

Labyrinth
Get in the Maze

Laplie Anderson and Mihalis Papalampros

6.111 – Introductory Digital Systems Lab

December 13, 2006

Abstract
 Labyrinth is a 3D maze game. The goal of the game is to reach the center of the map

without getting lost. To complicate things, players start the game in a random location on a

randomly generated map. The player aided by only what they see in front of them, and a

minimap that shows their general location on the map.

 Labyrinth was programmed using Verilog and the Xilinx tool-chain. Labyrinth runs on

the 6.111 Labkit displaying the game at 1024x768 resolution.

Table of Contents
Abstract
List of Figures
List of Tables
1 Overview
1.1 Initialization
1.2 User Interface
1.3 Winning

2. Module Description and Implementation
2.1.1 Map Generator
2.1.2 Linear Shift Register
2.13 Game Logic
2.2 Video System
2.2.1 MiniMap
2.2.2 SceneRenderer
2.2.3 Trigonometric Lookup Table
2.2.4 DistanceToHorizontalWall/DistanceToVerticalWall
2.2.5 DividerWrapper
2.2.6 ColumnRenderer
2.2.7 DoubleBuffer
2.2.8 BufferSelect

3 Testing
3.3 MiniMap/Background
3.4 DividerWrapper
3.5 DistanceToHorizontalWall/DistanceToVerticalWall
3.6 DoubleBuffer
3.7 ColumnRenderer
3.8 SceneRenderer

5 Conclusions

List of Figures
Figure 1. Block Diagram of Entire System
Figure 2. Map Generation Technique
Figure 3 Ray Tracing Algorithm
Figure 4 Field of view of the player
Figure 5 State transition diagram for SceneRenderer
Figure 6 Common Debugging Screen
Figure 7 Internal Representation of Map

1. Overview
 Labyrinth is a 3D maze game designed in Verilog. Players are presented with a 3D view

of their location in the maze and must use this information along with a sparse minimap to

navigate. The goal of the game is to reach the center of the map. There is at least one path to the

center and the player must find that path. To complicate things, the starting location of the

player and the map are both randomly generated at the start of each game. As a result, the

replayability of the game is increased dramatically.

1.1 Initialization
When the game begins, it is in its initialization state. In this state, the game is randomly

generating maps and then checking to see if the generated map is a valid map. When a valid map

is found, the game begins. You can generate a new random map by pressing the start button at

any time.

1.2 User Interface
The game is controlled using the buttons and switches on the Labkit. Using the forward

and back buttons, the player steps forward or steps backward in the general direction that they

are looking. Using the left and right buttons, the player turns left or turns right. Due to time

constraints, the player does not move in the exact direction that they are looking. The current

implementation only distinguishes between eight distinct directions of movement though the

player is able to see a full 360 degrees.

In addition, there is a start and a reset button. The reset button puts the game into the

initialization state and tells all modules to stop what they are doing. The start button is very

similar to the reset button in that the game begins again. The difference is that the start button

only generates a new map without initiating a global reset. The player location changes to a start

position, and the map changes, but other modules are not told to reinitialize. There is not a

noticeable difference to the player between start and reset, but there is a difference for diagnostic

purposes.

The minimap is controlled by two switches. Switch0 toggles whether or not the minimap

is displayed on the screen. Switch1 toggles ‘cheat mode.’ In cheat mode, the location of the

walls is displayed on the minimap. With this extra information, the game in instantly winnable.

Therefore, in an actual game, the use of ‘cheat mode’ is strongly discouraged.

1.3 Winning

The game is over when the player reaches the center of the map. The player is free to

continue exploring the map or pressing ‘start’ to restart the game.

2. Module Description and Implementation
 Labyrinth is divided into two major parts: the map generation and game logic, and the

graphics display system. Each part has various modules responsible for a specific tasks

described later in this document. The interconnections between the modules are shown in Figure

1.

Figure 1: Block diagram showing the connections and interfaces to the major modules of Labyrinth. The modules
with the dotted outline are modules either provided by the 6.111 staff or generated modules from IPCore. Each
directed arrow is an information flow from one major module to another. The labels for the arrows are the Verilog
names for the given wires.

2.1.1 Map Generator

 The Map Generator creates a random 21x21 map for the labyrinth each time start is

pressed. It has as inputs the clock, the start signal, and reset. The outputs are the map, which

consists of 441 bits, and the done signal. Due to the fact that we cannot have two dimensional

arrays in Verilog, the representation of the labyrinth map must be done through a one

dimensional array of binary digits, with one corresponding to a wall and zero to empty space.

That means that the first twenty one digits correspond to the first row, the next twenty one bits to

the second and so on. In the very beginning, namely right after the compilation of the whole

project, reset should be pressed in order to have the appropriate initializations of the registers.

Then each time start is pressed setup goes high and done is set to low.

 With that condition, that is with setup being high and done being low, the main core of

the code inside the always statement starts. We first set the reset signals of the lfsrs to be low

again since the reset is done once for every lfsr. That happens because an lfsr should be reset

once in order to produce its pseudorandom sequence of numbers.

Figure 2. Map Generation technique. The goal is to go from the initialization picture on the left to the maze on the

right.

The first step of the always block is the initialization. The initialization is actually

creating concentric squares of empty spaces and walls, that is all zeros or ones, alternately. We

could do that with three nested loops, one for k, the number of the square, one for j, the number

of the row we are working on, and one for i, the number of the column. The best way to do that

is through a finite state machine with four states. The first state deals with the k loop, that is

increases the k right after j reaches 21, the second state deals with the j loop , and the third state

deals with the i loop, where the assignments take place. We check if the pair (i,j) is on the k

square and if it is we assign map[21*j+i], which corresponds to map[i,j] in two dimensions, to be

0 for even numbered squares and 1 for odd numbered squares. When k reaches 11 we are done

with the initialization so we set the loopstate to be 3, in which state we set the scene for the next

major step of the always statement, where we randomly add and remove walls from the

concentric squares. That is we set initialization to be low, k to be zero, start1 and start2, the

signals for the lfsrs to be high.

The second part deals with each box almost separately, grouping some cases together.

For k being zero/nine we add/erase one wall, for k being one/two we erase/add two walls, for k

being from three to eight, the remaining values of k, we add/remove four walls from the

corresponding squares. Each time we wait until all lfsrs are done. Whenever an lfsr is done we

set its start to be low in order to prevent this lfsr from continuing changing the random number.

When all of the lfsrs are done we decide which edge the change will take place from the value of

the odd numbered random numbers. Then we do the appropriate assignment for map[21*j+i],

substituting j or i with the value k or 20-k, where each of the four combinations (i<=k, j<=k,

i<=20-k, j<=20-k) corresponds to one of the four edges. The other index will take the value of an

even numbered random number. After the assignments we increment k and we also start the lfsrs

we need for the next value of k. When k reaches eleven we set the scene for the last major part,

the checking part.

The checking uses two kinds of directions. The major direction is clockwise or

counterclockwise and the minor is if we go to the right, left, down, or up. Hence, there are eight

different cases dealt separately. The method consists of the following idea. When we enter a

certain square we update the i1,j1 indexes which tell the spot where we entered the last square.

Then we go clockwise or counterclockwise to find an opening. If we reach a dead end, we act

according to the value of last_chance. If it is high, it means we have checked the other direction

so there is no opening to the next square and hence no path to the center. If it is low, we set

last_chance to be high and go back to the (i1,j1) spot taking the other major direction. Of course,

we have to take the opposite minor direction. Eventually if we have k to be eight and we are at

the point where we enter the next empty-spaced square we are done, since that is the center of

the maze.
000000000000000000000
011111111111111111110
010000000000000000010
010111111111111111010
010100000000000001010
010001111111111101010
010101000000000101010
010100011111110101010
010101010000010101010
010111000111010101010
010101010001010101010
111101111111010101010
010101010000010101010
010101011111110101010

000101000000000101010
010101111111111101010
010100000000000001010
010111111111111111010
010000000000000000010
011111111111111111110
000000000000000000000

Figure 7: Internal Representation of Map. The internal bit representation of the map aligned so that it can be
viewed.

2.1.2 Linear shift register
 The lfsr has as inputs the clock, the reset and the start signals and also the range of the

random number, which is given through the maximum and the minimum the number can be. It

outputs the number and the done signal. The LFSR method, which can be found in many

sources, takes an arbitrary initial state of the five digits, not all zeros (in our case we just chose

the state corresponding to thirteen). Then it just shifts the digits to the right except for the most

significant bit, which is the exclusive or of the pivot elements, which for the case of five digits

numbers are the first and the fourth digits. In our case we also had to check if the number is

within the range and to include states. The second case is when we actually try to produce a new

random number. The first state is when we have found it and we wait until the start signal is

again high. That modification had to be made due to the structure of the second part of the map

generation module, where any of the lfsrs has to stop working as soon as it has found the random

number and wait until all the others are done.

2.1.3 Game Logic
The Game Logic module is rather simple. If we press turn left or right we just increase or

decrease the angle. The initial angle zero corresponds to facing east. Now if we press up we have

to decide in which of the eight adjacent boxes to go depending on where we face. The directions

are eight and correspond to angles 0,2*256,4*256, 6*256,8*256,10*256,12*256,14*256,16*256.

Therefore, we choose the closest direction to the angle so we make our decision depending on

which of the intervals [15*256,1*256], [1*256,3*256], [3*256,5*256], [5*256,7*256]

[7*256,9*256] [9*256,11*256] [11*256,13*256], [13*256,15*256] we are.

 At each of the eight directions we check if we are at the corresponding edges, both of the

small boxes (the ones of the 64*64 lattices) and the boxes of the map. If we are at an edge of a

small box we have to check if there is a wall in the position we want to move to. In the simple

case where we are inside a box we just need to upgrade the xpos, ypos indexes, which are

indexes for the 64x64 lattices.

2.2 Video System (Laplie Anderson)
The goal of the video system is to present players with a 3D view of the world. The

picture is generated through an implementation of the ray-casting algorithm. The raycasting

algorithm consists of a few simple steps outlined in figure 3.

For every angle in view:
 Trace line from player’s eye to wall
 Scale wall based on this distance
 Draw column to screen
Figure 3. The ray tracing algorithm.

Figure 4. The visible field of a player. This also highlights the block of rays that have to be traced to
properly display an image. The gradiency of the angle between subsequent rays is up to the implementer.

 There are a few caveats to using recasting, most notably is that all walls have to be

perpendicular to all floors. While this is not a major concern on a system like this, if we wanted

to add more complexity in that regard, it would not be possible with the current algorithm.

 While raycasting might be easy to implement on a software system, using the FPGA

presents many difficulties involving dealing with fixed point numbers, generating sine, cosine,

and their multiplicative inverses, and lastly dividing arbitrary numbers. The modules composing

the video subsystem help perform these tasks.

2.2.1 MiniMap
The MiniMap is a small representation of the map in the top left of the screen. It is

composed of 3 layered rectangle sprites which comprise the minimap border, the minimap

background, and the minimap player icon. Using algebra, the minimap updates the position of

the player icon to properly show where the player is in relation to everything else.

In cheat mode, the minimap modules uses more complicated algebra to figure out what a

particular vcount and hcount correspond to in terms of the map as a whole. The module then

looks up that index in the map, and if that index contains a wall, it shows an alternate color.

All of the various possible pixels are layered in a priority queue. The backmost layer

outputs a pixel to the layer on top, if that layer does not have a pixel to output, it outputs the

pixel that it received, otherwise it outputs its own pixel. In this way, the module is able to

efficiently output the correct pixels for the whole module without and glitching occurring.

2.2.2 SceneRenderer
SceneRenderer is the main module of the video system. It is responsible for gathering

and dispersing data throughout the other modules in the video system. It is controlled by an

FSM that designates which task it is currently on. (See Figure 5).

Figure 5. The FSM of SceneRenderer. Almost all of the states go sequentially to the next state. Most of

the states are waiting states: waiting for other modules to complete.

The FSM does not have much logic to control which state is the next since in most cases,

there is only one possibility. To simplify the transitions further, many of the states are simply

the SceneRenderer waiting for another module to finish.

SceneRenderer first figures out the angle to trace by multiplying the column on the screen

to be traced. This multiplication factor was found by dividing the view angle into 1024 separate

columns and using that to determine the offset.

The next step is retrieving the trigonometric data. This task is done by waiting a cycle.

The lookup table outputs the correct value with one-cycle latency so a one-clock delay is all

that’s needed.

Afterwards, the trigonometric data is fed into the distance calculators. SceneRenderer

idles in S4 until both distance calculators complete their task and return with values. The closer

of the two distances is given to the divider as the denominator.

After the divider finishes, SceneRenderer checks to see if all four lines of a column have

been traced. If all four lines have been traced, then the column is drawn. If not, SceneRenderer

continues with the next lines of the column

When all columns are drawn, SceneRenderer outputs a done signal.

2.2.3 Trigonometric Lookup Table
The lookup table was needed in order to get the sine and cosine values as well as 1/sine

and 1/cosine. These values were needed for the distance calculators. Because of the cyclic

nature of the sine and cosine, only 90 degrees were stored in the lookup table to save space. This

turned out to be more effort than it was worth because there were no end to problems caused by

sine and cosine having the wrong sign or simply being incorrect.

The .coe file for the lookup table was created with a 20 line Java program which simply

wrote out the sign and cosine of all the angles from 0 to 90, converted them to binary then added

the commas where appropriate.

2.2.4 DistanceToHorizontalWall/DistanceToVerticalWall
The two distance calculators are responsible for figuring out where the players’ line of

sight hits a wall. One of the restrictions in designing the map was that everything was on a grid

system. Because of this restriction, finding where the line of sight hits the wall is just a matter of

calculating a few offsets and then iterating through the gridlines of the map.

For its operation, the distance calculators have four states. In the first state, the distance

calculators are idle and waiting to receive data. They know there is new data when the newData

signal transitions high. Afterward, the distance calculators initialize all the registers and

calculate the initial offsets.

Third, the distance calculators cycle through the gridlines using trigonometry and semi-

complex equations to calculate where the next gridline is. When the distance calculators hit a

wall they return the distance to that wall, and if they never hit a wall, they return

MAX_DISTANCE.

The two distance calculators are mirrors of each other differing only in terms of whether

sine or cosine is used and rotations between using the x or y coordinate.

2.2.5 DividerWrapper
DividerWrapper is a wrapper for the IPCoregen pipelined divider. For my purposes, I did

not need to use the pipelining at all. The time between successive divides was much greater than

the latency. To hide the pipelining from SceneRenderer, this module takes the inputs to the

Coregen module, and then latches the answer on the correct cycle. It then asserts a done signal

so that modules waiting for the result know that the result is ready without having to count cycles

themselves. In situations where pipelining is desired, use of this module would be a was of ~20

cycles/divide.

2.2.6 ColumnRenderer
ColumnRenderer is responsible for draw a single vertical column to the buffer. Each

column consists of four distinct lines. Since there are 1024 total lines, and 4 lines make a

column, there are 256 separate columns that can be drawn. For each line, a starting point and an

ending point are supplied. ColumnRenderer cycles through all the addresses in the column and

either draws the color if its within the bounds of the column or draws black if it is not.

ColumnRenderer starts when the newData is asserted. When ColumnRenderer is

finished, it asserts the done signal.

2.2.7 DoubleBuffer
The DoubleBuffer controls which ZBT is read from and which ZBT is written. In

essences it is just a big multiplexer between the ZBT inputs and outputs, and the read and write

addresses and data.

Inside DoubleBuffer also contains a vram_display module for reading from the ZBT and

writing to the screen. The reason this module is necessary is that the ZBT has a latency of three

clock cycles. The internal module deals with pipelining issues so that they are not a problem

when outputting the pixel to the display.

The main complication in building the DoubleBuffer is that the system runs on multiple

clocks. The slow clock controls most of the logic while the fast clock displays graphics to the

screen. Since the DoubleBuffer is the only module that uses both clocks, it is the only one that

has to deal with both clocks at the same time. The clocks are simply multiplexed like the rest of

the ZBT signals with the slow clock going to the writeZBT while the fast clock goes to the

readZBT.

2.2.8 BufferSelect
This module manages the flipping of the back buffer and the front buffer. When it

receives a done signal from SceneRenderer, it changes which buffer is set to be read and which

buffer is set to be written to.

On the next screen refresh, the most current buffer is read instead of the previous one.

3. Testing
The modules were primary tested using ModelSim on the computer rather than directly.

ModelSim was immediately able to tell if the problem was with logic, rather than delays due to

routing on the labkit and also had a much quicker turnaround time that a full compile. Thirdly,

some modules that are functional blocks of other modules cannot be tested directly on the labkit

and must be instead tested separately.

One of the difficult issues with ModelSim was the fact that the IPCore modules were not

initially available for simulation. In order to get ModelSim to correctly simulate the behavior,

extra libraries had to be compiled using obscure ModelSim codes.

3.1 MiniMap/Background
These modules, unlike almost all the others were tested only by displaying them.

Because of their simple nature, it was very easy to spot problems and come up with solutions to

them.

3.2 DividerWrapper
The main issue with the DividerWrapper module was figuring out the latency of the

IPCore module. Though the datasheet specified a latency based on how many bits wide the

divisor and dividend were, it was not clear whether or not the result was ready on that cycle or

the cycle after. Using ModelSim, it was easy to determine the lowest possible delay before the

result of the division was ready.

3.5 DistanceToHorizontalWall/DistanceToVerticalWall

 These modules were tested first by insuring that they worked for a few representative

angles and representative locations on a demo map, then checking how the scene was rendered

with everything connected. For the first part of testing, all the values of sine and cosine were

created by hand using a calculator. Using pen and paper, the actual distances were calculated,

then these results were compared to those in shown in ModelSim.

This process was extremely tedious as a result of the way fixed bit arithmetic works. The

answers in ModelSim were all multiplied by 256 so a lot of converting back and forth from

binary and grungy multiplication resulted especially when signed numbers were involved.

3.6 DoubleBuffer
This module was tested directly on the labkit. Using a switch to change the active and

inactive buffer, I drew various patterns to the unseen buffer and then switched it. While the back

buffer was being drawn, I made certain that nothing changed in what was being displayed. After

trying many combinations of writing and switching, I decided that the DoubleBuffer did in fact

work.

3.7 ColumnRenderer
 Like the DoubleBuffer module, the ColumnRenderer module was tested in a live setting.

Using the switches to select the size and position, I was able to see the effect of drawing columns

at various locations on the screen. This testing also further tested the DoubleBuffer since

columns were always drawn to the inactive buffer. Since there are only 256 total columns, it was

relatively easy to exhaustively test almost every column possibility.

3.8 SceneRenderer
The bulk of the problems seen in this module were a result of problems in other modules

specifically the distance calculators returning the incorrect value because they were faulty or

they received incorrect trigonometric data. Since it was difficult to trace problems directly to

this module, testing it usually required tracking 30+ signals at once. (See Figure 6).

Figure 6. A common screen seen when debugging SceneRenderer

 Even with complete track of all the signals, it still too very long to track down any errors.

Some of the modules were modified to make testing in the manner easier. For example,

ColumnRenderer was modified so that in only drew the first 5 rows of a column so that the test

bench would not have the show the full 768.

 The ModelSim testing and “live” testing shared almost an equal amount of time towards

the end of the project because nearing the completion of the project, it took an extraordinary

amount of time to compile the Verilog and generate a bitfile.

 By looking at states, start, and done signals, the effort required to debug in ModelSim

was reduced. In live testing, it was always very easy to see what was wrong, but it was not

always as easy to see why. Errors such as having gaps in the walls could have any number of

causes from a bug in the distance calculator to dividing by zero.

4.1 Conclusion
 This project was a good glimpse into the amount of time and effort it takes when

designing a digital system on a large scale. Even when the logic is completely accurate, the

world is not digital so there are problems caused by routing delays and problems caused not

meeting timing constraints. Though in the end the project worked, there was still room for

improvement in a few areas. More bits of precision could have been used for distance

calculations and as a result, it would have meant less jagged edges.

 Overall the project was a success and we were very satisfied with the result in the end.

Appendix: Verilog Code
/**
 Controls the mode the doublebuffer is in and
 thereby controls buffer the SceneRender writes to as well as the
 buffer that is displayed

 Laplie Anderson
*/
module BufferSelector(clock, reset, buffer_select, scene_done);

 input reset;
 input clock;
 input scene_done;

 output buffer_select;

 reg buffer_select = 0;
 always @ (posedge clock) begin
 if (reset) begin
 buffer_select <= 0;
 end
 else if (scene_done)
 buffer_select <= ~buffer_select;
 end

endmodule

///
///
//Displays the sky and floor
//
//Laplie Anderson
module background(hcount, vcount, pixel);
 input [10:0] hcount;
 input [9:0] vcount;

 output [7:0] pixel;

// wire [9:0] bottom;

 //assign bottom = vcount - 512;
 //assign pixel = vcount < 254 ? {3'b111 - vcount[7:5], 5'b11111} :
{{2{bottom[8]}}, bottom[7:5], {3{bottom[8]}}};
 assign pixel = vcount < 383 ? {2'b00, 3'b000, 3'b000} : {2'b10, 3'b101,
3'b101};

endmodule

/* This module draws a vertical column to the video buffer. The "column
number" is where horizontally
 on the screen the column should be drawn. The start and end position
specify where vertically the
 column should be colored. Everywhere between the start and end lines
are colored the input color,
 everywhere else is colored black.

 Laplie Anderson

*/
module columnRenderer(clock, reset, newData,
 columnNumber,
 startLine0, endLine0, startLine1,
endLine1,
 startLine2, endLine2, startLine3,
endLine3,
 color0, color1, color2, color3,
done,
 write_address, write_data,
write_enable);

 input clock, reset;
 input newData; //this is raised to high when there is a new
column to be written
 input [7:0] columnNumber; //index of the 4-pixel wide column. can be
from 0-255
 input [7:0] color0, color1, color2, color3; //color of
the column to be written
 input [9:0] startLine0, endLine0, startLine1, endLine1, startLine2,
endLine2, startLine3, endLine3; //vertical start and end positions for all 4
columns rendered

 output write_enable; // memory control signals
 output [18:0] write_address;
 output [35:0] write_data;

 output done; // raised high when done working

 reg [1:0] state =0;
 reg [10:0] hcount;
 reg [9:0] vcount;
 reg [9:0] intStartLine0, intEndLine0, intStartLine1, intEndLine1,
intStartLine2, intEndLine2, intStartLine3, intEndLine3;
 reg [7:0] columnColor0, columnColor1, columnColor2, columnColor3;
 reg done, write_enable;

 reg [18:0] write_address = 0;
 reg [35:0] write_data = 0;

 always @ (posedge clock) begin
 if (reset) state <= 0;
 else begin
 case (state)
 0: begin //idle state
 write_enable <= 0;
 done <= 0;
 if (newData) begin //if there is newData, save the
inputs and go to next state
 state <= 1;

 hcount <= columnNumber << 2; //there are only
256 columns so we multiply by 4
 intStartLine0 <= startLine0;
 intEndLine0 <= endLine0;
 intStartLine1 <= startLine1;
 intEndLine1 <= endLine1;
 intStartLine2 <= startLine2;
 intEndLine2 <= endLine2;

 intStartLine3 <= startLine3;
 intEndLine3 <= endLine3;
 columnColor0 <= color0;
 columnColor1 <= color1;
 columnColor2 <= color2;
 columnColor3 <= color3;
 vcount <= 0;
 end
 end
 1: begin //writing state
 done <= 0;
 write_address <= {1'b0, vcount, hcount[9:2]};
 write_enable <= 1;
 //write 4 pixels of the column color if between start
and endpoints
 write_data <=

 ((vcount >= intStartLine0 && vcount <= intEndLine0)
 ? columnColor0 << 24 : 0) +
 ((vcount >= intStartLine1 && vcount <= intEndLine1)
 ? columnColor1 << 16 : 0) +
 ((vcount >= intStartLine2 && vcount <= intEndLine2)
 ? columnColor2 << 8 : 0) +
 ((vcount >= intStartLine3 && vcount <= intEndLine3)
 ? columnColor3 << 0 : 0);

 vcount <= vcount + 1;
 state <= 2;
 end
 2: begin //check if finished state.
 if (vcount >= 768) state <= 3;
 else state <= 1;

 write_enable <= 0;
 end
 3: begin //finished state
 write_enable <= 0;
 write_data <= 0;
 write_address <= 0;
 done <= 1;
 state <= 0;
 end
 endcase
 end
 end

endmodule

/*
 Calculates the distance until a horizontal face of a wall is hit
 after the signal "newData" is asserted high.

 The inputs sine and cosine are of the form 1QN: 1.8
 the least 8 significant bits are below the decimal place. To convert
from a decimal
 to the correct sine and cosine, multiply by 256 then convert the
integer part to binary

 The inputs sineInv and cosineInv should always be positive with the
lowest 8 bits being below
 the decimal place as sine and cosine. These values represent 1/sine
and 1/cos respectively

 When finished, this module asserts done to be high. The last
calculated value is
 distanceToIntersection. The lowest 8 bits of this value represent the
fractional part of the answer.

 distanceToVerticalWall mirrors this module.

 Laplie Anderson
*/

module distanceToHorizontalWall(clock, reset, newData,
 xpos, ypos, xindex,
yindex,
 sine, cosine,
 sineInv, cosineInv,
 map,
distanceToIntersection, done);

localparam TILE_SIZE = 64 * 256; //the 256 here is because the first 8 bits
are below the decimal point
localparam MAX_DISTANCE = 1910 *256; //the max distance possible on a 21x21
is slightly less than this

input clock;
input reset;
input newData;
input signed [6:0] xpos; //signed for multiplication only. Should be 6-bit
values
input signed [6:0] ypos;
input [4:0] xindex;
input [4:0] yindex;

input signed [9:0] sine;
input signed [9:0] cosine;

// abs(1/sine) and abs(1/cosine)
// These are signed so that the multiplication works, but they should always
be positive
input signed [17:0] sineInv;
input signed [17:0] cosineInv;

input [440:0] map;

output [18:0] distanceToIntersection;
output done;

reg done = 0;
reg [1:0] state = 0;

reg [31:0] distanceToIntersection;
reg [31:0] tempdistance;

reg [4:0] saved_xindex = 1;
reg [4:0] saved_yindex = 1;
reg [5:0] saved_xpos = 1;

reg [5:0] saved_ypos = 1;

reg signed [19:0] absolute_x; //signed to make add/subtract much easier
without checks
reg signed [19:0] absolute_y;

reg signed [31:0] x_offset1; //lots of "unused" bits so multiplication works
reg signed [31:0] x_offset2;

reg direction;// 0 for up, 1 for down

reg signed [19:0] stepvalue; //the distance "x" is stepped each iteration
reg [31:0] d_stepvalue; //the change in the total distance each
iteration

reg [4:0] i = 0; //counts iterations

always @ (posedge clock) begin
 if (reset) begin
 state <= 0;
 done <= 0;
 end
 else begin
 case (state)
 0: begin //idle
 if (newData) begin
 direction <= sine < 0;

 //save some stuff for later
 saved_xindex <= xindex;
 saved_yindex <= yindex;
 saved_xpos <= xpos;
 saved_ypos <= ypos;

 distanceToIntersection <= MAX_DISTANCE;

 d_stepvalue <= (TILE_SIZE * sineInv) >> 8;
 stepvalue <= (TILE_SIZE >> 8) * ((sineInv *
cosine) >> 8);

 //distance to where your gaze hits the first
horizontal line
 tempdistance <= (sine < 0) ? ((TILE_SIZE >> 8)
- ypos) * sineInv : ypos * sineInv;

 //tempdistance is the hypotenuse of the
triangle
 //the offsets are just tempdistance/tan(theta)
 //we must calculate the offsets here because
Xilinx ISE chokes if you try to do everything in one step
 x_offset1 <= ((cosine * sineInv) >> 8) * ypos;
 x_offset2 <= ((cosine * sineInv) >> 8) *
((TILE_SIZE >> 8) - ypos);

 if (sine == 0) begin // if the angle is 0 or
180, you'll never hit
 state <= 0; // this is an
optimization since the loop will still end eventually

 done <= 1; // if it never
hits
 end
 else begin
 done <= 0;
 state <= 1;
 i <= 0;
 end
 end
 end
 1: begin //set the initial absolute_x and y

 //x_offset must be done elsewhere for XST to work
(Xilinx bug)
 absolute_x <= (saved_xpos << 8) +
saved_xindex*TILE_SIZE + (direction ? x_offset2 : x_offset1);
 absolute_y <= saved_yindex*TILE_SIZE;
 state <= 2;
 end
 2: begin //this state corrects the indexes
 saved_xindex <= absolute_x / TILE_SIZE;
 saved_yindex <= (absolute_y / TILE_SIZE) + (direction
? 1 : -1);
 state <= 3;
 end
 3: begin //this state increments to the next intersection
 //if outside the bounds of the map, you'll never hit
a wall
 if (saved_xindex < 21 && saved_yindex < 21
 && absolute_x >= 0 && absolute_y >= 0
 && absolute_x < 21*TILE_SIZE && absolute_y <
21*TILE_SIZE
 && i < 21) begin
 if (map[saved_yindex*21 + saved_xindex] == 1)
begin
 distanceToIntersection <=
(tempdistance > MAX_DISTANCE) ? MAX_DISTANCE : tempdistance;
 state <= 0;
 done <= 1;
 end
 else begin
 absolute_x <= absolute_x + stepvalue;
 absolute_y <= absolute_y +
TILE_SIZE*(direction ? 1 : -1);

 //check for overflow
 if (d_stepvalue > MAX_DISTANCE -
tempdistance) begin
 distanceToIntersection <=
MAX_DISTANCE;
 state <= 0;
 done <= 1;
 end
 else begin
 tempdistance <= tempdistance +
d_stepvalue;
 i <= i + 1;
 state <= 2;
 end

 end
 end
 else begin //hit a wall, or can never hit a wall
 state <= 0;
 done <= 1;
 end
 end
 endcase
 end
end

endmodule

/**
 This module is a mirror of distanceToHorizontalWall but instead looks
for a vertical
 intersection. See distanceToHorizontalWall for more detailed
documentation. Most changes
 are sine <-> cosine, sineInv <-> cosineInv, xpos <-> ypos, and a few
minor sign changes

 Laplie Anderson
**/
module distanceToVerticalWall(clock, reset, newData,
 xpos, ypos, xindex,
yindex,
 sine, cosine,
 sineInv, cosineInv,
 map,
distanceToIntersection, done);

localparam TILE_SIZE = 64 * 256; //the 256 here is because the first 8 bits
are below the decimal point
localparam MAX_DISTANCE = 1910 *256; //the max distance possible on a 21x21
is slightly less than this

input clock;
input reset;
input newData;
input signed [6:0] xpos; //signed for multiplication only. Should be 6-bit
values
input signed [6:0] ypos;
input [4:0] xindex;
input [4:0] yindex;

input signed [9:0] sine;
input signed [9:0] cosine;

// abs(1/sine) and abs(1/cosine)
// These are signed so that the multiplication works, but they should always
be positive
input signed [17:0] sineInv;
input signed [17:0] cosineInv;

input [440:0] map;

output [18:0] distanceToIntersection;
output done;

reg done = 0;
reg [1:0] state = 0;

reg [31:0] distanceToIntersection;
reg [31:0] tempdistance;

reg [4:0] saved_xindex;
reg [4:0] saved_yindex;
reg [5:0] saved_xpos;
reg [5:0] saved_ypos;

reg signed [19:0] absolute_x; //signed to make add/subtract much easier
without checks
reg signed [19:0] absolute_y;

reg signed [31:0] y_offset1; //lots of "unused" bits so multiplication works
reg signed [31:0] y_offset2;

reg direction;// 1 for right, 0 for left

reg signed [19:0] stepvalue; //the distance "y" is stepped each iteration
reg [31:0] d_stepvalue; //the change in the total distance each
iteration

reg [4:0] i = 0; //counts iterations

wire [9:0] mapLoc;
assign mapLoc = saved_yindex*21 + saved_xindex;
assign mapHit = map[saved_yindex*21 + saved_xindex];
always @ (posedge clock) begin
 if (reset) begin
 state <= 0;
 done <= 0;
 end
 else begin
 case (state)
 0: begin //idle
 if (newData) begin
 direction <= cosine > 0;

 //save some stuff for later
 saved_xindex <= xindex;
 saved_yindex <= yindex;
 saved_xpos <= xpos;
 saved_ypos <= ypos;

 distanceToIntersection <= MAX_DISTANCE;

 d_stepvalue <= (TILE_SIZE * cosineInv) >> 8;
 stepvalue <= (TILE_SIZE >> 8) * ((cosineInv *
sine) >> 8);

 //distance to where your gaze hits the first
horizontal line
 tempdistance <= (cosine > 0) ? ((TILE_SIZE >>
8) - xpos) * cosineInv : xpos * cosineInv;

 //tempdistance is the hypotenuse of the
triangle

 //we must calculate the offsets here because
Xilinx ISE chokes if you try to do everything in one step
 y_offset1 <= ((sine * cosineInv) >> 8) * xpos;
 y_offset2 <= ((sine * cosineInv) >> 8) *
((TILE_SIZE >> 8) - xpos);

 if (cosine == 0) begin // if the angle is
90 or 270, you'll never hit
 state <= 0; // this is an
optimization since the loop will still end eventually
 done <= 1; // if it never
hits
 end
 else begin
 done <= 0;
 state <= 1;
 i <= 0;
 end
 end
 end
 1: begin //set the initial absolute_x and y

 //x_offset must be done elsewhere for XST to work
(Xilinx bug)
 absolute_y <= (saved_ypos << 8) +
saved_yindex*TILE_SIZE - (direction ? y_offset2 : y_offset1);
 absolute_x <= saved_xindex*TILE_SIZE;
 state <= 2;
 end
 2: begin //this state corrects the indexes, the indexes
are the map positions to be checked next
 saved_yindex <= absolute_y / TILE_SIZE;
 saved_xindex <= (absolute_x / TILE_SIZE) + (direction
? 1 : -1);
 state <= 3;
 end
 3: begin //this state increments to the next intersection
 //if outside the bounds of the map, you'll never hit
a wall
 if (saved_xindex < 21 && saved_yindex < 21
 && absolute_x >= 0 && absolute_y >= 0
 && absolute_x < 21*TILE_SIZE && absolute_y <
21*TILE_SIZE
 && i < 21) begin
 if (map[saved_yindex*21 + saved_xindex] == 1)
begin
 distanceToIntersection <=
(tempdistance > MAX_DISTANCE) ? MAX_DISTANCE : tempdistance;
 state <= 0;
 done <= 1;
 end
 else begin
 absolute_y <= absolute_y - stepvalue;
 absolute_x <= absolute_x +
TILE_SIZE*(direction ? 1 : -1);

 //check for overflow
 if (d_stepvalue > MAX_DISTANCE -
tempdistance) begin

 distanceToIntersection <=
MAX_DISTANCE;
 state <= 0;
 done <= 1;
 end
 else begin
 tempdistance <= tempdistance +
d_stepvalue;
 i <= i + 1;
 state <= 2;
 end
 end
 end
 else begin //hit a wall, or can never hit a wall
 state <= 0;
 done <= 1;
 end
 end
 endcase
 end
end

endmodule

///
///
/*
 A wrapper for the IPCore pipelined divider. The wrapper is not pipelined
but takes
 care of grabbing the result on the correct cycle.

 To start, assert newData to high.

 The result of the last division is outputed in quotient when done is high.

 IMPLEMENTATION NOTE: The IPCore module returns q = dividend/divisor +
r where
 r is ALWAYS positive. This means 20/3 returns 6 even though 7 is
closer to the real result

 Laplie Anderson
*/
module divider_wrapper(clock, reset, divisor, dividend, quotient, newData,
done);
 input clock, reset, newData;

 input [18:0] divisor, dividend;

 output [18:0] quotient;
 output done;

 localparam latency = 21; //latency of IPCore divider

 reg done = 1;
 reg state = 0;

 reg [4:0] delay;
 reg [18:0] saved_divisor, saved_dividend, quotient;

 //instantiation of the pipedlined IPCore module

 wire [18:0] quot_wires, remd_wires;
 piped_divider myDivide(.clk(clock), .remd(remd_wires), .rfd(rfd_wire),
 .dividend(saved_dividend),
.divisor(saved_divisor), .quot(quot_wires));
 always @ (posedge clock) begin
 if (reset) begin
 done <= 0;
 end
 else begin

 case (state)
 0:begin //we're done so we idle until new data
 done <= 0;
 if (newData) begin
 saved_divisor <= divisor;
 saved_dividend <= dividend;
 state <= 1;
 delay <= 0;
 end
 end
 1: begin //we're waiting for IPCore to return
 if (delay == latency) begin
 done <= 1;
 state <= 0;
 quotient <= quot_wires;
 end
 else delay <= delay + 1;
 end
 endcase
 end
 end

endmodule

/*
 A double buffer.

 One buffer is displayed while the other buffer is written. The buffer read
is selected by "buffer_select", the buffer
 not selected is always the one written to when write_enable is high.

 Laplie Anderson
*/
module DoubleBuffer(clock_screen, clock, reset, read_hcount, read_vcount,
pixel, buffer_select,
 write_address, write_data, write_enable,

 ram0_clk, ram0_we_b, ram0_address,
ram0_data, ram0_cen_b,
 ram1_clk, ram1_we_b, ram1_address,
ram1_data, ram1_cen_b);

 input clock_screen, clock, reset, buffer_select, write_enable;
 input [10:0] read_hcount;
 input [9:0] read_vcount;
 input [18:0] write_address;
 input [35:0] write_data;

 output ram0_clk, ram1_clk; // physical line to ram clock
 output ram0_we_b, ram1_we_b; // physical line to ram we_b
 output [18:0] ram0_address, ram1_address; // physical line to ram
address
 inout [35:0] ram0_data, ram1_data; // physical line to ram data
 output ram0_cen_b, ram1_cen_b; // physical line to ram clock
enable

 output [7:0] pixel;
 reg [7:0] pixel;

 wire [35:0] zbt0_read_data, zbt1_read_data;//, ram0_data, ram1_data,
write_data;
 wire [18:0] vram_addr;//, ram0_address, ram1_address, write_address;

 wire [7:0] vr_pixel;

 wire [35:0] vram_read_data;
 wire [18:0] zbt0_addr, zbt1_addr;

 //wire ram0_clk, ram0_we_b, ram0_cen_b, ram1_clk, ram1_we_b,
ram1_cen_b;
 //wire zbt0_we, zbt1_we;
 //display
 vram_display vd0(reset,clock_screen, read_hcount - 1, read_vcount,
vr_pixel, vram_addr, vram_read_data);

 //zbt buffers
 zbt_6111 zbt0(zbt0_clock, 1'b1, zbt0_we, zbt0_addr,
 write_data, zbt0_read_data,
 ram0_clk, ram0_we_b, ram0_address, ram0_data, ram0_cen_b);

 zbt_6111 zbt1(zbt1_clock, 1'b1, zbt1_we, zbt1_addr,
 write_data, zbt1_read_data,
 ram1_clk, ram1_we_b, ram1_address, ram1_data, ram1_cen_b);

 assign zbt0_we = buffer_select && write_enable;
 assign zbt1_we = !buffer_select && write_enable;

 assign zbt0_addr = buffer_select ? write_address : vram_addr;
 assign zbt1_addr = !buffer_select ? write_address : vram_addr;

 assign vram_read_data = buffer_select ? zbt1_read_data :
zbt0_read_data;

 assign zbt0_clock = buffer_select ? clock : clock_screen;
 assign zbt1_clock = buffer_select ? clock_screen : clock;

 always @ (posedge clock_screen) begin
 pixel <= vr_pixel;
 end
endmodule

/**
 Displays a small minimap of the player on the screen.
 When cheat is high, the walls in the map are also displayed

 Laplie Andersone
**/
module minimap(clock, reset,
 player_xpos, player_ypos,
 player_xindex, player_yindex, map,
 hcount, vcount,
 pixel, cheat_mode);

localparam SCREEN_WIDTH = 1024; //resolution of the screen
localparam SCREEN_HEIGHT = 768;

localparam BORDER = 3;
localparam WIDTH = 168 + 2*BORDER; //Size of the map
localparam HEIGHT = 168 + 2*BORDER;

localparam PLAYER_WIDTH = 8; //size of the player icon
localparam PLAYER_HEIGHT = 8;

localparam [10:0] X_LOCATION = SCREEN_WIDTH - WIDTH;
localparam [9:0] Y_LOCATION = 0;

parameter backgroundcolor = 8'b00000111;
parameter playercolor = 8'b11111000;
parameter wallcolor = 8'b00111000;
parameter bordercolor = 8'b11111111;

input clock, reset;
input cheat_mode; //if cheatmode is set to 1, walls of the maze are
displayed

input [5:0] player_xpos, player_ypos; //player position in the square

input [4:0] player_xindex, player_yindex;//player position on the map

input [440:0] map; // the map

input [10:0] hcount; //xvga signals
input [9:0] vcount;

output [7:0] pixel; // the outputted color

wire [7:0] border_out, background_out, player_out;

//border is simply another square under the background
rectangle bordersquare(X_LOCATION, Y_LOCATION, hcount, vcount, 8'b0,
border_out);
defparam bordersquare.COLOR = bordercolor;
defparam bordersquare.WIDTH = WIDTH;
defparam bordersquare.HEIGHT = HEIGHT;

rectangle background(X_LOCATION + BORDER, Y_LOCATION + BORDER, hcount,
vcount, border_out, background_out);
defparam background.COLOR = backgroundcolor;
defparam background.WIDTH = WIDTH - (2 * BORDER);
defparam background.HEIGHT = HEIGHT - (2 * BORDER);

//the player icon
reg [10:0] player_icon_x;
reg [9:0] player_icon_y;

rectangle player(player_icon_x, player_icon_y, hcount, vcount,
background_out, player_out);
defparam player.COLOR = playercolor;
defparam player.WIDTH = PLAYER_WIDTH;
defparam player.HEIGHT = PLAYER_HEIGHT;

reg [8:0] map_grid;
reg map_grid_valid;

reg [7:0] pixel;

//the "+1"s and "-1"s are here because the output pixel isnt updated till a
cycle later
always @ (posedge clock) begin
 player_icon_x <= X_LOCATION + BORDER + 8*player_xindex;
 player_icon_y <= Y_LOCATION + BORDER + 8*player_yindex;

 map_grid <= (hcount + 1 - X_LOCATION - BORDER) / 8 + (vcount -
Y_LOCATION - BORDER)/8 * 21; //convert hcount/vcount to where in the map you
are in the minimap
 map_grid_valid <= hcount >= X_LOCATION + BORDER - 1 && hcount <
X_LOCATION + WIDTH - BORDER - 1
 && vcount >= Y_LOCATION + BORDER && vcount < Y_LOCATION
+ HEIGHT - BORDER; //determines if the conversion was valid (no overflow and
within the map area)
 pixel <= (cheat_mode && map_grid_valid && map[map_grid]) ?
wallcolor : player_out;
end
endmodule

/**
 Renders a single 3d frame and asserts Done when it is finished

 Laplie Anderson
**/
module SceneRenderer(clock, reset,
 player_xpos, player_ypos,
 player_xindex, player_yindex,
player_angle,
 map,
 ram_address, ram_data, ram_enable,
 start, done);
 input clock;
 input reset;

 input [5:0] player_xpos; //player position in the square
 input [5:0] player_ypos;

 input [4:0] player_xindex;// player position on the map
 input [4:0] player_yindex;

 input [11:0] player_angle; //angle the player is looking at

 input [440:0] map; //21x21 map

 input start;

 output done;

 //column renderer signals to ram
 output ram_enable;
 output [18:0] ram_address;
 output [35:0] ram_data;

 parameter vertical_wall_color = 8'b01000100;//8'b11010101;
 parameter horizontal_wall_color = 8'b0100111;//8'b00101010;

 // # of columns/2tan(30) ..rightshifted for fixed point math
 // rightshifted again to maximize division accuracy
 localparam distanceToProjectionPlane = 19'd524287; //<< 8 << 2;
 localparam wall_height = 64 << 8; //height of the walls
 localparam screen_height = 768;
 localparam screen_center = screen_height/2; //center of monitor

 reg done;
 reg [4:0] state = 0;
 reg [11:0] workingAngle, startAngle;
 reg [2:0] quadrant;
 //reg [16:0] offset;

 reg [5:0] xpos;
 reg [5:0] ypos;
 reg [4:0] xindex;
 reg [4:0] yindex;

 reg [18:0] CalcedDistance;

 //instantiate lookup table
 reg signed [9:0] CalcedSine, CalcedCosine, fishBowlCosine;
 reg signed [17:0] CalcedSineInv, CalcedCosInv;

 wire [51:0] trig_out;
 //we only use the first 10 bits cause we only keep 90 degrees in the
lookup table
 trig_lookup_table tLT(.addr(workingAngle[9:0]), .clk(clock),
.dout(trig_out));

 //instantiate distanceCalculators
 reg newDistance;
 wire [18:0] distanceHW;
 wire [18:0] distanceVW;

 distanceToHorizontalWall dHW(.clock(clock), .reset(reset),
.newData(newDistance),

.xpos({1'b0,xpos}), .ypos({1'b0,ypos}), .xindex(xindex), .yindex(yindex),

.sine(CalcedSine), .cosine(CalcedCosine),

.sineInv(CalcedSineInv), .cosineInv(CalcedCosInv),
 .map(map),
.distanceToIntersection(distanceHW), .done(doneHW));
 distanceToVerticalWall dVW(.clock(clock), .reset(reset),
.newData(newDistance),

.xpos({1'b0,xpos}), .ypos({1'b0,ypos}), .xindex(xindex), .yindex(yindex),

.sine(CalcedSine), .cosine(CalcedCosine),

.sineInv(CalcedSineInv), .cosineInv(CalcedCosInv),
 .map(map),
.distanceToIntersection(distanceVW), .done(doneVW));

 //instantiate divider
 reg newDiv;
 wire [18:0] quotient;
 divider_wrapper dWrap(.clock(clock), .reset(reset),
 .divisor(CalcedDistance),
.dividend(distanceToProjectionPlane), .quotient(quotient),
 .newData(newDiv),
.done(doneDiv));

 //instantiate columnDrawer
 reg newCol;
 reg [7:0] column_number, wallColor0, wallColor1, wallColor2,
wallColor3;
 reg [9:0] cStartLine0, cEndLine0, cStartLine1, cEndLine1, cStartLine2,
cEndLine2, cStartLine3, cEndLine3;
 reg [1:0] cIndex;

 wire ram_enable;
 wire [18:0] ram_address;
 wire [35:0] ram_data;
 columnRenderer dC(.clock(clock), .reset(reset),
 .color0(wallColor0),
.color1(wallColor1),
 .color2(wallColor2),
.color3(wallColor3),
 .startLine0(cStartLine0),
.endLine0(cEndLine0),
 .startLine1(cStartLine1),
.endLine1(cEndLine1),
 .startLine2(cStartLine2),
.endLine2(cEndLine2),
 .startLine3(cStartLine3),
.endLine3(cEndLine3),

 .columnNumber(column_number),
 .newData(newCol), .done(doneCol),
 .write_address(ram_address),
.write_data(ram_data), .write_enable(ram_enable));

 always @ (posedge clock) begin
 if (reset) begin
 done <= 0;
 state <= 0;
 newDistance <= 0;
 newCol <= 0;
 newDiv <= 0;
 column_number <= 0;
 end
 else begin
 case (state)
 0: begin
 if(start) begin

 //save the current attribs (assume map never
changes)
 //start at the current angle approx. +30
degrees (to the left)
 startAngle <= player_angle + 340;
 column_number <= 0;
 cIndex <= 0;
 done <= 0;
 xpos <= player_xpos;
 ypos <= player_ypos;
 xindex <= player_xindex;
 yindex <= player_yindex;

 cStartLine0 <= 0;
 cEndLine0 <= 0;
 cStartLine1 <= 0;
 cEndLine1 <= 0;
 cStartLine2 <= 0;
 cEndLine2 <= 0;
 cStartLine3 <= 0;
 cEndLine3 <= 0;

 wallColor0 <= 0;
 wallColor1 <= 0;
 wallColor2 <= 0;
 wallColor3 <= 0;

 state <= 1;
 end
 end
 1: begin
 //here is where i compensate for only having 90
degrees in the table
 //and special case the some points
 if ((startAngle - ((column_number*640 + cIndex*160)
>> 8)) == 3072) begin
 quadrant <= 4;
 end
 else if ((startAngle - ((column_number*640 +
cIndex*160) >> 8)) == 2048) begin
 quadrant <= 5;
 end
 else if ((startAngle - ((column_number*640 +
cIndex*160) >> 8)) == 1024) begin
 quadrant <= 6;
 end
 else if ((startAngle - ((column_number*640 +
cIndex*160) >> 8)) < 1024) begin
 workingAngle <= startAngle -
((column_number*640 + cIndex*160) >> 8);
 quadrant <= 0;
 end
 else if ((startAngle - ((column_number*640 +
cIndex*160) >> 8)) < 2048) begin
 workingAngle <= 2048 - (startAngle -
((column_number*640 + cIndex*160) >> 8));
 quadrant <= 1;
 end

 else if ((startAngle - ((column_number*640 +
cIndex*160) >> 8)) < 3072) begin
 workingAngle <= startAngle -
(((column_number*640 + cIndex*160) >> 8)) - 2048;
 quadrant <= 2;
 end
 else begin
 workingAngle <= 4096 - (startAngle -
((column_number*640 + cIndex*160) >> 8));
 quadrant <= 3;
 end
 state <= 2;
 end
 2: begin
 state <= 3; //wait a cycle for the trig table
 end
 3: begin
 //get the trig values and add the correct sign
 case (quadrant)// first quadrant
 0: begin
 CalcedSine <= {1'b0, trig_out[8:0]};
 CalcedCosine <= {1'b0, trig_out[17:9]};
 end
 1:begin //second quadrant
 CalcedSine <= {1'b0,trig_out[8:0]};
 CalcedCosine <= -{1'b0,trig_out[17:9]};
 end
 2:begin //3rd quadrant
 CalcedSine <= -{1'b0,trig_out[8:0]};
 CalcedCosine <= -{1'b0,trig_out[17:9]};
 end
 3: begin //4th quadrant
 CalcedSine <= -{1'b0,trig_out[8:0]};
 CalcedCosine <= {1'b0,trig_out[17:9]};
 end
 4: begin //1024
 CalcedSine <= -256;
 CalcedCosine <= 0;
 CalcedCosInv <= 131071;
 CalcedSineInv <= 256;
 end
 5: begin //2048
 CalcedSine <= 0;
 CalcedCosine <= -256;
 CalcedCosInv <= 256;
 CalcedSineInv <= 131071;
 end
 6: begin //3072
 CalcedSine <= 256;
 CalcedCosine <= 0;
 CalcedCosInv <= 131071;
 CalcedSineInv <= 256;
 end
 endcase
 if (quadrant < 4) begin
 CalcedSineInv <= {1'b0, trig_out[34:18]};
 CalcedCosInv <= {1'b0, trig_out[51:35]};
 end

 //start up the distance calculators

 newDistance <= 1;
 state <= 8;

 end
 8: begin //wait a cycle
 newDistance <= 0;
 state <= 4;
 end
 4: begin

 //wait for the distance calculators to say that
they're finished
 //then go to next state
 if (doneHW & doneVW) begin

 //drop the lowest 4 bits to maximize
division accuracy
 CalcedDistance <= (((distanceHW <
distanceVW) ? distanceHW : distanceVW) >> 4);

 newDiv <= 1; //calculate
distanceToProjectionPlane/distanceToWall
 state <= 5;
 end

 end
 5:begin
 newDiv <= 0;
 //the complexity is so only the register for the
current index is changed
 //this could have been done with a case statement or
using an array
 if (doneDiv) begin
 wallColor0 <= (cIndex == 0) ? ((distanceHW <
distanceVW) ? horizontal_wall_color : vertical_wall_color) : wallColor0;
 wallColor1 <= (cIndex == 1) ? ((distanceHW <
distanceVW) ? horizontal_wall_color : vertical_wall_color) : wallColor1;
 wallColor2 <= (cIndex == 2) ? ((distanceHW <
distanceVW) ? horizontal_wall_color : vertical_wall_color) : wallColor2;
 wallColor3 <= (cIndex == 3) ? ((distanceHW <
distanceVW) ? horizontal_wall_color : vertical_wall_color) : wallColor3;

 //this logic changes the correct startline and
endline

 if ((quotient << 1) < screen_height) begin
 cStartLine0 <= (cIndex == 0) ?
(screen_center - quotient) : cStartLine0;
 cEndLine0 <= (cIndex == 0) ?
(screen_center + quotient) : cEndLine0;

 cStartLine1 <= (cIndex == 1) ?
(screen_center - quotient) : cStartLine1;
 cEndLine1 <= (cIndex == 1) ?
(screen_center + quotient) : cEndLine1;

 cStartLine2 <= (cIndex == 2) ?
(screen_center - quotient) : cStartLine2;
 cEndLine2 <= (cIndex == 2) ?
(screen_center + quotient) : cEndLine2;

 cStartLine3 <= (cIndex == 3) ?
(screen_center - quotient) : cStartLine3;
 cEndLine3 <= (cIndex == 3) ?
(screen_center + quotient) : cEndLine3;
 end
 else begin
 cEndLine0 <= (cIndex == 0) ?
(screen_height - 1) : cEndLine0;
 cEndLine1 <= (cIndex == 1) ?
(screen_height - 1) : cEndLine1;
 cEndLine2 <= (cIndex == 2) ?
(screen_height - 1) : cEndLine2;
 cEndLine3 <= (cIndex == 3) ?
(screen_height - 1) : cEndLine3;
 end
 if (cIndex == 3) begin
 newCol <= 1; // draw the column;
 state <= 6;
 end
 else state <= 7;
 end
 end
 6: begin
 newCol <= 0;
 //wait for the column to be finished drawn
 if (doneCol) begin
 state <= 7;
 end
 end
 7: begin
 if (cIndex == 3) begin
 cStartLine0 <= 0;
 cEndLine0 <= 0;
 cStartLine1 <= 0;
 cEndLine1 <= 0;
 cStartLine2 <= 0;
 cEndLine2 <= 0;
 cStartLine3 <= 0;
 cEndLine3 <= 0;

 wallColor0 <= 0;
 wallColor1 <= 0;
 wallColor2 <= 0;
 wallColor3 <= 0;

 cIndex <= 0;

 if (column_number == 255) begin
//rendered all 60 degrees
 state <= 0;
 done <= 1;
 end else begin
 //approx. 60 degrees is a change of 640 in
workingAngle

 //since there are 256 columns to render, the
difference between each column is 2.5
 //when we right shift by 8 (for fractional
decimals)

 column_number <= column_number + 1;
 state <= 1;
 end
 end
 else begin
 state <= 1;
 cIndex <= cIndex + 1;
 end
 end
 endcase
 end
 end

endmodule

///
// generate display pixels from reading the ZBT ram
// note that the ZBT ram has 2 cycles of read (and write) latency
//
// We take care of that by latching the data at an appropriate time.
//
// Note that the ZBT stores 36 bits per word; we use only 32 bits here,
// decoded into four bytes of pixel data.

module vram_display(reset,clk,hcount,vcount,vr_pixel,
 vram_addr,vram_read_data);

 input reset, clk;
 input [10:0] hcount;
 input [9:0] vcount;
 output [7:0] vr_pixel;
 output [18:0] vram_addr;
 input [35:0] vram_read_data;

 wire [18:0] vram_addr = {1'b0, vcount, hcount[9:2]};

 wire [1:0] hc4 = hcount[1:0];
 reg [7:0] vr_pixel;
 reg [35:0] vr_data_latched;
 reg [35:0] last_vr_data;

 always @(posedge clk)
 last_vr_data <= (hc4==2'd3) ? vr_data_latched : last_vr_data;

 always @(posedge clk)
 vr_data_latched <= (hc4==2'd1) ? vram_read_data : vr_data_latched;

 always @(*) // each 36-bit word from RAM is decoded to 4 bytes
 case (hc4)
 2'd3: vr_pixel = last_vr_data[7:0];
 2'd2: vr_pixel = last_vr_data[7+8:0+8];
 2'd1: vr_pixel = last_vr_data[7+16:0+16];
 2'd0: vr_pixel = last_vr_data[7+24:0+24];
 endcase

endmodule // vram_display

///
///
//
// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)
//
///
///
module xvga(vclock,hcount,vcount,hsync,vsync,blank);
 input vclock;
 output [10:0] hcount;
 output [9:0] vcount;
 output vsync;
 output hsync;
 output blank;

 reg hsync,vsync,hblank,vblank,blank;
 reg [10:0] hcount; // pixel number on current line
 reg [9:0] vcount; // line number

 // horizontal: 1344 pixels total
 // display 1024 pixels per line
 wire hsyncon,hsyncoff,hreset,hblankon;
 assign hblankon = (hcount == 1023);
 assign hsyncon = (hcount == 1047);
 assign hsyncoff = (hcount == 1183);
 assign hreset = (hcount == 1343);

 // vertical: 806 lines total
 // display 768 lines
 wire vsyncon,vsyncoff,vreset,vblankon;
 assign vblankon = hreset & (vcount == 767);
 assign vsyncon = hreset & (vcount == 776);
 assign vsyncoff = hreset & (vcount == 782);
 assign vreset = hreset & (vcount == 805);

 // sync and blanking
 wire next_hblank,next_vblank;
 assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
 assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
 always @(posedge vclock) begin
 hcount <= hreset ? 0 : hcount + 1;
 hblank <= next_hblank;
 hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

 vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
 vblank <= next_vblank;
 vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

 blank <= next_vblank | (next_hblank & ~hreset);
 end
endmodule

//
// File: zbt_6111.v
// Date: 27-Nov-05
// Author: I. Chuang <ichuang@mit.edu>
//

// Simple ZBT driver for the MIT 6.111 labkit, which does not hide the
// pipeline delays of the ZBT from the user. The ZBT memories have
// two cycle latencies on read and write, and also need extra-long data hold
// times around the clock positive edge to work reliably.
//

///
// Ike's simple ZBT RAM driver for the MIT 6.111 labkit
//
// Data for writes can be presented and clocked in immediately; the actual
// writing to RAM will happen two cycles later.
//
// Read requests are processed immediately, but the read data is not
available
// until two cycles after the intial request.
//
// A clock enable signal is provided; it enables the RAM clock when high.

module zbt_6111(clk, cen, we, addr, write_data, read_data,
 ram_clk, ram_we_b, ram_address, ram_data, ram_cen_b);

 input clk; // system clock
 input cen; // clock enable for gating ZBT cycles
 input we; // write enable (active HIGH)
 input [18:0] addr; // memory address
 input [35:0] write_data; // data to write
 output [35:0] read_data; // data read from memory
 output ram_clk; // physical line to ram clock
 output ram_we_b; // physical line to ram we_b
 output [18:0] ram_address; // physical line to ram address
 inout [35:0] ram_data; // physical line to ram data
 output ram_cen_b; // physical line to ram clock enable

 // clock enable (should be synchronous and one cycle high at a time)
 wire ram_cen_b = ~cen;

 // create delayed ram_we signal: note the delay is by two cycles!
 // ie we present the data to be written two cycles after we is raised
 // this means the bus is tri-stated two cycles after we is raised.

 reg [1:0] we_delay;

 always @(posedge clk)
 we_delay <= cen ? {we_delay[0],we} : we_delay;

 // create two-stage pipeline for write data

 reg [35:0] write_data_old1;
 reg [35:0] write_data_old2;
 always @(posedge clk)
 if (cen)
 {write_data_old2, write_data_old1} <= {write_data_old1, write_data};

 // wire to ZBT RAM signals

 assign ram_we_b = ~we;
 assign ram_clk = ~clk; // RAM is not happy with our data hold
 // times if its clk edges equal FPGA's
 // so we clock it on the falling edges
 // and thus let data stabilize longer

 assign ram_address = addr;

 assign ram_data = we_delay[1] ? write_data_old2 : {36{1'bZ}};
 assign read_data = ram_data;

endmodule // zbt_6111

/*Makes a rectangle on the screen
//draws itself if its at x, y with the provided Height and width */
module rectangle(x, y, hcount, vcount, inpixel, pixel);
 parameter WIDTH = 64; // default width: 64 pixels
 parameter HEIGHT = 64; // default height: 64 pixels
 parameter COLOR = 8'b11111111; // default color: white

 input [10:0] x,hcount;
 input [9:0] y,vcount;
 input [7:0] inpixel;

 output [7:0] pixel;

 reg [7:0] pixel;
 always @ (x or y or hcount or vcount or inpixel) begin
 if ((hcount >= x && hcount < (x+WIDTH)) &&
 (vcount >= y && vcount < (y+HEIGHT)))
 pixel = COLOR;
 else pixel = inpixel;
 end
endmodule

///
///
// Company:
// Engineer:
//
// Create Date: 17:11:48 11/29/06
// Design Name:
// Module Name: game_logic
// Project Name:
// Target Device:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
///
///
module game_logic(clk,reset,done,up,down,left,right, map,xindex,
yindex,xpos,ypos,angle);
 input clk,reset;
 input done; // from the map generation module
 input up,down, left,right;
 input [440:0] map;

 output [4:0] xindex, yindex; //position1 0 to 20
 output [5:0]xpos,ypos; //position2 0 to 63

 output [11:0] angle ; // 0 to 4095

 reg [11:0] angle;
 reg [4:0] xindex, yindex; //position1 0 to 20
 reg [5:0]xpos,ypos; //position2 0 to 63

 always @ (posedge clk)
 begin
 if (reset)
 begin
 xindex<=0;//position1<=0;
 yindex<=0;
 xpos<=0; //xpos<=0;
 ypos<=0; //ypos<=0;

 angle<=0;
 end

 if (up)
 begin
 if (angle<=256 || angle>=4096-256) //go east
 begin
 if (xpos<=62) xpos<=xpos+1;

 else // if (xpos==63)
 begin
 if (xindex==20) xindex<=20; // cannot move
since we are at the right edge of the map
 else if (map[21*ypos+xpos+1]) // corresponds to
map[i+1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the right
 else // if (ypos==0 && xindex>0 && ~map[21*(j-
1)+i])
 begin
 xindex<=xindex+1;
 xpos<=0;
 end
 end
 end
 else if (angle>256 && angle<=3*256) //go northeast
 begin
 if (xpos<=62 && ypos>=1)
 begin
 xpos<=xpos+1;
 ypos<=ypos-1;
 end
 else if (xpos==63 && ypos>=1)
 begin
 if (xindex==20) xindex<=20; // cannot move
since we are at the right edge of the map
 else if (map[21*yindex+xindex+1]) //
corresponds to map[i+1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the right
 else // there is no wall to the right // if
(ypos==0 && xindex>0 && ~map[21*(j-1)+i])
 begin

 xindex<=xindex+1;
 xpos<=0;
 ypos<=ypos-1;
 end
 end
 else if (xpos<=62 && ypos==0)
 begin
 if (yindex==0) yindex<=0; // cannot move since
we are at the top of the map
 else if (map[21*(yindex-1)+xindex]) //
corresponds to map[i,j-1]
 yindex<=yindex;//cannot move since above
there is a wall above
 else // if (ypos==0 && xindex>0 && ~map[21*(j-
1)+i])
 begin
 yindex<=yindex-1;
 ypos<=63;
 xpos<=xpos+1;
 end
 end
 else //if (xpos==63 && ypos==0)
 begin
 if (yindex==0) yindex<=0; // cannot move since
we are at the top of the map
 else if (map[21*(yindex-1)+xindex]) //
corresponds to map[i,j-1]
 yindex<=yindex;//cannot move since above
there is a wall above
 else if (xindex==20) xindex<=20; // cannot move
since we are at the right edge of the map
 else if (map[21*yindex+xindex+1]) //
corresponds to map[i+1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the right
 else if (map[21*(yindex-1)+xindex+1]) //
corresponds to map[i+1,j-1]
 yindex<=yindex;
 //cannot move since there is a wall to the right and above
 else // there is no wall to the right
and above
 begin
 xindex<=xindex+1;
 yindex<=yindex-1;
 xpos<=0;
 ypos<=63;
 end
 end
 end
 else if (angle>3*256 && angle<=5*256) //go north
 begin
 if (ypos>=1) ypos<=ypos-1;
 else // if (ypos==0)
 begin
 if (yindex==0) yindex<=0; // cannot move since
we are at the top of the map
 else if (map[21*(yindex-1)+xindex]) //
corresponds to map[i,j-1]
 yindex<=yindex;//cannot move since above
there is a wall above

 else // if (ypos==0 && xindex>0 && ~map[21*(j-
1)+i])
 begin
 yindex<=yindex-1;
 ypos<=63;
 end
 end
 end
 else if (angle>5*256 && angle<=7*256) //go northwest
 begin
 if (xpos>=1 && ypos>=1)
 begin
 xpos<=xpos-1;
 ypos<=ypos-1;
 end
 else if (xpos==0 && ypos>=1)
 begin
 if (xindex==0) xindex<=0; // cannot move since
we are at the left edge of the map
 else if (map[21*yindex+xindex-1]) //
corresponds to map[i-1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the left
 else // there is no wall to the left
 begin
 xindex<=xindex-1;
 xpos<=63;
 ypos<=ypos-1;
 end
 end
 else if (xpos>=1 && ypos==0)
 begin
 if (yindex==0) yindex<=0; // cannot move since
we are at the top of the map
 else if (map[21*(yindex-1)+xindex]) //
corresponds to map[i,j-1]
 yindex<=yindex;//cannot move since above
there is a wall above
 else
 begin
 yindex<=yindex-1;
 ypos<=63;
 xpos<=xpos-1;
 end
 end
 else //if (xpos==0 && ypos==0)
 begin
 if (yindex==0) yindex<=0; // cannot move since
we are at the top of the map
 else if (xindex==0) xindex<=0; // cannot move
since we are at the left edge of the map
 else if (map[21*(yindex-1)+xindex-1]) //
corresponds to map[i-1,j-1]
 yindex<=yindex;//cannot move since above
there is a wall above and left

 else if (map[21*(yindex-1)+xindex]) //
corresponds to map[i,j-1]
 yindex<=yindex;//cannot move since above
there is a wall above

 else if (map[21*yindex+xindex-1]) //
corresponds to map[i-1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the right
 else // there is no wall to the left and
above
 begin
 xindex<=xindex-1;
 yindex<=yindex-1;
 xpos<=63;
 ypos<=63;
 end
 end
 end
 else if (angle>7*256 && angle<=9*256) //go west
 begin
 if (xpos>=1) xpos<=xpos-1;
 else // if (xpos==0)
 begin
 if (xindex==0) xindex<=0;// cannot move since
we are at the left edge of the map
 else if (map[21*yindex+xindex-1]) //
corresponds to map[i,j-1]
 xindex<=xindex; //cannot move
since above there is a wall to the left
 else // if (ypos==0 && xindex>0 && ~map[21*(j-
1)+i])
 begin
 xindex<=xindex-1;
 xpos<=63;
 end
 end
 end
 else if (angle>9*256 && angle<=11*256) //go south west
 begin
 if (xpos>=1 && ypos<=62)
 begin
 xpos<=xpos-1;
 ypos<=ypos+1;
 end
 else if (xpos==0 && ypos<=62)
 begin
 if (xindex==0) xindex<=0; // cannot move since
we are at the left edge of the map
 else if (map[21*yindex+xindex-1]) //
corresponds to map[i-1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the left
 else // there is no wall to the left
 begin
 xindex<=xindex-1;
 xpos<=63;
 ypos<=ypos+1;
 end
 end
 else if (xpos>=1 && ypos==63)
 begin
 if (yindex==63) yindex<=63; // cannot move
since we are at the bottom of the map

 else if (map[21*(yindex+1)+xindex]) //
corresponds to map[i,j+1]
 yindex<=yindex;//cannot move since above
there is a wall below
 else
 begin
 yindex<=yindex+1;
 ypos<=0;
 xpos<=xpos-1;
 end
 end
 else //if (xpos==0 && ypos==63)
 begin
 if (yindex==63) yindex<=63; // cannot move
since we are at the bottom of the map
 else if (xindex==0) xindex<=0; // cannot move
since we are at the left edge of the map
 else if (map[21*(yindex+1)+xindex-1]) //
corresponds to map[i-1,j+1]
 yindex<=yindex;//cannot move since above
there is a wall below and left

 else if (map[21*(yindex+1)+xindex]) //
corresponds to map[i,j+1]
 yindex<=yindex;//cannot move since above
there is a wall below
 else if (map[21*yindex+xindex-1]) //
corresponds to map[i-1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the left
 else // there is no wall to the left and
below
 begin
 xindex<=xindex-1;
 yindex<=yindex+1;
 xpos<=63;
 ypos<=0;
 end
 end
 end
 else if (angle>11*256 && angle<=13*256) //go south
 begin
 if (ypos<=62) ypos<=ypos+1;
 else // if (ypos==63)
 begin
 if (xindex==20) xindex<=20;// cannot move since
we are at the bottom of the map
 else if (map[21*(yindex+1)+xindex]) //
corresponds to map[i,j+1]
 xindex<=xindex;//cannot move since above
there is a wall below
 else // if (ypos==0 && xindex>0 && ~map[21*(j-
1)+i])
 begin
 xindex<=xindex+1;
 ypos<=0;
 end
 end
 end

 else //if (angle>13*256 && angle<=15*256) //go to hell, no
go southeast
 begin
 if (xpos<=62 && ypos<=62)
 begin
 xpos<=xpos+1;
 ypos<=ypos+1;
 end
 else if (xpos==63 && ypos<=62)
 begin
 if (xindex==20) xindex<=20; // cannot move
since we are at the right edge of the map
 else if (map[21*yindex+xindex+1]) //
corresponds to map[i+1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the right
 else // there is no wall to the right
 begin
 xindex<=xindex+1;
 xpos<=0;
 ypos<=ypos+1;
 end
 end
 else if (xpos<=62 && ypos==63)
 begin
 if (yindex==63) yindex<=63; // cannot move
since we are at the bottom of the map
 else if (map[21*(yindex+1)+xindex]) //
corresponds to map[i,j+1]
 yindex<=yindex;//cannot move since above
there is a wall below
 else
 begin
 yindex<=yindex+1;
 ypos<=0;
 xpos<=xpos+1;
 end
 end
 else //if (xpos==63 && ypos==63)
 begin
 if (yindex==63) yindex<=63; // cannot move
since we are at the bottom of the map
 else if (xindex==63) xindex<=63; // cannot move
since we are at the right edge of the map
 else if (map[21*(yindex+1)+xindex+1]) //
corresponds to map[i+1,j+1]
 yindex<=yindex;//cannot move since above
there is a wall below and left

 else if (map[21*(yindex+1)+xindex]) //
corresponds to map[i,j+1]
 yindex<=yindex;//cannot move since above
there is a wall below
 else if (map[21*yindex+xindex+1]) //
corresponds to map[i-1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the left
 else // there is no wall to the left and
below
 begin

 xindex<=xindex+1;
 yindex<=yindex+1;
 xpos<=0;
 ypos<=0;
 end
 end
 end

 end

 else if (down)
 begin
 if (angle<=256 || angle>=4096-256) //go west

 begin
 if (xpos>=1) xpos<=xpos-1;
 else // if (xpos==0)
 begin
 if (xindex==0) xindex<=0;// cannot move since
we are at the left edge of the map
 else if (map[21*yindex+xindex-1]) //
corresponds to map[i,j-1]
 xindex<=xindex; //cannot move
since above there is a wall to the left
 else // if (ypos==0 && xindex>0 && ~map[21*(j-
1)+i])
 begin
 xindex<=xindex-1;
 xpos<=63;
 end
 end
 end

 else if (angle>256 && angle<=3*256) //go southwest

 begin
 if (xpos>=1 && ypos<=62)
 begin
 xpos<=xpos-1;
 ypos<=ypos+1;
 end
 else if (xpos==0 && ypos<=62)
 begin
 if (xindex==0) xindex<=0; // cannot move since
we are at the left edge of the map
 else if (map[21*yindex+xindex-1]) //
corresponds to map[i-1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the left
 else // there is no wall to the left
 begin
 xindex<=xindex-1;
 xpos<=63;
 ypos<=ypos+1;
 end
 end
 else if (xpos>=1 && ypos==63)
 begin
 if (yindex==63) yindex<=63; // cannot move
since we are at the bottom of the map

 else if (map[21*(yindex+1)+xindex]) //
corresponds to map[i,j+1]
 yindex<=yindex;//cannot move since above
there is a wall below
 else
 begin
 yindex<=yindex+1;
 ypos<=0;
 xpos<=xpos-1;
 end
 end
 else //if (xpos==0 && ypos==63)
 begin
 if (yindex==63) yindex<=63; // cannot move
since we are at the bottom of the map
 else if (xindex==0) xindex<=0; // cannot move
since we are at the left edge of the map
 else if (map[21*(yindex+1)+xindex-1]) //
corresponds to map[i-1,j+1]
 yindex<=yindex;//cannot move since above
there is a wall below and left

 else if (map[21*(yindex+1)+xindex]) //
corresponds to map[i,j+1]
 yindex<=yindex;//cannot move since above
there is a wall below
 else if (map[21*yindex+xindex-1]) //
corresponds to map[i-1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the left
 else // there is no wall to the left and
below
 begin
 xindex<=xindex-1;
 yindex<=yindex+1;
 xpos<=63;
 ypos<=0;
 end
 end
 end

 else if (angle>3*256 && angle<=5*256) //go south

 begin
 if (ypos>=1) ypos<=ypos-1;
 else // if (ypos==0)
 begin
 if (yindex==0) yindex<=0; // cannot move since
we are at the top of the map
 else if (map[21*(yindex-1)+xindex]) //
corresponds to map[i,j-1]
 yindex<=yindex;//cannot move since above
there is a wall above
 else // if (ypos==0 && xindex>0 && ~map[21*(j-
1)+i])
 begin
 yindex<=yindex-1;
 ypos<=63;
 end
 end

 end

 else if (angle>5*256 && angle<=7*256) //go southeast

 begin
 if (xpos<=62 && ypos<=62)
 begin
 xpos<=xpos+1;
 ypos<=ypos+1;
 end
 else if (xpos==63 && ypos<=62)
 begin
 if (xindex==20) xindex<=20; // cannot move
since we are at the right edge of the map
 else if (map[21*yindex+xindex+1]) //
corresponds to map[i+1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the right
 else // there is no wall to the right
 begin
 xindex<=xindex+1;
 xpos<=0;
 ypos<=ypos+1;
 end
 end
 else if (xpos<=62 && ypos==63)
 begin
 if (yindex==63) yindex<=63; // cannot move
since we are at the bottom of the map
 else if (map[21*(yindex+1)+xindex]) //
corresponds to map[i,j+1]
 yindex<=yindex;//cannot move since above
there is a wall below
 else
 begin
 yindex<=yindex+1;
 ypos<=0;
 xpos<=xpos+1;
 end
 end
 else //if (xpos==63 && ypos==63)
 begin
 if (yindex==63) yindex<=63; // cannot move
since we are at the bottom of the map
 else if (xindex==63) xindex<=63; // cannot move
since we are at the right edge of the map
 else if (map[21*(yindex+1)+xindex+1]) //
corresponds to map[i+1,j+1]
 yindex<=yindex;//cannot move since above
there is a wall below and left

 else if (map[21*(yindex+1)+xindex]) //
corresponds to map[i,j+1]
 yindex<=yindex;//cannot move since above
there is a wall below
 else if (map[21*yindex+xindex+1]) //
corresponds to map[i-1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the left

 else // there is no wall to the left and
below
 begin
 xindex<=xindex+1;
 yindex<=yindex+1;
 xpos<=0;
 ypos<=0;
 end
 end
 end

 else if (angle>7*256 && angle<=9*256) //go east

 begin
 if (xpos<=62) xpos<=xpos+1;

 else // if (xpos==63)
 begin
 if (xindex==20) xindex<=20; // cannot move
since we are at the right edge of the map
 else if (map[21*ypos+xpos+1]) // corresponds to
map[i+1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the right
 else // if (ypos==0 && xindex>0 && ~map[21*(j-
1)+i])
 begin
 xindex<=xindex+1;
 xpos<=0;
 end
 end
 end

 else if (angle>9*256 && angle<=11*256) //go northeast

 begin
 if (xpos<=62 && ypos>=1)
 begin
 xpos<=xpos+1;
 ypos<=ypos-1;
 end
 else if (xpos==63 && ypos>=1)
 begin
 if (xindex==20) xindex<=20; // cannot move
since we are at the right edge of the map
 else if (map[21*yindex+xindex+1]) //
corresponds to map[i+1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the right
 else // there is no wall to the right // if
(ypos==0 && xindex>0 && ~map[21*(j-1)+i])
 begin
 xindex<=xindex+1;
 xpos<=0;
 ypos<=ypos-1;
 end
 end
 else if (xpos<=62 && ypos==0)
 begin

 if (yindex==0) yindex<=0; // cannot move since
we are at the top of the map
 else if (map[21*(yindex-1)+xindex]) //
corresponds to map[i,j-1]
 yindex<=yindex;//cannot move since above
there is a wall above
 else // if (ypos==0 && xindex>0 && ~map[21*(j-
1)+i])
 begin
 yindex<=yindex-1;
 ypos<=63;
 xpos<=xpos+1;
 end
 end
 else //if (xpos==63 && ypos==0)
 begin
 if (yindex==0) yindex<=0; // cannot move since
we are at the top of the map
 else if (map[21*(yindex-1)+xindex]) //
corresponds to map[i,j-1]
 yindex<=yindex;//cannot move since above
there is a wall above
 else if (xindex==20) xindex<=20; // cannot move
since we are at the right edge of the map
 else if (map[21*yindex+xindex+1]) //
corresponds to map[i+1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the right
 else if (map[21*(yindex-1)+xindex+1]) //
corresponds to map[i+1,j-1]
 yindex<=yindex;
 //cannot move since there is a wall to the right and above
 else // there is no wall to the right
and above
 begin
 xindex<=xindex+1;
 yindex<=yindex-1;
 xpos<=0;
 ypos<=63;
 end
 end
 end

 else if (angle>11*256 && angle<=13*256) //go north

 begin
 if (ypos<=62) ypos<=ypos+1;
 else // if (ypos==63)
 begin
 if (xindex==20) xindex<=20;// cannot move since
we are at the bottom of the map
 else if (map[21*(yindex+1)+xindex]) //
corresponds to map[i,j+1]
 xindex<=xindex;//cannot move since above
there is a wall below
 else // if (ypos==0 && xindex>0 && ~map[21*(j-
1)+i])
 begin
 xindex<=xindex+1;

 ypos<=0;
 end
 end
 end

 else //if (angle>13*256 && angle<=15*256) //go to hell, no
go northwest

 begin
 if (xpos>=1 && ypos>=1)
 begin
 xpos<=xpos-1;
 ypos<=ypos-1;
 end
 else if (xpos==0 && ypos>=1)
 begin
 if (xindex==0) xindex<=0; // cannot move since
we are at the left edge of the map
 else if (map[21*yindex+xindex-1]) //
corresponds to map[i-1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the left
 else // there is no wall to the left
 begin
 xindex<=xindex-1;
 xpos<=63;
 ypos<=ypos-1;
 end
 end
 else if (xpos>=1 && ypos==0)
 begin
 if (yindex==0) yindex<=0; // cannot move since
we are at the top of the map
 else if (map[21*(yindex-1)+xindex]) //
corresponds to map[i,j-1]
 yindex<=yindex;//cannot move since above
there is a wall above
 else
 begin
 yindex<=yindex-1;
 ypos<=63;
 xpos<=xpos-1;
 end
 end
 else //if (xpos==0 && ypos==0)
 begin
 if (yindex==0) yindex<=0; // cannot move since
we are at the top of the map
 else if (xindex==0) xindex<=0; // cannot move
since we are at the left edge of the map
 else if (map[21*(yindex-1)+xindex-1]) //
corresponds to map[i-1,j-1]
 yindex<=yindex;//cannot move since above
there is a wall above and left

 else if (map[21*(yindex-1)+xindex]) //
corresponds to map[i,j-1]
 yindex<=yindex;//cannot move since above
there is a wall above

 else if (map[21*yindex+xindex-1]) //
corresponds to map[i-1,j]
 yindex<=yindex;
 //cannot move since there is a wall to the right
 else // there is no wall to the left and
above
 begin
 xindex<=xindex-1;
 yindex<=yindex-1;
 xpos<=63;
 ypos<=63;
 end
 end
 end

 end

 else if (left)
 begin
 if (angle<=4095) angle <= angle + 1;
 else angle<=0;
 end

 else if (right)
 begin
 if (angle>=1) angle <= angle - 1;
 else angle<=4095;
 end

 end // ending the always

endmodule

`timescale 1ns / 1ps
///
///
// Company:
// Engineer: Mihalis Papalampros
//
// Create Date: 20:48:12 11/15/06
// Design Name:
// Module Name: lfsr
// Project Name:
// Target Device:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//

///
///
module lfsr(clk,reset,start,min,max,random,done); //linear
feedback shift register
 input clk,reset, start;
 input [4:0] min,max; // min and max can be only up to 20
 output [4:0] random;
 output done;

 reg a,b,c,d,e; // digits of the random number
 reg done;
 assign random={a,b,c,d,e};

 reg state = 0;
 always @ (posedge clk)
 begin

 if (reset)
 begin
 a<=0;
 b<=1;
 c<=1;
 d<=0;
 e<=1;
 done<=0;
 state <= 0;
 end

 else
 begin
 case (state)
 0:begin
 if (start) begin
 state <= 1;
 done<=0;
 end
 end
 1: begin

 a<=a ^d;
 b<=a;
 c<=b;
 d<=c;
 e<=d;
 if (min<={a^d,a,b,c,d} && {a^d,a,b,c,d}<=max)
begin
 done<=1;
 state <= 0;
 end
 else done <= 0;
 end

 endcase

 end

 end

 endmodule
`timescale 1ns / 1ps
///
///
// Company:
// Engineer: Mihalis Papalampros
//
// Create Date: 21:00:16 11/15/06
// Design Name:
// Module Name: map_generation
// Project Name:
// Target Device:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
///
///

module map_generation (clk,reset,start, done,map);
 input clk,start,reset;
 output [440:0] map;
 output done;

 reg done, setup;
 reg [440:0] map;

 reg [1:0] loopstate; // ranging 0 to 3
 reg [4:0] i,j,i1,j1, i2,j2,i3,j3; // indeces ranging from 0 to 20

 reg [4:0] k; // index holding the rectangle number

 wire[4:0] random1, random3, random5, random7,random9, random11,
random13;
 // random number corresponding to the part of the rectangle we change
0 to 3

 wire[4:0] random2, random4, random6, random8,random10, random12,
random14;
 // random number corresponding to the i or j index of the rectangle we
change

 wire done1, done2, done3, done4, done5, done6,done7, done8,
done9,done10, done11, done12,done13, done14;
 wire donemod1,donemod2,donemod3,donemod4;

 reg start1, start2, start3, start4,start5, start6, start7,
start8,start9, start10, start11, start12;
 reg start13, start14,startmod1,startmod2,startmod3,startmod4;

 reg reset1, reset2,
reset3,reset4,reset5,reset6,reset7,reset8,reset9,reset10,reset11,reset12;
 reg reset13,reset14;

 reg initialization; // a flag that tells us if we are working on the
initialization
 reg checking,CW, last_chance;

 reg [1:0] direction, last_direction; //during checking we need to know
if we go up, down, right or left

 wire [13:0] rem1,rem2,rem3;

 lfsr rand1(clk,reset1,start1,0,3,random1,done1);
 lfsr rand2(clk, reset2,start2,k+1,19-k,random2,done2);
 lfsr rand3(clk,reset3,start3,0,3,random3,done3);
 lfsr rand4(clk,reset4,start4,k+1,19-k,random4,done4);

 lfsr rand6(clk,reset6,start6,k+1,19-k,random6,done6);

 lfsr rand7(clk,reset7,start7,0,3,random7,done7);
 lfsr rand8(clk,reset8,start8,k+1,19-k,random8,done8);

 lfsr rand9 (clk,reset9,start9,0,3,random9,done9);
 lfsr rand10(clk,reset10,start10,k+1,19-k,random10,done10);

 lfsr rand12(clk,reset12,start12,k+1,19-k,random12,done12);

 lfsr rand14(clk,reset14,start14,k+1,19-k,random14,done14);

 always @ (posedge clk)
 begin
 if (reset)
 begin
 i<=0;
 j<=0;
 k<=0;
 counter<=0;
 initialization<=1;
 checking<=0;
 done<=0;
 loopstate<=2;
 reset1<=1;
 reset2<=1;
 reset3<=1;
 reset4<=1;
 reset6<=1;
 reset7<=1;
 reset8<=1;
 reset9<=1;
 reset10<=1;
 reset12<=1;
 reset14<=1;
 end
 if (start)
 begin

 setup<=1;
 done<=0;
 end
 if (setup && ~done)
 begin

 reset1<=0;
 reset2<=0;
 reset3<=0;
 reset4<=0;
 reset6<=0;
 reset7<=0;
 reset8<=0;
 reset9<=0;
 reset10<=0;
 reset12<=0;
 reset14<=0;

 if (initialization)
 begin
 // FSM equivalent to the nested loops
 // for k=0 to 10
 // for j=0 to 20
 // for i=0 to 20
 // begin
 //create walls or empty spaces
 // end
 case (loopstate)
 0: begin
 if (k == 11) loopstate <= 3;
 else begin
 j <= 0;
 loopstate <= 1;
 k <= k+1;

 end
 end
 1: begin
 if (j == 21) loopstate <= 0;
 else begin
 i <= 0;
 loopstate <= 2;
 j <= j+1;
 end
 end
 2: begin
 if (i == 21) loopstate <= 1;
 else
 begin
 if ((i==k && k<=j && j<=20-k) || (j==k && k<=i
&& i<=20-k)
 ||(i==20-k && k<=j && j<=20-k) || (j==20-k &&
k<=i && i<=20-k))
 begin
 if (k%2 == 0) map[21*j+i]<=0;
 else map[21*j+i]<=1;
 end
 // map[21*j+i] corresponds to map[i,j]
 // and is initially 0, ie empty space for
the even numbered boxes

 // and 1, ie wall for the odd ones.

 i <= i + 1;

 end
 end

 3: begin
 initialization<=0;
 k<=0;
 start1<=1;
 start2<=1;

 end

 endcase

 end //ending the initialization

 // adding/removing walls from the concentric squares
 else if (~initialization && ~checking)
 begin
 if (k==0)//|| k==9)
 begin
 //create one wall in #0 rectangle
 //erase one wall in #9 rectangle

 if (done1) start1<=0;
 if (done2) start2<=0;
 if (done1 && done2)
 begin

 if (random1==0) // left edge of the rectangle
 begin
 i<=k;
 j<=random2;
 map[21*random2+k]<= (k==0) ? 1:0; //corresponding to
map[i,j]

 end
 else if (random1==1) // top edge
 begin
 j<=k;
 i<=random2;
 map[21*k+random2]<= (k==0) ? 1:0; //corresponding to
map[i,j]

 end
 else if (random1==2) // right edge
 begin
 j<=random2;
 i<=20-k;
 map[21*random2+20-k]<= (k==0) ? 1:0; //corresponding
to map[i,j]

 end
 else // bottom edge
 begin

 i<=random2;
 j<=20-k;
 map[21*(20-k)+random2]<= (k==0) ? 1:0;
//corresponding to map[i,j]

 end

 k<=k+1;
 start1<=1;
 start3<=1;
 start4<=1;
 start6<=1;

 end
 end
 else if (k==1 || k==2)
 begin
 //erase two walls in #1 rectangle
 // create two walls in #2 rectangle

 if (done1) start1<=0;
 if (done3) start3<=0;
 if (done4) start4<=0;
 if (done6) start6<=0;

 if (done1 && done3 && done4 && done6)
 begin

 if (random1==0) //top edge of the rectangle
 begin
 i<=k;
 j<=random4;
 map[21*random4+k]<= (k==1) ? 0:1; //corresponding to
map[i,j]

 end
 else if (random1==1) // left edge
 begin
 j<=k;
 i<=random4;
 map[21*k+random4]<= (k==1) ? 0:1; //corresponding to
map[i,j]

 end
 else if (random1==2) // bottom edge
 begin
 j<=random4;
 i<=20-k;
 map[21*random4+20-k]<= (k==1) ? 0:1; //corresponding
to map[i,j]

 end
 else // right edge
 begin
 i<=random4;
 j<=20-k;
 map[21*(20-k)+random4]<= (k==1) ? 0:1;
//corresponding to map[i,j]

 end

 if (random3==0) // top edge of the
rectangle
 begin
 i1<=k;
 j1<=random6;
 map[21 * random6 + k]<= (k==1) ? 0:1;
//corresponding to map[i1,j1]

 end
 else if (random3==1) // left edge
 begin
 j1<=k;
 i1<=random6;
 map[21 * k +random6]<= (k==1) ? 0:1; //corresponding
to map[i1,j1]

 end
 else if (random3==2) // bottom edge
 begin
 j1<=random6;
 i1<=20-k;
 map[21 * random6 + 20-k]<= (k==1) ? 0:1;
//corresponding to map[i1,j1]

 end
 else // right
edge
 begin
 i1<=random6;
 j1<=20-k;
 map[21 * (20-k) + random6]<= (k==1) ? 0:1;
//corresponding to map[i1,j1]

 end

// map[21*j + i]<= (k==1) ? 0 :1; //corresponding to
map[i,j]
// map[21 * j1 + i1]<= (k==1) ? 0:1; //corresponding to
map[i1,j1]
 // erase, ie put 0, if k=1
 // create walls, ie put 1, if k=2
 k<=k+1;
 start1<=1;
 start3<=1;
 start4<=1;
 start6<=1;

 start7<=1;
 start8<=1;
 start9<=1;
 start10<=1;
 start12<=1;
 start14<=1;

 end
 end

 else if (k>=3 && k<=8)
 begin
 //erase four walls in rectangles #4, #6,#8
 // create four walls in rectangles #3, #5, #7

 if (done1) start1<=0;
 if (done3) start3<=0;
 if (done7) start7<=0;
 if (done8) start8<=0;
 if (done9) start9<=0;
 if (done10) start10<=0;
 if (done12) start12<=0;
 if (done14) start14<=0;

 if (done1 && done3 && done7 && done8 && done9 && done10 &&
done12 && done14)
 begin

 if (random1==0) //top edge of the rectangle
 begin
 i<=k;
 j<=random8;
 map[21 * random8 + k]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end
 else if (random1==1) // left edge
 begin
 j<=k;
 i<=random8;
 map[21 * k + random8]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end
 else if (random1==2) // bottom edge
 begin
 j<=random8;
 i<=20-k;
 map[21 * random8 + 20-k]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end
 else // right edge
 begin
 i<=random8;
 j<=20-k;
 map[21 * (20-k) + random8]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end

 if (random3==0) // top edge of the
rectangle
 begin
 i1<=k;
 j1<=random10;
 map[21 * random10 + k]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end
 else if (random3==1) // left edge
 begin
 j1<=k;
 i1<=random10;
 map[21 * k + random10]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end
 else if (random3==2) // bottom edge
 begin
 j1<=random10;
 i1<=20-k;
 map[21 * random10 + 20-k]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end
 else // right
edge
 begin
 i1<=random10;
 j1<=20-k;
 map[21 * (20-k)+random10]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end

 if (random7==0) //top edge of the rectangle
 begin
 i2<=k;
 j2<=random12;
 map[21 * random12 + k]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end
 else if (random7==1) // left edge
 begin
 j2<=k;
 i2<=random12;
 map[21 * k + random12]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end
 else if (random7==2) // bottom edge
 begin
 j2<=random12;
 i2<=20-k;
 map[21 * random12 + 20-k]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end
 else // right edge
 begin
 i2<=random12;
 j2<=20-k;
 map[21 *(20-k)+ random12]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end

 if (random9==0) // top edge of the
rectangle
 begin
 i3<=k;
 j3<=random14;
 map[21 * random14 + k]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end
 else if (random9==1) // left edge
 begin
 j3<=k;
 i3<=random14;
 map[21 * k+random14]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end
 else if (random9==2) // bottom edge
 begin
 j3<=random14;
 i3<=20-k;
 map[21 * random14 + 20-k]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end
 else // right
edge
 begin
 i3<=random14;
 j3<=20-k;
 map[21 * (20-k) + random14]<=((k%2)==0) ? 1:0;
//corresponding to map[i3,j3]

 end

 // map[21*j + i]<=((k%2)==0) ? 1: 0; //corresponding to
map[i,j]
 // map[21 * j1 + i1]<=((k%2)==0) ? 1:0; //corresponding to
map[i1,j1]
 // map[21*j2 + i2]<=((k%2)==0) ? 1:0; //corresponding to
map[i2,j2]
 // map[21 * j3 + i3]<=((k%2)==0) ? 1:0; //corresponding to
map[i3,j3]
 k<=k+1;
 start1<=1;
 start3<=1;
 start7<=1;
 start8<=1;
 start9<=1;
 start10<=1;
 start12<=1;
 start14<=1;

 start2<=1;

 end
 end

 else if (k==9)
 begin

 //erase one wall in #9 rectangle

/* lfsr rand1(clk,reset1,start1,0,3,random1,done1);*/
 if (done1) start1<=0;

 if (done1)
 begin

 if (random1==0) // left edge of the rectangle
 begin
 i<=k;
 j<=10; //random2 can only be 10
 map[21*10+k]<= (k==0) ? 1:0; //corresponding to
map[i,j]

 end
 else if (random1==1) // top edge
 begin
 j<=k;
 i<=10;
 map[21*k+10]<= (k==0) ? 1:0; //corresponding to
map[i,j]

 end
 else if (random1==2) // right edge
 begin
 j<=10;
 i<=20-k;
 map[21*10+20-k]<= (k==0) ? 1:0; //corresponding to
map[i,j]

 end
 else // bottom edge
 begin
 i<=10;
 j<=20-k;
 map[21*(20-k)+10]<= (k==0) ? 1:0; //corresponding to
map[i,j]

 end

 k<=k+1;
 start1<=1;
 start3<=1;
 start4<=1;
 start6<=1;

 end
 end

 else //if (k>=10)
 begin
 checking<=1;
 i<=0;
 j<=0;
 i1<=0;

 j1<=0;
 k<=0;
 CW<=1;
 direction<=0; // to the right
 last_direction<=0;
 last_chance<=0;

 end
 end //ending the else of ~initialization && ~checking

 // check if the map has a path to the center
 else if (checking)
 begin
 // now i,j and i1,j1 have different functionality
 // i,j is the current place
 // i1,j1 is the last place we started

 if (CW)
 begin
 if (direction==0) // go right
 begin
 if ((i==k && j==k) || (map[21*(j+1)+i]&& i<=19-
k && ~map[21*j+i+1])) i<=i+1;
 // if we are at the beginning of the box or
 // if there is a wall down and we have not
reached the right edge
 // and we can move to the right

 else if ((map[21*(j+1)+i]&& i==20-k) ||
(map[21*(j+1)+i] && i<=19-k && map[21*j+i+1]))

 // if there is a wall down and we are at the
edge of the k box
 // or if there is a wall down and to the right
 // both cases are DEAD ENDS
 begin
 if (last_chance) //do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=0;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;

 last_chance<=1;

 // we start again from the point we
entered the k box
 // but now having CCW direction and
also taking the opposite
 //direction of that of CW
 end
 end
 else if (~map[21*(j+1)+i]&& i<=19-k &&
~map[21*(j+2)+i])
 // if there is no wall down and we are not at
the edge
 // and if there is no wall two boxes down
 begin
 j<=j+2;
 if (k==8) done<=1; // we
reached the center
 else k<=k+2; // we moved two boxes closer
to the center
 // we skip the box consisting of all
walls except for the opening

 // we update the information about the
point we entered the box
 i1<=i;
 j1<=j+2;
 last_direction<=0;
 last_chance<=0;

 end

 else if (~map[21*(j+1)+i]&& i<=19-k &&
map[21*(j+2)+i] && map[21*j+i+1])
 // if there is no wall down and we are not at
the edge
 // and if there is a wall two boxes down, and a
wall to the right
 // all these make it a DEAD END!!!
 begin
 if (last_chance) //do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;

 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=0;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;

 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end

 else if (~map[21*(j+1)+i]&& i<=19-k &&
map[21*(j+2)+i] && ~map[21*j+i+1])
 // if there is no wall down and we are not at
the edge
 // and if there is a wall two boxes down, and
no wall to the right

 i<=i+1; //we just move to the right!

 else //if (~map[21*(j+1)+i]&& i==20-k)// if
(~map[i+21] && i%21==20)
 begin
 direction<=1; // go down
 end
 end

 if (direction==1) // down

 begin
 if ((i==20-k && j==k) ||(map[21*j+i-1]&& j<=19-
k && ~map[21*(j+1)+i])) j<=j+1;
 //if we are at the beginning of the box
 // if there is a wall on the left and we have
not reached the bottom edge

 else if ((map[21*j+i-1]&& j==20-k) ||
(map[21*j+i-1]&& j<=19-k && map[21*(j+1)+i]))
 //(map[i+21] && i%21==20)
 // if there is a wall on the left and we are at
the edge of the k box
 begin
 if (last_chance) //do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=0;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;

 end
 end

 else if (~map[21*j+i-1]&& j<=19-k &&
~map[21*j+i-2])
 // if there is no wall on the left and we are
not at the edge
 // and there is no wall two boxes left
 begin
 i<=i-2;
 if (k==8) done<=1; // we
reached the center
 else k<=k+2; // we moved two boxes closer
to the center
 // we skip the box consisting of all
walls except for the opening

 i1<=i-2;
 j1<=j;
 last_chance<=0;
 last_direction<=1;

 end

 else if (~map[21*j+i-1] && j<=19-k &&
map[21*j+i-2] && map[21*(j+1)+i])
 // if there is no wall on the left and we are
not at the edge
 // and if there is a wall two boxes left, and a
wall down
 // all these make it a DEAD END!!!
 begin
 if (last_chance) //do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=0;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end

 else if (~map[21*j+i-1] && j<=19-k &&
map[21*j+i-2] && ~map[21*(j+1)+i])
 // if there is no wall on the left and we are
not at the edge
 // and if there is a wall two boxes left, and
no wall down

 j<=j+1; //we just move down!

 else
 begin
 direction<=2; // go left
 end
 end

 if (direction==2) // left

 begin
 if ((i==20-k && j==20-k) || (map[21*(j-1)+i]&&
i>=k+1 && map[21*j+i-1])) i<=i-1;
 //if we are at the beginning of the box or

 // if there is a wall above and we have not
reached the left edge

 else if ((map[21*(j-1)+i]&& i==k) ||
(map[21*(j-1)+i]&& i>=k+1 && map[21*j+i-1]))
 // if there is a wall above and we are at the
edge of the k box
 begin
 if (last_chance) //do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=0;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end
 else if (~map[21*(j-1)+i]&& i>=k+1 &&
~map[21*(j-2)+i])
 // if there is no wall above and we are not at
the edge
 // and there is no wall two boxes above

 begin
 j<=j-2;
 if (k==8) done<=1; // we
reached the center
 else k<=k+2; // we moved two boxes closer
to the center
 // we skip the box consisting of all
walls except for the opening

 i1<=i;
 j1<=j-2;
 last_direction<=2;
 last_chance<=0;

 end

 else if (~map[21*(j-1)+i]&& i>=k+1 &&
map[21*(j-2)+i] && map[21*j+i-1])
 // if there is no wall above and we are not at
the edge
 // and if there is a wall two boxes above, and
a wall to the left
 // all these make it a DEAD END!!!
 begin
 if (last_chance) //do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=0;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end

 else if (~map[21*(j-1)+i]&& i>=k+1 &&
map[21*(j-2)+i] && ~map[21*j+i-1])
 // if there is no wall above and we are not at
the edge
 // and if there is a wall two boxes above, and
no wall to the left

 i<=i-1; //we just move to the left!

 else //if (~map[21*j+i-1]&& j==20-k)
 begin
 direction<=3; // go up
 end
 end

 if (direction==3) // up

 begin
 if ((i==k && j==20-k) || (map[21*j+i+1]&&
j>=k+1 && ~map[21*(j-1)+i])) j<=j-1;
 //if we are at the beginning of the box or

 // if there is a wall on the right and we have
not reached the top edge

 else if ((map[21*j+i+1]&& j==k) ||
(map[21*j+i+1]&& j>=k+1 && map[21*(j-1)+i]))

 // if there is a wall on the right and we are
at the edge of the k box
 begin
 if (last_chance) // do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=0;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end
 else if (~map[21*j+i+1]&& j>=k+1 &&
~map[21*j+i+2])
 // if there is no wall to the right and we are
not at the edge
 /// and there is no wall two boxes to the right
 begin
 i<=i+2;
 if (k==8) done<=1; // we
reached the center
 else k<=k+2; // we moved two boxes closer
to the center
 // we skip the box consisting of all
walls except for the opening

 i1<=i+2;
 j1<=j;
 last_direction<=3;
 last_chance<=0;

 end

 else if (~map[21*j+i+1]&& j>=k+1 &&
~map[21*j+i+2] && map[21*(j-1)+i])

 // if there is no wall to the right and we are
not at the edge
 // and if there is a wall two boxes to the
right, and a wall above
 // all these make it a DEAD END!!!
 begin
 if (last_chance) //do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=0;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end

 else if (~map[21*j+i+1]&& j>=k+1 &&
~map[21*j+i+2] && ~map[21*(j-1)+i])
 // if there is no wall to the right and we are
not at the edge
 // and if there is a wall two boxes to the
right, and no wall above

 j<=j-1; //we just move above!

 else //if (~map[21*j+i+1]&& j==k)
 begin
 direction<=0; // go right
 end
 end
 end //ending the if CW

 else // Counterclockwise direction

 begin
 if (direction==0) // go right
 begin
 if ((i==k && j==20-k) ||(map[21*(j-1)+i]&&
i<=19-k && ~map[21*j+i+1])) i<=i+1;
 //if we are at the beginning of the box or

 // if there is a wall above and we have not
reached the right edge

 else if ((map[21*(j-1)+i]&& i==20-k)
||(map[21*(j-1)+i]&& i<=19-k && map[21*j+i+1]))
 // if there is a wall above and we are at the
edge of the k box
 begin
 if (last_chance) //do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=1;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end
 else if (~map[21*(j-1)+i] && i<=19-k &&
~map[21*(j-2)+i])
 // if there is no wall above and we are not at
the edge
 // and there is no wall two boxes above
 begin
 j<=j-2;
 if (k==8) done<=1; // we
reached the center
 else k<=k+2; // we moved two boxes
closer to the center
 // we skip the box consisting of all
walls except for the opening

 i1<=i;

 j1<=j-2;
 last_direction<=0;

 end

 else if (~map[21*(j-1)+i]&& i<=19-k &&
map[21*(j-2)+i] && map[21*j+i+1])

 // if there is no wall above and we are not at
the edge
 // and if there is a wall two boxes above, and
a wall to the right
 // all these make it a DEAD END!!!
 begin
 if (last_chance) //do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=1;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end

 else if (~map[21*(j-1)+i]&& i<=19-k &&
map[21*(j-2)+i] && ~map[21*j+i+1])
 // if there is no wall above and we are not at
the edge
 // and if there is a wall two boxes above, and
no wall to the right

 i<=i+1; //we just move right!

 else //if (~map[21*(j-1)+i]&& i==20-k)
 begin
 direction<=3; // go up
 end
 end

 if (direction==1) // down

 begin

 if ((i==k && j==k) || (map[21*j+i+1]&& j<=19-k
&& ~map[21*(j+1)+i])) j<=j+1;
 //if we are at the beginning of the box or

 // if there is a wall on the right and we have
not reached the bottom edge

 else if ((map[21*j+i+1]&& j==20-k)
||(map[21*j+i+1]&& j<19-k && map[21*(j+1)+i]))
 // if there is a wall on the right and we are
at the edge of the k box
 begin
 if (last_chance) //
 no path to the center do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=1;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end
 else if (~map[21*j+i+1]&& j<=19-k &&
~map[21*j+i+2])
 // if there is no wall on the right and we are
not at the edge
 // and there is no wall two boxes to the right
 begin
 i<=i+2;
 if (k==8) done<=1;
 else k<=k+2; // we moved two boxes
closer to the center
 // we skip the box consisting of all
walls except for the opening

 i1<=i+2;
 j1<=j;
 last_direction<=1;

 end

 else if (~map[21*j+i+1]&& j<=19-k &&
map[21*j+i+2] && map[21*(j+1)+i])

 // if there is no wall to the right and we are
not at the edge
 // and if there is a wall two boxes to the
right, and a wall down
 // all these make it a DEAD END!!!
 begin
 if (last_chance) //do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=1;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end

 else if (~map[21*j+i+1]&& j<=19-k &&
map[21*j+i+2] && ~map[21*(j+1)+i])
 // if there is no wall to the right and we are
not at the edge
 // and if there is a wall two boxes to the
right, and no wall down

 j<=j+1; //we just move down!

 else //if (~map[21*j+i+1]&& j==20-k)
 begin
 direction<=0; // go right
 end
 end

 if (direction==2) // left

 begin
 if ((i==20-k && j==k) || (map[21*(j+1)+i]&&
i>=k+1 && ~map[21*j+i-1])) i<=i-1;
 //if we are at the beginning of the box or

 // if there is a wall below and we have not
reached the left edge

 else if ((map[21*(j+1)+i]&& i==k) ||
(map[21*(j+1)+i]&& i>=k+1 && map[21*j+i-1]))
 //(map[i+21] && i%21==20)

 // if there is a wall below and we are at the
edge of the k box
 begin
 if (last_chance) //
 no path to the center do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=1;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end
 else if (~map[21*(j+1)+i]&& i>=k+1 &&
~map[21*(j+2)+i])
 // if there is no wall down and we are not at
the edge
 // and there is no wall two boxes down
 begin
 j<=j+2;
 if (k==8) done<=1; // we
reached the center
 else k<=k+2; // we moved two boxes closer
to the center
 // we skip the box consisting of all
walls except for the opening

 i1<=i;
 j1<=j+2;
 last_direction<=2;

 end

 else if (~map[21*(j+1)+i]&& i>=k+1 &&
map[21*(j+2)+i] && map[21*(j+1)+i])

 // if there is no wall below and we are not at
the edge
 // and if there is a wall two boxes below, and
a wall to the left
 // all these make it a DEAD END!!!
 begin
 if (last_chance) //do procedure again
 begin

 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=1;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end

 else if (~map[21*(j+1)+i]&& i>=k+1 &&
map[21*(j+2)+i] && ~map[21*(j+1)+i])
 // if there is no wall below and we are not at
the edge
 // and if there is a wall two boxes below, and
no wall to the left

 i<=i-1; //we just move left!

 else //if (~map[21*j+i-1]&& j==20-k)
 begin
 direction<=1; // go down
 end
 end

 if (direction==3) // up

 begin
 if ((i==20-k && j==20-k) || (map[21*j+i-1]&&
j>=k+1 && ~map[21*(j-1)+i])) j<=j-1;
 //if we are at the beginning of the box or

 // if there is a wall on the left and we have
not reached the top edge

 else if ((map[21*j+i-1]&& j==k) || (map[21*j+i-
1]&& j>=k+1 && map[21*(j-1)+i]))
 //(map[i+21] && i%21==20)
 // if there is a wall on the left and we are at
the edge of the k box
 begin
 if (last_chance) //do procedure again
 begin

 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;
 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=1;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end
 else if (~map[21*j+i-1]&& j>=k+1 &&
~map[21*j+i-2])
 // if there is no wall to the left and we are
not at the edge
 // and there is no wall two boxes to the left
 begin
 i<=i-2;
 if (k==8) done<=1; // we
reached the center
 else k<=k+2; // we moved two boxes closer
to the center
 // we skip the box consisting of all
walls except for the opening

 i1<=i-2;
 j1<=j;
 last_direction<=3;

 end

 else if (~map[21*j+i-1]&& j>=k+1 &&
~map[21*j+i-2]&& map[21*(j-1)+i])

 // if there is no wall to the left and we are
not at the edge
 // and if there is a wall two boxes to the
left, and a wall above
 // all these make it a DEAD END!!!
 begin
 if (last_chance) //do procedure again
 begin
 initialization<=1;
 checking<=0;
 k<=0;
 i<=0;
 j<=0;
 loopstate<=2;

 end
 else
 begin
 i<=i1;
 j<=j1;
 CW<=1;
 if (last_direction==0)
direction<=2;
 else if (last_direction==1)
direction<=3;
 else if (last_direction==2)
direction<=0;
 else /*if (last_direction==3)*/
direction<=1;
 last_chance<=1;
 end
 end

 else if (~map[21*j+i-1]&& j>=k+1 &&
~map[21*j+i-2]&& ~map[21*(j-1)+i])
 // if there is no wall below and we are not at
the edge
 // and if there is a wall two boxes below, and
no wall above

 j<=j-1; //we just move up!

 else //if (~map[21*j+i+1]&& j==k)
 begin
 direction<=2; // go left
 end
 end

 end // ending else (CCW direction)

 end //ending checking

 end //(ending the if start)

 end // ending the always

 endmodule

