MIT 6.111: Introductory Digital Systems Laboratory, Fall 2005
Final project report

A Volumetric 3D LED display

David Wyatt
wyatt@mit.edu

Lawrence Wujanto
Iwujanto@mit.edu

Abstract

A 3D volumetric LED display was designed and built, along with a number of accompanying applications. The
display consisted of a cube of 512 individually controllable ultra-bright LEDs hand-soldered into a lattice, and was
intended to demonstrate some of the capabilities that a true 3D display have over 2D representations of 3D objects.
In addition, a renderer was built which concurrently displays an orthographic representation of the cube on an
SVGA display.

Applications built include 3D Pong, 2D and 3D versions of Cellular Automata, a music visualizer, and a “trip-let”
displaying the letters MIT. Different applications can be activated by means of a switch. They incorporate various
peripherals, including as mouse control and audio input with CIC filtering.

The project was implemented in the hardware description language Verilog, compiled and downloaded to a Xilinx
FPGA chip. Conclusions arising from this aspect of the design process, and from the rest of the project, are
presented at the end of the report.

mailto:wyatt@mit.edu
mailto:lwujanto@mit.edu

Table of Contents

Abstract i
List of Figures iii
1 Overview 1
1.1 Background 1
1.2 Chosen system configuration 1
2 Technical description 4
2.1 Data generation subsystem 4
2.1.i Application Reset 4
2.1.ii 3D Pong 4
2.1.iii 2D Cellular Automata 4
2.1.iv 3D Cellular Automata 5
2.1.v “MIT” trip-let 7
2.1.vi Music visualiser 7
2.2 Display subsystem 9
2.2.i Voxel addressing 9
2.2.ii Data output module 9
2.2.iii Renderer 9
2.2.iv Screen buffer wrapper 10
2.2.v Wireframe generator 11
2.2.vi SVGA interface module 11
2.3 Physical display hardware 11
2.3.i Mechanical design and construction 11
2.3.ii Driver electronics and power issues 13
3 Implementation, testing and debugging 15
3.1 Design flow 15
3.2 Debugging 15
3.3 Division of Labour 16
4 Conclusions 17
4.1 Results from the project 17
4.2 Possibilities for future expansion 17
5 Components used 18
6 References 18
Appendix A: Labkit.v 19
Appendix B: Data generation subsystem code 28
1.application_reset.v 28
2.cell_aut_2d.v 29
3.cell_aut_3d.v 30
4.clock_divider.v 34
5.mit.v. 34
6.music_visualizer.v 35
7.mux_8input.v 38
8.pong.v 39
Appendix C: Display subsystem code A1
1. data_output_module.v A1
2.renderer.v 43

List of Figures
Figure 1 - Overall block diagram 2
Figure 2 - The FPGA development board on which the project was implemented 3
Figure 3 - Layout of various application modules 6
Figure 4 - Block diagram for the display subsystem 8
Figure 5 - Diagram to show mapping from 3D (x,y,z) co-ordinates to 2D screen rows and columns 10
Figure 6 - SVGA display output, with 3D cellular automata as the active application 11
Figure 7 - Top view of wiring within a horizontal plane. 12
Figure 8 - Side view of wiring within a vertical column 12
Figure 9 - A plane of LEDs laid out on the jig 13
Figure 10 - The first three planes of LEDs assembled 13
Figure 11 - The completed LED cube 13
Figure 12 - Driver circuitry for a representative LED 14

Woujanto & Wyatt

A Volumetric 3D LED Display

1 Overview

1.1 Background

Many aspects of contemporary work and recreation require the effective visualisation of three-dimensional data:
« studying the structures and interactions of biochemicals
« designing a new space vehicle
« extracting a relationship from multi-variable plots in the social sciences
« diagnosing a patient's iliness from non-invasive scans
« planning a new sculpture
« ..or playing the latest computer game!

Conventional methods for displaying 3D data exclusively involve flat (2D) displays that give the illusion of depth.
These range from (albeit sophisticated) rendering techniques that still ultimately generate a flat image, to displays
that direct a different 2D image to each eye (through head-mounted displays, coloured filter glasses or optical
methods involving lenticular surfaces or parallax barriers). However, these all suffer a number of disadvantages,
related to the fact that the 3D images do not occupy the same space as the observer:

« Images typically have a limited angle of view and/or are only visible with special goggles

« The observer cannot interact with the images in intuitive ways (e.g. pointing out a part of the image to a
colleague with one's hand)

+ Thedisplay can give erroneous impressions of relative size/scale

These shortcomings can be overcome by a true volumetric display - one where the image of a volume of space
actually occupies a volume (composed of “voxels”, volumetric pixels). A number of methods for constructing such
displays have been attempted in the past, including the following:
+ Swept volume methods ([1],[2]) - projecting light onto a moving surface such that the reflected projection
appears to originate from the appropriate location within the volume
« Dot-matrix LED cubes ([3], [4], [5], [6]) — individual LEDs in a lattice form the voxels for displaying images
« Solid-state fluorescence ([2])- invisible laser beams excite specific regions within a crystal to emit visible
light

1.2 Chosen system configuration

For this project a dot-matrix volumetric display was built using a lattice of 512 LEDs, arranged in an 8x8x8 cube. The
number of voxels was chosen as a compromise between resolution and complexity - since the number of voxels
required increases as the cube of the side length, another row of voxels would have increased the number of LEDs
by over 40% for a marginal increase in display resolution.

In order to take advantage of the capabilities of the display, the project involved the production of several
applications whose outputs would have been difficult, if not impossible, to display with a conventional 2D monitor.

A block diagram showing the overall decomposition of the project into subsystems and modules, is shown in Figure
1; more detailed block diagrams of each subsystem can be found in section 2.

Wujanto & Wyatt 1 A Volumetric 3D LED Display

External circuitry | Display subsystem | Data generation subsystem

VGA
signals
SVGA outiine "~ | Connections to other applications
interface module [g %
A B
| 5 § EJ’ | 2 22 2 \
sbuffer
Monitor " >
| data_out sbuffer_ | » ACt:;IIuIa;
4 10 read_row, > u gg‘a 2
| sbuffer_ | >
read_col
y v
| Screen buffer | = ACeIIuIar
inside w rapper — utgglata
(uses BRAM) et >
| sbuffer_ A A A A Sbl.J er_l
ite_row write_ filter_output_ready :
an ff_ ’ 10 2 enable, - - E — Low -pass filter
s gt er_I sbuffer_l Music (Xilinx Cascade
w rite_co data_in » Visualizations | _ filter_output 19 Integrator
Columns > > — Comb module)
| Renderer | W\
Column > -
drivers P mx 8
X 64 | | > B my ps2_mouse P
64 - -t ©
» 3-D Pong - btn_click[2] = ® :I
| data_bus_ | > g A
out]
Data output Application . g
. > | module 3 Reset g |&
0 TAw| |
s, . A Audio
Pane | plane_out 3 o) (using AC97
drivers A gl § Py]) codec)
X8 61 5 k| S 1)' title_string
| £ o, o Ql o 128
o 2 g = £ ;
2 2 818 > °©
|) k| Y y 5 Title Display
64x8 bit
| Dual-port . Application Microphone input
BRAM module Synchronizer Clock selector
Plane highlighting (switch[2:0])
controls
(switch[7:3]) 5

User Controls:
{Buttons 0, 1, 2, 3 & enter}

Figure 1 - Overall block diagram. The data generation subsystem on the right writes patterns to be shown on the cube into the space buffer, which the display subsystem
then reads and displays on the cube and an SVGA screen.

An additional aspect of the project was the inclusion of an SVGA output to display an orthographic-projection
image of the cube on a conventional PC monitor. This was primarily undertaken in case unforeseen problems made
it impossible to implement the 3D display successfully, but this auxiliary output can also be used if other
circumstances (such as debugging) require the data generation subsystem to be tested without the physical display
hardware.

The system was implemented using the Xilinx Virtexll field-programmable gate array (FPGA) development board
developed for the 6.111 laboratory class at MIT, shown in Figure 2. The board contains a small number of switches
and LEDs that were used as signals for some of the modules, as well as connections to other input and output
devices (in particular, the PS/2 mouse input and monitor output).

Figure 2 - The FPGA development board on which the project was implemented.
The switches, buttons and LEDs are located at the front of the board, while the
large FPGA chip is visible to the rear of the breadboard area.

The remainder of this report describes the design and implementation of the project; the computer-aided testing
and debugging phase; and the conclusions drawn from the experience.

Wujanto & Wyatt 3 A Volumetric 3D LED Display

2 Technical description

Verilog code for all the modules implemented in this project is attached in the appendices to this report.

2.1 Data generation subsystem

A number of applications have been written for the volumetric display. Switches 0 to 2 are used to select between
the different applications, allowing for up to 8 applications. These switches set the multiplexors in the data
generation subsystem to select the appropriate app_address, app_data_out, write_enable and title_string lines for
the currently active application.

The 512 bit “space buffer” serves as an interface between the data generation display subsystems. Applications
have read and write access via port B of this dual port BRAM, and update this buffer constantly with the present
state of the active application.

Figure 1 shows the interconnection between applications in the subsystem, while figure 3 shows more details on
the implementation of each application.

2.1.i Application Reset

In order to make applications reset themselves whenever they are selected, an Application Reset module drives the
reset line of all applications, sending a signal high pulse for one clock cycle whenever the application selector
switches are toggled. This is used in applications such as 2D cellular automata to reset the playing field and await
user input.

2.1.ii 3D Pong

A natural extension of the popular two-dimensional game, 3D pong is a one-player game which involves defending
the bottom surface of the cube from being struck by a bouncing “ball” by manipulating a paddle which deflects the
ball. The paddle is controlled using a PS/2 interface mouse.

The PS/2 mouse driver module was used with X & Y motion limited from 0 (7'b000_0000) to 95 (7'b101_1111). The 4
least significant bits of the mouse coordinates were ignored so as to decrease the sensitivity of the mouse, while the
next 3 bits were used for the location of the paddle.

Since a bouncing ball that travels with equal magnitudes of velocity along each axis (as was the case for the 2D
pong implemented for Lab 4 in 6.111) would be rather boring in that it would follow the same path round the cube
every time, we specified that the velocity of the ball should be altered during every bounce off the paddle, as a
function of where it strikes the paddle.

To allow “intermediate” angles of motion that are not along one of the principle axes/diagonals, the location of the
ball is stored using a 6 bit register for each of the three axes, and then truncated to 3 bits wide for determining the
ball's location in the cube.

A set of registers store data governing the velocity and location of the ball. This data is updated regularly to shift
the ball; ensure that it bounces off walls; and change its velocity upon contact with the paddle. At the same time,
the registers are read off and used to update the contents of the space buffer to display the paddle and ball on the
playing field. An 'inv' register was included in the game that is high for a short period after a collision, causing the
state of the LEDs to invert. This indicates when a player has failed to catch the ball.

2.1.iii 2D Cellular Automata

Cellular automata, a popular form of which is Game of Life, involves a grid of cells which may each be either “living”
or “dead”, and a set of rules which dictates the next state of each cell, as a function of the states of its neighbouring

Wujanto & Wyatt 4 A Volumetric 3D LED Display

cells. This application has a number of predefined initial states that are loaded onto the top plane of the cube when
one of buttons 0 to 3 are pressed. At a frequency of 1Hz, the contents of the top plane are evolved using the
standard Game of Life rules set', while previous states of the plane are propagated downwards in the cube so as to
show the time evolution of the game.

The state of the entire cube was stored using a 512 bit register. The propagation of previous states could be done
quite easily by a single cube[511:64] <= cube[447:0] command. Evolving the state of the plane was a little more
complicated, as this involved summing the number of neighbouring live cells for each cell, and then deciding on
the next state of each cell as a function of the value of this sum. This was done by incrementing through all possible
values of an 11-bit register (state_counter) to cycle through every operation that had to be done. This could be
thought of as a 2 x 64 x 16 state FSM, allowing for 16 operations on each of the 64 LEDs on a plane, and doubling
this to allow more operations which update the cube contents to the space buffer.

The first 64 x 16 states are used for computing the next state of the top plane, with bits [9:4] used to represent the
active cell, and bits [3:0] to specify 16 operations for each cell, including resetting the cell counter, adding the
contents of each of the 8 neighbouring cells, and applying the rule set to determine the next state of the active cell.

The next 64 x 16 states allow for updating the state buffer with the new state of the cube, with many leftover

unused states. Note that when a new pattern is requested, the state jumps straight to this half of the state
sequence so as to display the new state before evolving the cube state.

2.1.iv 3D Cellular Automata

The same idea from 2D Cellular Automata can be extrapolated into the third dimension by summing all 26
neighbouring cells for each of the 512 LEDs in the LED cube. The rule set we used was that 2 neighbouring live cells
let life persist, while 3 or 4 neighbouring live cells cause life to be born, otherwise the cell “dies”. A 15-bit state
counter was required to allow for 2 x 512 x 32 states.

It has been suggested that a ROM could be used to store all possible combinations of the neighbouring cells and
the cell itself, and return the next state of the cell. This would certainly be a good idea for 2D cellular automata in
reducing the number of operations required. However, this may be infeasible for 3D cellular automata due to the
large number of possible states that 27 cells may have, and hence the large ROM size.

1 2 neighbouring live cells - life persists; 3 neighbouring cells - life is born; otherwise cell “dies”

Wujanto & Wyatt 5 A Volumetric 3D LED Display

Application block diagrams

3-D Pong

dock pe| 1NN Divider |] Garme Logic R resst_syne
Cellular Automata 2D P arameter: tato Regeters S oo | es mouse s | mosse.dock
app_enable - ball_x, ball _y, ball_z, -t pss_ _Hy |l ————
i e E wel_x, vel _y, wel_z, mouse_dda
ok - T in M Divider - c::;l_o‘lasd_dsrsgz - .. tem_p_dataiout g T4
i a data_in
Parameter ratio » Game Logic ap;_pd_ata_o_ut - ol Other signals:
app_enable >~ Registers: reset -~ paddle_x, paddle_y
cantrak_syne o | cube[312],
app_address -agf state_counted11],
app_data_in =] cell_counter:a]
app_data_out -
wurite_enable g
rezet 1 1 1
- Music Visualizer
Address clock
o dividar _ fitter_output_ready Low pass filter
o P arameters: - (Cascaded
Cellular Automata 3D input clock_treq e i) integrator com)
clock_frecuency,
; ddress_counter I 3 A
. P count_signal = L
ok - 1in M Divider v : reset_signal om_ ;
) ; _re %5 counter acay_ ey
Parameter. ratic | el Game Logic Ao
| . address counter_walue
app_enable | Fegisters: .
contrals_syne | CURE[S1Z], prev_cube(S12], app_enable -
app_address g state_courteq15], controk_syne =] Visualizer Logic
app_data_in J-| cell_counteds] app_address -l ACOT
app_data_out - app_data_in =] Resisters:
wurite_enable g app_data_out -« eisters:
res et | wurite_enable . m ocle, vumster_data
reset =]

Figure 3 - Layout of various application modules.

2.1.v “MIT” trip-let

As a demonstration of the 3D display capability of the volumetric display, we created an application which displays
the letters M, | & T from each of the principal axes, inspired by the cover of Douglas Hofstadter's GAdel, Escher, Bach.
This was done by storing 64-bit parameters which describe 8 x 8 “font grids” for these letters, and using Boolean
AND operators on elements of these grids, referenced using different pairs of the cube's three coordinates.

app_address <= next address;
app_data out[0] <= M[next address] && I[{next address([2:0], 3'b000}] && T[{next address[5:3], 3'b000}];
app_data out[l] <= M[next address] && I[{next address([2:0], 3'b001}] && T[{next address[5:3], 3'b001}];

... (continued for all 8 bits of app_data_out)

next_address[5:3] and next_address[2:0] effectively represent the z and y axes of the cube respectively. The 8 bits of
app_data_out contain the contents of a row of LEDs along the x axis. This idea could be extended to allow any
combination of letters to be displayed, perhaps using the PS/2 keyboard to input letters.

In this module, we also experimented with varying the intensity of the LEDs by cycling the contents of each
activated LED through the contents of different 8 bit strings. For example, this included an “all on” string, an
alternating on/off string, and an “all off” string. The different number of “on” states in the string changed the
brightness of the LED. A different string was selected as a function of time (using the top few bits of a large
counter), and the z coordinate in the cube. The result of this was a wave-like pattern that propagated down the z
axis of the cube.

2.1.vi Music visualiser

This module uses audio input to create 3D patterns within the cube.

The audio input is first converted to digital form by a National Semiconductor LM4550 audio codec (compatible
with the AC97 standard), controlled by a wrapper module supplied by [9]. It is then low-pass filtered by a Cascaded
Integrator Comb filter produced by the Xilinx Coregen application, configured to downsample by a ratio of 1920 to
1 (thus giving a 25Hz output since new samples are supplied by the AC97 at 48KHz) with 1 stage and a differential
delay of 2. These parameters were arrived at through experimentation and simulation of the filter's frequency
response using Microsoft Excel, to determine a suitable cut-off frequency.

When ready, the top 3 bits of the filter's 19-bit output (plus 4, to convert signed 2's complement into unsigned
format) are fed into the first of a queue of 8 vumeter_data registers, the contents of the rest of which propagate
down a register. The contents of these registers then generate the output to be shown on the cube according to the
currently-selected mode:

* In mode 0, “Linear”, the cube displays an oscilloscope that has been extruded in the third dimension; the
contents of each register determines the height of the “oscilloscope trace” in the corresponding vertical
plane.

« Inmode 1, “Ripples”, the contents of the registers determine the left-right positions of concentric squares of
a vertical plane in the cube, with the newest register controlling the central square; the aim was to give the
impression of ripples spreading out from the centre of the plane, though the pattern could also be
regarded as an oscilloscope trace rotated about a vertical axis through its left-hand end.

Switching between modes is controlled by pressing the numbered pushbuttons on the labkit board. Writing data to
the space buffer is accomplished using a 6-bit counter incremented at 65KHz and reset every time a new sample is
received from the filter (to keep the space buffer writing in rough synchrony with the changes in the underlying
data). The write address sent to the space buffer is the value of the counter, and the data is determined according to
the mode and the values of the vu_meter_data registers.

Wujanto & Wyatt 7 A Volumetric 3D LED Display

External circuitry

Display subsystem

lock_40mh
- glock 40mhz Clpck manager & clock 27mhz
5 (x3 + 2 — 40.5MHz) |
- "é' 'g VGA signals: SVGA outline
S & |vga_out red, interface module ' ‘
= vga_out_green,) ‘
vga_out_blue, Wireframe
ga_ou sbuffer 4 104 10/f/sbuffer_read_row /read_col
vga_out_sync_b, enerator
data_(yl g
‘ vga_out_blank_b, 4 * + ‘
vga_out_hsync, [x800—» -
. vaa out vsync, Screen f\llre':ral::e e;(;ge
Monitor ‘ E— Port B buffer / ﬁxec er ‘
dala gereen buffer wrapper . —
| (480,000-line 4 bit W"e:"a"l‘(e e1d9e J |
dual-port BRAM — checker
‘ A write, Bread) ‘
Port A Port A Port A
Wi
‘ sbuffer_w rite_data 10 10 sbutter_wriie_row, sbuffer_w rite_enable ‘
4 sbuffer_write col - -
-P +) =
clock_27MHz
\ J ﬁ A Renderer —\ ‘
‘ Screen Screen Current pixel # ‘
row column w ithin circle? 27MHz'in o
‘ Voxel screen Circular sprite ‘
location calculator generator Clock divider
‘ column DIaPe sprite sprite 1KHz output ‘
4‘-8
‘ rrent spot Y [13:8] [Ei] [3:0] Coun}ingut ‘
colour ° Current value
Current x
Colour) . .
— ‘ calculator Yoxel _g_ 14-bit counter 3-bit counter ‘
- Highlighting Current S |- Count input —
— - p Current value
— ‘ settings _ plane E A
A A Port B . Pprt A
Plgne clock_27MHz s 3 3 (64 bits x 8 lines) (8 bits x 64 lines)
drivers x 8 = o plane_sel P Read address Write address
‘-
e N o plane_out 8 plane_sel Space bUffer
Planes x 8 o = .
(512 bit dual-port
sIiiiii s N o BRAM)
e g ~ -t ¢ Read data out Write data in
‘) @) data_bus_out
PRI Column = Data output ||data_bus_in ‘
drivers x 64 \
Ccélzmns Highlighting controls module
X

‘ (switch[7:3])

Figure 4 - Block diagram for the display subsystem. The space buffer stores the current state of the cube, and the other modules control its display on both output devices.

2.2 Display subsystem

This subsystem:
« Transfers arbitrary data representing spatial patterns from the “space buffer” RAM to an 8x8x8 matrix of
LEDs
« Has arefresh rate of 125Hz to exploit persistence of vision
« Produces an auxiliary SVGA output which displays an orthographic image of display state at 800 x 600
resolution, with controls to highlight specific planes of the cube

See Figure 4 for a block diagram of this subsystem.

2.2.i Voxel addressing

Since there are only 192 output pins available on the labkit and 512 LEDs in the display, it is not possible to address
each LED individually; thus a passive matrix multiplexing system is used. Each horizontal plane of 64 LEDs has a
unique “enable” pin, corresponding to a row in a traditional (2D) passive matrix display, while the 8 LEDs in each
vertical column correspond to the columns of a conventional display. Thus the LEDs that are lit are at the
intersection of enabled planes and columns. This requires 64 output pins for the columns plus 8 for the planes.

With this pattern of interconnection, either 8 or 64 LEDs could be driven at once; the complete cube could be lit by
cycling through each column or each plane in turn. In order to achieve the maximum the duty cycle for the LEDs
and thus enhance their visibility, it was chosen to enable a single plane at a time while driving the columns with the
correct data for that plane.

2.2.ii Data output module

The data output module implements the above method for driving the cube's voxels. It contains a 3-bit counter that
is incremented at 1kHz and is used as the address input for the B (read) side of the space buffer, which then outputs
64 bits on the 64-bit-wide data_bus_in wire, corresponding to the voxels in the currently selected plane. In the
present implementation the data_bus_in wire is connected directly to the data_bus_out wire, which drives the
output pins on user ports 1 and 2 on the labkit, but any processing necessary in future development (such as low-
level pulse width modulation for adjusting the output brightness levels) could be incorporated at this stage.

This gives an overall refresh rate for the cube of 125Hz, quite sufficient for persistence of vision [7]. It would be
possible to refresh the cube more frequently, but it was thought unnecessary; also, a reduction in brightness of the
LEDs was observed if they were driven at significantly higher frequencies.

2.2.iii Renderer

This module performs the orthographic projection from 3D to the 2D SVGA-resolution screen and writes the
appropriate data to the screen buffer. It was designed to use the signals from the data output module without
requiring any additional control signals so that the latter could be implemented in a straightforward way.

In order to generate the projection, it has four major components (shown as submodules on the block diagram but
mostly implemented as code within the main module):

« A 14-bit counter, clocked by the main system clock at 27MHz - the value of this counter can be regarded as
the state of a finite state machine controlling the module. The top 6 bits of the counter are treated as the
number of the voxel whose projection is to be generated, voxel_column.

« The screen location calculator - this takes as input the current voxel column and the current plane number
(input to the renderer module from the data output module), and generates the screen co-ordinates of the
centre of its projection as follows (where the capitalised terms are constant parameters):

(screen column) = OFFSET_X + D*voxel_column[2:0] + D_SIN_THETA*(7 - voxel_column[5:3])

Wujanto & Wyatt 9 A Volumetric 3D LED Display

(screen row) = OFFSET_Y + D*(7 - voxel_plane) + D_COS_THETA*(7 - voxel_column[5:3])
A diagram showing the mapping from voxel_column and voxel_plane (specifying the (x,y,z) co-ordinates of
a voxel) to the 2D screen co-ordinates can be seen in Figure 5.

« The colour calculator — this uses voxel_column to select the data_bus_out signal corresponding to the
current voxel, and outputs red if it is on and black if it is off (the shades are configurable via constant
parameters). In addition, if highlighting is enabled (that is, if switch[7] is on) it dims the shade of red output
when the current plane is not the plane to be highlighted (as set up on switch[6:4]), either in terms of
horizontal planes (switch[3] = 0) or vertical planes (switch[3] = 1).

« The circular sprite generator - this takes the co-ordinates of the current point within the current voxel's
sprite, extracted from the least significant 8 bits of the counter's value, and calculates whether they
represent a point within a parameterised radius of the sprite's centre. If so, the write enable to the screen
buffer is set high.

The net result of the operation of these four components is that the address inputs to the screen buffer wrapper
cycle through the projections of each voxel in turn within the current plane, performing a 16x16 pixel raster scan
around the centre of the projection. However, the write enable to the screen buffer is only high when the scan point
is within a certain radius of the centre point, generating circles of the appropriate colour in the screen buffer
memory.

The constant parameters used by the renderer to determine the scale, location and colours of the projected image
can be taken from the instantiating module, allowing for easy reconfiguration of the output.

OFFSET_X
OFFSET_Yi ’7> screen column
0
vD
2
o
C
— ()]
@ o
s 3
e
17, @
EANE]
o)
{”)) | column)[2:0]
voxe : .
% D
%

Figure 5 - Diagram to show mapping from 3D (x,y,z) co-
ordinates to 2D screen rows and columns.

2.2.iv Screen buffer wrapper

The renderer and SVGA output modules output pixel co-ordinates on an SVGA screen as 10-bit numbers. These
could be simple concatenated to produce the memory location to write; however, such an approach would be
inefficient (since only 800x600 pixels out of the 1024x1024 would ever be used) and would mean that the screen
buffer would be too large to be implemented using the BRAMs on the FPGA chip. Thus, the 480,000-line 4-bit dual-
port BRAM comprising the screen buffer was surrounded by a wrapper module to translate the two 10-bit input co-

Wujanto & Wyatt 10 A Volumetric 3D LED Display

ordinates into memory addresses in a by performing a constant multiplication and an addition, on both the write
(port A) and read (port B) sides of the memory.

2.2.v Wireframe generator

This module takes as input the co-ordinates of the current screen pixel from the SVGA interface module and
produces a single-bit signal, outline, that indicates whether the pixel falls on one of the lines making up a wireframe
image of the cube. Inside the module this detection is implemented as a series of twelve if statements
corresponding to the twelve edges of the cube, parameterised from the labkit module to allow easy compile-time
adjustment of the size and location of the image.

At present the projection angle is fixed to be 45° due to the algorithm chosen for drawing the oblique lines at the
corners of the cube; use of a more general algorithm, such as the Bresenham line drawing algorithm [8], would
remove this restriction.

Figure 6 - SVGA display output, with 3D cellular automata as the
active application.

2.2.vi SVGA interface module

This module, based heavily on the one provided by [9], generates the required sync and blanking signals for SVGA
(800x600) display at a refresh rate of 60Hz. It is clocked at 40.5MHz, the nearest frequency to the ideal 40MHz that
could be synthesised by a Digital Clock Manager (a delay-locked-loop, here set up to output the input frequency x 3
+ 2). As well as outputting the VGA control signals, it produces the signals hcount and vcount — 10-bit signals
specifying the point on the screen whose data is being output at that time. These signals are sent to the read side of
the screen buffer wrapper and to the wireframe generator, which return (respectively) signals representing the
presence of a voxel sprite and/or a a wireframe outline pixel at that location; logic in the main labkit module ensures
that voxel sprites receive priority if both are present at the same location.

2.3 Physical display hardware

2.3.i Mechanical design and construction

As described in Section 2.2.i, the LEDs were connected in a passive matrix in which:
« Al LED cathodes within a horizontal plane are wired together
« All anodes within a vertical column are wired together

Wujanto & Wyatt 11 A Volumetric 3D LED Display

With this polarity, the selected cathode plane is driven low while all others are driven high, and simultaneously the
data to be displayed on that plane is presented on the columns in uninverted logic (i.e. if the column is high the
corresponding LED will be on).

For simplicity when using 5mm LEDs, and to reduce obscuring of the display by a support frame, the structure that
holds the LEDs in the lattice was built by soldering together the LEDs' own wires and some extra strands of solid-
core wire whose insulation had been removed. The resulting lattice has a 15mm pitch, due to the lengths of the LED
leads. Diagrams of the arrangement are shown in Figure 7 and Figure 8.

) yPlane1
Col1 Col2 Col 3

D

2
)

Y ¥

» yPlane2
Col4K Col5 Col6
) yPlane3
Col7 Col 8 Col9
%*TG planedriver To column driver
Figure 7 - Top view of wiring within a horizontal plane. Figure 8 - Side view of wiring within a

vertical column.

The LED cathodes (blue) are joined together in rows within each plane, with each row joined to the next at one end;
supplementary wires (green) provide redundant cathode connections and mechanical stability. The LED anodes
(red) are connected together in columns.

This design permitted easy, if repetitive, assembly as follows:

1. Each LED's leads were bent according to the diagrams in Figure 7 and Figure 8.

2. The LEDs were soldered together in planes of 64 (wiring up the cathodes), using a simple jig to hold them
in place while soldering (Figure 9).

3. The planes were then stacked into a cube (soldering together the anodes), starting from the topmost layer
and working downwards (Figure 10).

4. Finally, a wooden baseboard was attached to the cube for addition mechanical strength, and the plane and
column connection wires were attached.

The completed cube, shown in Figure 11, contains 1472 hand-soldered joints, and took approximately 10 hours to

construct. During the initial periods of LED lead-shaping before cube construction began, despite the fact that no
count was kept, exactly 508 LEDs were processed of which only 1 was incorrectly bent.

Wujanto & Wyatt 12 A Volumetric 3D LED Display

Figure 9 - A plane of LEDs laid out on the jig. Figure 10 - The first three planes of LEDs assembled. The

The LEDs' cathodes have been soldered corner closest to the camera is the corner at which the cathode

together, and the first stabilising cross-wire has wires for each plane were connected, and the way in which the

been soldered in place. anodes in each plane are soldered to those in the plane below
is also evident.

Figure 11 - The completed LED cube. The current
pattern was generated by the 2D Cellular Automaton
module; the cathode connection corner, voxel
column 0, is in the foreground.

2.3.ii Driver electronics and power issues

In order to give an acceptable level of brightness at a duty cycle of 1 in 8, high-brightness LEDs with a specified light
intensity of 8000mcd and a viewing angle of 20° total were used. They were specified to draw 30mA at 2.7V, and
pass less than 30uA when reverse biased. The FPGA output pins can only handle up to 24mA, so driver circuitry was
needed whose maximum ratings were calculated as follows.

Wujanto & Wyatt 13 A Volumetric 3D LED Display

« Perplane:

« when active, at maximum 64 LEDs will be on - plane driver must sink 1.92A

« when inactive, at maximum 64 LEDs will be reverse biased - plane driver must source 1.92mA
« Percolumn:

* when high, 1 LED will be on and 7 off — column driver must source 30mA

* when low, 1 LED will be off and 7 reverse biased - column driver must sink 0.21mA

Eight MIC4429 6A inverting MOSFET drivers were thus used for each plane, driven directly by FPGA output pins. The

column driver circuitry used 7404 TTL inverters along with 68Q current-limiting resistors. The schematic for the
driver circuitry is shown in Figure 12.

CONN1,2) INV_2A R A
| |
68ohm
User port 1,2 74LS04N

+c5)V
|
Ak
-
Ic_z
CONNS 1 vs1 v ;
1 ~N oun —f
4 ¢ oo BT
User port 3 4 GnD1 eND2 —f
MIC4429
o

Figure 12 - Driver circuitry for a representative LED.
LED N is at the intersection of column A (between 0
and 63) and plane Z (between 0 and 7).

Since only one plane is be active at once, the current supply requirement for the entire system were expected to be
2A at 5V (in addition to the power requirement of the FPGA and peripherals). This was more than could be supplied
by the FPGA board, but well within the capability of a standard laboratory bench power supply. In fact current
consumption was limited to around 0.3A due to unanticipated voltage drops within the driver circuitry, but this did
not appear to hinder brightness.

Wujanto & Wyatt 14 A Volumetric 3D LED Display

3 Implementation, testing and debugging

3.1 Design flow

The submodules specified in Section 2 were implemented in Verilog, an industry-standard hardware description
language, using the Xilinx Integrated Software Environment (ISE) v6 toolchain. The initial steps involved writing the
modules by hand using ISE's built-in text editor and project-based file organisation system; a bitstream
configuration file for a Virtexll XC2V6000 field-programmable gate array (FPGA) chip was then generated from
within ISE. This involved the following sequence of steps (automated by the software):

1. Compiling Verilog to a netlist of primitive gates and circuit elements (using the synthesis tool XST).
2. Mapping the netlist onto the resources available in the FPGA.
3. Placing and routing the components of the circuit for maximum performance.

The bitstream file was downloaded to the FPGA through a JTAG interface. The resulting system behaviour was
compared with expectation, leading to modifications of the source files and further compilation cycles.

3.2 Debugging

In general, Verilog modules were tested in the hardware rather than by simulating them on a PC. A number of
factors contributed to the decision to use this method for fault-finding:

« It was generally simpler to test on the FPGA than in software, once a body of known functional code had
been achieved. In the initial stages of the project, priority was given to establishing the shared interface
between the subsystems (the space buffer in particular) and creating the display subsystem before
embarking on the construction of the physical cube and the programming of the applications. This meant
that the two members of the team could work independently, each with access to a functioning (if minimal)
system; thus, the patterns produced by an application under construction could be viewed on the SVGA
output, and by the same token the partially-complete cube could be tested with a pregenerated test
pattern to check its functioning.

« There were usually sufficient inputs and outputs available on the labkit to use those for debugging, rather
than having to use a test bench waveform.

« Signals usually changed states sufficiently slowly that it was possible to perform the functions of a logic
analyser/oscilloscope by eye.

« The coding style of the members of the team was such that mistakes were usually fairly straightforward
slips that could be found without extensive experimentation - indeed, the errors were usually obvious after
a little consideration of the behaviour of the output.

By good fortune there were no faults or mistakes during the physical construction of the cube, so debugging as
such was not carried out. Careful testing took place, however, to ensure that any potential faults were detected
early (as it would be almost impossible to replace a faulty LED in the centre of the cube): each plane's 64 LEDs were
tested individually after soldering, and the complete stack was tested after the new plane had been attached. The
driver circuitry was similarly checked for function with a current-limited power supply before connecting it to the
FPGA for the first time.

Wujanto & Wyatt 15 A Volumetric 3D LED Display

3.3 Division of Labour

The work was divided between the two partners as follows.
* Lawrence Wujanto:
« 3DPong
« 2D Cellular Automaton
« 3D Cellular Automaton
MIT Trip-let
« David Wyatt:
« Display subsystem
« Music visualiser
« Display hardware construction

Wujanto & Wyatt 16 A Volumetric 3D LED Display

4 Conclusions

4.1 Results from the project

A 512-voxel volumetric display was successfully constructed and interfaced to a number of different applications
running in an FPGA. The control logic of the applications uses memories, digital signal processing units and human
interface devices, and contains multiple finite-state-machines executing different tasks in parallel. All the features
specified in the checklist were implemented successfully, as well as completion of or significant progress being
made towards some additional features (the MIT Trip-let and an application to rotate arbitrary shapes in 3
dimensions, which unfortunately was not completed by the end of the project).

Undertaking this project contributed greatly to the team's knowledge of and familiarity with contemporary
methods of digital logic design, prototyping and debugging. It also gave useful practice in project planning,
teamwork and dividing an engineering project into sections for parallel implementation. Communication skills were
exercised in preparing reports at multiple stages, from a proposal abstract through to this document, and
presenting the design concept for review at an early stage. Lastly, both team members greatly enjoyed the
experience and are very grateful for the opportunity to take part.

4.2 Possibilities for future expansion

+ Low-level (as opposed to application-level) pulse width modulation brightness control of the LEDs, with
corresponding intensity variations on the SVGA output

« Implementation of the Bresenham line drawing algorithm to allow projection angles other than 45°.

« Display of 3D data stored on a CompactFlash card - may be used as initial conditions for cellular automata

« True 3D rendering (rather than orthographic projection) of the cube on SVGA output, rotatable in real time
by user

« Modification of the cube to increase resolution/enhance visibility - use a larger lattice spacing or smaller
LEDs (ideally SMT, but this would require a new construction technique)

Wujanto & Wyatt 17 A Volumetric 3D LED Display

5 Components used

6.111 class labkit (designed by Nathan Ickes (MIT) and Xilinx)

Windows PC and Xilinx ISE software for development (monitor can also be used for displaying auxilary
SVGA output)

512 ultra-bright LEDs: 5mm, 8000mcd, 20° viewing angle (source: www.ledshoppe.com)

Wire: solid-core, multi-core ribbon cable

Baseboard: plywood, 10mm thick, 135mm x 135mm

Bench power supply: capable of supplying 1A at 5V

2 breadboards

LED driver circuitry: 12x 7404 hex inverter chips, 64x 682 resistors, 8x MIC4429 inverting 6A MOSFET driver
chips (source: www.digikey.com)

6 References

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

[9]

Actuality Systems, “Perspecta 3d display”, http://www.actuality-systems.com/ (accessed 3 November 2005)

Felix 3D, “Felix 2"/"solidFELIX", http://www.felix3d.com/ (accessed 3 November 2005)

James Clar, “3d display cube — white”, http://www.jamesclar.com/product/2005/3dcubewhite/ (accessed 3
November 2005)

Network Wizards, “Cubatron”, http://nw.com/nw/projects/cubatron/ (accessed 3 November 2005)

Todd Holoubeck, “LED cube”, http://www.toddholoubek.com/projects/ledpage/ (accessed 3 November
2005)

Chris Lomont, “LED Cube”, http://www.lomont.org/Projects/LEDCube/LEDCube.php (accessed 3 November
2005)

Wikipedia, “Persistence of Vision”, http://en.wikipedia.org/wiki/Persistence of Vision (accessed 3
November 2005)

Colin Flanagan, “The Bresenham Line-Drawing Algorithm”,
http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html (accessed 12 December 2005)

6.111 course staff, MIT, sample Verilog files,
http://web.mit.edu/6.111/www/f2005/handouts.html#samplecode (accessed 15 November 2005)

Wujanto & Wyatt 18 A Volumetric 3D LED Display

Appendix A: Labkit.v

L1177 700777777077 7777 77777777777 777

// 6.111 FPGA Labkit -- Template Toplevel Module
//

// For Labkit Revision 004

//

//

// Created: October 31, 2004, from revision 003 file
// Author: Nathan Ickes

// CHANGES FOR BOARD REVISION 004

// 1) Added signals for logic analyzer pods 2-4.

// 2) Expanded "tv_in ycrcb" to 20 bits.

// 3) Renamed "tv_out data" to "tv out i2c data" and "tv out sclk" to

// "tv_out i2c_clock".

// 4) Reversed disp data in and disp data out signals, so that "out" is an

// output of the FPGA, and "in" is an input.

;; CHANGES FOR BOARD REVISION 003

;; 1) Combined flash chip enables into a single signal, flash ce b.
;; CHANGES FOR BOARD REVISION 002

//

// 1) Added SRAM clock feedback path input and output
// 2) Renamed "mousedata" to "mouse data"
// 3) Renamed some ZBT memory signals. Parity bits are now incorporated into

// the data bus, and the byte write enables have been combined into the
// 4-bit ram# bwe_b bus.

// 4) Removed the "systemace clock" net, since the SystemACE clock is now
// hardwired on the PCB to the oscillator.

//

// Complete change history (including bug fixes)

//

// 2005-Sep-09: Added missing default assignments to "ac97 sdata out",

// "disp data out", "analyzer[2-3] clock" and

// "analyzer[2-3] data".

//

// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices
// actually populated on the boards. (The boards support up to
// 256Mb devices, with 25 address lines.)

//

// 2004-Oct-31: Adapted to new revision 004 board.

//

// 2004-May-01: Changed "disp data in" to be an output, and gave it a default
// value. (Previous versions of this file declared this port to
// be an input.)

//

// 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices
// actually populated on the boards. (The boards support up to
// 72Mb devices, with 21 address lines.)

//

// 2004-Apr-29: Change history started

//

L1777 7 707770777777 777

Wujanto & Wyatt 19 A Volumetric 3D LED Display

module labkit (beep, audio reset b, ac97 sdata out, ac97 sdata in, ac87 synch,
ac97 bit clock,

vga out red, vga out green, vga out blue, vga out sync b,

vga _out blank b, vga out pixel clock, vga out hsync,

vga_out vsync,

tv_out ycrcb, tv out reset b, tv out clock, tv _out i2c clock,
tv_out i2c data, tv_out pal ntsc, tv_out hsync b,

tv_out vsync b, tv out blank b, tv out subcar reset,

tv_in ycrcb, tv_in data valid, tv_in line clockl,
tv_in line clock2, tv_in aef, tv in hff, tv in aff,

tv _in i2c clock, tv_in i2c data, tv_in fifo read,

tv_in fifo clock, tv_in iso, tv_in reset b, tv in clock,

ram0O data, ram0 address, ram0 adv 1d, ramO clk, ramO cen b,
ram0 ce b, ram0 oe b, ram0 we b, ramO bwe b,

raml data, raml address, raml adv 1d, raml clk, raml cen b,
raml ce b, raml oe b, raml we b, raml bwe b,

clock feedback out, clock feedback in,

flash data, flash address, flash ce b, flash oe b, flash we Db,
flash reset b, flash sts, flash byte b,

rs232 txd, rs232 rxd, rs232 rts, rs232 cts,
mouse clock, mouse data, keyboard clock, keyboard data,
clock 27mhz, clockl, clock2,

disp blank, disp data out, disp clock, disp rs, disp ce b,
disp reset b, disp data in,

button0, buttonl, button2, button3, button enter, button right,
button left, button down, button up,

switch,

led,

userl, user2, user3, userd,
daughtercard,

systemace data, systemace address, systemace ce b,
systemace we b, systemace oe b, systemace irq, systemace mpbrdy,

analyzerl data, analyzerl clock,
analyzer2 data, analyzer2 clock,
analyzer3 data, analyzer3 clock,
analyzer4 data, analyzer4 clock);

output beep, audio reset b, ac97 synch, ac97 sdata out;
input ac97 bit clock, ac97 sdata in;

output [7:0] vga out red, vga out green, vga out blue;

output vga out sync b, vga out blank b, vga out pixel clock,
vga_out hsync, vga out vsync;

Wujanto & Wyatt 20 A Volumetric 3D LED Display

output [9:0] tv _out ycrcb;

output tv out reset b, tv out clock, tv out i2c clock, tv_out i2c data,
tv_out pal ntsc, tv out hsync b, tv out vsync b, tv out blank b,
tv_out subcar reset;

input [19:0] tv_in ycrcb;

input tv_in data valid, tv_in line clockl, tv_in line clock2, tv _in aef,
tv_in hff, tv_in aff;

output tv in i2c clock, tv _in fifo read, tv_in fifo clock, tv_in iso,
tv_in reset b, tv_in clock;

inout tv_in i2c data;

inout [35:0] ramO data;

output [18:0] ram0 address;

output ram0 adv_1d, ramO clk, ramO cen b, ram0 ce b, ram0 oe b, ram0 we b;
output [3:0] ram0 bwe b;

inout [35:0] raml data;

output [18:0] raml address;

output raml adv 1d, raml clk, raml cen b, raml ce b, raml oe b, raml we b;
output [3:0] raml bwe b;

input clock feedback in;
output clock feedback out;

inout [15:0] flash data;

output [23:0] flash address;

output flash ce b, flash oe b, flash we b, flash reset b, flash byte b;
input flash sts;

output rs232 txd, rs232 rts;
input rs232 rxd, rs232 cts;

inout mouse clock, mouse data;
input keyboard clock, keyboard data;

input clock 27mhz, clockl, clock2;

output disp blank, disp clock, disp rs, disp ce b, disp reset b;
input disp data in;
output disp data out;

input Dbutton0, buttonl, button2, button3, button enter, button right,
button left, button down, button up;

input [7:0] switch;

output [7:0] led;

inout [31:0] userl, user2, user3, userid;
inout [43:0] daughtercard;

inout [15:0] systemace data;

output [6:0] systemace address;

output systemace ce b, systemace we b, systemace oe b;
input systemace irqg, systemace mpbrdy;

output [15:0] analyzerl data, analyzer2 data, analyzer3 data,
analyzerd4 data;
output analyzerl clock, analyzer2 clock, analyzer3 clock, analyzer4 clock;

N N Yy,

//
// I/0 Assignments

Wujanto & Wyatt 21 A Volumetric 3D LED Display

//

LILT77 1000777700777 7777777777777 7777777777777 777777777777777777777777777

// Audio Input and Output
assign beep= 1'bO;
// assign audio reset b = 1'b0;
// assign ac97 synch = 1'b0;
// assign ac97 sdata out = 1'bO;
// ac97 _sdata in is an input

// VGA Output

/*assign vga out red = 10'hO;

assign vga out green = 10'hO0;
assign vga out blue = 10'hO;
assign vga out sync b = 1'bl;
assign vga out blank b = 1'bl;
assign vga out pixel clock = 1'b0;
assign vga out hsync = 1'b0O;
assign vga_out vsync = 1'b0;*/

// Video Output

assign tv_out ycrcb = 10'hO;
assign tv out reset b = 1'b0;
assign tv _out clock = 1'b0;

assign tv out i2c clock = 1'b0;
assign tv _out i2c data = 1'bO;
assign tv out pal ntsc = 1'b0O;
assign tv_out hsync b = 1'bl;
assign tv out vsync b = 1'bl;
assign tv _out blank b = 1'bl;
assign tv out subcar reset = 1'b0;

// Video Input

assign
assign
assign
assign
assign
assign
assign

tv_in i2c clock = 1'b0;
tv in fifo read = 1'bO;
tv_in fifo clock = 1'b0;
tv_in_iso = 1'bO0;

tv_in reset b = 1'b0;
tv_in clock = 1'b0O;
tv_in i2c data = 1'bZ;

// tv_in ycrcb, tv_in data valid, tv_in line clockl, tv_in line clock2,

// tv_in aef, tv_in hff, and tv_in aff are inputs

// SRAMs

assign ram0 data = 36'hZ;
assign ram0 address = 19'hO0;
assign ram0 adv_1d = 1'b0;
assign ram0 clk = 1'b0;
assign ram0 cen b = 1'bl;
assign ram0 ce b = 1'bl;
assign ram0 oe b = 1'bl;
assign ram0 we b = 1'bl;
assign ram0 bwe b = 4'hF;
assign raml data = 36'hZ;
assign raml address = 19'hO0;
assign raml adv_1d = 1'b0;
assign raml clk = 1'b0;
assign raml cen b = 1'bl;
assign raml ce b = 1'bl;
assign raml oe b = 1'bl;
assign raml we b = 1'bl;
assign raml bwe b = 4'hF;

assign

clock feedback out = 1'b0;

Wujanto & Wyatt 22

A Volumetric 3D LED Display

// clock feedback in is an input

// Flash ROM

/*

assign flash data = 16'hZ;
assign flash address = 24'h0;
assign flash ce b = 1'bl;
assign flash oe b = 1'bl;
assign flash we b = 1'bl;
assign flash reset b = 1'b0;
assign flash byte b = 1'bl;

// flash sts is an input

// RS-232 Interface

assign rs232 txd = 1'bl;

assign rs232 rts = 1'bl;

// rs232 rxd and rs232 cts are inputs

// PS/2 Ports
// mouse clock, mouse data, keyboard clock, and keyboard data are inputs

// LED Displays

assign disp blank = 1'bl;
assign disp clock = 1'b0;
assign disp rs = 1'b0;
assign disp ce b = 1'bl;
assign disp reset b = 1'b0;
assign disp data out = 1'b0; */
// disp data in is an input
// Buttons, Switches, and Individual LEDs
// assign led = 8'hFF;
// button0, buttonl, button2, button3, button enter, button right,
// button left, button down, button up, and switches are inputs
// User 1/0s
// assign userl = 32'hZ;
// assign user2 = 32'hZ;
// assign user3 = 32'hZz;
assign userd4d = 32'h7Z;

// Daughtercard Connectors
assign daughtercard = 44'hZ;

// SystemACE Microprocessor Port

assign systemace data = 16'hZz;
assign systemace address = 7'h0;
assign systemace ce b = 1'bl;
assign systemace we b = 1'bl;
assign systemace oe b = 1'bl;

// systemace irg and systemace mpbrdy are inputs

// Logic Analyzer

// assign analyzerl data = 16'h0;
assign analyzerl clock = 1'bl;
assign analyzer2 data = 16'hO;
assign analyzer2 clock = 1'bl;
assign analyzer3 data = 16'hO;
assign analyzer3 clock = 1'bl;
assign analyzer4 data = 16'hO;
assign analyzerd4 clock = 1'bl;

Wujanto & Wyatt

23

A Volumetric 3D LED Display

// ok rhhkhkhhkhhkhkhhkhkhhkrhkhkhkhhkh kA hhkhkhhkrhkhkhkh bk hkhkrhhkhkhhkrhkhkhhhkhkhkrhkhkrkhhkrkhhkhkxhkxk*k

// Generic inputs and outputs

// Reset switch = enter button

wire reset sync;

debounce reset debouncer(.reset(1'b0), .clock(clock 27mhz), .noisy(~button enter),
.clean (reset sync));

// Debug bus - wired to LEDs (invertedly) and low byte of Analyser 1 data port
wire [7:0] debug bus;

assign led[7:0] = ~debug bus[7:0];

assign analyzerl data[l15:0] = {8'b0, debug bus};

// A Ak A Ak kA Ak Ak kA hdA Ak kA Ak h Ak hk Ak kA hhkrhhkhkhhkhk kA hkhk Ak hdkrhkhkhkhhkhkhkrhkdkhkhkhkrhkhhkhkkxkkxk*k

// Space buffer, with inputs and outputs

// Data generation subsystem wires (port A)
wire[5:0] app address;

wire[7:0] app data in, app data out;

wire write enable;

// Display subsystem wires (port B)
wire[2:0] plane sel;
wire[63:0] data bus in;

space buffer space buffer(.addra(app address), .dina(app data out), .douta(app data in),
.wea (write enable), .clka(clock 27mhz),
.addrb (plane_sel), .doutb(data bus in), .clkb(clock 27mhz));

// hA Ak h Ak h kA Ak Ak kA hkhA Ak dk Ak hhkhhk Ak kA hkhkrhkhkhkhhkhkhk Ak hkhkhkhkrhkhkhkhhkhkhkdhkhkrkhkhkrhkkhkhkxkxx*

// Modules for data generation subsystem
// Last modified by David Wyatt
// 2005/12/11

// Labkit button inputs
wire [4:0] controls sync;
synchronize synchronizeO(.clk(clock 27mhz), .in(~button0O), .out (controls sync
synchronize synchronizel(.clk(clock 27mhz), .in(~buttonl), .out (controls sync
synchronize synchronize2(.clk(clock 27mhz), .in(~button2), .out (controls sync
synchronize synchronize3(.clk(clock 27mhz), .in(~button3), .out (controls sync
synchronize synchronize enter(.clk(clock 27mhz), .in(~button enter),

.out (controls sync([4]));

1))
1)):
1))
1))

~

[0
(1
[2
[3 4

// PS/2 Mouse
wire [2:0] mouse btn;
wire [11:0] mouse x, mouse_ y;
ps2 mouse xy my mouse (.clk(clock 27mhz), .reset(reset sync), .ps2 clk(mouse clock),
.ps2_data(mouse data), .mx(mouse x), .my(mouse y),
.btn click(mouse btn));

// AC97 Audio
wire [7:0] from ac97 data, to_ac97 data;
wire ready;
audio a(clock 27mhz, ac97 reset, from ac97 data, to_ac97 data, ready,
audio reset b, ac97 sdata out, ac97 sdata in,
ac97 synch, ac97 bit clock);
// Loopback input AC97 audio to output
assign to_ac97 data = from ac97 data;
// detect clock cycle when READY goes 0 -> 1
// £(READY) = 48khz
wire new frame;
reg old ready;
always @ (posedge clock 27mhz) old ready <= reset sync ? 0 : ready;

Wujanto & Wyatt 24 A Volumetric 3D LED Display

assign new frame = ready & ~old ready;

// Instantiate the cascade integrator comb filter, a Xilinx Coregen module

wire[18:0] filter output; // Filter output - 19 bits wide, according to Coregen...

wire filter output ready; // Filter output ready signal

low pass_filter low pass filterl (.DIN(from ac97 data), .ND(new_ frame), .CLK(clock 27mhz),
.DOUT (filter output), .RDY(filter output ready)):

// ASCII string display
wire [127:0] title;
display string my display(.reset(reset sync), .clock 27mhz(clock 27mhz),
.string data(title), .disp blank(disp blank),
.disp clock(disp clock), .disp rs(disp rs), .disp ce b(disp ce b),
.disp reset b(disp reset b), .disp data out(disp data out));

// RApplication selection (including Muxes to select appropriate inputs)

// MUX connectors

wire [5:0] app_ address0, app addressl, app address2, app address3, app address4,
app_address5;

wire [7:0] app data in0O, app data inl, app data in2, app data in3, app data in4,
app_data_ in5;

wire [7:0] app data outO, app data outl, app data out2, app data out3, app data out4,
app_data out5;

wire write enable(, write enablel, write enable2, write enable3, write enable4,
write enable5;

wire [127:0] title0, titlel, title2, title3, title4d, title5;

// MUXes
mux 8input 6bit app address mux(.in0 (app_address0), .inl (app_addressl),
.in2 (app_address2), .in3(app_address3), .in4(app_address4),
.in5 (app_address5), .in6(6'b0), .in7(6'b0), .selector(switch[2:0]),
.out (app_address)) ;
mux 8input 8bit app data in mux(.inO(app_data in0O), .inl (app_data inl),
.in2 (app_data in2), .in3(app data in3), .in4(app_data in4),
.in5(app_data in5), .in6(8'b0), .in7(8'b0), .selector(switch[2:0]),
.out (app_data in));
mux 8input 8bit app data out mux(.inO (app data out0O), .inl(app data outl),
.in2 (app_data out2), .in3(app_data out3), .ind(app_data outd),
.in5 (app_data out5), .in6(8'b0), .in7(8'b0), .selector(switch[2:0]),
.out (app_data out));
mux 8input 1lbit write enable mux(.inO(write enable0O), .inl(write enablel),
.in2 (write enable2), .in3(write enable3), .ind(write enabled),
.in5(write enable5), .in6(1'b0), .in7(1'b0), .selector(switch[2:0]),
.out (write enable));
mux 8input 128bit title mux(.inO(titleO), .inl(titlel), .in2(title2), .in3(title3),
.ind (titled),
.in5(titleb), .in6(128'b0), .in7(128'b0), .selector(switch([2:0]), .out(title));

// Application reset controller

wire reset;

application reset application resetl(.selector(switch([2:0]), .clock(clock 27mhz),
.reset (reset)) ;

// BApplications
/] —mmmmmmm———=
// 0: 3D Pong
pong pongl (.app_address (app_address0), .app data in(app data inO),
.app_data out (app_data out0), .write enable(write enableO),
.controls sync(controls sync), .clock(clock 27mhz), .reset(reset), .title(titleO),
.pos_x(mouse x[6:4]), .pos y(mouse y[6:4]), .mclick(mouse btn));

// 1: 2D Game-of-Life cellular automaton

Wujanto & Wyatt 25 A Volumetric 3D LED Display

cell aut 2D cell aut 2Dl (.app address (app_addressl), .app data in(app_data inl),
.app_data out (app_data outl), .write enable(write enablel),
.controls sync(controls sync), .clock(clock 27mhz), .reset(reset), .title(titlel));

// 2: 3D cellular automaton
cell aut 3D cell aut 3Dl (.app address (app_address2), .app data in(app_data in2),
.app_data out (app_data out2), .write enable(write enable2),
.controls_sync(controls sync), .clock(clock 27mhz), .reset(reset), .title(title2));

// 3: Music visualiser
music visualizer music visualizerl (.app address (app_address3),
.app_data in(app data in3), .app data out (app_data out3), .write enable(write enable3),
.controls sync(controls sync), .clock(clock 27mhz), .reset(reset), .title(title3),
.filter output ready(filter output ready), .filter output (filter output));

// 4: MIT triple-letter cube
mit mitl (.app address (app_address4), .app data in(app_data in4),
.app_data out (app_data outd4), .write enable(write enabled),
.controls sync(controls sync), .clock(clock 27mhz), .reset(reset), .title(titled));

// 5: 3D spinning shapes
spinning shapes spinning shapesl (.app_address (app_address5), .app _data in(app _data inb),
.app_data out (app_data outb5), .write enable(write enableb),
.controls sync(controls sync), .clock(clock 27mhz), .reset(reset), .title(titleb),
.debug (debug bus), .mouse x(mouse x), .mouse_ y(mouse y));

// ok rhhkhkhhkhhkhkhhhkhhkrhhkhkhhkrhkhkhkh bk hhkrhhkrhk kv hkhkhkhhkhhkrhhkrhhkrhkhkhkhhkrkrhkhkxhkxk*k

// Modules for display subsystem
// Last modified by David Wyatt
// 2005/12/6

// Display on the cube:

wire[63:0] data bus out;
wire[7:0] plane out;
wire toggled;

// Data output module
data output module data output modulel (.clock(clock 27mhz), .reset(reset sync),
.plane_sel (plane sel), .plane out(plane out), .data bus in(data bus in),
.data bus out (data bus out), .toggled(toggled));
// Configure it for a system clock frequency of 27MHz
defparam data output modulel.input clock freg = 27000000;

// Actual inputs and outputs!

assign userl = ~data bus out[31:0];
assign user2 = ~data bus out[63:32];
assign user3 = {24'b0, plane out([7:0]};

// Debugging
// assign led = ~plane out[7:0];
// assign analyzerl clock = clock 27mhz;

// SVGA display on a monitor:

// Parameters to configure the colours of the output on the screen

parameter OFF LED = 4'h0;

parameter DIMMED LED = 4'h4;

parameter LIT LED = 4'hF;

parameter WIREFRAME SHADE = 8'h7F; // Grey shade of the wireframe cube outline
// Parameters for screen display size (in pixels)

Wujanto & Wyatt 26 A Volumetric 3D LED Display

// A good combination is D=50, Dsin(theta) = 45, Dcos(theta) 27, offsets x,y 20
// But for the moment we will use a 45 degree projection angle for simplicity of grid
lines...

parameter LED RADIUS = 3; // Radius of circles to represent LEDs, maximum 8
parameter D = 47; // Linear LED spacing (corresponds to real 3D spacing)
parameter D SIN THETA = 34; // Projection of a Z-step of size D into the X direction
parameter D COS THETA = 34; // Projection of a Z-step of size D into the Y direction
parameter OFFSET X = 10; // Distance of graphic from left screen edge

parameter OFFSET Y = 10; // Distance of graphic from top screen edge

// Renderer - does orthographic 3d to draw projection of cube on a screen buffer
wire sbuffer write enable;
wire [9:0] sbuffer write col, sbuffer write row,
wire [3:0] sbuffer data in, sbuffer data out;
renderer rendererl (.clock(clock 27mhz), .reset(reset sync),
.voxel data bus(data bus out),
.highlight enable(switch[7]),
.highlighted plane(switch[6:4]),
.screen rdata out (sbuffer data in),
.screen_column (sbuffer write col),
.screen write enable (sbuffer write enable));
// Configure the colours and scale of the screen output

sbuffer read col, sbuffer read row;
.voxel plane(plane_ sel),

.highlight mode (switch[3]),

.screen row (sbuffer write row),

defparam rendererl.OFF LED = OFF LED;
defparam rendererl.DIMMED LED = DIMMED LED;
defparam rendererl.LIT LED = LIT LED;
defparam rendererl.LED RADIUS = LED RADIUS;
defparam rendererl.D = D;

defparam rendererl.D SIN THETA = D SIN THETA;
defparam rendererl.D COS THETA = D COS THETA;
defparam rendererl.OFFSET X = OFFSET X;
defparam rendererl.OFFSET Y = OFFSET Y;

// Clock manager to generate the 40MHz-ish clock (actually 40.5MHz)
signal...
// Copied from Lab 4 - I hope this works!

needed for the video

wire clock 40mhz unbuf,
DCM vclkl (.CLKIN (clock
// synthesis attribute
// synthesis attribute
// synthesis attribute
// synthesis attribute
BUFG vclk2 (.0(clock 40m

// Screen buffer (wrapp
screen's red channel (!)
screen buffer wrapper s

clock 40mhz;
27mhz), .CLKFX (clock 40mhz unbuf)) ;
CLKFX DIVIDE of vclkl is 2
CLKFX MULTIPLY of vclkl is 3
CLK_FEEDBACK of vclkl is NONE
CLKIN PERIOD of vclkl is 37
hz), .I(clock 40mhz unbuf));

ed in a module) - stores 800 x 600 record of the top 4 bits of the

creen buffer wrapperl (.write clock(clock 27mhz),

.write col (sbuffer write col),
.writeirow(sbufferiwriteirow),
.write enable (sbuffer write enable),
.read col (sbuffer read col),

.write data(sbuffer data in),
.read clock(clock 40mhz),
.read row (sbuffer read row),

.read data(sbuffer data out));

// SVGA video interface module - based on Lab 4

wire [9:0] hcount;
wire [9:0] vcount;
wire hsync, vsync, blank;

svga svgal (.vclock(clock 40mhz),
.vsync (vsync), .blank(blank));
assign sbuffer read col[9:0]
assign sbuffer read row[9:0]

.hcount (hcount), .vcount(vcount), .hsync(hsync),
= hcount[9:0];
= vcount[9:07];

// Small module to draw a wireframe outline of the cube on the screen
// Has a single output, wireframe/outline, which when high causes the current pixel to be

Wujanto & Wyatt 27 A Volumetric 3D LED Display

grey
wire outline;
wireframe generator wireframe generatorl (.hcount (hcount), .vcount(vcount),
.wireframe (outline));
// Configure the scale of the screen output
defparam wireframe generatorl.D = D;
defparam wireframe generatorl.D SIN THETA = D SIN THETA;
defparam wireframe generatorl.D COS THETA = D COS THETA;
defparam wireframe generatorl.OFFSET X = OFFSET X;
defparam wireframe generatorl.OFFSET Y = OFFSET Y;

// SVGA Output - based on Lab 4.
// In order to meet the setup and hold times of the AD7125, we send it clock 40mhz.

assign vga out red = (sbuffer data out[3:0]) ? {sbuffer data out[3:0], 4'b0} : (outline ?
WIREFRAME SHADE : 8'h0) ;

assign vga out green = (sbuffer data out[3:0]) ? 8'b0 : (outline ? WIREFRAME SHADE
8'hO0) ;

assign vga out blue = (sbuffer data out[3:0]) ? 8'b0 : (outline ? WIREFRAME SHADE
8'hO0) ;

assign vga out sync b = 1'bl; // not used

assign vga out blank b = ~blank;

assign vga out pixel clock = clock 40mhz;
assign vga out hsync = hsync;
assign vga out vsync = vsync;

endmodule

Appendix B: Data generation subsystem code

Note that the following files were used as provided by the 6.111 website:

« display_string.v <http://web.mit.edu/6.111/www/f2005/code/display string.v>

e ps2_mouse.v <http://web.mit.edu/6.111/www/f2005/code/ps2 mouse.v>
(parameters MAX_X and MAX_Y were both changed to 95)

« audio.v <http://web.mit.edu/6.111/www/f2005/handouts/lab3.v>

« debounce.v <http://web.mit.edu/6.111/www/f2005/handouts/debounce.v>

« synchronize.v <http://web.mit.edu/6.111/www/f2005/handouts/synchronize.v>

1. application_reset.v

module application reset (selector, clock, reset);
input [2:0] selector;
input clock;
output reset;

reg [2:0] prev selector;
reg reset;

always @ (posedge clock)
begin
if (prev_selector == selector)
reset <= 1'b0;
else begin
reset <= 1'bl;
prev_selector <= selector;
end
end

Wujanto & Wyatt 28 A Volumetric 3D LED Display

http://web.mit.edu/6.111/www/f2005/handouts/synchronize.v
http://web.mit.edu/6.111/www/f2005/handouts/debounce.v
http://web.mit.edu/6.111/www/f2005/handouts/lab3.v
http://web.mit.edu/6.111/www/f2005/code/ps2_mouse.v
http://web.mit.edu/6.111/www/f2005/code/display_string.v

endmodule

2. cell_aut_2d.v

module cell aut 2D(app_address, app data in, app data out, write enable, controls sync,
clock, reset, title);

// Standard application inputs
input [7:0] app data in;

input [4:0] controls_ sync;
input clock, reset;

// Standard application outputs
output [5:0] app_ address;
output [7:0] app data out;
output write enable;

output [127:0] title;

assign title = "Cell Automata 2D";

reg [5:0] app_ address;
reg [7:0] app data out;

// Register to store state of entire cube
reg [511:0] cube;

reg [10:0] state counter; // [3:0] - 16 substates; [9:4] - 64 LEDs, [10] - Allow time to
load to space buffer
reg [3:0] cell counter; // Counts the number of live neighbouring cells

parameter pattern ring =

64'p00000000 00001000 00010100 00010100 00001000 00001000 00000000 00000000
parameter pattern glider =

64'p00000000 00001000 00010000 00011100 00000000 00000000 00000000 00000000
parameter pattern ship =

64'p00000000 00000000 01111000 10001000 00001000 10010000 00000000 _00000000;

wire clock 2khz;
clock divider cell aut 2D clockl divider (clock, clock 2khz);
defparam cell aut 2D clockl divider.ratio = 13500;

// Cell aut 2D operates always in write mode wrt space buffer
assign write enable = 1'bl;

always @ (posedge clock)

// Handle new pattern requests
if (reset || controls syncl[0])
begin
cube <= 512'b0;
state counter <= 1024;
end
else if (controls sync[l])
begin
cube <= {448'b0, pattern ring};
state counter <= 1024;
end
else if (controls sync[2])
begin
cube <= {448'b0, pattern glider};
state counter <= 1024;

Wujanto & Wyatt 29 A Volumetric 3D LED Display

end

else if

begin
cube <= {448'b0, pattern ship};
state counter <= 1024;

end

(controls sync[3])

else if
begin
state counter <= state counter + 1;

(clock 2khz)

// Calculate next cube state

if (state counter < 1024)
case (state counter[3:0])
0: if (state counter[9:4] == 0) cube[511:64] <= cube[447:0];
1: cell counter <= 0;
2: cell counter <= cell counter + cube[(state counter([9:4] - 8 - 1) % 64 + 64];
3: cell counter <= cell counter + cube[(state counter[9:4] - 8) % 64 + 64];
4: cell counter <= cell counter + cube[(state counter[9:4] - 8 + 1) % 64 + 64];
5: cell counter <= cell counter + cube[(state counter[9:4] - 1) % 64 + 64];
6: cell counter <= cell counter + cube[(state counter[9:4] + 1) % 64 + 64];
7: cell counter <= cell counter + cube[(state counter[9:4] + 8 - 1) % 64 + 64];
8: cell counter <= cell counter + cube[(state counter[9:4] + 8) % 64 + 64];
9: cell counter <= cell counter + cube[(state counter[9:4] + 8 + 1) % 64 + 64];
10: case (cell counter)
3: cube[state counter[9:4]] <= 1'bl; // Generate living cell
2: cube[state counter[9:4]] <= cube[state counter[9:4]]; // Maintain

living cell
default: cube[state counter[9:4]] <= 1'bO;
(isolation/overcrowding)
endcase
endcase

// Cell dies

// Store cube state into space buffer
else if (state counter < 1024 + 64)
begin
app address <= 64 - state counter([5:0];
most recent

// Subtracted from 64 to ensure that

// Life state is on the top plane

app_data out[0] <= cube[8*state counter([5:0]+0];
app data out[1l] <= cube[8*state counter[5:0]+1];
app _data out[2] <= cube[8*state counter([5:0]+2];
app data out[3] <= cube[8*state counter[5:0]+3];
app_data out[4] <= cube[8*state counter([5:0]+4];
app data out[5] <= cube[8*state counter[5:0]+5];
app _data out[6] <= cube[8*state counter([5:0]+6];
app data out[7] <= cube[8*state counter[5:0]+7];
end
end
endmodule

3. cell_aut_3d.v

module cell aut 3D(app_address,
clock, reset, title);
// Standard application inputs
input [7:0] app data in;
input [4:0] controls_ sync;
input clock, reset;

app _data in, app data out, write enable, controls sync,

Wujanto & Wyatt 30 A Volumetric 3D LED Display

// Standard application outputs
output [5:0] app_ address;
output [7:0] app data out;
output write enable;

output [127:0] title;

assign title = "Cell Automata 3D";

reg [5:0] app_address;
reg [7:0] app_data_out;

// Register to store state of cube
reg [511:0] cube;
reg [511:0] prev cube;

// Predefined game states

parameter pattern empty = 512'b0;

parameter pattern row = {192'b0,32'b0,8'b00111000,24'b0,256'b0};

parameter pattern corners = {8'b10000001, 48'b0O, 8'b10000001, 384'b0O, 8'b10000001, 48'b0O,
8'b10000001};

parameter pattern random = {256'b0,
64'01000110100100100100001001000001001001000100010000101001000100101, 192'b0};

// 1lkhz clock —-- For updating space buffer contents

wire clock 27khz;

clock divider cell aut 3D clockl divider (clock, clock 27khz);
defparam cell aut 3D clockl divider.ratio = 1000;

// Cell aut 3D operates always in write mode wrt space buffer
assign write enable = 1'bl;

// Cell aut 3D works like a 1024 x 32 state FSM:

// * First 512 x 32 states for computing next state of the cube

// - 512 main states for each of the 512 LEDs

// - 32 sub states for adding up neighbouring cell contents and deciding the next
cell state

// * Next 64 states used for updating space buffer with contents of cube register.

// * Remaining states are "do nothing" states

reg [14:0] state counter; // Counter for maintaining state of game machine

reg [4:0] cell counter = 0;

always @ (posedge clock)
if (reset)
begin
cube <= pattern empty;
end
else if (clock 27khz) begin

// Check if new pattern has been requested (or if application has been reset)
// If a pattern has been requested, jump to state 16384 to skip computing the next state
and
// start displaying the next state.
if (controls sync[0] || reset)
begin
cube <= pattern empty;

state counter <= 16384;

cell counter <= 0;
end

Wujanto & Wyatt 31 A Volumetric 3D LED Display

else if
begin
cube <= pattern row;
state counter <= 16384;
cell counter <= 0;
end
else if
begin
cube <= pattern corners;
state counter <= 16384;
cell counter <= 0;
end
else if
begin
cube <= pattern random;
state counter <= 16384;
cell counter <= 0;

(controls sync[1])

(controls sync[2])

(controls sync[3])

end

// The "compute next cube" states
else if (state counter < 16384)
begin

// Select the appropriate sub-state
case (state counter([4:0])

// Make copy of previous state o

f cube (to be

used as a source for calculating

next state),

// but only right at the beginning

manipulated)

0: if (state counter[13:5] == 0) prev cube <= cube;

// Add up neighbouring cells one by one.

// Note that state counter[13:5] identifies the cell that we are

1: cell counter <= cell counter + prev cube[(state counter[13:5]
512) % 512];

2: cell counter <= cell counter + prev cube[(state counter[13:5]
5127;

3: cell counter <= cell counter + prev cube[(state counter[13:5]
512) % 512];

4: cell counter <= cell counter + prev cube[(state counter[13:5]
5127;

5: cell counter <= cell counter + prev cube[(state counter[13:5]
5127;

6: cell counter <= cell counter + prev cube[(state counter[13:5]
5127;

7: cell counter <= cell counter + prev cube[(state counter[13:5]
512) % 512];

8: cell counter <= cell counter + prev cube[(state counter[13:5]
5127;

9: cell counter <= cell counter + prev cube[(state counter[13:5]
512) % 512];

10: cell counter <= cell counter + prev cube[(state counter[13:5]
5127;

11: cell counter <= cell counter + prev cube[(state counter[13:5]
5127;

12: cell counter <= cell counter + prev cube[(state counter[13:5]
5127;

13: cell counter <= cell counter + prev cube[(state counter[13:5]
5127;

// cell counter <= cell counter + prev_cube[(state counter[13:5])

add the cell itself)
14: cell counter <= cell counter + prev cube[(state counter[13:5]

Wujanto & Wyatt

32

(before any states have cells have been

manipulating

oe

+

64 - 8 - 1 +

64 8 + 512)
64 8 + 1 +
64 1 + 512)
64 512) %
64 1 + 512)
64 8 - 1 +
64 8 + 512)
64 8 + 1 +
8 1 + 512)
8 512) %

8 1 + 512)
1 512) %
51271; (Don't
1) % 5127];

A Volumetric 3D LED Display

15: cell counter <= cell counter + prev cubel[(state counter[13:5] + 8 - 1) % 512];

16: cell counter <= cell counter + prev cube[(state counter[13:5] + 8) % 512];

17: cell counter <= cell counter + prev cube[(state counter[13:5] + 8 + 1) % 512];

18: cell counter <= cell counter + prev cube[(state counter[13:5] + 64 - 8 - 1) %
5121;

19: cell counter <= cell counter + prev cube[(state counter([13:5] + 64 - 8) %
5121;

20: cell counter <= cell counter + prev cube[(state counter[13:5] + 64 - 8 + 1) %
51271;

21: cell counter <= cell counter + prev cube[(state counter[13:5] + 64 - 1) %
5121;

22: cell counter <= cell counter + prev cube[(state counter[13:5] + 64) % 512];

23: cell counter <= cell counter + prev cube[(state counter[13:5] + 64 + 1) %
5127;

24: cell counter <= cell counter + prev cube[(state counter[13:5] + 64 + 8 - 1) %
5127;

25: cell counter <= cell counter + prev cube[(state counter[13:5] + 64 + 8) %
5127;

26: cell counter <= cell counter + prev cube[(state counter[13:5] + 64 + 8 + 1) %
5127;

// After counting the number of neighbouring cells, decide the next state for the
active

// cell, and reset the cell counter.

27: case(cell counter)

2: cube[state counter([13:5]] <= prev cube[state counter[13:5]];
3: cube[state counter[13:5]] <= 1'bl;
4: cube[state counter[13:5]] <= 1'bl;
default: cube[state counter[13:5]] <= 1'b0;
endcase
28: cell counter <= 0;
endcase

state counter <=

end

// Update contents
// state counter[5:

takes in

0]

// 8 cells at a time

else if
begin

(i.e.
((state counter >= 16384)

state counter + 1;

of space buffer
identifies the column of cells we are updating

1 column)
&&

app address <= state counter([5:0];

app_data out[7] <= cube[8*state counter[5:
app_data out[6] <= cube[8*state counter[5:
app_data out[5] <= cube[8*state counter[5:
app _data out[4] <= cube[8*state counter[5:
app_data out[3] <= cube[8*state counter[5:
app_data out[2] <= cube[8*state counter[5:
app_data out[l] <= cube[8*state counter[5:
app_data out[0] <= cube[8*state counter[5:
state counter <= state counter + 1;
end
// The "do nothing state"
else state counter <= state counter + 1;
end
endmodule
Wujanto & Wyatt 33

OO OO OO oo

+ + + + + + o+

O~ N
[
Ne SN

w & U1 oy I
~

o o~

(the space buffer

(state counter < 16384 + 64))

A Volumetric 3D LED Display

4. clock_divider.v

module clock divider(clock in, clock out);
input clock in;
output clock out;
reg clock out;

parameter ratio = 1000;
reg [14:0] counter = 0;

always @ (posedge clock in)
if (counter >= ratio)
begin
counter <= 0;
clock out <= 1'bl;
end
else
begin
counter <= counter + 1;
clock out <= 1'b0;
end

endmodule

module big clock divider(clock in, clock out);
input clock in;
output clock out;
reg clock out;

parameter ratio = 1000;
reg [24:0] counter = 0;

always @ (posedge clock in)
if (counter >= ratio)
begin
counter <= 0;
clock out <= 1'bl;
end
else
begin
counter <= counter + 1;
clock out <= 1'b0;
end

endmodule

5. mit.v

module mit (app_address, app data in, app data out, write enable, controls sync, clock,
reset, title);

// Standard application inputs

input [7:0] app data in;

input [4:0] controls_sync;

input clock, reset;

// Standard application outputs
output [5:0] app_ address;
output [7:0] app_data out;
output write enable;

output [127:0] title;

Wujanto & Wyatt 34 A Volumetric 3D LED Display

assign title = " MIT - 6.111 "

reg [5:0] app_address;
reg [7:0] app_data out;

parameter M 64'b10000001 11000011 10100101 10100101 10011001 10000001 10000001 10000001;
parameter I 64'b11111111 00011000 00011000 _00011000_ 00011000 00011000 00011000 11111111;
parameter T = 64'b11111111 00011000 00011000 00011000 00011000 00011000 00011000 00011000;

parameter fade0l
8'pb11111110;

parameter fade4d
8'010000000;

reg [23:0] fadecounter;

reg fader;

8'b00000000, fadel 8'b10000000, fade2 8'b10101010, fade3

8'b11111111, fade5

8'b11111110, fadeb

8'b10101010, fade7?

wire [5:0] next address;
assign next address = app_address + 1;
assign write enable = 1'bl;

always @ (posedge clock)
begin

app_address <= next address;

fadecounter <= fadecounter + 1;

case ((fadecounter([23:21] + app address[5:3]) % 8)

0: fader <= fadeO[fadecounter[14:12]

fader <= fadel[fadecounter[14:12]
fader <= fade2[fadecounter[14:12]
fader <= fade3[fadecounter[14:12]
fader <= fade4d4 [fadecounter[14:12]
fader <= fadeb5[fadecounter[14:12]
fader <= fadeo6b[fadecounter[14:12]
7: fader <= fade7[fadecounter[14:12]
endcase

oY U W N

app data out[0] <= fader && M[next address] && I[{next address[2:0], 3'b000}] &&
T[{next address[5:3], 3'b000}];

app data out[1l] <= fader && M[next address] && I[{next address[2:0], 3'b001}] &&
T[{next address[5:3], 3'b001}];

app data out[2] <= fader && M[next address] && I[{next address[2:0], 3'b010}] &&
T[{next address[5:3], 3'b010}];

app data out[3] <= fader && M[next address] && I[{next address[2:0], 3'b011}] &&
T[{next address[5:3], 3'b011}];

app data out[4] <= fader && M[next address] && I[{next address[2:0], 3'bl00}] &&
T[{next address[5:3], 3'b1l00}];

app data out[5] <= fader && M[next address] && I[{next address[2:0], 3'bl01}] &&
T[{next address[5:3], 3'bl01}];

app data out[6] <= fader && M[next address] && I[{next address[2:0], 3'bl10}] &&
T[{next address[5:3], 3'bl110}];

app data out[7] <= fader && M[next address] && I[{next address[2:0], 3'blll}] &&
T[{next address[5:3], 3'blll}];

end

endmodule

6. music_visualizer.v

module music visualizer (app address, app data in, app data out, write enable, controls sync,
clock, reset, title, debug, filter output ready, filter output);

Wujanto & Wyatt 35 A Volumetric 3D LED Display

// Standard application inputs
input [7:0] app data in;

input [4:0] controls sync;
input clock, reset;

// Standard application outputs

output [5:0] app address;

output [7:0] app data out;

output write enable;

assign write enable = 1'bl; // Always write to the space buffer!
output [127:0] title;

output [7:0] debug;

reg [5:0] app_address;
reg [7:0] app_data out;
reg [7:0] debug;

// Input data samples - from a low pass filter
input filter output ready; // Signals when data is ready
input [18:0] filter output; // Actual data bus - 19 bits wide

// Title
assign title = "Music Visualizer";
// Registers to store the current mode - linear or rippling

reg[l:0] mode = 0;
parameter LINEAR = 0;
parameter RIPPLING = 1;

// Counter parameters

parameter input clock freg = 27000000;

parameter address write rate = 65000; // A bit more than 64kHz, so that we will have
finished writing out data before the next AC97 frame

/] —mmmmmm e music visualizer--------——--—--—————————————
reg [2:0] vumeter datal[7:0]; // Stores the VU meter datastream
// reg [1:0] vumeter selector; // The VU meter register to be output at the present time

// N.B. To make sure we keep the CIC filter and the address counter in step, reset the
latter when the former outputs data

wire address counter reset signal;

assign address counter reset signal = filter output ready;

// Clock divider to produce a 64kHz count signal (high for one clock period every time)
wire count signal;
divider address clock divider(.clock(clock), .reset(address counter reset signal),
.out (count signal));
defparam address clock divider.input clock freq = input clock freqg;
defparam address clock divider.desired frequency = address write rate;

// A 6-bit counter (counts at 64kHz thanks to the clock divider) to generate write
addresses and generally act as a "cursor"

// Reset by address counter reset signal

wire [5:0] address counter value;

counter 6bit address counter (.clock(clock), .count input (count signal),
.reset (address_counter reset signal), .value(address counter value));

// Main loop

always @ (posedge clock) begin
// Every time the filter says it's ready, sample the top 3 bits of the filter output,
// put them into vumeter data[0]...

Wujanto & Wyatt 36 A Volumetric 3D LED Display

if (filter output ready) begin
vumeter data[0] <= filter output[18:16] + 4;

// ...and shunt all the other sampled ac97 datas down a register
] <= vumeter datal[0];
] <= vumeter datall]

] <= vumeter datal2];
] <= vumeter datal[3];
]]
]]
]]

’

vumeter data
vumeter data
vumeter data
vumeter data
vumeter data
vumeter data

’

<= vumeter datal4
<= vumeter datalb5
<= vumeter datal[6

’

’

end

// Select current mode depending on which button is pressed
if (controls sync[0]) mode <= LINEAR;
else if (controls sync[l]) mode <= RIPPLING;

// Debug: filter output
debug <= filter output[18:11];

// Use the whole cube as a kind of oscilloscope for the filtered AC97 signal - waves
ripple out from the centre

// I.e. if the current horizontal plane number (address counter value[5:3]) equals the
vumeter data reg

// for that square (address counter value[2:0]), light all the LEDs (which will be a
rowful)

app address <= address counter value;

// Choose the output data depending on the current mode
case (mode)
// Linear - a kind of slow oscilloscope
LINEAR: app data out <= (address counter value[5:3] ==
vumeter data[address counter value[2:0]]) ? 8'hFF : 8'hO;

// Rippling - patterns ripple out from the centre - so the outermost square of the
cube (top, bottom, front, back) gets the oldest value etc.
RIPPLING: begin

if ((address counter value([5:3] == 0) || (address counter value[5:3] == 7) ||
(address counter value[2:0] == 0) || (address counter value[2:0] == 7)) app _data out <= 8'hl
<< vumeter data[6];
else if ((address counter value[5:3] == 1) || (address counter value[5:3] == 6)
|| (address_counter value[2:0] == 1) || (address counter value[2:0] == 6)) app data out <=
8'hl << vumeter datafl4];
else if ((address counter value[5:3] == 2) || (address counter value[5:3] == 5)
|| (address counter value[2:0] == 2) || (address_ counter value[2:0] == 5)) app data out <=
8'hl << vumeter dataf[2];
else if ((address counter value[5:3] == 3) || (address counter value[5:3] == 4)
|| (address_counter value[2:0] == 3) || (address counter value[2:0] == 4)) app data out <=
8'hl << vumeter dataf[O0];
end
endcase
end
endmodule

// 6 bit counter

module counter 6bit (clock, count input, reset, value);
input clock, count input, reset;
output [5:0] value;
reg [5:0] value;

// Value at which the counter resets itself
parameter max value = 63;

Wujanto & Wyatt 37 A Volumetric 3D LED Display

always @ (posedge clock) begin

if (reset) value <= 0;
else if (value >= max value) value <= 0;
else if (count input) value <= value + 1;
end
endmodule

7. mux_8input.v

module mux 8input 1lbit(inO, inl, in2, in3, in4,

inl, in2, in6, in7;

selector;

input in0, in3, in4, in5,

input [2:0]
output out;

in5, in6, in7, selector, out);

reg out;
always @ (inO or inl or in2 or in3 or in4 or in5 or in6 or in7 or selector)
case (selector)
3'b000: out = 1in0;
3'b001: out = inl;
3'b010: out = in2;
3'b011l: out = in3;
3'b100: out = in4;
3'"p101: out = in5;
3'b110: out = in6;
3'b1l1ll: out = in7;
endcase
endmodule
module mux 8input 6bit (in0, inl, in2, in3, in4, in5, in6, in7, selector, out);
input [5:0] in0O, inl, in2, in3, in4, in5, in6, in7;
input [2:0] selector;
output [5:0] out;
reg [5:0] out;
always @ (inO or inl or in2 or in3 or in4 or in5 or in6 or in7 or selector)
case (selector)
3'b000: out = in0;
3'b001: out = inl;
3'b010: out = in2;
3'b011: out = in3;
3'pb100: out = in4;
3'b101: out = inb5;
3'"0110: out = in6;
3'b1l11l: out = in7;
endcase
endmodule
module mux 8input 8bit (inO, inl, in2, in3, in4, in5, in6, in7, selector, out);
input [7:0] in0O, inl, in2, in3, in4, in5, in6, in7;
input [2:0] selector;
output [7:0] out;
reg [7:0] out;
always @ (inO or inl or in2 or in3 or in4 or in5 or in6 or in7 or selector)

case (selector)

Wujanto & Wyatt 38

A Volumetric 3D LED Display

inl, in2, in3, in4, in5, in6, in7,

in3, in4, in5, in6, in7;

selector,

out) ;

in2 or in3 or in4 or in5 or in6 or in7 or selector)

module pong(app_address, app data in, app data out, write enable, controls sync, clock,

3'b000: out = in0;
3'b001: out = inl;
3'b010: out = in2;
3'b011l: out = in3;
3'b100: out = in4;
3'p101: out = in5;
3'"p110: out = in6;
3'b11ll: out = in7;
endcase
endmodule
module mux 8input 128bit (inO0,
input [127:0] in0O, inl, in2,
input [2:0] selector;
output [127:0] out;
reg [127:0] out;
always @ (inO or inl or
case (selector)
3'b000: out = in0;
3'b001: out = inl;
3'b010: out = in2;
3'b011: out = in3;
3'p100: out = in4;
3'"p101: out = in5;
3'p110: out = in6;
3'b111l: out = in7;
endcase
endmodule
8. pong.v
reset, title, pos x, pos y,

// Standard
input [7:0]
input [4:0]
input clock,

app_data in;
controls sync;
reset;

// Pong inputs
input [2:0] pos_x,
input [2:0] mclick;

pos_ys

mclick);

application inputs

// Translate mouse coordinates into game coordinates

wire [2:0]
assign paddle x = pos x + 1;
assign paddle y 6 - pos_y;

paddle x, paddle y;

// Standard application outputs

output
output
output
output

[5:0] app address;
[7:0] app_data out;
write enable;
[127:0] title;

assign title

"3D Pong

// Pong registers & settings

reg [2:0] %, vy, z;
reg [7:0] app data out;
Wujanto & Wyatt

// 3d "cursor"
// Register to store column of

39

data to be written

A Volumetric 3D LED Display

reg [7:0] temp data out; // Register to store next column of data to be written
reg [5:0] app_address;

reg [5:0] ball x = 42, ball y = 42, ball z = 42; // Ball location

reg signed [4:0] vel x = 0, vel yv = 0, vel z = 4; // Ball velocity

reg [7:0] count; // Frame counter (count frames before moving the ball)
reg inv = 0; // Invert voxels to indicate a crash

reg compute mode; // Separates velocity computation from shifting of ball

// Prevents end effects.

parameter N = 4; // No. of frames generated before shifting ball

parameter delta vel = 3; // Bmount to change velocity of ball when bouncing off
paddle.

assign write enable = 1'bl;

// Slow down the clock to 27kHz

wire slow clock;

clock divider pong clock divider (clock, slow clock);
defparam pong clock divider.ratio = 1000;

always @

(posedge clock)

if (reset)

begin

ball x <= 42;
ball y <= 42;
ball z <= 42;

vel x <= 0;
vel y <= 0;
vel z <= 4;
end
else if (slow_clock) begin

// Adjust "cursor" & write out data at appropriate point
x <= x + 1;

if (x ==7) y <=y + 1;
if ((x == T7) && (y == 7)) z <=z + 1;
if (x == 0)
begin
app_data out <= temp data out;
app_address <= {z, y} - 1;
end

// Check state at present cursor position

temp data out[x] <= (inv """ // Crash indicator
(((x == ball x[5:3]) && (y == ball y[5:3]) && (z == ball z[5:3])) ~* // Check if
we're at the ball
(((x == paddle x - 1) || (x == paddle x) || (x == paddle x + 1)) && // Check if
we're at the paddle
((y == paddle y - 1) || (y == paddle y) || (y == paddle y + 1)) &&

(z == 0))));

// Shift game elements at the end of every N cycles
if ((x == 7) && (y == T7) && (z == 7))

begin
if

(count >= N) begin

compute mode <= compute mode + 1;

if

(compute mode) begin
count <= 0;

// Check for collisions with sides + top

if (ball x[5:3] == 0) vel x <= vel x[4] ? -vel x : vel x;
if (ball x[5:3] == 7) vel x <= vel x[4] ? vel x : -vel x;
if (ball y[5:3] == 0) vel y <= vel y[4] ? -vel y : vel y;

Wujanto & Wyatt 40 A Volumetric 3D LED Display

if (ball y[5:3] == T7) vel y <= vel y[4] ? vel y : -vel y;
if (ball z[5:3] == 7) vel z <= vel z[4] ? vel z : -vel z;

// Check if ball is at lowest plane
if (ball z[5:3] == 0)

begin
// Reverse z-direction of ball
vel z <= vel z[4] ? -vel z : vel z;

// Check if ball collided with paddle
if ((ball x[5:3] >= paddle x - 1) && (ball x[5:3] <= paddle x + 1) &&
(ball y[5:3] >= paddle y - 1) && (ball y[5:3] <= paddle y + 1))
begin
// Alter velocity according to where ball struck paddle,
// ensuring magnitude of velocity does not exceed 2.

if (ball x[5:3] == paddle x - 1) vel x <= (vel x <= -2) ? -2 : vel x - 1;
else if (ball x[5:3] == paddle x + 1) vel x <= (vel x >= 2) ? 2 : vel x +
1;
if (ball y[5:3] == paddle y - 1) vel y <= (vel y <= -2) ? -2 : vel y - 1;
else if (ball y[5:3] == paddle y + 1) vel y <= (vel y >= 2) 2 2 : vel y +
1;
end
else inv <= 1'bl;
end
// Clear the "crash signal"
if (ball z[5:3] == 2) inv <= 1'b0;
end
else begin
// Advance ball position
ball x <= ball x + vel x;
ball y <= ball_y + vel y;
ball z <= ball z + vel z;
end
end
else count <= count + 1;
end
end
endmodule

Appendix C: Display subsystem code

1. data_output_module.v

// Module to read data out of space buffer RAM
// and output it to whereever it will be displayed
module data output module(clock, reset, plane sel, plane out, data bus in, data bus out,
toggled) ;
parameter input clock freqg = 27000000; // Frequency of clock in Hz
parameter plane rate = 1000; // Rate at which the display cycles through the planes in Hz

// Inputs and outputs

input clock, reset;

input [63:0] data bus in;
output [2:0] plane sel;
output [63:0] data bus out;
output [7:0] plane out;
output toggled;

Wujanto & Wyatt 41 A Volumetric 3D LED Display

wire count signal;

// Clock divider
divider clock divider(.clock(clock), .reset(reset), .out(count signal),
.toggled(toggled)) ;
defparam clock divider.input clock freq = input clock freq;
defparam clock divider.desired frequency = plane rate;

// 3 bit counter
counter 3bit counter(.clock(clock), .count input(count signal), .reset(reset),

.value (plane_sel));

// 1-0f-8 decoder

assign plane out[7:0] = (8'bl << plane sel);
assign data bus out = data bus in;
endmodule

//**
* ok x ok ok k ok x

//**
* ok x ok ok k ok x

//Divide an input clock to produce one active pulse at a lower frequency
module divider (clock, reset, out, toggled);

// Frequency of the input clock (defaults to 27MHz)
parameter input clock freg = 27000000;

// Frequency of output pulses (defaults to 1Hz)
parameter desired frequency = 1;

//Initial value of the counter that will be decremented every cycle
parameter CYCLES = input clock freq/desired frequency;

//Input and output
input clock, reset; //27MHz clock and reset line

output out, toggled; // output that is high for one clock cycle every 1ls, and one
that is toggled every 1s

reg out = 0, toggled = 0;

//Register array to count down - 25 bits wide (to store up to 27e6 in binary)
reg [24:0] delay = 0;

always @ (posedge clock)
if (reset) // Clear the timer if reset

begin
delay <= 0;
out <= 0;
end
else if (delay == CYCLES) // If we reach the 1s mark, clear timer, toggle toggled and
set out
begin
delay <= 0;
out <= 1;
toggled = ~toggled;
end

else // If we're just counting normally, count normally and clear out (so it
only stays high for one cycle)
begin
delay <= delay + 1;
out <= 0;

Wujanto & Wyatt 42 A Volumetric 3D LED Display

end

endmodule

//**
* Kk ok ok ok k ok ok
//**

* Kk ok ok ok k kk

// 3 bit counter

module counter 3bit (clock, count input, reset, value);
input clock, count input, reset;
output [2:0] value;
reg [2:0] value;

always @ (posedge clock) begin

if (reset) wvalue <= 0;

else if (count input) value <= value + 1;
end

endmodule

2. renderer.v

// SVGA rendering and display module
// David Wyatt, 2005/12/4

// Renderer - projects an image of the cube onto a 2d screen buffer

module renderer (clock, reset, voxel plane, voxel data bus, highlight enable, highlight mode,
highlighted plane, screen rdata out, screen row, screen column, screen write enable);

// Inputs and outputs

input clock, reset, highlight enable, highlight mode;

input [2:0] voxel plane, highlighted plane;

input [63:0] voxel data bus;

output screen write enable;

output [3:0] screen rdata out;

output [9:0] screen row, screen column;

// Parameters to determine red shades of 1lit, off and highlighted LEDs - set in the main
labkit module

parameter OFF LED = 4'hO;

parameter DIMMED LED = 4'h4;

parameter LIT LED = 4'hF;

// Parameters for screen display size (in pixels) - set in the main labkit module
parameter LED RADIUS = 8; // Radius of circles to represent LEDs, maximum 8
parameter D = 40; // Linear LED spacing (corresponds to real 3D spacing)
parameter D SIN THETA = 28; // Projection of a Z-step of size D into the X direction
parameter D COS THETA = 28; // Projection of a Z-step of size D into the Y direction
parameter OFFSET X = 20; // Distance of graphic from left screen edge

parameter OFFSET Y = 20; // Distance of graphic from top screen edge

// 14-bit counter and output

wire [13:0] counter value;

counter 14bit counter(.clock(clock), .count input(l'bl), .reset(reset),
.value (counter value)) ;

// Voxel screen location calculator
wire [9:0] screen row base, screen column base;
screen loc calc screen loc calcl(.clock(clock), .reset(reset), .voxel plane(voxel plane),
.voxel column (counter value[13:8]),
.screen_row(screen row base), .screen column(screen column base));

Wujanto & Wyatt 43 A Volumetric 3D LED Display

// Configure the scale of the screen output
defparam screen loc calcl.D = D;

defparam screen loc calcl.D SIN THETA = D SIN THETA;
defparam screen loc calcl.D COS THETA = D COS THETA;
defparam screen loc calcl.OFFSET X = OFFSET X;
defparam screen loc calcl.OFFSET Y = OFFSET Y;

assign screen column = screen_ column base + counter value[3:0] - 8;
assign screen row = screen row base + counter value[7:4] - 8;
// Definitions for possible highlighting modes - either horizontal or vertical planes

parameter HORIZ = O;
parameter VERT = 1;

// Code to determine colour of the current voxel's projection
reg [3:0] current spot colour;
always @ (posedge clock) begin
if (highlight enable == 1) begin
if (highlight mode == HORIZ) begin
current spot colour <= voxel data bus[counter value[1l3:8]] ? ((highlighted plane
== voxel plane) ? LIT LED : DIMMED LED) : OFF LED;
end
if (highlight mode == VERT) begin
current spot colour <= voxel data bus[counter value[1l3:8]] ? ((highlighted plane
== counter value[13:11]) ? LIT LED : DIMMED LED) : OFF LED;
end
end
else begin
current spot colour <= voxel data bus[counter value[13:8]] ? LIT LED : OFF LED;

end
end
//assign current spot colour = voxel data bus[counter value[13:8]] ? ((highlighted plane
== voxel plane) ? LIT LED : DIMMED LED) : OFF LED;

// Write the LED's colour to the screen buffer only if the current writing pixel position
// within the 16x16 square corresponding to a particular voxel's projection
// is within a certain radius of the LED's centre position, to draw circles
// using the register pixel on
reg pixel on = 0;
reg signed [4:0] x diff, y diff;
always @ (counter value) begin
x diff <= counter value[3:0] - 5'h8;
y diff <= counter value[7:4] - 5'h8;
if (x diff * x diff + y diff * y diff < LED RADIUS * LED RADIUS) pixel on <= 1;
else pixel on <= 0;

end

assign screen rdata out = current spot colour;

assign screen write enable = pixel on;
endmodule

//**

* ok xk ok kk ok

// 14 bit counter

module counter 14bit (clock, count input, reset, value);
input clock, count input, reset;
output [13:0] value;
reg [13:0] value;

always @ (posedge clock) begin

Wujanto & Wyatt 44 A Volumetric 3D LED Display

if (reset) wvalue <= 0;
else if (count input) value <= value + 1;
end

endmodule

//**

* Kk ok ok ok k kk

// Voxel screen location calculator
module screen loc calc(clock, reset, voxel plane, voxel column, screen row, screen column);
// Inputs and outputs
input clock, reset;
input [2:0] voxel plane;
input [5:0] voxel column;
output [9:0] screen row, screen column;

// Parameters to configure the scale of the output on the screen - set in the main labkit
module
// A good combination is D=50, Dsin(theta) = 45, Dcos(theta) = 27, offsets x,y = 20

// But for the moment we will use a 45 degree projection angle for simplicity of grid
lines...

parameter D = 40; // Linear LED spacing (corresponds to real 3D spacing)

parameter D SIN THETA = 28; // Projection of a Z-step of size D into the X direction

parameter D COS THETA = 28; // Projection of a Z-step of size D into the Y direction

parameter OFFSET X = 20; // Distance of graphic from left screen edge

parameter OFFSET Y 20; // Distance of graphic from top screen edge

// Actual calculations

assign screen column = OFFSET X + D * voxel column[2:0] + D SIN THETA * (7 -
voxel column[5:3]);

assign screen row = OFFSET Y + D * (7 - voxel plane) + D COS THETA * (7 -
voxel column[5:3]);

endmodule

//**

* ok ok ok ok ok ok k kK

// Module to translate from the block diagram's idea of a screen buffer into reality!
module screen buffer wrapper (write clock, write col, write row, write data, write enable,
read clock, read col, read row, read data);

//Inputs and outputs

input write clock, write enable, read clock;

input [9:0] write col, write row, read col, read row;

input [3:0] write data;

output [3:0] read data;

// Parameters to specify screen resolution; default is 800 x 600
parameter ROWSIZE = 800;
parameter COLSIZE = 600;

// Wires for the actual read and write addresses to the memory
wire [18:0] write address, read address;

// Calculate the actual addresses meant by the wires
assign write address = write col + ROWSIZE * write row;
assign read address = read col + ROWSIZE * read row;

// Instantiate a screen buffer memory (which is not 1024 x 1024!)
screen buffer screen bufferl (.addra(write address), .dina(write data),
.wea (write enable), .clka(write clock),
.addrb (read address), .doutb(read data), .clkb(read clock));

Wujanto & Wyatt 45 A Volumetric 3D LED Display

endmodule

//**

* ok ok k ok ok ok ok kK

// 800 x 600 SVGA display module, to display the contents of the screen buffer
module svga (vclock, hcount, vcount, hsync, vsync, blank);

input vclock;

output [9:0] hcount;

output [9:0] vcount;

output vsync;

output hsync;

output blank;

reg hsync,vsync,hblank,vblank,blank;

reg [10:0] hcount internal; // pixel number on current line
reg [9:0] vcount; // line number

// horizontal: 1055 pixels total
// display 800 pixels per line

wire hsyncon,hsyncoff, hreset, hblankon;

assign hblankon = (hcount internal == 799);
assign hsyncon = (hcount internal == 839);
assign hsyncoff = (hcount internal == 967);
assign hreset = (hcount internal == 1055);

// Output only values of hcount between 0 and 799, otherwise the screen buffer will get
confused!
assign hcount = (hcount internal <= 799) ? hcount internal[9:0] : 10'bO;

// vertical: 627 lines total
// display 600 lines

wire vsyncon,vsyncoff,vreset, vblankon;
assign vblankon = hreset & (vcount == 599);
assign vsyncon = hreset & (vcount == 600);
assign vsyncoff = hreset & (vcount == 604);
assign vreset = hreset & (vcount == 627);

// sync and blanking

wire next hblank, next vblank;
assign next hblank = hreset ? 0 : hblankon ? 1 : hblank;
assign next vblank = vreset ? 0 : vblankon ? 1 : vblank;
always @ (posedge vclock) begin

hcount internal <= hreset ? 0 : hcount internal + 1;

hblank <= next hblank;
hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

vcount <= hreset ? (vreset ? 0 : vcount + 1) : wvcount;
vblank <= next vblank;
vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low
blank <= next vblank | (next hblank & ~hreset);
end
endmodule

//**

* ok ok k ok ok ok ok kK

// Module to generate wireframe image of a 45 degree cube on SVGA output
// Generates pixels on the fly, and sets output "wireframe"™ high if the current
// pixel is part of the wireframe

Wujanto & Wyatt 46 A Volumetric 3D LED Display

module wireframe generator

// Inputs
input [9:0] hcount,
// Output (also a req)

output wireframe;
reg wireframe = 0;

// Parameters for screen display size

(hcount, vcount, wireframe);

vcount;

(in pixels) - set in the main labkit module

parameter D = 40; // Linear LED spacing (corresponds to real 3D spacing)
parameter D SIN THETA = 28; // Projection of a Z-step of size D into the X direction
parameter D COS THETA = 28; // Projection of a Z-step of size D into the Y direction
parameter OFFSET X = 20; // Distance of graphic from left screen edge
parameter OFFSET Y = 20; // Distance of graphic from top screen edge
always @ (hcount or vcount) begin
// Horizontal lines at the back of the cube
// Top
if ((hcount >= OFFSET X) && (hcount <= OFFSET X + 7*D) && (vcount == OFFSET Y))
wireframe <= 1;
// Bottom
else if ((hcount >= OFFSET X) && (hcount <= OFFSET X + 7*D) && (vcount == OFFSET Y +
7*D)) wireframe <= 1;

// Horizontal lines

// Top

else 1f ((hcount >=
7*D_SIN THETA) && (vcount

// Bottom

else if ((hcount >=
7*D_SIN_THETA) && (vcount

at the front of the cube

// Vertical lines at the back of the cube

OFFSET X + 7*D_SIN THETA) && (hcount <= OFFSET X + 7*D +

== OFFSET Y + 7*D COS THETA)) wireframe <= 1;

OFFSET X + 7*D SIN THETA) && (hcount <= OFFSET X + 7*D +

== OFFSET_Y + 7*D + 7*D_COS_THETA)) wireframe <= 1;

OFFSET Y) && (vcount <= OFFSET Y + 7*D) && (hcount == OFFSET X))
OFFSET_Y) && (vcount <= OFFSET Y + 7*D) && (hcount == OFFSET X +

// Vertical lines at the front of the cube

// Left

else if ((vcount >=
wireframe <= 1;

// Right

else if ((vcount >=
7*D)) wireframe <= 1;

// Left

else 1f ((vcount >=
7*D _COS_THETA) && (hcount

// Right

else if ((vcount >=
7*D_COS_THETA) && (hcount

// Diagonal lines
// Top left

OFFSET Y + 7*D COS_THETA) && 75D +

== OFFSET X + 7*D SIN THETA))

(vcount <=
wireframe

OFFSET_Y +
<= 1;

OFFSET Y + 7*D _COS THETA) && (vcount <= OFFSET Y + 7*D +
== OFFSET X + 7*D + 7*D_SIN THETA)) wireframe <= 1;

else if ((hcount >= OFFSET X) && (hcount <= OFFSET X + 7*D SIN THETA) &&
(vcount >= OFFSET Y) && (vcount <= OFFSET Y + 7*D COS THETA) &&
(hcount - OFFSET X == vcount - OFFSET Y)) wireframe <= 1;

// Top right

else if ((hcount >= OFFSET X + 7*D) && (hcount <= OFFSET X + 7*D + 7*D SIN THETA) &&
(vcount >= OFFSET Y) && (vcount <= OFFSET Y + 7*D COS THETA) &&
(hcount - OFFSET X - 7*D == vcount - OFFSET Y)) wireframe <= 1;

// Bottom left

else if ((hcount >= OFFSET X) && (hcount <= OFFSET X + 7*D SIN THETA) &&
(vcount >= OFFSET Y + 7*D) && (vcount <= OFFSET Y + 7*D + 7*D COS THETA) &&
(hcount - OFFSET X == vcount - OFFSET Y - 7*D)) wireframe <= 1;

// Bottom right

else if ((hcount >= OFFSET X + 7*D) && (hcount <= OFFSET X + 7*D + 7*D SIN THETA) &&

Wujanto & Wyatt

47 A Volumetric 3D LED Display

(vcount >= OFFSET Y + 7*D) && (vcount <= OFFSET Y + 7*D + 7*D_COS THETA) &&
(hcount - OFFSET X - 7*D == vcount - OFFSET Y - 7*D)) wireframe <= 1;
else wireframe <= 0;
end

endmodule

Wujanto & Wyatt 48 A Volumetric 3D LED Display

	Abstract
	List of Figures
	1Overview
	1.1Background
	1.2Chosen system configuration

	2Technical description
	2.1Data generation subsystem
	2.1.i Application Reset
	2.1.ii 3D Pong
	2.1.iii 2D Cellular Automata
	2.1.iv 3D Cellular Automata
	2.1.v “MIT” trip-let
	2.1.vi Music visualiser

	2.2Display subsystem
	2.2.i Voxel addressing
	2.2.ii Data output module
	2.2.iii Renderer
	2.2.iv Screen buffer wrapper
	2.2.v Wireframe generator
	2.2.vi SVGA interface module

	2.3Physical display hardware
	2.3.i Mechanical design and construction
	2.3.ii Driver electronics and power issues

	3Implementation, testing and debugging
	3.1Design flow
	3.2Debugging
	3.3Division of Labour

	4Conclusions
	4.1Results from the project
	4.2Possibilities for future expansion

	5Components used
	6References
	Appendix A: Labkit.v
	Appendix B: Data generation subsystem code
	 1.application_reset.v
	 2.cell_aut_2d.v
	 3.cell_aut_3d.v
	 4.clock_divider.v
	 5.mit.v
	 6.music_visualizer.v
	 7.mux_8input.v
	 8.pong.v

	Appendix C: Display subsystem code
	1. data_output_module.v
	2. renderer.v

