Virtual Pet

6.111 Introductory Digital Systems Laboratory

Cheng Hau Tong

Abstract

A virtual petisadigita creaturethat livesinside a LCD display. Thisvirtua pet, in
particular, lovesto listen to music, and it dances to the beat detected from the microphone
input jack. Like areal pet, the virtual pet needs attention and care from the owner. While
it does not need to be fed with real food, the virtual pet needs music in order to stay alive
and happy. It has two states—dancing state and idle state. Once it has been inidle state
for more than 2 minutes, the virtual pet feel sad its health level decreases. It features
lights that flash according to the music beat when it isin dancing state.

Table of Contents

Page

ADSITACT ... bbbttt beshe b st ae e i

List Of TADIES AN FIQUIES.......c.eeiiiiie ettt e i

OVEIVIBIW ...ttt bttt b bt bt e b b s e e s e e e et et e st b e b e bt et et et e e neenenrens 1

MOUIE DESCIIPLIONS.....cuvivieeieiesieeie sttt st s et e s ee s resre e e steeseensesreenes 3

BEAL DEIECIONccuveeitieiieie et n e r e n s 4

Beat Detection AlQOrithmSccuviiiiece e 4

Beat Detector Implementalion ... 5

e TSRS 6

HISIONY BRAM ...t 6

Beat DeteCtor CONLIOIENco.oieieeee e e 6

VAL [ol BT E o = SRR 7

D0 o OO PP 8

HEBITN MELES ... e e ee 8

o o | USSR 8

V0O CONLIOITES ...t e 9

Testing anNd DEDUGGING -....cveeee et e sb et e 10

1000 070! 1115 Lo o RSP R 11

APPENIX: VENTTOG COUB....... .ottt et e s sre e 12
List of Tablesand Figures

Page

Figure 1. The pattern of light in idle state, happy emotion............cccccvvvveeeieseeneseeienee 1

Figure 2: Theflashing light inidle state, sad emOtioN............ccceeviiiienn e 2

Figure 3: Images used to generate a sequence of movement in dancing stete.................... 2

Figure 4: The pattern of flashing light in dancing State............cocevevieiieevi e cceeseseee e 2

Figure 5: Higher Ivel Block Diagram of the Virtual Pet............cccooevviiiiie v 3

Figure 6: Spectrum of an example audio signa at timetOand t1..........ccceviviniiinnenenne 4

Figure 7: Block Diagram of the Beat DELECLONccoveiieieriineieiee s 5

Figure 8: Block Diagram of the Video Displaycccooeeiireririeneeee e 7

Figure 9: State Transition Diagram of the Dog Module.............ccoiiiiiini e 8

Figure 10: State Transition Diagram of Video Controller...........coooeieriiiiniiiininecee 9

Table 1: Light Flashing Pattern with Different Inputs from Video Controller................... 9

Overview

A virtual pet is an electronic device that simulates the behavior of apet inreal life, and requires a
lot of attention and care from the owner. For instance, one of well known virtual pets, tamagotchi,
isapet that livesinside adisplay sized smaller than akid's palm. Similar to areal pet,

tamagotchi needs to be fed, entertained, and taken care of and its life span depends on the

amount the attention the owner has put into. Inspired by tamagotchi, | decided to implement a
virtual pet that lives within a color LCD display and lovesto listen to music. One of the
interesting features of the virtual pet includes its ability to detect a musical beat, and changes it
emotion, health, and action according to the beats it percepts.

The user interfaceis a LCD screen of 1024x768 pixels that contains three video modules. On the
left is adog video that displays a sequence of images of the dog. There are seven circles on the
right side of the screen, serving as light to indicate the current emotion of the pet or the beat
patterns. Above the seven lightsis a health meter that shows the health level of the pet.

When resets, the dog video shows a still image of adog that is facing front (i.e, the user). The pet
startsin idle state and happy emotion. Asillustrated in Figure 1, seven lights at theright flash in
Six phases to show that it is happy.

(b)

(d) (€ (f)

Figure 1The pattern of light in idle state, happy emotion. (a), (b): Threelights of red, green and
blue brighten and fade. (c), (d): Three other lights of red, green and blue at different location brighten
and fade. (e), (f): A yellow light located at the center of previous lights brightens and fades. The phases
always repeat as long as the pet remains in the same state and emation.

The pet remainsin idle state as long as there are less than 10 beats detected in the past one
minute. However, once the pet has been in idle state for more than 2 minutes, its emotion
changes from happy to sad. This sudden change in emotion isindicated by a different flashing

pattern of the seven lights previously mentioned. Figure 2 shows two phases of the flashing

pattern.

Figure 2 Theflashing light in idle state, sad emotion. Seven lights brighten and fade
continuously, at the rate slower than when the pet isin happy emotion.

Once the last and the last 10" beats detected are less than 1 minute apart from each other, the
virtual pet switchesits state to dancing state. The dog video is now showing a sequence of

images, instead of astill image, to show the movement of the dog. Figure 3 shows three images
used in the dancing state of the pet.

Figure 3 Images used to gener ate a sequence of movement in dancing state. A complete
cycle of animation uses the images in the sequence (b)>(a)>(b)>(c)>(b).

Note that in dancing state, the lights no longer show emotion; rather, the lights flash according to
the incoming beat, asillustrated in Figure 4.

Figure 4The pattern of flashing light in dancing state. Whenever abeat is detected,
onelight of the six surrounding lights, together with the yellow at the center, flashes
once. Thelights remain dark until the next beat is detected.

A virtual pet remainsin dancing state as long as the last and the last 10" beats detected are still
less than 1 minute apart from each other—implying that in dancing state, the dog keeps dancing
for 1 minute since the last beat detected.

In order to make the virtual pet behave closer to the pet in real world, the health level of the pet
changes over the time, depending on the amount of care it has from the owner. More specifically,
for every minute the pet remainsin dancing state, its health level increase by 1 unit, until it
reaches maximum health level. On the other hand, its health level decreases by 1 unit for every
minute it remainsin idle state, until it reaches zero. It isimpossible to revive a dead dog—once
the health level falls to zero, the dog can never recover. At this stage, the only possible thing a
user can do isto press the reset button to regenerate life (playing God.)

Modules Description

There are two main partsin this project: Beat detector and Video Display. The beat detector is
responsible to take audio data from AC97 chip, and determines if thereis a beat in the audio data.
It contains a Fast Fourier Transform (FFT) module, ahistory RAM, and abeat detector
controller. If the beat detector detects a beat, it outputs ahigh pulse beat to the Video
Display. Thevideo controller module of Video Display observesthe pattern of thebeat
coming in, and changes the state, emotion and health level of the virtual pet. Consequently, three
video modules of the Video Display—Dog, Health Meter, and Light—0outputs appropriate
video datato ADV 7215 according to the state, emotion and health level determined by video
controller. Pleaserefer to Figure 5 for ahigher level block diagram of the virtual pet.

Beat Detector

from F"—L
_ac97_data 1024

Audio Signal ACG7 . —»
to Micrnphnned" chip ™ A49io| ready Beat Detector

——————» | Ccontroller

History

FaM
¢beat_ir'|

hecount))
Video Display
voount
Video

*GA
hs¢c vs&nc b¢nl; health Controller

_m_eter Health_Meter
_pixel
WGEA) _ .
o ADV 7125 ight_pizxel Light
dog_pixel
Dog

Figure 5 Higher level Block Diagram of the Virtual Pet.

In the following sections, the functionality and implementation of each module are discussed in
details.

Beat Detector

Beat Detection Algorithms

Several real time beat detection a gorithms that works for different context of audio signal and at
different level of accuracy and sophistication have been widely available. One of the simplest
algorithmsisto observe if thereis asudden increase in the audio signal strength relative to the
average signal strength in past one second. The sudden increase has to be a short instant of time
such that the interval is sufficient to capture the energy level associated with al the frequencies
above minimum human’ s perception frequency. By setting the short interval to be roughly 0.02s,
we are able to capture the energy leve at frequencies above 50 Hz. Human’'s hearing ranges
from 20 Hz to 20 kHz so 0.02s interval isfine. With this smple algorithm, a beat is detected
when current energy level of an interval 0.02s of the audio signal is greater than athreshold
times the average signal energy level in past one second. Note that this a gorithm involves
summing and comparing signal energy level in time domain only.

However, the beat detection obtained by performing only time domain analysis on audio signal
can be less accurate than one that is obtained by observing the spectrogram of the signal—an
analysis of the signal in both time and frequency domain. Consider a make-up signal whose
spectrum at time tp and t1is as shown in Figure 6.

Spectrum at t0 Spectrumat t1

12 6

frequency (kHz) frequency (kHz)

Figure 6 Spectrum of an example audio signal at timetOand t1.

In time domain, the energy level of the signal at both time instants (obtained by calculating the
total area of the graph) isidentical—210 units. However, note that there is an abrupt increasein
the energy level at frequency band 6 kHz and 12 kHz from time t, to t;. The beat detection done
in time domain only is not able to detect this phenomenon because the change in energy level is
zero. However, abeat detection performed in frequency domain at different time instant is able
to detect this case fairly well.

Below details the a gorithm:

1. Transform the data into frequency domain to obtain the spectrum (energy level) of each
frequency band for an interval of 0.02s.

2. For each frequency band, compared the energy level of theinterval to the average energy
level of the signal in past one second.

3. If thereisan abrupt increasein energy level, declare a beat at that frequency band.

So now we have beat detection at each frequency band. But how do we declare a beat as a whole?
Meaning, given that we see a beat at two frequency band, say 6 kHz and 12 kHz, do we declare
that there was a beat for that 0.02s interval? It is inaccurate to declare a beat as awhole whenever
we detect a beat at any frequency band. Musical audio signal often has not only instruments
rhythms, but also human’ s singing, which can be considered as a noise to the musical beats. One
possible way to declare a beat as awhole given the beat detection at each frequency band isto
observe only the frequency below 100 Hz, which is roughly the frequency range of adrum.
However, this method explicitly assumes that the rhythms contain drum beats. A more general
algorithm isto declare a beat if more than a certain percentage, say 25%, of the frequency bands
detects a beat.

Beat Detector | mplementation

Given the a gorithm described above, there are two hardwares required to perform the beat
detection: aFast Fourier Transform to transform the signal into frequency domain, and a
memory to remember the sum of energy level in past one second for each frequency band. In
order to update the sum of energy level in past one second whenever the new datais available,
we need to subtract the expired data (the energy level of the audio signal one second ago) from
the current sum of energy level in past one second and add the energy level of the new data. This
step needs to be performed on al frequency bands. Therefore, we aso need another memory
History BRAM to remember the 0.02s-interval energy level of each frequency band for the past
one second. Figure 7 shows the block diagram of the beat detector.

Beat Detector

ready »
wk_re
ki Detector Controll
wh_im etector Controller
FFT f——» _
1024 | xk_index beat_in
from_aco7_data e ;
done reg [21:0] history[214:0]
—»

write |write |read |read
_addr]_data|_data _addr

| History BRAM

Figure 7 Block Diagram of the Beat Detector.

we

Fast Fourier Transform FFT
The 0.02s interval and the fact that AC97 samples the data at 48 kHz tell us that we need a 1024-
point FFT:

1024 points

48000

~0.02 second

FFT takes 8-bit signed audio data from ac97 data asinput, transform the data, and output
thereal part of the datain frequency domain xk_re, theimaginary part of the datain frequency
domain xk_im for the corresponding transform index xk_index. The output datafrom FFT is
in natura order. FFT runs synchronously with the global clock 65mhz, but from ac97 data
isonly sampled at 48 kHz. Therefore, FFT hasapin cg to enable the clock only when thereisa
new audio data (i.e. at the rising edge of ready signal).

History BRAM

History BRAM isadual-port BRAM that has aread-only port and awrite-only port. The
spectrum of each frequency band is calculated by adding the square of xk_re and xk_im. The
spectrum is symmetric about xk_index 513 and xk_index 0 to 513 corresponds to the
frequency band 0 to 48 kHz, with each index representing a frequency band of ~94 Hz wide.
Since human'’s perception range is from 20Hz to 20 kHz, only the spectrum of index 0 to 214 is
relevant to the beat detection. The size of the memory to store of the 0.02s-interval spectrum
(energy level) of each frequency band for past one second is therefore:

Width: 16 bit
The square of xk_re and xk_im has 16 bit signed each, which is equivalent to 15 bit
unsigned each. The sum of them is hence 16 bit unsigned.
Depth: 10320 = 48x215
48000

———~48. There are 215 relevant frequency bands.

1024 points

Beat Detector Controller

Beat Detector Controller mainly controls how the dataisread from and written to the
memories, determines if there is a beat at each frequency band, and eventually declares a beat (as
awhole) by observing the number of frequency band that detects a beat.

Beat Detector Controller cOntainsaregister memory array history of width 22 bit and
depth 215 to store the sum of energy level in past one second for each of the 215 frequency
bands. Whenever new datais ready from FFT, the controller calcul ates the spectrum of the
corresponding xk_index, and store the spectrum into History BRAM, provided that the
xk_index isbetween 0 and 214.

At therising edge of ready signd, for the corresponding xk_index between 0 and 214, the
controller updates the memory history[xk index] by subtracting the expired data from
history[xk index] and adding spectrum to history[xk index]. Expired datais obtained from
History BRAM. Thereisaclock cycledday for reading datafrom BRAM. Therefore, at the

rising edge of ready signal, | need to assign the read address so that it retrieves datafor the
coming xk_index, not for the current xk _index.

Also at the rising edge of ready signal, the controller compares if 48 times the current spectrum
for the corresponding xk index between 0 and 214 islarger than a threshold constant times the
sum of energy level in past one second, history[xk index]. If S0, it detects a beat at that
particular xk_index. Currently, the threshold constant is set to 1.5.

At the rising edge of the ready signal, the controller counts the number of frequency bands that
have detected beats. If more than 50 of the 215 bands detected beats, the beat detector controller
finaly declares a beat (as awhole).

Video Display

Video Display controls al the video output to the LCD display. The video modules work on a
1024x768 display, at clock frequency 65 MHz. There are 3 video modules: Dog, Health
Meter, and Light, and avideo Controller, as shown inthe block diagramin Figure 8.

Video Display
Video Controller
beat_in | reqg his_exp[2:0] |
I reg [5:0] his_Sec[Q:D]l
| reg [2:0] his_min[Q:D]l
statel—ﬂ beat&amutiun
Light
colar| ~; light_pixel
» Flasher Circle »
health point
hcount
veount Health Meter
new_frame -
} health_meter_pixel
Blob -
hd
Dog
dog_pixel
4 Encoded Decoder
Image > BRAM >
BRAM

Figure 8 Block Diagram of the Video Display.

Dog

As its name suggest, bog module displays the video of the pet. In order to make the dog dances,
three 380x310 pixels images are used. These images are encoded in 5 bits of colors and stored in
three different ROMs, each of width 5 bits and depth 117800. To retrieve the RGB value of the
32 colors, the read data from the image ROM feeds into the memory address of the decoders
ROMs. The output of the decoder ROM is 24 bit RGB pixel values. Because of cascaded ROMSs,
there are delays from reading the pixel values. This was fixed by reading the data from the ROM
in advance. Inidle state, the dog does not move so this module only read the data from the
Center image ROM. In dancing state, the dog turns left, then face center, turnsright, and face
center again. A counter, which increasesits value by 1 at the arrival of new video frame, is used
to implement this transition. Whenever the counter reaches its maximum value, it increases
count_rom by 1. Figure 9 illustrates that the dog video display encoded video data from Center
image ROM when the count romisequal to O or 2.

tate_Idle

State_dancing
2B count_rom ==

State_dancing
28 count_rom ==

Center
ROM

State_dancing State_dancing
22 count_rom == 28 count_rom ==

Figure 9 State transition diagram of the Dog module.

Health Meter

Thismodule is responsible to report the current health level of the pet. It takeShealth point
fromthevideo Controller and display agradient bar of width 16 times the value of the
health point. Thecolor of the health meter is green whenthehealth point isgreater
than 8, yellow when between 8 and 5 inclusively, and red when it falls less than or equal to 4. In
order to implement the vertical gradient (brightest at horizontal middle line of the bar, and
darkest at the top and bottom of the bar), a parameter increment is declared. For every pixel
2"nerement anart from the y-middle line of the bar, R, G and B values of the color shift right by one
unit, and this method decreases the luminance of the R, G and B element of the color.

Light

Light isthe unit that indicates severa information of the pet: emotion when the pet isidle and
beat detection when the pet is dancing. Light module, therefore, requires three inputs from the
video controller— state, emotion, and beat, each of which isone bit width.

Following is atable showing the output patterns corresponding to the possible inputs: It shows
that the lights are independent of emotion when it isin dancing state, and independent of
insignificant beat detection. (By insignificant, it means the last tenth beat and the last beat are
more than 1 minute apart from each other.)

Table 1: Light Flashing Pattern with Different | nputsfrom Video Controller

State Emotion Beat Pattern
Idle Sad xX* Pattern 1
Happy X* Pattern 2
| Hig‘:)y 8 Blank
Dancing Sad 1
Pattern3
Happy 1

* Note: Aslong as the pet remainsin idle state, lights do not indicate beat detection.

In order to implement the lights, submodules circle and flasher werewritten. Circleisa
modul e that takes coordinate of the center point and color as inputs, and displays a circle on the
screen. Flasher isamodule that takes color in, increment, increase, frame rate and
output color out. For every frame rate frames, flasher increases the value of each of R,
G and B elements of color in by increment unit, if theinput increase ishigh. Otherwise,
it decreases the values of each of R, G and B elementsof color in by increment unit. By
setting the frame _rate and increment appropriately, | could implement smooth transition of
color luminance and make the circles flashing.

Video Controller

Taking only beat in asinput fromthe Beat Detector, Video Controller iSresponsible
to determine three outputs. state, emotion, and health point.Beat Detector isonly
responsible to determinein real timeif the energy level at different frequency bands has
increased abruptly relatively to the average energy level of past one second. To avoid unexpected
noise, instead of changing to dancing state everytime the beat detector detects a beat, video
Controller Observestheinterval between last ten beats in order to determine whether to
change the states of the virtual pet. If the interval is greater than 1 minute apart, the beats
detected by the beat detector are not significant enough, provided that the beat detector has been
appropriately calibrated.

time(last beat)-time(9th beat before) >= 1 minute
time(last beat)-

time(9th beat before)
< 1 minute

time(last beat)-
time(9th beat bgfore)
== 1 minute

time(last beat)-time(9th beat before) < 1 minute

MNote: Provided expllast_beat) 1= 1 28
exp(9th beat before) I=1

Figure 10 State Transition Diagram of Video Controller.

In order to implement this state transition, | coded a timer/counter that associates each
beat received from beat detector with atime value. It isimpossible to keep counting the time
forever—imagine if the beat never arrives at the input port after the arrival of the first beat, the
counter would have to count till infinity. In fact, the counter implemented only counts up to 5
minutes. In order to fix that, each beat is also associated with aregister expired. If the value of
the register has not changed in past one minute, the beat is expired, and time value associated
with that register is no longer valid. The implication of thisimplementation is that the pet will
remain in dancing state for 1 minute even when thereisno beat in from the beat detector.

While state indicates that the number of beatsin past one minute is significant, emotion
indicates the length the virtual has been in a particular state. When the state is dancing, the
emotion is always happy. When the state switches from dancing to idle, the dog remains happy
for 2 minutes and becomes sad aslong as it remainsin idle. In order to implement this, this
module needs a counter to remember the length it has been in a particular state. The counter
resets to zero whenever the virtual pet switchesits state.

Finally, video controller also needs to determine the health point of the pet. When resets,
the health point is at its maximum, which isat 15. For every minuteit remainsin idle state, the
health point reducesby 1 point until it reaches zero. Oncethehealth point iSzero, it can
never increase anymore in the future, regardlessif it changes its state to dancing. In other words,
the pet is now dead. On the other hand, for every minute the pet remains in dancing state,
health point increasesby 1 point until it reaches maximum again.

Testing and Debugging

The testing of the video modules was mostly done by running the labkit and observing if the
video output matches the expected behavior. One of the issues | had was with the logic delay.
Because of the high clock speed (65MHZz), the logic has little time to do complex logic. For
instance, the circle module was not able to display a nice circle because it requires multiplication
and addition of the multiplication product.

At the beginning of the stage, the data from my image ROMs and decoder ROM's seem to show
some kind of delay. | figured out that was because the read request need to go through two
ROMs before outputting the data, and each ROM itself has one clock cycle delay. This problem
was fixed by reading the data from the ROM in advance.

The testing of Beat Detector was mostly done by observing the labkit internal signal on the logic
analyzer. At the early stage, | was stuck very long because the FFT was not working. It turned
out that the clock enable pin (CE) was not registered enough. | defined CE as

always @(posedge vclock)

ready old <= ready;

assign ce = ready & ~ready old;

This was causing problem because the signa ready from AC97 is not synchronous to vclock.
This problem was fixed by adding one more register to the ready signal input:

10

always @(posedge vclock) begin
ready old <= rdy;

rdy <=ready;

end

assign ce=rdy & ~ready old;

| verified that my FFT worked by feeding in asin wave of 750 Hz and observed the spectrum of
the FFT output. It showed two spikes near the xk_index 16 and 1007 and that was correct.
However, the beat detector failed to work as awhole because the beat detector controller was not
working. | suspected that it was because of the logic delay for doing several multiplication to
determineif the spectrum is greater than a constant times the average energy level in past one
minute.

Conclusion

| thought this final project has been areally rewarding and educational experience for me
personally, even though | did not have my beat detector working eventually.

| was over worried that the beat detection algorithm was not good enough and my final project
would turn out somewhat worthless because the beat detector really was the soul of the entire
project. | tested several algorithms on MATLAB but failed to see one that works consistently
with different kind of songs.

For future work, | would like to add more features (analog devices) to the virtua pet. Perhaps, an

optical device to detect a pat from the user. Or maybe something to do with the video input. | felt
that the pet lacks the liveliness | was expecting.

11

Appendix: Verilog Code

final2.v

[1711777777 1777777777777 777
//

// 6.111 FPGA Labkit -- Template Toplevel Module

//

// For Labkit Revision 004

//

//

// Created: October 31, 2004, from revision 003 file

// Buthor: Nathan Ickes

//
[171177177770777
//

// CHANGES FOR BOARD REVISION 004

//

// 1) Added signals for logic analyzer pods 2-4.

// 2) Expanded "tv_in ycrcb" to 20 bits.

// 3) Renamed "tv _out data" to "tv out_i2c_data" and "tv_out_sclk" to

// "tv_out i2c_clock".

// 4) Reversed disp data in and disp data out signals, so that "out" is an
// output of the FPGA, and "in" is an input.

//

// CHANGES FOR BOARD REVISION 003

//

// 1) Combined flash chip enables into a single signal, flash ce b.

//

// CHANGES FOR BOARD REVISION 002

//

// 1) Added SRAM clock feedback path input and output

// 2) Renamed "mousedata" to "mouse data"

// 3) Renamed some ZBT memory signals. Parity bits are now incorporated into
// the data bus, and the byte write enables have been combined into the
// 4-bit ram# bwe b bus.

12

// 4) Removed the "systemace clock" net, since the SystemACE clock is now

//
//

hardwired on the PCB to the oscillator.

LITTT1T77 7707777777777 777 7777777777777 77777777777777777777777777777177777777777

!/
!/
!/
!/
//
//
//
//
!/
!/
!/
!/
!/
!/
!/
!/
!/
!/
!/
!/
!/
//
//

Complete change history (including bug fixes)

2005-Sep-09:

2005-Jan-23:

2004-0ct-31:

2004-May-01:

2004-Apr-29:

2004-Apr-29:

Added missing default assignments to "ac97 sdata out",
"disp data out", "analyzer[2-3] clock" and

"analyzer [2-3] data".

Reduced flash address bus to 24 bits, to match 128Mb devices
actually populated on the boards. (The boards support up to

256Mb devices, with 25 address lines.)

Adapted to new revision 004 board.

Changed "disp data_in" to be an output, and gave it a default

value. (Previous versions of this file declared this port to

be an input.)

Reduced SRAM address busses to 19 bits, to match 18Mb devices

actually populated on the boards. (The boards support up to

72Mb devices, with 21 address lines.)

Change history started

L1177 770777777777 77 77777777 77

module final2

(beep, audio reset b, ac97 sdata out, ac97 sdata in, ac97 synch,

ac97_bit_clock,

vga_out_red, vga_out green, vga out blue, vga out sync b,

vga_out blank b, vga out pixel clock, vga out hsync,

vga_out_vsync,

13

tv_out ycrcb, tv_out reset b, tv out clock, tv out i2c clock,
tv_out i2c data, tv _out pal ntsc, tv_out hsync b,
tv_out_vsync_b, tv_out blank b, tv_out subcar reset,

tv_in ycrcb, tv_in data valid, tv_in line clockl,
tv_in line clock2, tv_in aef, tv_in hff, tv _in aff,

tv_in i2c_clock, tv_in i2c_data, tv_in fifo read,

tv_in fifo clock, tv_in iso, tv_in reset b, tv_in clock,

ram0_data, ram0_address, ramO_adv_1ld, ram0 clk, ramO_cen b,

ram0_ce b, ram0 _oe b, ram0 we b, ram0 bwe b,

raml data, raml_address, raml_adv_1ld, raml clk, raml cen b,

raml _ce_b, raml _oe_b, raml we_b, raml bwe_b,

clock feedback out, clock feedback in,

flash data, flash _address, flash ce b, flash oe b, flash we b,

flash reset b, flash sts, flash byte b,

rs232_txd, rs232_rxd, rs232_rts, rs232_cts,

mouse_clock, mouse data, keyboard clock, keyboard data,

clock 27mhz, clockl, clock2,

disp blank, disp data out, disp clock, disp rs, disp ce b,

disp reset b, disp data in,

button0, buttonl, button2, button3, button enter, button right,

button left, button down, button up,

switch,

led,

14

userl, user2, user3l3, user4,

daughtercard,

systemace_data, systemace address, systemace ce b,

systemace we b, systemace oe b, systemace irg, systemace mpbrdy,

analyzerl data, analyzerl clock,
analyzer2 data, analyzer2 clock,
analyzer3 data, analyzer3 clock,

analyzer4 data, analyzer4 clock);

output beep, audio reset b, ac97 synch, ac97 sdata out;

input ac97 bit clock, ac97 sdata in;

output [7:0] vga out red, vga out green, vga out blue;
output vga out sync b, vga out blank b, vga out pixel clock,

vga_out _hsync, vga_ out_ vsync;

output [9:0] tv_out ycrcb;
output tv_out reset b, tv_out clock, tv out i2c clock, tv _out i2c data,
tv_out_pal ntsc, tv_out hsync b, tv_out vsync b, tv _out blank b,

tv_out_subcar reset;

input [19:0] tv_in ycrcb;

input tv_in data valid, tv_in line clockl, tv_in line clock2, tv_in aef,
tv_in hff, tv_in aff;

output tv_in i2c clock, tv_in fifo read, tv_in fifo clock, tv_in iso,
tv_in reset b, tv_in clock;

inout tv_in i2c data;

inout [35:0] ram0 data;
output [18:0] ramO_address;
output ramO_adv_1ld, ram0O_clk, ramO cen b, ram0 ce b, ram0 oe b, ram0 we b;

output [3:0] ram0 bwe b;

15

inout
output
output

output

input

output
inout

output
output

input

output

input

input

input

output

input

output

input

[35:0] raml data;
[18:0] raml address;
raml_adv_1d, raml _clk, raml cen b, raml ce b, raml oe b, raml we b;

[3:0] raml bwe b;

clock feedback_in;

clock feedback out;

[15:0] flash data;

[23:0] flash address;

flash ce b, flash oce b, flash we b, flash reset b, flash byte b;

flash sts;

rs232_txd, rs232_rts;

rs232_rxd, rs232 cts;

mouse_clock, mouse data, keyboard clock, keyboard data;

clock 27mhz, clockl, clock2;

disp blank, disp clock, disp rs, disp ce b, disp reset b;

disp data_ in;

disp data out;

button0, buttonl, button2, button3, button enter, button right,

button left, button down, button up;

input

output

inout

inout

inout

output

output

[7:0] switch;

[7:0] led;

[31:0] userl, user2, user3, user4;

[43:0] daughtercard;

[15:0] systemace data;
[6:0] systemace address;

systemace ce b, systemace we b, systemace oe b;

16

input systemace irg, systemace mpbrdy;

output [15:0] analyzerl data, analyzer2 data, analyzer3 data,
analyzer4 data;

output analyzerl clock, analyzer2 clock, analyzer3 clock, analyzer4 clock;

L1717 7707 77777777777 777
//
// 1/0 Assignments

//

// Modifications made:-

// 12/1/05: disable default audio input and output assignments.
//
[I711777

// Audio Input and Output
assign beep= 1'b0;

//assign audio reset b = 1'b0;
//assign ac97 synch = 1'b0;
//assign ac97 sdata out = 1'bO;

// ac97_sdata_in is an input

// Video Output

assign tv_out_ ycrcb 10'ho;

assign tv_out reset b = 1'b0;

assign tv_out clock 1'b0;
assign tv _out i2c clock = 1'bO;
assign tv _out i2c data = 1'b0;

assign tv_out pal ntsc = 1'b0;

assign tv_out hsync b 1'bl;

assign tv_out_vsync b = 1'bl;

assign tv_out blank b 1'bl;

assign tv_out subcar reset = 1'b0;

// Video Input

assign tv_in i2c_clock = 1'b0;

17

assign tv_in fifo read = 1'b0;

assign tv_in fifo clock = 1'b0;

assign tv_in iso = 1'b0;

assign tv_in reset b = 1'b0;

assign tv_in clock = 1'b0;

assign tv_in i2c _data = 1'bZ;

// tv_in ycrcb, tv_in data valid, tv_in line clockl, tv_in line clock2,

// tv_in _aef, tv_in hff, and tv_in aff are inputs

// SRAMs

assign ram0 data = 36'hZ;
assign ram0O_address = 19'hO0;
assign ram0_adv_1d = 1'bO;
assign ram0 _clk = 1'bO;
assign ram0_cen b = 1'bl;

assign ram0_ce_ b 1'bl;

assign ram0_oe b = 1'bl;
assign ram0_we b = 1'bl;
assign ram0_bwe b = 4'hF;
assign raml data = 36'hZ;
assign raml address = 19'hO;
assign raml_adv_1d = 1'bO;
assign raml_clk = 1'b0;
assign raml cen b = 1'bl;

assign raml ce b = 1'bl;

assign raml oe b = 1'bl;
assign raml we b = 1'bl;
assign raml _bwe b = 4'hF;
assign clock feedback _out = 1'b0;

// clock feedback in is an input

// Flash ROM
assign flash data = 16'hZ;
assign flash address = 24'h0;

assign flash ce b = 1'bl;

assign flash oe b 1'bl;

assign flash we b = 1'bl;
assign flash reset b = 1'b0;
assign flash byte b = 1'bl;

// flash sts is an input

// RS-232 Interface

assign rs232_txd 1'bl;

assign rs232_rts 1'bl;

// rs232 rxd and rs232 cts are inputs

// PS/2 Ports

// mouse clock, mouse data, keyboard clock, and keyboard data are inputs

// LED Displays

assign disp blank 1'bl;

assign disp_ clock

1'b0;
assign disp rs = 1'b0;
assign disp ce b = 1'bl;
assign disp reset b = 1'b0;
assign disp data out = 1'b0;

// disp data in is an input

// Buttons, Switches, and Individual LEDs
//lab3 assign led = 8'hFF;
// button0, buttonl, button2, button3, button enter, button right,

// button left, button down, button up, and switches are inputs

// User I/0s

assign userl = 32'hZ;

assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign user4 = 32'hZ;

// Daughtercard Connectors

assign daughtercard = 44'hZzZ;

19

// SystemACE Microprocessor Port
assign systemace data = 16'hZ;
assign systemace address = 7'hO0;
assign systemace ce b = 1'bl;

assign systemace we b 1'bl;

assign systemace oe b = 1'bl;

// systemace irg and systemace mpbrdy are inputs

// Logic Analyzer

//assign analyzerl data = 16'h0;
//assign analyzerl clock = 1'bl;
//assign analyzer2 data = 16'h0;
//assign analyzer2 clock = 1'bl;
assign analyzer3 data = 16'hO;
assign analyzer3 clock = 1'bl;
assign analyzer4 data = 16'hO;

assign analyzer4 clock = 1'bl;

L1717 7777777777 777
//

// Clock and Video Setup

//

L1717 7077777777777 77

// use FPGA's digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

wire clock 65mhz unbuf, clock 65mhz;

DCM vclkl (.CLKIN(clock 27mhz), .CLKFX (clock 65mhz unbuf)) ;
// synthesis attribute CLKFX DIVIDE of wvclkl is 10

// synthesis attribute CLKFX MULTIPLY of vclkl is 24

// synthesis attribute CLK FEEDBACK of vclkl is NONE

// synthesis attribute CLKIN_ PERIOD of vclkl is 37

BUFG vclk2(.0(clock 65mhz),.I(clock 65mhz unbuf)) ;

// power-on reset generation

20

wire power on reset; // remain high for first 16 clocks
SRL16 reset sr (.D(1'b0), .CLK(clock 65mhz), .Q(power on reset),
.A0(1'b1l), .A1(1'bl), .A2(1'bl), .A3(1'bl));

defparam reset sr.INIT = 16'hFFFF;

// generate basic XVGA video signals
wire [10:0] hcount;
wire [9:0] vcount;
wire hsync,vsync,blank;

xvga xvgal (clock 65mhz, hcount, vcount, hsync, vsync,blank) ;

LI7701770777777107777777707777777777777777777777777777777777777771777777777777
//
// Buttons Setup
//
L1777 17707717777

// ENTER button is user reset
wire reset,user reset;
debounce dbl (power on reset, clock 65mhz, ~button enter, user reset);

assign reset = user reset | power on reset;

// UP and DOWN buttons
wire up,down;
debounce db2(reset, clock 65mhz, ~button up, up);

debounce db3 (reset, clock 65mhz, ~button down, down) ;

LIPIT1T77 77077777077 777 77777777 777
/7

// Audio Setup
//
L1177 0777777700777

21

wire

[7:0]

wire ready;

// AC97 driver

from ac97 data, to_ac97 data;

audio a(clock 65mhz, reset, from ac97 data, to ac97 data,

audio reset b, ac97 sdata out, ac97 sdata in,

ac97 synch, ac97 bit clock);

wire signed [19:0] pcm data;

tone750hz tone(clock 65mhz, ready, pcm data);

LI1171T7 777077777777 7777777777777777777777

//

// Beat Detector

/7

L1117 1777 77077777777 7777777777777777777777

wire
wire
wire
wire
wire
wire
wire
wire

wire

wire
wire
wire

wire

wire
wire

wire

[9:0] scale sch = 10'b1010101010;
overflow;

[7:0] xk _re;

[7:0] xk_im;

[9:0] xk_index;
ce;

[9:0] xn index;
done;

beat in;

[13:0] write addr;
[13:0] read addr;
[15:0] read data;
[15:0] write data;
[15:0] spectrum;
fft oready;

ram start;

ready,

22

wire data useful;
wire [15:0] old data;

wire [20:0] history0, historyl,history214;

wire [7:0] band = 8'd50;

wire [4:0] con = switch[7:3];

beat detector
beatbeat (reset,clock 65mhz,ready, /*pcm data[19:12]*/from ac97 data,beat in,overflow, sc
ale sch, band, con //final ports

,xk_re,xk index,ce,xn index,done,xk im //fft testing outputs

,write addr,read addr,write data,read data //bram testing outputs

,spectrum, fft oready,ram start,data useful,old data,history0, historyl,
history214 //detector testing outputs

//

//next testing:- dclk: thinking that dclk is not working.
//next stage:- write video fsm even if fft doesnt work

//

wire beat,state, emotion;

wire [3:0] health point;

video controller vc(clock 65mhz, reset, beat in, health point, state, emotion,
beat) ;

L1117 1077 77777777777 7777777777777777777777
//

// Dancing Dog video

/7

23

L1117 1777770777777777777777777777777777777

wire [23:0] dancing dog pixel;

wire phsync,pvsync,pblank;

// wire [23:0] data inj;
// wire [16:0] addr;
//dog

dogl (clock 65mhz, reset,hcount, vcount, hsync,vsync, blank, phsync, pvsync, pblank,dancing do
g pixel, data_in, addr, switch[7:6]1);

dogl(cfi?i_65mhz,reset,hcount,vcount,hsync,vsync,blank,phsync,pvsync,pblank,dancing_do
g_pixel, /*switch[6] */state,data_in,addr) ;
LI1707777 77777777077 77777777777777777777777
!/
// Health Meter video
//

L1117 1777 77077777777 7777777777777777777777

wire [23:0] health meter pixel;
wire hphsync, hpvsync, hpblank;
health meter

hl(clock 65mhz,reset,hcount, vcount, hsync,vsync,blank, hphsync, hpvsync, hpblank,health me
ter pixel, health point);

L1117 1T77 77077777777 7777777777777777777777

//
// Light video
//
L17707777777077101777177717777777717771177717
wire [23:0] light pixel;
wire lphsync,lpvsync, lpblank;
// light

11 (clock 65mhz, reset, hcount, vcount, hsync, vsync,blank, lphsync, lpvsync, 1pblank, light pix
el, emotion, state, beat);

light light

11 (clock 65mhz, reset, hcount, vcount, hsync, vsync,blank, lphsync, lpvsync, 1pblank, light pix
el,emotion, state, beat);/*switch[7],switch[6],switch[5]1*///);

24

[17117777777777777777777777777777777777777
//
// Freq video
//
[17117770777777777777777777777777777777777
/*
wire [23:0] freq pixel;
wire fphsync, fpvsync, fpblank;

wire [7:0] spectrumm;

graph video
graph (ready, /*pcm _datal[l19:12]*///from ac97 data,clock 65mhz,reset,hcount, vcount, hsync,
vsync,blank, fphsync, fpvsync, fpblank, freq pixel, spectrumm) ;

//fre video

freql (ready, from ac97 data,clock 65mhz, reset,hcount,vcount, hsync, vsync,blank, fphsync, £
pvsync, fpblank, freq pixel) ;

//Combine video modules

wire [23:0] pixel = light pixel + dancing dog pixel+
health meter pixel;//dancing dog pixel ;//+ health meter pixel + light pixel;*/

///////GGGC//

!/

// switch[1:0] selects which video generator to use:
// 00: user's virtual-pet
// 0l: 1 pixel outline of active video area (adjust screen controls)
// 10: color bars

//

///////GGGC//

reg [23:0] rgb;
reg b,hs,vs;
always @(posedge clock 65mhz) begin
if (switch[1:0] == 2'b01) begin
// 1 pixel outline of visible area (white)
hs <= hsync;

VS <= Vvsync;

25

!/
!/
!/
!/

b <= blank;
rgb <= (hcount==0 | hcount==1023 | vcount==0 | vcount==767) ? 16777215 : 0;
end else if (switch[1:0] == 2'bl0) begin
// color bars
hs <= fphsync;
vs <= fpvsync;
b <= fpblank;
rgb <= freq pixel;
end else begin
// default: virtual-pet
hs <= phsync;
Vs <= pvsync;
b <= pblank;
rgb <= pixel;
end

end

// VGA Output. In order to meet the setup and hold times of the
// AD7125, we send it ~clock 65mhz.

assign vga out red = rgb[23:16];

assign vga out green = rgb[15:8];

assign vga out blue = rgb[7:0];

assign vga out _sync b = 1'bl; // not used
assign vga out blank b = ~b;
assign vga out pixel clock = ~clock 65mhz;

assign vga out hsync = hs;

assign vga_out_vsync = vs;

assign led = ~{3'b000,up,down, reset,switch([1:0]};

LI7701770777777777777777077
//
// Logic BAnalyzer Setup
//
L1717 770077717777

// output useful things to the logic analyzer connectors

26

assign analyzerl clock = ac97_bit_ clock;

assign analyzerl data[0] = audio_ reset b;

assign analyzerl data([1l] ac97_sdata out;

assign analyzerl data[2] = ac97_sdata_in;
assign analyzerl datal[3] = ac97 synch;
assign analyzerl datal[l5:4] = 0;

assign analyzer2 clock = ready;
// assign analyzer2 datal[l5:0] = 0;

assign analyzer2 data[15:0] = { spectrum[7:0],
history0[6:0]/*xk_index[9:3]*/,/*to_ac97 data,from ac97 data};*/ beat};

assign to_ac97 data = from ac97 data;

wire [35:0] controlO;

reg rdy;

reg old ready;

always @(posedge clock 65mhz) begin
rdy <= ready;

old ready <= rdy;

end

wire dclk = ~old ready & rdy;

wire [31:0] test32 = {xk_index, xk re, xk_im, 6'd0};

icon ico (.controlO (control0)) ;

ila ilal (.control (control0O), .clk(dclk), .trig0(test32));

endmodule

module icon

controlO
)i
output [35:0] controlO0;

endmodule

module ila
(
control,
clk,
trig0
)
input [35:0] control;
input clk;
input [31:0] trig0;

endmodule

beat detector.v

module
beat detector (reset,vclock, ready, from ac97 data,beat,overflow,scale sch,band, con
//final ports

,xk_re,xk index,ce,xn index,done,xk im //fft testing outputs
,write addr,read _addr,write data,read data //bram testing outputs

,spectrum, fft oready,ram start,data useful,old data,history0, historyl, history214
//detector testing outputs

input reset;

input vclock, ready;

input [7:0] from ac97 data;
output beat;

output overflow;

input [9:0] scale sch; //values tested: 10'b0110101010 causes overflow,
10'b1010101010 works just fine

input [7:0] band;

input [4:0] con;

output [7:0] xk re;

output [9:0] xk index;
output ce;

output done;

output [9:0] xn index;

output [7:0] xk im;

output [13:0] write addr;
output [13:0] read addr;
output [15:0] read data;

output [15:0] write data;

output [15:0] spectrum;

output fft oready;

output ram start;

output data_useful;

output [15:0] old data;

output [20:0] history0, historyl, history214;

reg rdy;

reg ready old;

wire dclk = ~ready old & rdy; //rising edge of ready
always @ (posedge vclock)

begin

ready old <= rdy;

rdy <= ready; end

//wires for fft

wire ce = dclk; //feed fft when there is new audio data

wire rfd;

wire fwd inv = 1'bl; //never does inverse fourier
wire dv;
wire done; //done at xk index=1023

wire busy;

wire edone;

wire overflow;

wire [7:0] xn im = 8'b0;

wire signed [7:0] xn re = from ac97 data;

wire signed [7:0] xk im;

wire signed [7:0] xk re;
wire [9:0] xn index; //fft input index

wire [9:0] xk index; //fft output index

//initialize fft

//reset: nothing

//1lst ready: fwd inv we
//2nd ready: scale sch we
//3rd ready: start fft
reg [1:0] initclk;

always @ (posedge vclock)

initclk <= reset ? 0 : (((initclk<3) & ce) ? initclk + 1 : initclk);
wire fwd inv we = (initclk==2'dl);
wire start = (initclk==2'd3);

// reload scale factors when changed as well as at init time
reg [7:0] old scale sch;
always @(posedge vclock) old scale sch <= scale sch;

assign scale sch we = initclk[0] | ~(scale sch==0ld scale_sch);

wire nfft we = (initclk==2'dl);

wire [4:0] nfft = 5'd10;

fft 1024
fft(xn_re[%n_im,start,fwd_inv,fwd_inv_we,scale_sch,scale_sch_we,ce,vclock,xk_re,xk_im,
xn_index,xk index,rfd,busy,dv, edone,done,overflow) ;

// fft 1024

fft (xn re,xn im,start,nfft,nfft we,fwd inv,fwd inv we,scale sch,scale sch we,ce,clk,xk
_re,xk im,xn index,xk index,rfd,busy,dv, edone,done, overflow) ;

// f£ft 1024

fft (ce,fwd inv_we,rfd,start,fwd inv,dv,scale sch we,done,vclock,busy,edone,overflow, sc
ale sch,xn re,xk im,xn index,xk re,xn im,xk index) ;

wire [13:0] write addr;
wire [13:0] read addr;
wire [15:0] read data;
wire [15:0] write data;
wire [15:0] spectrum;

wire fft oready;

30

wire ram start;

wire data useful;

wire [15:0] old data;
wire [20:0] history0, historyl, history214;
wire we;

history ram spechis(read addr,write addr,vclock,vclock,write data,read data,we);

detector_controller 2
control (reset,vclock,dclk,xk index,xk re,xk im,done,beat,band,con,read addr,write addr
,write data,read data,we,spectrum, fft oready,ram start,data useful,old data,historyo,
historyl, history214);

endmodule

beat detector controller.v

module detector controller 2 (reset,vclock,dclk,xk index,xk re,xk im,fft done,

band, con

,read addr,write addr,write data,read data,we

,spectrum, £ft_oready,ram_start,data_useful,old data

,history0, historyl, history214

input
input
input
input
input

input

reset;

vclock; //system clock

dclk; //fft-data clock

[9:0] xk_index; //for 1024-pt fft
[7:0] xk_re, xk im;

fft_done; //when xk-index=1023

output [13:0] read addr;

output [13:0] write addr;

output [15:0] write data;

input

[15:0] read data;

output we;

beat,

31

output [15:0] spectrum;

output fft oready;

output ram start;

output data_useful;

output [15:0] old data;

output [20:0] history0, historyl, history214;
output beat;

input [7:0] band;

input [4:0] con;

//0..512 represents frequency 0..sampling freq(48khz for ac97)

//however, human's hearing range is about 0..20khz, there fore index 0..214
//the spectrum = xk re*xk im is symetric about index 512.

//therefore data from index 513 onwards is redundant

//and data from index 215 onwards is irrelevant

parameter NX = 10'd1023;
parameter NX useful = 8'd214;
parameter n = 47; //time index 48*%1024 samples ~ 1 seconds

wire data useful = (xk index <=NX useful);

//fft-oready: falling-edge of fft-done
reg old done;
always @(posedge vclock) old done <= fft done;

wire fft oready = old done & ~fft done;

reg ram start; //the falling edge of the first done from fft
always @ (posedge vclock)

ram start <= reset? 0: (fft oready? 1: ram start);

//calculate spectrum
wire signed [7:0] xk re;
wire signed [7:0] xk im;

wire signed [16:0] fft xk sq = xk re*xk re + xk im*xk im;

32

wire [15:0] spectrum = fft xk sql15:0]; //ok because fft xk sq is always
positive and not more than 16-bit

reg [15:0] old data;//data to delete from history
always @ (posedge vclock)

old data <= dclk? read data : old data;

reg [20:0] history[NX useful:0] ; //the sum of the spectrum of each frequency
band for past

//wire [20:0] new history = history[xk index] + spectrum - old data;
integer 1i;
always @ (posedge vclock)
begin
if (reset)
for (i=0; i<=NX useful; i=i+1)

historyl[i] <= 0;

else if (data useful&&ram start)

history([xk index]<= dclk? history[xk index] + spectrum - old data:
history([xk index];

else begin end

end

initial old data <= 0;

reg [13:0] read addr, write addr;

reg [15:0] write data;

parameter max_addr = 429;//10319;

wire [13:0] next read addr = ~ram start? 1

(read_addr==max_addr)? (xk_index
== NX)? 1: max_addr: (dclké&&data useful)? (read addr+1l):

read_addr;
wire [13:0] next write addr = ~ram start? O:

(write addr==max addr)? (xk_index
== NX)? 0: max addr: (dclk&&data useful)? (write addr+1):

write addr;
always @ (posedge vclock) begin

read_addr <= next read_addr;

33

write addr <= next write addr;

write data <= data useful? spectrum: write data;

end

//assign write data = spectrum;

assign we = data_useful;

assign history0 = history[0];
assign historyl = history[1];

assign history214 = history[214];
reg beat temp;

always @ (posedge vclock)

beat temp <= (dclk && data useful)? (48*spectrum >
((con*history[xk index])>>3)) : 0;

reg [7:0] beatbuf;

always @ (posedge vclock)

beatbuf <= (reset ||fft done)? 0: beat temp? beatbuf + 1: beatbuf;
assign beat = (beatbuf > band);

endmodule

video controller.v
module video controller(clk, reset, beat, health point, state, emotion, beat out

/*

, minute, second, counter, latest, oldest, prv min, dance //for debugging
, his min3, his min2, his minl, his minoO

, his sec3, his sec2, his secl, his secO

, his exp3, his exp2, his expl, his exp0

, state sec, state counter, state min

*/

34

input clk, reset, beat;

output [3:0] health point; //0..15; to health meter
output state; //to light

output emotion; //to light

output beat out; //to light

//for debugging
/* output [2:0] minute, prv_min, his min3, his min2, his minl, his _min0O, state_min;
output [5:0] second, his sec3, his sec2, his secl, his sec0, state sec;
output [25:0] counter, state counter;
output [3:0] latest, oldest;
output dance;
output his exp3, his exp2, his expl, his expO;

*/

L1171 77 0777777777777 77 77777 777

//general timer

parameter max_counter = /*26'd9;*/26'd64999999; //assuming clk 65mhz,
max_counter = 1s

parameter max second /*6'd5;*/6'd59; //1lmin = 60s

parameter max minute 3'd5; //1 day of virtual pet = 1 minute in real world

reg [25:0] counter;
reg [5:0] second;

reg [2:0] minute;

wire [25:0] next counter = (counter==max counter)? 0: counter+l;

wire [5:0] next second = (counter==max counter)? (second==max second)? O0:
second+1: second;

wire [2:0] next minute = (second==max_ second && counter==max counter)?
(minute==max minute)? 0: minute+l : minute;

always @ (posedge clk)

begin

35

if (reset)

begin
counter <= 0;
second <= 0;
minute <=0;

end

else

begin
counter <= next counter;
second <= next second;
minute <= next minute;

end

end

LI1171T77 7707777777777 77717777

//history of last 10 beats

parameter count beat = /*4'd3;*/4'd9; //minimum 10 beat/minute to activate
state dancing

integer 1i;

reg [3:0] latest; //index to record history of beats
reg [5:0] his sec[count beat:0]; //second in which beat was recorded
reg [2:0] his min[count beat:0]; //minute in which beat was recorded

reg his exp[count beat:0]; //0 if beat recorded within 1 minute from now (ie not
expired)

wire [3:0] oldest = (latest==count beat)? 0: latest+1l;
wire [3:0] next latest = beat? (latest==count beat)? 0: latest+l: latest;

wire [2:0] prv_min = (minute==3'd0)? max minute: minute-1;

always @ (posedge clk)

begin

if (reset)

begin

latest <= 0;

36

for (i=0; i<=count beat; i=i+1)

begin
his min[i] <= 3'd0;
his_sec[i] <= 6'd0;
his exp[i] <= 1;
end
end
else
begin

latest <= next latest;
his min[latest] <= beat? minute: his min[latest];
his sec[latest] <= beat? second: his_sec[latest];
for (i=0; i<=count beat; i=i+1)
if ((beat==1) && (i==latest))
his exp[i] <=0;
else if (his_exp[i]==1)
his_exp[i] <= 1;
else if ((prv_min==max minute) && (his_min[i]==0))
his exp[i] <= 0;
else
//note: just added 30 so that deavtivates in 30s

his expli] <= (his min([i]<prv_min) ||
((his min[i]==prv_min) && ((his sec[i]+30)<second)) ;

end

end

by L1177 7707777777777 7 77777777777 77717777

//state activation notes: state dancing active if the time difference between

//the latest beat and the last 10th beat is less than 1 minute.

parameter state idle = 1'bO;

parameter state dancing = 1'bl;

reg state; //0:idle, 1l:dancing

37

reg old state;

wire dance = ((his expl[latest]!=1) && (his expl[oldest]!=1))? 1: 0;

always @ (posedge clk)
begin
old_state <= state;
state <= reset? 0 : dance? state dancing : state idle;

end

L1177 7707777777777 77 77777777 77

//state timer: to time the length of current state

reg [25:0] state counter;
reg [5:0] state sec;

reg [2:0] state min;

wire [25:0] next state counter = (state counter==max counter)? O:
state_counter+l;

wire [5:0] next state sec = (state counter==max counter)?
(state sec==max_second)? 0: state sec+l: state_ sec;

wire [2:0] next state min = (state sec==max second &&
state counter==max counter)? (state min==max minute)? 0: state min+l : state min;

always @ (posedge clk)
begin
if (reset|| (old_state!=state))
begin
state min <=0;
state_sec <=0;

state_counter <=0;

end
else
begin
state_counter <= next_state_counter;
state_sec <= next_state_sec;
state min <= next state min;
end

38

end

[I117777777 7770777777777 7777777777777777077777777777777777777777777777777777777
//health-point calculation

//notes: once health point becomes 0, it can never increase (ie the pet dies)

parameter hincrement = 1'bl; //increment of health point

parameter max health point = 4'dl5;

reg [3:0] health point;

wire new state min = (state sec==max second) && (state counter==max counter) ;
wire [3:0] dance health = (~new state min || health point==max health point

| |[health point==0)? health point: (health point + hincrement) ;
wire [3:0] idle health = (~new_state min || health point==0)? health point:

(health point - hincrement) ;

always @ (posedge clk)

begin
if (reset)
health point <= max health point;
else case(state)
state dancing: health point <= dance health;
state_idle: health point <= idle_health;
endcase
end

LIT1T1T77 77077077777 777 77777777777 777

//emotion calculation

parameter happy = 1'bl;
parameter sad = 1'bO0;

parameter happy interval = 3'd2; //when it is idle, happy emotion only lasts for
5 minute

reg emotion;

//when idle, once it is sad, the only way to make it happy is to switch to
state dancing

39

//ie feed it with beats

wire idle emotion = (emotion==sad)? sad: ~(new state min &&
(state min==happy interval));

always @ (posedge clk)
begin
if (reset)
emotion <= happy;
else case(state)
state dancing: emotion <= happy;
state_idle: emotion <= idle emotion;
endcase

end

assign beat out = beat;

//debugging outputs

/* assign his exp3 = his expl[3];
assign his exp2 = his expl2];
assign his expl = his expl[1l];

assign his exp0 = his exp[0];

assign his min3 = his min[3];
assign his min2 = his min[2];
assign his minl = his min[1];

assign his min0 = his min[O0];

assign his sec3 = his sec[3];
assign his sec2 = his sec[2];
assign his secl = his sec[1];
assign his sec0O0 = his sec[0];
*/
Endmodule

Health.v

module health meter
(velock, reset, hcount, vcount, hsync, vsync, blank, phsync, pvsync, pblank,pixel,
health point) ;

input vclock; // 65MHz clock

input reset; // 1 to initialize module

input [10:0] hcount; // horizontal index of current pixel (0..1023)

input [9:0] vcount; // vertical index of current pixel (0..767)

input hsync; // XVGA horizontal sync signal (active low)

input vsync; // XVGA vertical sync signal (active low)

input blank; // XVGA blanking (1 means output black pixel)
output phsync; // pong game's horizontal sync

output pvsync; // pong game's vertical sync

output pblank; // pong game's blanking

output [23:0] pixel;

input [3:0] health point;

parameter meter height = 10'dé4;
parameter meter x = 11'd720;

parameter meter y = 10'd76;

parameter yellow = 24'hFECAlOQ;
parameter red = 24'hFF0000;

parameter green = 24'hOOFF00;

wire [10:0] next meter width = health point<<4;

wire [23:0] next meter color

(health point>8)? green:

(health point<=8 && health point>4)? yellow:
red;
reg [10:0] meter width;
reg [23:0] meter color;
reg vsync_old; //to store the value of vsync before the rising edge

of the clock

wire new frame = vsync old & ~vsync; //falling edge of vsync */

parameter ge = 1'bl;

blob health(meter x, meter y, hcount, vcount, meter color,
meter width,meter height,ge,pixel);

41

always @ (posedge vclock)

begin
vsync_old <= vsync;
if (reset)
begin
meter width <= 11'd240;
meter color <= green;
end
else if (new frame)
begin
meter width <= next meter width;
meter_color <= next_meter color;
end else begin end
end

assign phsync = hsync;
assign pvsync = vsync;
assign pblank = blank;

endmodule

blob.v

module blob (x,y,hcount,vcount, color,width,height,ge,pixel) ;

//a module to generate a rectangle with gradient

//gradient light at y-middle, dark at y-edges

input ge; //gradient-enable
input [10:0] x,hcount; //x: x-coordinate of top-left corner
input [9:0] y,vcount; //y: y-coordinate of top-left-corner

input [10:0] width;
input [9:0] height;

input [23:0] color; //color at y-middle

42

output [23:0] pixel;

parameter
y-middle

reg [23:0]

wire [9:0]

wire [9:0]

wire [7:0]
wire [7:0]

wire [7:0]

increment = 3; //darken the gradient every 2" increment pixels from

pixel;

mid y = y + (height>>1); //y-middle point of the rectangle

delta y = (vcount> mid y)? vcount - mid y: mid y - vcount;

color[23:16];

R
1]

g = color[15:8];

b = color[7:0];

wire [7:0] newr = ge? r>>(delta y>>increment) : r;
wire [7:0] newg = ge? g>>(delta y>>increment) : g;
wire [7:0] newb = ge? b>>(delta y>>increment) : b;
wire [23:0] newcolor = {newr, newg, newb};

always @ (x or y or hcount or vcount) begin

if ((hcount >= x && hcount < (x+width)) && (vcount >= y && vcount <

(y+height)))
pixel = newcolor;
else pixel = 0;
end

endmodule
dog.v
module dog

(veclock, reset, hcount, vcount, hsync, vsync,blank, phsync, pvsync, pblank,pixel, state,data_in

,addr) ;

input vclock; // 65MHz clock

input reset;

// 1 to initialize module

input [10:0] hcount; // horizontal index of current pixel (0..1023)
input [9:0] vcount; // vertical index of current pixel (0..767)

input hsync;
input vsync;

// XVGA horizontal sync signal (active low)
// XVGA vertical sync signal (active low)

43

input blank; // XVGA blanking (1 means output black pixel)

input state; //determines whether the dog dances
output phsync; // output horizontal sync

output pvsync; // output vertical sync

output pblank; // output blanking

output [23:0] pixel; // output pixel
//debugging

output [23:0] data_in;

output [16:0] addr;

parameter max_addr = 117799; //max addr in the image roms : 380x310 pixels

//parameters of dog
parameter dog width = 11'd380;

parameter dog height = 10'd310;

parameter dog x

11'd102; //top-left corner corrdinates

parameter dog y = 10'd229;

parameter hold frames = 6'dl9; //each image holds for 20 frames before
transitting to next image

parameter state idle = 1'bO;

parameter state dancing = 1'bl;

reg [16:0] addr;
reg [1:0] count rom;

reg [5:0] count frame;

wire [4:0] encoded data left;
wire [4:0] encoded data center;

wire [4:0] encoded data right;

wire [23:0] data in left;
wire [23:0] data in center;

wire [23:0] data in right;

reg vsync_old; //to store the value of vsync before the rising edge
of the clock

assign phsync = hsync;
assign pvsync = vsync;
assign pblank = blank;

//to determine which the address to read////////////////////////////]//

wire new frame = vsync old & ~vsync; //falling edge of vsync

wire rom within region = ((hcount+3) >= dog x && (hcount+3) < (dog x+dog width))
&& (vcount >= dog y && vcount < (dog y+dog height)) ;

wire within region = (hcount >= dog_x && hcount < (dog_x+dog width)) && (vcount

>= dog y && vcount < (dog y+dog height)) ;

wire [16:0] next addr = (addr==0)? max addr: addr - 1;

always @ (posedge vclock)
begin
if ((hcount+3) == dog x && vcount == dog y) //at top left corner
addr <= max_addr;

//start getting data from rom

else if (hcount && rom within region) //for
next pixel that is within the display region

addr <= next_addr;
//next rom address

else begin end
end

wire lrom within region = ((hcount+4) >= dog x && (hcount+4) < (dog x+dog width))
&& (vcount >= dog y && vcount < (dog y+dog height)) ;
reg [16:0] laddr;
reg [10:0] count mem;

parameter max count mem = dog width-1;

wire [16:0] next laddr = (laddr==max count mem)? max addr-max_ count mem:
(count _mem==max_count mem)? laddr - ((max_count mem<<l) + 1): laddr + 1;
wire [10:0] next count mem = (count mem==max count mem)? 0: count mem+l;

always @ (posedge vclock)
begin
if ((hcount+4) == dog x && vcount == dog y) //at top left corner

begin laddr <= max_addr- max_count mem;
//start getting data from rom

count _mem <= 0; end

45

else if (hcount && lrom within region) //for next pixel
that is within the display region

begin laddr <= next laddr; //next
rom address

count_mem <= next count mem; end
else begin end

end

//to determine which bram to read/////////////////////////71/////7//7////
always @ (posedge vclock)
begin
vsync_old <= vsync;
if (reset)
begin

count_rom <= 1; //read the center-rom because the
initial state is always idle dog

count_ frame <= 0;
end
else if (new_ frame)
case (state)
state_idle:
count_rom <= 1; //always show image from center rom

state dancing:

begin
count frame <= (count frame==hold frames)? 0:
count frame+1;
count_rom <= (count frame==hold frames)?
count_rom+1l: count rom;
end
endcase
end
wire [16:0] xaddr = (count rom==0)? laddr: addr;

//instances of read-only brams

//they all share the same read address

46

// left rom boo left (addr, vclock, encoded data left);
//left lut foo left (encoded data left, vclock, data in left);
right rom boo right (xaddr, vclock, encoded data right) ;
right lut foo right (encoded data right, wvclock, data in right);
center rom boo center (addr, vclock, encoded data center) ;

center lut foo center (encoded data center, vclock, data in center);

assign data in = (count _rom==0)? data in right://data in left:

(count rom==1 || count rom==3)?
data_in center:

data_in right;

assign pixel = within region? data in : 0;
endmodule

light.v

module

light light (vclock, reset,hcount,vcount, hsync,vsync,blank,phsync,pvsync,pblank,pixel, em

otion, state,beat/*, count, done, done5,color 5, start*/);

input vclock; // 65MHz clock
input reset; // 1 to initialize module
input [10:0] hcount; // horizontal index of current pixel (0..1023)

input [9:0] vcount; // vertical index of current pixel (0..767)

input hsync; // XVGA horizontal sync signal (active low)
input vsync; // XVGA vertical sync signal (active low)
input blank; // XVGA blanking (1 means output black pixel)
output phsync; // output horizontal sync

output pvsync; // output vertical sync

output pblank; // output blanking

output [23:0] pixel;
// output [2:0] count;

// output done;

47

// output dones5;
// output [23:0] color 5;

// output start;

input emotion;
input state;

input beat;

parameter yellow = 24'hFFFF00;
parameter red = 24'hFF0000;
parameter green = 24'h00FFO00;
parameter blue = 24'h0O000FF;

parameter black = 24'h000000;

//parameters for circle dual
parameter radius = 11'd32; //default width of all lights

parameter lightl x 11'd918;//948;

parameter lightl y 10'd404;

parameter light2 x 11'de93;//678;

parameter light2 y 10'd274;//248;

parameter light3 x 11'de93;//678;

parameter light3 y 10'd534;//560;

parameter light4 x 11'ds43;//858;

parameter light4 y 10'd274;//248;

parameter light5 x 11'de18;//588;

parameter light5 y 10'd404;

parameter lighté x 11'ds43;//858;

parameter lighté y 10'd534;//560;

parameter light7 x 11'd768;

parameter light7 y 10'd404;

//emotion parameters
parameter happy = 1'bl;

parameter sad = 1'b0;

//state parameters

parameter state idle = 1'bO;

parameter state dancing = 1'bl;

//dual circles/////////1//17111711177777

wire

wire

[23:0] color 1,

[23:0]

light6 pixel,

color 2, color 3, color 4, color 5, color 6, color 7;

light7 pixel;

circle dual lightl(vclock, reset, lightl x,lightl y,hcount,vcount,radius,
color 1,lightl_pixel);

circle dual light2(vclock, reset, light2 x,light2 y,hcount,vcount,radius,
color 2,light2 pixel);

circle dual light3(vclock, reset, light3 x,light3 y,hcount,vcount, radius,
color 3,light3 pixel);

circle dual light4 (vclock, reset, light4 x,light4 y,hcount,vcount,radius,
color 4,light4 pixel);

circle dual light5(vclock, reset, light5 x,light5 y,hcount,vcount,radius,
color 5,light5 pixel);

circle dual lighté(vclock, reset, lighté x,lighté y,hcount,vcount,radius,
color 6,lighté6 pixel);

circle dual light7(vclock, reset, light7 x,light7 y,hcount,vcount,radius,
color 7,light7_pixel) ;

//€flashers////////////1/1/1/171717/7/

parameter frame rate

reg

reg

reg

reg

reg

reg

reg

[23:
[23:
[23:
[23:
[23:
[23:

[23:

0]
0]
0]
0]
0]
0]

0]

= 6'dl;

lightl_color;

light2_color;

light3 color;

light4_color;

light5 color;

light6 color;

light7_color;

reg old emotion;

reg old state;

reg start;

reg beatreg;

reg

increment unit

[3:0]

increment;

//to start flashers
//register beat input

//for every frame-rate the gradient change by every

lightl pixel, light2 pixel, light3 pixel, light4 pixel, light5 pixel,

49

reg increase; //1l:to increase (brighten)

reg [2:0] count; //number of flashes

reg vsync_old;
clock

the gradient

//to store the value of vsync before the rising edge of the

wire new frame = vsync old & ~vsync; //falling edge of vsync

wire donel, done2, done3, done4, done5, doneé6, done7;

flasher w flasherl(vclock, reset, vsync, lightl color, increase, increment,
frame rate, color 1, start, donel);

flasher w flasher2(vclock, reset, vsync, light2 color, increase, increment,
frame rate, color 2, start, done2);

flasher w flasher3(vclock, reset, vsync, light3 color, increase, increment,
frame rate, color 3, start, done3);

flasher w flasher4 (vclock, reset, vsync, light4 color, increase, increment,
frame rate, color 4, start, done4);

flasher w flasher5(vclock, reset, vsync, light5 color, increase, increment,
frame rate, color 5, start, dones);

flasher w flasheré6 (vclock, reset, vsync, lighté color, increase, increment,
frame rate, color 6, start, doneé6) ;

flasher w flasher7(vclock, reset, vsync, light7 color, increase, increment,
frame rate, color 7, start, done7);

parameter max_count = 5;

parameter increment dancing = 4'dl3;

parameter increment happy = 4'dl3;

parameter increment sad = 4'd4;

wire done = donel & done2 & done3 & done4 & done5 & done6 & done7;

wire case reset = (old emotion!=emotion || old state!=state); //emotion or state

changed within the past frame period

always @ (posedge vclock)

begin
old emotion <= new frame? emotion: old emotion;
old state <= new_frame? state old_state;

vsync_old <= vsync;

beatreg <= beat? 1: new frame? 0: beatreg; //beat within the past frame period

if (reset || case reset)

begin

50

count <= 0;

start <= 1;
lightl color
light2_ color
light3 color
light4_color
light5_color
light6 color

light7_color <=

increase <= 0;

black;
black;
black;
black;
black;
black;

black;

increment <= 4'dl;

end

else if (new_frame)
case (state)

state idle:

if (done && emotion==happy)

begin
start <= 1;
count <= (count==max count)? 0: count+l;
lightl color <= (count==0 || count==1)? red : black;
light2 color <= (count==0 || count==1)? green : black;
light3 color <= (count==0 || count==1)? blue : black;
light4 color <= (count==2 || count==3)? blue : black;
light5 color <= (count==2 || count==3)? red : black;
light6 color <= (count==2 || count==3)? green : black;
light7 color <= (count==4 || count==5)? yellow : black;
increase <= (count==0 || count==2 || count==4);

end

increment <= increment happy;

else if (done && emotion==sad)

begin

start <= 1;

count <=

(count==max count)? 0:

lightl color <= green;

light2 color <= green;

count+1;

51

light3 color <= green;
light4 color <= green;
light5 color <= green;
light6 color <= green;
light7 color <= green;
increase <= (count==0 || count==2 || count==4);
increment <= increment sad;
end
else begin end
state dancing:
if (beatreg)
begin

start <= 1;

count <= (count==max count)? 0: count+l;
lightl color <= (count==0)? red : black; //the
lights,except 1light7 take turn to flash

light2 color <= (count==1)? green : black;

light3 color <= (count==2)? blue : black;

light4 color <= (count==3)? blue : black;

light5 color <= (count==4)? red : black;

light6 color <= (count==5)? green : black;

light7 color <= yellow;
increase <= 0;
increment <= increment dancing;
end
else begin end

endcase

else
start <= 0;

end

assign pixel = lightl pixel + light2 pixel + light3 pixel + light4 pixel +
light5 pixel + light6é pixel + light7 pixel;

assign phsync = hsync;
assign pvsync = vsync;

assign pblank = blank;

52

endmodule

circle dual.v

module circle dual (clk, reset,

X,y,hcount, vcount, radius, color,pixel
/*xa,ya,hcounta,vcounta, radiusa, colora, pa,
xb, yb,hcountb, vcountb, radiusb, colorb, pb,
wsa, wra, dxa, dya, sgxa, sqgya,

wsb, wrb, dxb, dyb, sagxb, sqgyb,

enable a, old*/);

input clk, reset;
input [10:0] x,hcount;

input [9:0] y,vcount;

input [10:0] radius; //maximum radius is the

input [23:0] color;

output [23:0] pixel;

wire [23:0] pixela, pixelb;

/* output [23:0] pa, pb;

output [10:0] xa, xb, hcounta, hcountb;

output [9:0] ya, yb, vcounta, vcountb;

output [10:0] radiusa, radiusb;

output [23:0] colora, colorb;

output enable a;

output [1:0] old; */

reg [10:0] xa, xb, hcounta, hcountb;

reg [9:0] ya, yb, vcounta, vcountb;

reg [10:0] radiusa, radiusb;
reg [23:0] colora, colorb;

reg [23:0] pixel;

/7,

width of the

screen

53

/*

sgxa,

sagxb,

*/

reg [1:0] old;

always @ (posedge clk) begin

if (reset)
old <= 0;
else

old <= (old==1)? 0: old+1 ;

end

wire ea = 0ld==0;

output wsa, wra;
output [10:0] dxa, dya;

output [21:0] sgxa, sqya;

output wsb, wrb;
output [10:0] dxb, dyb;

output [21:0] sgxb, sqyb;

circle a(xa,ya,hcounta,vcounta,radiusa, colora, pixela/*, wsa,

sqya*/) ;

circle b(xb,yb,hcountb, vcountb, radiusb, colorb, pixelb/*, wsb,

sqyb*/) ;

always @ (posedge clk) begin

if (reset)

begin
xa <= X;
ya <= Yi
hcounta <= hcount;
vcounta <= vcount;
radiusa <= radius;
colora <= color;
pixel <= pixela;

end

else if (ea)

wra, dxa, dya,

wrb, dxb, dyb,

begin

xb <= X;

yb <= Vi
hcountb <= hcount;
vcountb <= vcount;
radiusb <= radius;
colorb <= color;

pixel <= pixelb;

end
else
begin
xa <= X;
va <= Y
hcounta <= hcount;
vcounta <= vcount;
radiusa <= radius;
colora <= color;
pixel <= pixela;
end
end
// assign pa = pixela;
// assign pb = pixelb;
// assign enable a = ea;
endmodule

circle.v

module circle(x,y,hcount, vcount, radius,

color, pixel/*, ws,

wr,

ax,

dy,

a,

b*/);

55

/*

input [10:0]

input [9:0]

input [10:0] radius;

input [23:0] color;

output [23:0] pixel;
reg [23:0] pixel;
output ws, wr;

output
output [21:0] a, b;

wire [9:0] delta y =

wire [10:0] delta x

//wire [1:0]
//wire [1:0]
wire within square x
wire within square y
wire within square =

wire within radius =

radius*radius : 0;

short delta y*short delta y)

/*

//wire within radius

y,vcount ;

[10:0] dx, dy;

x,hcount;

//maximum radius is the width of the screen

*/

(vcount>y)? vcount - y: y-vcount;

(hcount>x)? hcount - x: x-hcount;

short delta x = delta x[1:0];

short delta y = delta y[1:0];

= delta x <=radius;
= delta y <= radius;
within square x && within square_y;

within square? (delta x*delta x + delta y*delta y) <=

= within square? (short delta x*short delta x +
<= radius*radius : 0;

always @(x or y or hcount or vcount or radius or color)

begin

if (within radius)

pixel = color;

else
pixel =0;
end
assign ws = within square;

assign wr = within radius;

56

assign a = delta x*delta x;
assign b= delta y*delta y;
assign dx = delta_x;

assign dy

delta y;*/

endmodule

flasher.v

module
flasher w(vclock, reset,vsync,rgbin, increase, increment, frame rate, rgbout, start, done) ;

input vclock, reset, vsync;
input [23:0] rgbin;

input increase;

input [3:0] increment;
input [5:0] frame rate;
input start;

output done;

output [23:0] rgbout;

wire [7:0] rin

rgbin[23:16] ;

wire [7:0] gin rgbin[15:8];

wire [7:0] bin

rgbin[7:0];

wire [7:0] rout = rgbout[23:16];

wire [7:0] gout = rgbout[15:8];

wire [7:0] bout = rgbout[7:0];

reg [5:0] count frame; //count till 59

reg [23:0] rgbout;

wire signed [8:0] next decr = rout - increment;

wire signed [8:0] next decg

gout - increment;

wire signed [8:0] next decb = bout - increment;

wire
next decr([7:

wire
next decgl[7:

wire
next decb[7:

wire
wire

wire

[7:
0]

decr
rout;

0]

[7:
0]

0] decg

gout;

[7:
0]

decb
bout;

0]

signed [8:0]
signed [8:0]

signed [8:0]

(count frame==frame rate)? (next decr <=0)? 0

(count frame==frame rate)? (next decg <=0)? 0

(count frame==frame rate)? (next decb <=0)? 0

next incr rout + increment;

next incg gout + increment;

bout + increment;

next incb

wire [7:0] incr = (count frame==frame rate)? (rin==0)? 0: (next incr <=0)? rin
next incr[7:0] rout;

wire [7:0] incg = (count frame==frame rate)? (gin==0)? 0: (next incg <=0)? gin
next incg[7:0] gout ;

wire [7:0] incb = (count frame==frame rate)? (bin==0)? 0: (next incb <=0)? bin
next_incb([7:0] bout;

wire [7:0] newr = increase? incr decr;

wire [7:0] newg = increase? incg decg;

wire [7:0] newb = increase? incb decb;

wire [23:0] newcolor = {newr, newg, newb};

wire [5:0] next count frame = (count frame==frame rate)? 0: count frame+l;

reg vsync_old; //to store the value of vsync before the rising edge
of the clock

wire new frame = vsync old & ~vsync; //falling edge of vsync

always @ (posedge vclock)

begin

vsync_old <= vsync;

if (reset || start)

begin

rgbout <= increase? 0

rgbin ;

count_ frame <= 0;

end

58

else if (new frame)

begin
rgbout <= newcolor;
count frame <= next count frame;
end else begin end
end
assign done = increase? (rout==rin && gout==gin && bout==bin) : (rout==0 &&

bout==0 && gout==0) ;

endmodule

video graph.v

module

graph video (ready, from ac97 data,vclock, reset, hcount, vcount, hsync, vsync, blank, phsync, p
vsync, pblank,pixel

’

spectrum

//,energy, busy, rfd, ffwd inv we, fstart,ffwd inv,fscale sch we, fscale sch, fxk re,
fxk im, fxn index, fxk index, oreal, oimag, height

)i

input ready, reset;

input [7:0] from ac97 data;

input vclock;
input [10:0] hcount; // horizontal index of current pixel (0..1023)

input [9:0] vcount; // vertical index of current pixel (0..767)

input hsync; // XVGA horizontal sync signal (active low)
input vsync; // XVGA vertical sync signal (active low)
/*

///for video_ sim

output [10:0] hcount; // horizontal index of current pixel (0..1023)
output [9:0] vcount; // vertical index of current pixel (0..767)
output hsync; // XVGA horizontal sync signal (active low)

output vsync; // XVGA vertical sync signal (active low)

59

*/

input blank; // XVGA blanking (1 means output black pixel)
output phsync; // pong game's horizontal sync
output pvsync; // pong game's vertical sync
output pblank; // pong game's blanking

output [23:0] pixel;

wire [9:0] scale sch = 10'b1010101011;

reg vsync_old; //to store the value of vsync before the rising edge of the
clock

wire new frame = vsync old & ~vsync; //falling edge of vsync

reg ready old;
reg rdy;

wire dclk = ~ready old & rdy; //rising edge of ready

//wires for fft

wire ce = dclk; //feed fft when there is new audio data
//wire rfd;

wire fwd inv = 1'bl; //never does inverse fourier
wire dv;

wire done;

//wire busy;

wire edone;

// wire [5:0] scale_sch = 6'b011010;

wire [7:0] xn im = 8'b0;

wire signed [7:0] xn re = from ac97 data;

wire signed [7:0] xk_im;

wire signed [7:0] xk_re;

wire [9:0] xn index; //fft input index

wire [9:0] xk index; //fft output index

//initialize fft

//reset: nothing

/*

//1lst ready: fwd inv we
//2nd ready: scale sch we
//3rd ready: start fft
reg [1:0] initclk;

always @ (posedge vclock)

initclk <= reset ? 0 : (((initclk<3) & ce) ? initclk + 1 : initclk);
wire fwd inv we = (initclk==2'dl);
wire start = (initclk==2'd3);

// reload scale factors when changed as well as at init time
reg [7:0] old scale sch;
always @(posedge vclock) old scale sch <= scale sch;

assign scale sch we = initclk[0] | ~(scale sch==0ld scale_sch);

always @ (posedge vclock)
begin
vsync_old <= vsync;
ready old <= rdy;
rdy <= ready;

end

assign phsync = hsync;
assign pvsync = vsync;

assign pblank = blank;

output [15:0] energy;
output busy;

output rfd;

output ffwd inv we;
output fstart;

output ffwd inv;
output fscale sch we;

output [5:0] fscale sch;

output [7:0] fxk re;

61

output [7:0] fxk im;
output [4:0] fxn index;

output [4:0] fxk index;

assign ffwd inv we = fwd_ inv we;
assign fstart = start;

assign ffwd inv = fwd_inv;

assign fscale sch we = scale sch we;

assign fscale sch = scale_sch;

assign fxk re = xk_re;
assign fxk im = xk_im;
assign fxn index = xn_index;

assign fxk index = xk_index;

output [7:0] oreal;

output [7:0] oimag;

output [8:0] height;

*/

/*
video sim xvgasim(vclock, reset, hcount, vcount, hsync, vsync);
defparam xvgasim.max hcount = 40; //1343;
defparam xvgasim.max vcount = 40; //805;
defparam xvgasim.max frame x = 35; //1024;
defparam xvgasim.max frame y = 35; //768;
*/
wire overflow;
fft 1024

fft (xn re,xn im,start,fwd inv,fwd inv we,scale sch,scale sch we,ce,vclock,xk re,xk im,
xn_index,xk index,rfd,busy,dv, edone,done,overflow) ;

/*
fft frel (
Xn re,

xn_im,

62

start,
fwd_inv,
fwd_inv_we,
scale_sch,
scale_sch we,
ce,

vclock,
xk_re,

xk im,
xn_index,
xk index,
rfd,

busy,

av,

edone,
done) ; */

// fft

wire [15:0] xk re sqg;

wire [15:0] xk im sqg;

output [7:0] spectrum;

multiplier re(vclock, xk_re,xk re,xk re sq);

multiplier im(vclock, xk_im,xk im,xk im sq) ;

wire [16:0] energy = xk re sq + xk im sqg;
wire [7:0] datal = energy[15:0];

wire [7:0] data2

8'b0;
wire [10:0] cx = 11'do;

wire [9:0] cy = 10'd0;

assign spectrum = datal;

frel(ce,fwd inv we,rfd,start,fwd inv,dv,scale sch we,done,vclock, busy, edone, scale sch,
xn_re,xk_im,xn index,xk_re,xn im,xk index);

63

/*

//first test

graph2 buf graph(reset,vclock, hcount, vcount,pixel,datal,data2,dclk,done,cx,cy) ;

defparam
defparam

defparam

defparam
defparam

defparam
(0..513)

defparam
(0..513)

*/
wire [23

//second

graph.
graph.

graph.

graph.
graph.

graph.

graph.

NX = 31; // number of data pixels (horiz size)

GPIX RGB1 = 24'hFFFFFF; // pixel RGB for graph datal, red
GPIX RGB2 = 24'h000000; // pixel RGB for graph datal, green
screen width = 1023;

screen height = 767;

graph height = 513; //512 pixels for data, graph(with border)

graph width = 513; //512 pixels for data, graph(with border)

:0] pixel;

test

graph2 bar graph2 (reset,vclock,hcount,vcount,pixel,datal,data2,dclk,done,cx,ccy) ;

defparam
defparam
defparam

defparam

defparam
defparam

defparam
(0..513)

defparam
(0..513)

endmodule

graph2
graph2

graph2

graph2.

graph2.

graph2.

graph2

graph2

NX = 1024;//31; // number of data pixels (horiz size)

.GPIX RGB1l = 24'hFFFFFF; // pixel RGB for graph datal, red
.GPIX RGB2 = 24'h000000; // pixel RGB for graph datal, green
increment = 0; // pixel RGB for graph datal, green

screen width = 1023;

screen height = 767;

.graph height = 513;//257; //512 pixels for data, graph(with border)

.graph width = 216;//513; //512 pixels for data, graph(with border)

64

65

