bl1l)]|(opcode[3:0]==4"b0010)) begin

illop=1;
werf

end
else begin
if ((opcode[5:3]==3"b000)|(opcode[5:2]==4"'b0011)]|

illop = 13
werf = 1;

end

if (opcode[5:2] 4’b0011) begin
illop 1;
werf = 1;

end

end // else: !if(opcode[5])
end // else: !if(instr_ready)
end
endmodule

70

(opcode[5:1]==5'b01001)

(opcode==6’b001010) ? "z : (opcode==6’b001011) ? z : O0O;

(opcode[5:2]==4"b0101))

begin

6.5.3 ALU

// —%— Mode: Verilog —%—

// Filename alu . v

// Description Arithmetic logic wunit for the processor ,
// takes two 32— bit inputs and a operation selector , and outputs

// the 82— bit result of the operator applied to th

‘timescale 1lns

/1

Ps

module alu(param_a, param_b, alufn, out);
[81:0] param.a, param.b;

input signed
input [3:0]

alufn ;

output reg signed [31:0] out;

//operand a shifted by operand b, either sign ez

wire [31:0]

shifted ;

//module to right shift , written by Prof. Terman
shift_right shifter (.sxt(alufn[1]),.a(param_a),.
.shift_right (shifted));

always @ (param_.a or param_b or alufn or shifted
//operand selection
case(alufn [3:0])

//ADD
4>b0000: out = param-a + param-b;
//AND
4°b1000: out = param-a & param-b;
//OR
4°b1001: out = param._a | param_b;
//SHL
4°b1100: out = param_a << param_b;
//SHR
4°b1101: out = shifted;
//SRA
4°b1110: out = shifted;
//SUB
4’b0001: out = param-a — param-b;
//XOR
4°b1010: out = param-a ~ param-b;
//CMPEQ
4°b0100: out = (param_a=—=param_b);
//CMPLT
4°b0101: out = (param_a<param_b);
//CMPLE
4°b0110: out = (param-a<=param.b);
out = param-b;
endcase
end
endmodule

e operands

tended or with 0s

b(param.b[4:0]),

) begin

71

6.5.4 Right Shift

// —%— Mode: Verilog —#—
// Filename : shift-right . v
// Description : Module written by Prof. Terman for

// handling right shifts in the processor (unchanged from original)

‘¢timescale lns / 1ps

module shift_right (sxt,a,b,shift_right);
input sxt;
input [31:0] a;
input [4:0] b;
output [31:0] shift_right;

wire [31:0] w,x,y,z;
wire sin

assign sin = sxt & a[31];

assign w = b[0] ? {sin,a[31:1]} : a;

assign x = b[1] 7 {{2{sin}},w[31:2]} : w;

assign y = b[2] 7 {{4{sin}},x[31:4]} : x;

assign z = b[3] 7 {{8{sin}},y[31:8]} : y;

assign shift_right = b[4] ? {{16{sin}},z[31:16]} : =z;
endmodule

72

6.6 DMX Controller Verilog Files
This section contains the Verilog files that control the DMX.

6.6.1 Channel Twiddler

/) —%— Mode: Verilog —x—
// Filename : channeltwiddler . v
// Description : Intensity control module for ome channel.

// This module stores the current intensity level for one dmz channel.

// On an update signal the module switches the channel over to the mew intensity level.
// On a start signal the module gradually changes the intensity to the new value ,

// over the period inputted into the module.

‘timescale 1ns / 1ps
module channeltwiddler (clock-20mhz ,reset ,start ,update,period ,ch,cur,loading);

//module clock at 20mhz

input clock_20mhz;

//reset button

input reset ;

//start signal for the start of an up or down time
input start;

//signal to wupdate the channel intensity to a new value
input update;

//new wvalue of channel (0—100)
input [7:0] ch;

//delta period for up or down time
input [7:0] period;

//current value of channel
output reg [7:0] cur;

//start the timer to count wuntil time for next increment

reg start_-timer ;
//flag indicating currently loading cue
output reg loading ;

//value we starting from during an up or down time
reg [7:0] start_value ;

//expired signal from timer indicating

// that its time to increment the intensity wvalue
wire expired ;

//period between 1 intensity level increments

wire [32:0] count-to;

//absolute walue of the difference between

//the current wvalue of the channel and the end wvalue

wire [7:0] diff;

//new value (0—255)

wire [7:0] next ;

//intermediate value in calculating the period between increments
wire [10:0] per_second ;

//convert 0—100 scale to 0—255 scale
assign next = ((ch[6]) ? 163:0) + ((ch[5]) 7 82:0) 4+ ((ch[4]) ? 41:0) 4+ ((ch[3]) ? 20:0)
+ ((ch[2]) 7 10:0) + ((ch[1]) 7 5:0) + ((ch[0]) 7 3:0);

//find difference between new and old values
assign diff = (next>start_value) ? next—start_value : start_value—next;

// (2025/|new wvalue — old wvalue|)
division d(11°b11111101001, diff, per.second , remd, clock_20mhz, rfd,1°b0,1°b0,1'bl);

//multiply by period and factor for 20.25mhz clock
assign count_-to = period=*10000x*per_second ;

//timer to count between increments
timer load_-timer (clock-20mhz ,start_timer ,reset ,expired ,count_to);
defparam load_timer.SIZE=33;

always @ (posedge clock_20mhz) begin
start_timer <=0;

//just set current wvalue to new wvalue if reset or update
if ((reset) || (update)) begin
cur<=next;
start-value <
loading <=0;

1;
end

//if start uptime or downtime
if (start) begin
//if mo difference or uptime/downtime is 0,
//just set current value to new value
if ((diff==0) || (period==0))
cur<=next ;
//otherwise start loading the cue
else begin
start_.value <=cur;
loading <=
start_timer <=1;

end

end // if (start)

73

J/if time to increment
if ((expired) && (loading)) begin
//if the current value is the right one
if (cur==next) begin
//stop twiddling!!
loading <=0;
start-value <=1;

end
//otherwise , increment by 1 and start the timer
else begin
cur <= (cur>next) ? cur —1l:cur+1;
start_timer <=1;
end
end
end // always @ (posedge clk)
endmodule

again

74

6.6.2 DMX output

—%— Mode: Verilog —*—
// Filename : dmzcontroller . v
// Description : Changes the current channel values into the dmz serial protocol

‘timescale 1ns / 1ps

module dmxcontroller (clk ,reset ,chl,ch2,ch3,ch4,ch5,ch6,ch7,ch8, bit_out);
//250khz clock
input clk;
//reset button

input reset;

//serial output
output reg bit_out ;

//state 0: break space

//state 1: mark after break

//state 2: data

//state 3: mart before break

reg [1:0] state ;

//bit counter , 4us/bit

reg [5:0] counter ;

//slot counter , used when tranmitting data in state 2
reg [3:0] slot ;

//current channel intensities

input [7:0] «chl,ch2,ch3,ch4,ch5,ch6,ch7,ch8;

//holds channel intensitics , only updated on every packet
reg [7:0] chans [7:0];

//output logic
always @ (posedge clk) begin
if(reset) begin
state <=0;
counter <=0;
bit_out <=0;

end
else begin
counter<=counter+1;
case (state)
J/break (low for 44xfus = 176us)
0: begin
if (counter <44)
bit_-out <=0;
else begin
state <=1;
bit_.out <=
counter <=
chans [0] <= chl;
chans [1] <= ch2;
chans [2] <= ch3
chans [3] <= ch4
chans [4] <= ch5
chans [5] <= ch6
chans [6] <= ch7
chans [7] <= ch8;

end
end
//mark after break (high for 52%jus = 208us)
1: begin
if (counter <52)
bit_out <=1;
else begin
state <=2;
bit-out <=
counter <=
slot <=0;
end
end
//data slots (each slot 20%xjus = 80us)
//slot 0 = null start code
//slot 1—8 = channel intensities
2: begin

if (counter <8)
if (slot==0)
//output null start code
bit_out <=0;

else
//output channel value
bit_out<= chans[slot —1][counter];

else begin
//mark after data
if (counter <20)
bit_out <=1;
else begin
//break at the beginning of next slot
counter <=0;
slot <=slot 4+1;
if (slot 8) begin
state <=3;
bit_out <=1;

end
else
bit_out <=0;
end // else: !if(counter <11)
end // else: !if(counter <8)
end // case: 2
//mark before break (52x4fus = 208us)

75

format .

3: begin
if (counter < 52)
bit_out <=1;
else begin
bit_out <=0;
state <=0;
counter <=0;
end

end
endcase // case(state)
end // else: !if(reset)
end // always @ (posedge clk)
endmodule // dmz

76

6.6.3 Divider

// —%— Mode: Verilog —%—
// Filename : divider . v
// Description : Divides any clock by any value

‘timescale 1ns / 1ps

module divider (divided-clk , clk, reset_sync);
parameter COUNT._SIZE = 26;
parameter COUNT.TO = 19999999;

input clk, reset_sync;
output reg divided_clk;

reg [COUNT.SIZE—1:0] counter;

always @(posedge clk)
begin
if(reset_sync)
begin
divided_clk <=1’b0;
counter <=0;

end
else
begin
if (counter == COUNT.TO)
begin
divided-clk <= 1’bl;
counter <= 0;
end
else
begin
divided.clk <= 1’'b0;
counter <= counter+41;
end
end
end
endmodule

7

6.6.4 DMX controller

// —%— Mode: Verilog —%—
// Filename ;odma. v
// Description : Controller for the dimmer bow.

// This module stores the intensity wvalue for each channel
// and formulates the serial signal that gets sent to the dimmer box

module dmx(clk ,reset ,chl,ch2,ch3,ch4,ch5,ch6,ch7,ch8,waittime ,uptime,downtime,update,start ,
bit_out ,loading_flag ,cur0, curl, cur2, cur3, cur4, cur5, cur6, cur7);

//20mhz clock

input clk;

//reset button

input reset;

//new channel wvalues

input [7:0] chl,ch2,ch3,ch4,ch5,ch6,ch7,ch8;

//wait , up and down time for the current cue transition
input [7:0] waittime ,uptime,downtime;

//update and start signals from the processor

input update, start;

//current intensity of each channel
output [7:0] curO;
output [7:0] curl;
output [7:0] cur2;
output [7:0] cur3;
output [7:0] cur4
output [7:0] cur5;
output [7:0] cur6;
output [7:0] cur7;

//flag indicating that the channel intensities are
//gradually changing for an up or down time
output reg [7:0] loading-_flag;

//serial bit for the dimmer boz

output bit-out ;
//clock for the dmz serial protocol
output wire clock-250khz;

//expired signal from the wait timer
//indicating it is time to start the uptime
wire wait_-expired ;

//clock for the serial output
dividerdmx dmx_clock (clock_250khz , clk, reset);

//period for the wait time

wire [32:0] count_to;

assign count_-to = waittime=20250000;

timer wait_timer (clk, start, reset ,wait_expired ,count_to);
defparam wait_timer.SIZE = 33;

//current value of each channel 0—255

wire [7:0] cur [7:0];

//start signal for the loading of each channel

wire [7:0] start_timer ;

//flag indicating whether each channel is currently changing

wire [7:0] loading ;

//delta period for each channel

wire [7:0] period [7:0];

//select the delta period: uptime if the channel is non—zero in the nezt cue

assign period [0] = (ch1==0) ? downtime : uptime;

assign period [1] = (ch2==0) ? downtime : uptime;

assign period [2] = ? downtime : uptime;

assign period [3] = ? downtime : uptime;

assign period [4] = ? downtime : uptime;

assign period [5] = (ch6==0) ? downtime : uptime;

assign period [6] = (chT7 0) ? downtime : uptime;

assign period [7] = (ch8 0) ? downtime : uptime;

//select when to start changing, right away if the channel is going down to zero
//after the wait time if the channel is going wup

assign start_timer [0] = 0) || (waittime 0)) ? start : wait_expired;
assign start_timer [1] = || (waittime 0)) ? start : wait_expired;
assign start_timer [2] = || (waittime 0)) ? start wait_expired ;
assign start_timer [3] = || (waittime 0)) ? start wait_expired ;
assign start_timer [4] = || (waittime 0)) ? start : wait_expired;
assign start-timer [5] = || (waittime 0)) ? start : wait-expired;
assign start-timer [6] = || (waittime 0)) ? start : wait-expired;
assign start-timer [7T] = || (waittime 0)) ? start : wait-expired;
assign cur0 = cur [0];

assign curl = cur[1];

assign cur2 = cur [2];

assign cur3 = cur [3];

assign curd = cur [4];

assign cur5 = cur [5];

assign cur6 = cur [6];

assign cur7 = cur [7];

//set flag high for all of the wait time and loading time for each channel
//used for screen display
always @ (posedge start or negedge loading[0]) begin
if (start)
loading_flag [0] = 1;
else
loading_flag [0]

0;

end

always @ (posedge start or negedge loading[1l]) begin
if (start)

78

loading_flag [1]
else

loading_flag [1] = 0;
end
always @ (posedge start or
if (start)
loading-flag [2] = 1;
else
loading_-flag [2] = O0;
end
always @ (posedge start or
if (start)
loading_flag [3] = 1;
else
loading_flag [3] = 0;
end
always @ (posedge start or
if (start)
loading_-flag [4] = 1;
else
loading_flag [4] = 0;
end
always @ (posedge start or
if (start)
loading_flag [5] = 1;
else
loading-flag [5] = 0;
end
always @ (posedge start or
if (start)
loading_flag [6] = 1;
else
loading_flag [6] = 0;
end
always @ (posedge start or
if (start)
loading_flag [7T] = 1;
else
loading_-flag [7T] = 0;
end
//intenstiy controller for each
channeltwiddler chlt(clk ,reset
channeltwiddler ch2t(clk ,reset ,
channeltwiddler ch3t (clk ,reset ,
channeltwiddler ch4t (clk ,reset
channeltwiddler chb5t(clk ,reset
channeltwiddler ch6t(clk ,reset
channeltwiddler ch7t(clk ,reset
channeltwiddler ch8t (clk ,reset
//formulate dmz serial signal

dmxcontroller

endmodule

1:

negedge

negedge

negedge

negedge

negedge

negedge

loading [3]

of the

,start_timer [0]

,start_timer

,start_timer
,start_-timer
,start_timer

[
[
[
,start_timer |
[
[
[

start_timer
start_timer

dmxc(clock-250khz , reset ,cur [0],

loading [2])

loading [4])

loading [5])

loading [6])

loading [7])

begin

) begin

begin

begin

begin

begin

channels

,update
,update
,update
,update
,update
,update
,update
,update

cur [1],

,period [0]
. period [1]
,period [2]
,period [3]
,period [4]
,period [5]
,period [6]
,period [7]

chl
ch2

,ch3

,ch4

chb
ch6
ch7
ch8

cur[2],cur[3],

79

loading
loading

cur [5],cur [6],cur[7],bit_out);

6.6.5 Timer

// —%— Mode: Verilog —%—
// Filename ;o timer. v
// Description : a timer that times for a wvariable period
module timer (clk, start_-timer , reset.sync, expired, count_to);
parameter SIZE = 26;
input clk , reset_sync, start_timer ;
input [SIZE—1:0] count_to;
output reg expired ;
reg [SIZE —1:0] counter ;

always @(posedge clk)

begin
if(reset_sync || start_timer)
begin
expired <= 0;
counter <= 0;
end
else
begin
if (counter == count_to)
begin
expired <= 1’bl;
counter <= 0;
end
else
begin
expired <= 1'b0;
counter <= counter+1;
end
end
end
endmodule

80

6.7 Labkit Verilog Files

This section contains the miscellaneous Verilog files used to integrate the project in the labkit.

6.7.1 Debounce

// Switch Debounce Module
// use your system clock for the clock input

// to produce a synchronous, debounced output

module debounce (reset, clk, noisy, clean);
parameter DELAY = 270000; // .01 sec with a 27Mhz clock
input reset , clk, noisy;
output clean ;

reg [18:0] count;
reg new, clean ;

always @(posedge clk)
if (reset)

begin

count <= 0;

new <= noisy;

clean <= noisy;
end

else if (noisy != new)
begin

new <= noisy ;

count <= 0;
end

else if (count == DELAY)
clean <= new;

else
count <= count+41;

endmodule

81

6.7.2 Follow TImer

// —%— Mode: Verilog —%—
// Filename : followtimer . v
// Description : Timer for follow time. Only ezpires
module followtimer (clk, start_-timer , reset_sync, expired,
//20mhz clock , reset and start signal
input clk, reset_sync, start_-timer;

//follow period

input [7:0] cur_follow;
//expired signal
output reg expired ;

reg [32:0] counter ;
wire [32:0] count_to;

assign count_-to = cur_follow x20250000;

always @(posedge clk) begin
expired <= 0;

counter <= counter41;
if(reset_sync || start_timer) begin
counter <= 0;
end
else begin
if (counter == count-to)

if (cur_follow >0) begin
expired <= 1’bl;
counter <= 0;
end
end
end
endmodule

if the period is not

cur_follow);

82

0

6.7.3 Labkit

// —%— Mode: Verilog —%—
// Filename labkit . v
// Description Labkit module adapted from 6.111

ac97_-sdata—-in ,

tv_in_clock

tv_in_line_clock?2

-reset.b ,

website

ac97_synch ,

vga_out_sync_b ,

tv_out_i2c_clock ,

ramO_cen_b ,

raml_cen-b ,

flash_we_b ,

keyboard-data ,

disp-ce-b ,

button_right ,

systemace_mpbrdy ,

vga_out_pixel_clock ,

tv-out_-i2c-data ,
tv_out_-blank_b ,

, tv_in_aef ,

tv_in_iso ,

ramO_-oe-b, ramO_-we.-b;

raml_oe_b, raml_we_b;

lash_byte_b;

module labkit (beep, audio-reset_b , ac97._.sdata_-out ,

ac97-bit_-clock ,
vga_-out_-red , vga_out_green , vga.out_blue,
vga_out_blank_b, vga_out_pixel_clock , vga_out_hsync,
vga_out_vsync ,
tv_out_ycrcb , tv_out_reset_b , tv_out_clock ,
tv_.out-i2c_-data , tv_-out-pal_-ntsc, tv-out_-hsync.b,
tv_out_-vsync-b, tv_out_-blank_-b, tv_out_-subcar_-reset ,
tv_in_ycrcb , tv_in_data_-valid, tv_in_line_clockl ,
tv_oin_line_-clock2 , tv_.in_aef, tv_.in_hff, tv_in_aff
tv_.in_.i2c.clock tv_in_i2c_.data , tv_in_fifo_read ,
tv_in_fifo_clock , tv_in_iso , tv_in_reset_b ,
ram0O_data, ramO_address, ramO_adv.ld, ramO_clk
ramO_ce_.b, ramO_oe.b, ramO_we.b, ramO_bwe_b ,
raml_-data, raml_-address, raml_adv-ld, raml_clk
raml_ce-b, raml_.oe-b, raml_-we_b, raml_bwe_-b,
clock_feedback_-out , clock_-feedback_in ,
flash_data , flash_address , flash_.ce_-b , flash_oe_b ,
flash_reset_b , flash_sts , flash_byte_b ,
rs232_txd , rs232_rxd, rs232_rts, rs232_cts,
mouse-clock, mouse-data, keyboard-clock ,
clock-27mhz, clockl, clock2,
disp-blank , disp-data-out , disp-clock , disp-rs,
disp-reset_b , disp-data_-in ,
button0, buttonl, button2, button3, button_enter ,
button_left , button_down, button_up,
switch ,
led ,
userl , user2, user3, user4d,
daughtercard ,
systemace_data , systemace_address, systemace_ce_b ,
systemace_we_b , systemace_oe_b, systemace_irq,
analyzerl_data , analyzerl_clock ,
analyzer2_data , analyzer2_clock ,
analyzer3_data , analyzer3_clock ,
analyzer4_data , analyzer4_clock);

output beep, audio-reset-b , ac97.synch, ac97.sdata_-out;

input ac97_bit_clock , ac97_sdata_-in;

output [7:0] vga_out_red, vga_out_green, vga_out_blue;

output vga_out_sync_b , vga_out_blank_b ,
vga_out_hsync, vga_out_vsync;

output [9:0] tv_out_ycrcb;

output tv_out_reset_-b , tv_out.clock , tv_out_-i2c_.clock ,
tv_out_-pal_-ntsc, tv_out_hsync_b, tv_out_-vsync_-b,
tv-.out_.subcar_reset ;

input [19:0] tv_in_ycrchb;

input tv_in_data_valid , tv_in_line_clockl ,
tv_in_hff, tv_in_aff;

output tv_in_i2c_clock , tv_in_fifo_read , tv_in_fifo_clock ,
tv_in_reset_b , tv_in_clock;

inout tv-in_-i2c-data;

inout [35:0] ramO_data;

output [18:0] ramO-address;

output ramO-adv.-ld , ramO-clk, ramO-cen.-b, ramO-ce-b,

output [3:0] ramO_-bwe_b;

inout [35:0] raml_data;

output [18:0] raml_address;

output raml_adv_ld, raml_clk, raml_cen_.b, raml_ce.b,

output [3:0] raml_bwe_b;

input clock-feedback-in;

output clock_-feedback_-out ;

inout [15:0] flash_data;

output [23:0] flash_address;

output flash_ce_-b , flash_oe.b , flash_we_b , flash

input flash_sts;

output rs232_txd, rs232_rts;

input rs232_rxd, rs232_cts;

83

input mouse_clock , mouse-data, keyboard_clock, keyboard-data;

input clock_27mhz, clockl, clock2;

output disp_blank , disp.clock, disp_rs, disp_ce_b, disp_reset_b;

input disp-data-in;

output disp-data-out ;

input buttonO, buttonl, button2, button3, button_enter , button_right ,
button_left , button_down, button_up;

input [7:0] switch ;

output [7:0] led;

inout [31:0] wuserl, user2, user3, userd;

inout [43:0] daughtercard;

inout [15:0] systemace_data ;

output [6:0] systemace_address;

output systemace_ce_-b , systemace_.we_b, systemace_.oe_b;

input systemace.irq , systemace_mpbrdy;

output [15:0] analyzerl_data, analyzer2_data, analyzer3_data ,
analyzer4_data ;

output analyzerl_clock , analyzer2_clock , analyzer3_clock, analyzerd_clock;

N A s

// 1/0 Assignments

//
VN Vs

// Awudio Input and Output

assign beep= 1°b0;

assign audio_reset_.b = 1’b0;
assign ac97_synch = 1’b0;
assign ac97_sdata_out = 1’b0;

// ac97-sdata-in is an input

// Video Output

assign tv_out_-ycrcb = 10’h0;
assign tv-out-reset-b = 1’b0;
assign tv_-out_clock = 1’b0;

assign tv-out_i2c_-clock = 1’b0;
assign tv_out_i2c_.data = 1’b
assign tv_out_pal_ntsc = 1°'b0;
assign tv_out_hsync_.b = 1’bl;
assign tv_out_vsync_.b = 1’bl;
assign tv_out_-blank_-b = 1’bl;
assign tv_out_-subcar_reset = 1’b0;

// Video Input

assign tv-in_i2c-clock = 1’b0;

assign tv_.in_fifo_read = 1’b

assign tv_in_fifo_.clock = 1’b0;

assign tv_in_iso = 1’b0;

assign tv_in_reset_b = 1°'b0;

assign tv_in_clock = 1’b0;

assign tv-in_-i2c-data = 1’bZ;

// tv-in_-ycrchb , twv-in-data-valid , tv-in-line-clockl , twv_-in_-line-clock2 ,

// tv_in_aef , tv_in_hff , and tv_-in_-aff are inputs

// SRAMs

assign ramO-data = 36'hZ;
assign ramO-address = 19’h0;
assign ramO_adv_ld = 1°b0;
assign ramO_clk = 1°b0;
assign ramO_cen_b = 1’bl;
assign ramO_ce_b = 1’bl;
assign ramO-oe-b = 1’bl;
assign ramO-we_-b = 1’bl;
assign ramO_-bwe_b = 4 ’hF;
assign raml_data = 36 ’hZ;
assign raml_-address = 19 ’h0;
assign raml_adv.ld = 1’b0;
assign raml_clk = 1°b0;
assign raml_cen_b = 1'bl;
assign raml_ce_b = 1'bl;
assign raml_oe_b = 1’bl;
assign raml_we_.b = 1’bl;
assign raml_bwe_-b = 4 hF;
assign clock_-feedback_-out = 1’b0;

// clock_feedback-in is an input

// Flash ROM

assign flash_data = 16 hZ;
assign flash_address = 24°h0;
assign flash_ce_.b = 1’bl;
assign flash_oe_.b = 1’bl;
assign flash_we_b = 1’bl;
assign flash_reset_b = 1’b0;
assign flash_-byte_-b = 1’bl;
// flash_sts is an input

// RS—232 Interface

assign rs232_txd = 1’bl;
assign rs232_rts = 1’bl;

// rs282_rzd and rs282_cts are inputs

// PS/2 Ports

// mouse_clock , mouse.data , keyboard_clock , and keyboard_data are inputs

84

// LED Displays

assign disp_blank = 1'bl;
assign disp_clock = 1’'b0;
assign disp_rs = 1°’b0;
assign disp_-ce_b = 1’bl;
assign disp-reset-b = 1’b0;
assign disp-data-out = 1’b0;

// disp-data_-in is an input

// Buttons , Switches , and Individual LEDs

assign led = 8’ hFF;

// button0 , buttonl , button2 , button3 , button_enter , button_-right ,
// button_left , button_-down , button_-up , and switches are inputs

// User 1/O0s

assign userl [30:0] = 31’hZ;
assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign user4d = 32'hZ;

// Daughtercard Connectors

assign daughtercard = 44°hZ;

// SystemACE Microprocessor Port
assign systemace_data = 16°hZ;
assign systemace_address = 7 h0;
assign systemace_ce-b = 1’bl;
assign systemace_-we_-b = 1’bl;
assign systemace_oe_-b = 1’bl;

// systemace-irq and systemace.-mpbrdy are inputs

LIS
// START OF LIGHTING BOARD CODE //

LIS IL77 7777777777777 77777777777

//make 40mhz clock

wire clock-40mhz_unbuf ,clock_-40mhz;

DCM veclkl (.CLKIN(clock-27mhz) ,.CLKFX(clock_-40mhz_unbuf));
// synthesis attribute CLKFX.DIVIDE of wclkl is 4

// synthesis attribute CLKFX-MULTIPLY of wclkl is 6

// synthesis attribute CLK.FEEDBACK of wvclkl is NONE

// synthesis attribute CLKIN.PERIOD of wvclki is 87

BUFG vclk2 (.O(clock-40mhz) ,.I(clock_-40mhz_unbuf));

/) %k RESET BUTTON s % s s % 5 s s s s s s sk s o o5 ok sk 5k ok o o6 ok ok ok ok o o o ok ok ok ok ok o ok ook ok ok o o ok ook ok K o ok ok K K o o o oK K K K o ok o oK
wire reset ;
debounce deb_reset (reset , clock-40mhz, ~“button_enter, reset);

/) wwk PIXELS k4 4 k444 o 5ok koK% 4ok oK Ko K KR oK R KKK R KRR R K R R R KR R K K
//static sprite pizel

wire [2:0] pixel;

//dynamic sprite pizel

wire [2:0] pixel_d;

//output pizel

wire [2:0] rgb;

assign rgb = pixel | pixel_-d;

/) %%k SCREEN STUFF %% % 4% 5 4 e % 44 44 o4 o K koK KKK K oK KKK KKK K K KK KK KK K K
// generate basic XVGA wideo signals

wire [10:0] hcount ;

wire [9:0] vcount ;

wire hsync, vsync , blank ;
reg clock_20mhz ;

xvga xvgal(clock_40mhz ,hcount ,veount , hsync,vsync , blank);

// feed XVGA signals to static sprites

wire static-hsync ,static_vsync ,static_-blank;
wire d-hsync ,d-vsync ,d_-blank;

reg b,hs,vs;

// VGA Output. In order to meet the setup and hold times of the
// AD7125, we send it “clock-65mhz.

assign vga_out_red = {8{rgb[2]}};

assign vga_out_green {8{rgb[1]}};

assign vga_out_blue = {8{rgb[0]}};

assign vga-out-sync-b = 1’bl; // mot used
assign vga-out-blank_-b = "b;

assign vga-out_pixel_-clock = “clock_-40mhz;
assign vga-out_-hsync = hs;

assign vga-out_vsync vs;

always @(posedge clock_-40mhz) begin

hs <= d_hsync | static_hsync;
vs <= d_vsync | static_vsync;
b <= d_blank | static_blank;

//make 20mhz clock
if(reset)
clock-20mhz <=0;
clock-20mhz <="clock-20mhz;
end

//**x WIRE DECLARATIONS s s s % s s s sk s s sk sk s sk sk %k sk sk sk ok s sk sk ok s sk sk ok ok sk sk ok ke sk sk ok i sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok ok sk ok ok ok ok ok ok

sor Wires

//Proce

//macro parameter (used for typing display)

85

wire [7:0] param;

//previous channel values
wire [7:0] prev_chl, prev_ch2, prev_ch3, prev_ch4, prev_ch5, prev_ch6, prev_ch7, prev_ch8;
//current channel values

wire [7:0] chl, ch2, ch3, ch4, ch5, ch6, ch7, ch8;
//current cue number

wire [6:0] cue_num;

//previous cue number

wire [6:0] prev_num;

//uptime of previous cue

wire [7:0] prev_up;
//downtime of previous cue
wire [7:0] prev_down;

//wait time of previous cue
wire [7:0] prev_wait;

//uptime of current cue

wire [7:0] cur_up;

//downtime of current cue
wire [7:0] cur_down;

//link of current cue

wire [6:0] cur_link;

J//follow of current cue

wire [7:0] cur_follow ;

//wait time of current cue
wire [7:0] cur_wait;

//wait time of mext cue

wire [7:0] next_-wait;

//uptime of mnext cue

wire [7:0] next-up;
//downtime of mnext cue

wire [7:0] next_down;
//captured channels

wire [7:0] captured_flags;
//state of the keyboard module
wire key_-state;

//start loading a cue

wire start_timer ;

//update channel values

wire update_-dmx ;

//current channel wvalues on stage
//ch8

wire [7:0] loading_valueT;
wire [7:0] loading-value6 ;
wire [7:0] loading_value5;
wire [7:0] loading-valued;
wire [7:0] loading_value3;
wire [7:0] loading_valueZ2;
wire [7:0] loading-valuel;
//chi

wire [7:0] loading-valueO;
//which channels are currently loading
wire [7:0] loading_flag;

// Keyboard wires

//current channel being editted
wire [2:0] channel;

//blind mode flag

wire blind_-mode;

//ascii from keyboard

wire [7:0] ascii;

//ready signal from keyboard
wire char_rdy ;

//error message code

wire [2:0] error;
J//instruction buffer write enable
wire bwe ;

//instruction into processor
wire [31:0] instr_in;

//follow timer ezpired

wire expired ;

//DMX Wires

//dmz serial
wire bit_out ;
assign userl [31] = bit_out;

/) *# %k KEYBOARD DECLARATIONS 5 s s s s s s s sk s s sk sk ok s sk sk ok sk sk sk ok s sk ok ok s sk sk ok s ok ok ok ke sk sk ok sk sk sk ok ke ok ok ok sk ok ok ok ok sk ok
ps2_ascii_input kbd(clock.20mhz, reset, keyboard_clock,
keyboard_.data , ascii, char_rdy);

keyboard_-interp key (.clk (clock-20mhz) ,.ascii(ascii), .ascii-ready (char_rdy) ,.expired (expired) ,.cur-cue(cue-num) ,.blind_-mode(bli
.we(bwe), .instr_out(instr_-in), .reset(reset), .param(param),.state(key_state),.error(error),.channel(channel));
/ /%% %« KEYBOARD DECLARATIONS s s s s s s s s 5 5 5 5 5 5 % % sk %k 5k 5 5 5 5 5 5 5 ok o ok ok ok o 5 5K 5K K K K ok ok ok ok o o K K K K K K K K

//*%%« FOLLOW TIMER DECLARATIONS % s s s s s % s s 5 % s s sk ok s sk sk o s sk ok ok s sk ok ok s ok ok ok sk sk ok ok K sk ok ok ok ok K K ok ok ok K ok
followtimer timerf(clock_-20mhz, start_timer , reset , expired, cur_follow);

/) %%k PROCESSOR * % s s % % s s % * % s s * % s s % % s s % % % s o % % ok o % % ok ok 4 4 ok ok ok K ok ok ok K K ok ok K ok ok ok ok ok ok ok ok K K ok oK K K ok ok ok ok
processor test (.clk (clock.20mhz), .reset(reset), .instr_in(instr_in), .bwe(bwe),
//current cue num
.cue_num (cue-num) ,.prev_num (prev-num) ,
//previous cue basic data
.prev_up (prev_up), .prev_down (prev_-down),
//previous cue channels

.prev_wait (prev_wait),

.prev_chl(prev_chl),
_prev_ch5(prev_chb),
//current cue basic

.prev_ch2(prev_ch2),
_prev_ch6 (prev_ch6),

data

.prev_ch3 (prev_ch3),
_prev_ch7(prev.ch7),

.cur_up (cur_up),

.cur_down (cur_down),

Lcur_wait (cur_wait),

.prev_ch4 (prev_ch4),
_prev_ch8(prev_.ch8),

//current cue caxtended data

.cur_link (cur_-link),

//next cue basic data

.cur_follow (cur_follow),

86

.next_up (next_-up), .next_-down(next_-down), .next_-wait(next_wait),

//current cue channels

.chl(chl), .ch2(ch2), .ch3(ch3), .ch4(ch4), .ch5(ch5), .ch6(ch6), .ch7(ch7), .ch8(ch8),
//function paramter

.param (param) ,

.blindmode_flag (blind-mode) ,

//instruction buffer full

.full (full), .start(start_-timer),.update(update.dmx) ,.captured(captured_flags),

/) %4k PROCESSOR % 4 % 4 4 o ok 4k 4k ok ok ok ok ok 4k ok 4k o Ko o o Ko K o K oK oK oK o oK oK oK o oK K
[/ 5 DMIX 5 5 5 o % 5% KK R K KR K KR K KR R R K R K R R K K R R R K KR K R K R R R R R K R R K K K K K

dmx controller (.clk (clock-20mhz) ,.reset (reset),.chl(chl),.ch2(ch2),.ch3(ch3),
.ch4(ch4),.ch5(ch5),.ch6(ch6),.ch7(ch7),.ch8(ch8),.waittime(prev_wait)

.uptime(cur_up), .downtime(prev_down), .update(update.dmx), .start(start_timer),

.bit_out (bit_out),.loading_flag (loading._flag), .cur0(loading_.value0), .curl(loading.-valuel),
.cur2(loading-value2), .cur3(loading-value3), .cur4(loading-valued),

.cur5(loading-value5), .cur6(loading-value6), .cur7(loading_-value7));

/5 e DIVIX 5 5 k5 KK R K K K KR R S K K R K R K R K KK K S K KK R R KR K K K K K R K K

/) %%k SPRITE DECLARATIONS % s s s o o o ko ko ko ko ko ko ko ko ko ko ko ko ko ko o o o ook ok ok
dynamic-sp dynl(.vclock (clock-40mhz) ,.hcount (hcount) ,.vcount(vcount) ,.hsync(hsync),.vsync(vsync) ,.blank(blank),

.d_hsync (d_-hsync) ,.d_vsync(d_vsync) ,.d_blank (d_blank) ,.pixel_d (pixel_-d), .cur_cue_num (cue_num),
.prev_num (prev_num) ,.prev_wait (prev_wait), .cur_wait(cur-wait),
.chil(chl), .ch2(ch2), .ch3(ch3), .ch4(ch4), .ch5(ch5), .ch6(ch6), .ch7(ch7), .ch8(ch8),
.prev_chanl (prev_chl),.prev_chan2(prev_ch2), .prev_chan3(prev_ch3), .prev_chand(prev_ch4),
.prev_chanb(prev_ch5), .prev_-chan6(prev-ch6), .prev_-chan7(prev_ch7), .prev_chan8(prev_-ch8),
.prev_uptime (prev-up), .prev-downtime(prev_.down), .cur_uptime(cur_-up), .cur-downtime (cur_down),
.cur-link (cur.link), .cur_-follow (cur_follow), .next_-uptime(next_-up), .next_-downtime(next_down),
.next_-wait (next_-wait), .live_mode (blind_-mode), .state(key-state), .channel(channel),
.param (param), .error(error), .captured_flags(captured_flags), .loading_flag(loading_flag),
.loading_valueO (loading_-value0) ,.loading-valuel (loading-valuel), .loading-value2(loading_value2),
_loading_value3 (loading_-value3), .loading-valued (loading.-valued), .loading-value5b (loading_-value5),
.loading_value6 (loading_-value6), .loading_-value7(loading_value7));

static.sp static_spl (clock-40mhz ,hcount,vcount ,hsync,vsync,blank ,
static_hsync ,static_vsync ,static_blank , pixel);
/%% SPRITE DECLARATIONS» 5 s s s o 5 s 5 o s o ko o ko o % o K o 4 o o o o oK o 4K o 4 o Ko o 5o K o 4K o %

endmodule

87

