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Abstract

The goal of this project was to design and implement an Ogg Vorbis decoder in
hardware. Ogg Vorbis is a highly dynamic audio encoding format - the framework was
designed to be customizable enough to still be in use 20 years from now. The Vorbis
decoding process was broken up into two parts; the front-end which configures the
decoder, and the back-end which decodes the audio data into PCM. The front-end was
completed successfully, but due to the unforeseen complexity of the audio decoding
process, the back-end could not be debugged in time.
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1 Introduction

Ogg Vorbis is a lossy audio codec that is similar in principle to formats like MP3. Ogg Vorbis
has recently been receiving a great deal of attention for a number of reasons, including the
fact that it is free and open, and that it tends to provide a smaller file size for similar quality
encodings compared to other lossy codecs. Currently, a considerable number of software
audio players support the Vorbis format. Unfortunately, there few hardware players that
support Vorbis, and those that do tend to be of the larger, more expensive, and more power-
hungry variety.

The project itself is divided into two major parts. The first of these is the front-end, which
is responsible for decoding the Vorbis header packets that contain a wealth of information for
configuring the decoder and identifying the Vorbis stream. Vorbis, unlike most other audio
codecs, packs all information needed to decode a stream into the stream itself, which gives it
the freedom to optimize numerous aspects of the encoding. The front-end is an interesting
system: for a five-minute audio sample, the front-end will run for but a fraction of a second,
while the decoder back-end runs for five minutes. Yet without the processing done by the
front-end, the decoder would be completely unable to even begin decoding the audio stream.

The second part of the decoder is the back-end, which is responsible for approximating
the original audio waveform from a bitstream of data and the information provided by the
front-end. The back-end performs a number of complex computations, involving finite state
machines with tens of states, parallel computations, searching, sorting, Huffman decoding,
and line rendering, to name a few. One of Vorbis’s strengths is higher-than-normal quality
at low bitrates, and this relates directly to the complexity of the back-end.

2 The Ogg Vorbis Audio Codec

2.1 The Front-end

The Vorbis stream is broken up into packets of data. There are four different types of
packets. The first three comprise the header — the identification, comments, and setup
packets. There is one of each header packet. The remaining packets in the stream are all
audio data. The identification packet identifies the data stream as valid Vorbis and contains
information about the encoded data. The comments packet contains text fields such as the
title, artist and album of the song. The setup packet sets the decoder up to be able to decode
the audio data.

The front-end configures the Vorbis decoder by extracting the various settings from the
header packets. These settings include the sample rate, number of audio channels, the
maximum, minimum and typical bit rates, and the codebooks.

The codebooks make up a majority of the setup packet. Each Vorbis stream contains an
arbitrary number of codebooks that are used to decode the audio packets. The codebooks
represent the probability model used to encode the audio data. Each codebook is made up
of two parts - the Huffman coding and the Vector Quantization (VQ). A Huffman coding is a
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form of encoding used for lossless compression. The codewords are essentially variable length
bit sequences which directly map to source sequences. By representing source sequences
which appear more often with shorter bit sequences, Huffman codings reduce the size of the
bit sequence. VQ is a way of representing the data with a small set of points — that is, it
quantizes the data. When the data becomes quantized, there are more repeats meaning the
Huffman representation takes up even less space.

2.2 The Back-end

Essentially, audio data in a Vorbis stream consists of frequency domain data that has been
separated into two separate components: the “floor”, or base energy curve of a signal, and
the “residue”, the data that remains from subtracting out the floor from the signal. The floor
data is packed in a Huffman-encoded interleaved form. The floor data itself does not represent
the entire floor itself, but instead contains just enough information to reconstruct the floor
(endpoints of lines, for example). The residue data is quantized and Huffman-encoded. In
the cases of both the floor and residue, the data is filled with a mix of additional parameters
and flags that guide the decode process.

3 Front-end Modules

The front-end initiates the bitstream and configures the Vorbis decoder with data from the
header packets. See Figure 1 for the block diagram of the front-end. Also, refer to Figure 3
for details on the bitstream handshaking.

3.1 ROM Reader

3.1.1 Overview

The ROM reader is responsible for initializing the bitstream. The module converts the 32
bit wide data coming from the ROM into the more easily handled bitstream. The ROM
reader activates the packet filter, starting the whole decode process.

3.1.2 Design

The ROM reader is a two state finite state machine (FSM), consisting of an active and
inactive state. When activated, the ROM reader maintains a buffer consisting of the current
32 bits of data that the bitstream is reading from. When the module sends the last bit in
the buffer, it replaces the buffer with the data currently on the ROM data bus. The ROM
reader then increments the address so that the data line then contains the next 32 bits of
data.
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Figure 1: Front-end Block Diagram

3.1.3 Testing and Debugging

Since the ROM reader starts the data stream, it is important that it does not skip any bits
or addresses. The ROM reader was run under simulation with various fake minor FSMs
(Section 3.12.1). The bit count was then checked to make sure it incremented correctly. The
ROM reader was also tested on the lab kit with the fake minor FSMs. The bit count was
displayed on the hex display, making it easy to verify if it stopped at the correct location.

One problem that initially occurred was that the buffer was not being initialized when
the ROM reader first started up, thus causing the first 32 bits of the stream to be incorrect.
This problem was easily fixed by adding initial values to the address registers and making
sure to set the buffer on activation.

3.2 Packet Filter

3.2.1 Overview

The packet filter is responsible for identifying the type of packet and verifying bitstream sync.
The module is a finite state machine (FSM) that coordinates the activities of the various
packet processors. When the ROM reader activates the packet filter, indicating that packets
are available, the packet filter begins reading from the bitstream. The module identifies what
packet type it is and then activates the processor associated with that one. The packet filter
serves as one of the links between the front and back-end by diverting the bitstream to the
back-end when processing audio data packets.
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3.2.2 Design

The packet filter is a seven state FSM.

• STATE IDLE: The packet filter begins in STATE IDLE. While in this state the module
outputs a low busy signal, indicating that it is ready to receive a packet. If the ROM
reader asserts the start signal, then the packet filter transitions to STATE READ HEADER.

• STATE READ HEADER: While in STATE READ HEADER the packet identifies the packet type
and verifies a packet sync sequence. The module reads in a total of 56 bits. The first
8 bits are read as an unsigned integer. The following 48 bits are read and compared
to the sync sequence “0x76, 0x6f, 0x72, 0x62, 0x69, 0x73”. If the sync fails, then the
FSM enters and remains in STATE ERROR. Otherwise, the FSM transitions depending
on the packet type. A packet type of 1 indicates that it is the identification packet,
and the FSM transitions to STATE PACKET ID. If the packet type is 3, then the packet
filter enters state STATE PACKET COMMENTS. If the packet type is 5, then the packet is
the setup packet and the FSM enters STATE PACKET SETUP. The packet filter considers
all other packets audio data, and thus transitions to STATE PACKET AUDIO.

• STATE PACKET ID, STATE PACKET COMMENTS, STATE PACKET SETUP, STATE PACKET AUDIO:
These states indicate that the packet type has been identified and that the bitstream is
currently being processed by either the id processor (Section 3.3), comments processor,
setup processor (Section 3.5), or audio packet processor (Section 4.3). While in any of
these states, the bitstream control lines coming from the ROM reader are connected
to the control lines of the respective minor FSM through combinational logic. The
bitstream has an intrinsic clock cycle delay because registers change value after the
positive edge of the clock. By using combinational logic to guide the stream, the delay
remains constant when adding modules in the path. When the activated packet pro-
cessor deasserts its busy signal, the bitstream has reached the end of the packet and
the FSM transitions back to STATE IDLE.

• STATE ERROR: The packet filter enters the error state when it cannot verify the packet
sync sequence. Once in the error state, the error output is constantly high and the
FSM will not exit the state until reset.

3.2.3 Testing and Debugging

After completion, the packet filter was tested in simulation using the stub major and minor
FSM modules. The major FSM implemented the bit supply side of the bitstream, and the
minor FSMs implemented the bit demand side of the bitstream. The major FSM contained
fake packets, and the minor FSMs were instructed to read a particular number of bits once
activated. The packet filter performed correctly, identifying which packet was present, veri-
fying the sync sequence, activating the packet’s processor module, and guiding the bitstream
to the minor FSM.
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3.3 Identification Packet Processor

3.3.1 Overview

The identification (id) processor is responsible for parsing important configuration data from
the id packet. The processor writes the data to a configuration module (Section 3.4), making
it available to the back-end decoder. The processor extracts information including the sample
rate, number of audio channels, and the maximum, minimum and typical bit rates.

3.3.2 Design

The id processor was designed using an FSM. Each state of the FSM represented a different
piece of data to extract from the bitstream1. The id processor has a fairly primitive imple-
mentation of the bitstream model. Each state of the FSM requests bits and relies on the
bits to arrive two cycles later.

3.3.3 Testing and Debugging

The id processor was first tested in simulation using a stub major FSM that provided the
contents of an id packet. The testing framework verified that each variable was extracted
from the stream correctly by displaying the data and address signals. Since the id processor
also has to maintain bitstream synchronization, the number of bits the stub FSM fed the
processor was measured.

The testing of the id processor made it apparent that maintaining bitstream sync between
the states of one FSM and, as importantly, between various FSMs would be a critical task
of the front-end. It became clear that the method employed by the id processor was not
optimal. As a result, a function state designed to read bits was introduced for the next
FSMs. By isolating the bitstream activity to one state, then only that state needed to be
debugged if the bitstream was out of sync. If that state worked, and each state invoked the
function state in the correct manner, then the module would maintain synchronization.

3.4 Configuration Module

The configuration module was initially designed to store many of the constant values needed
by the back-end for decoding. The module stores constants in a register array and implements
a RAM style interface with write enable, address and data ports. The configuration module
was dropped from the final design in favor of storing essential settings directly in the back-
end modules. The module was useful in testing the id processor and served as the basis for
the test ram module (Section 3.12.3).

1See Vorbis I Specification, Section 4.2.2 for details on decoding the identification header.
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3.5 Setup Processor

3.5.1 Overview

The setup processor guides the unpacking and parsing of the setup packet. The module serves
a similar role as the packet filter discussed in Section 3.2 — it does not actually process any
data, but instead coordinates the activities of minor FSMs. The minor FSMs that process
the setup packet make up a majority of the front-end. The setup processor facilitates their
actions by diverting the bitstream to the destination module and by activating the modules
in sequence.

3.5.2 Design

The setup processor is a seven state FSM, as shown in Figure 2.

Figure 2: Setup Processor State Transition Diagram

• STATE INACTIVE: The setup processor remains in the STATE INACTIVE state while idle.
The module outputs a constant low busy signal, indicating that it is ready to accept
a packet. When the packet filter asserts the start signal, the setup processor replies
with the busy signal, applies the codebook processor’s start signal and transitions to
STATE CODEBOOKS.

• STATE CODEBOOKS, STATE TRANSFORMS, STATE FLOORS, STATE RESIDUES, STATE MAPPINGS,
STATE MODES: While in each of these states, one of the setup processor’s minor FSMs is

10



activated and processing data. The bitstream control lines of the FSMs are connected
through combinational logic to the bitstream lines of the packet filter, thus keeping the
clock cycle delay constant by avoiding sequential logic. When transitioning into each
of these states, the corresponding start signal is raised for one clock cycle. The minor
FSM responds by maintaining an active high on its busy signal until it has completed
processing the bitstream. Each minor FSM is responsible for maintaining synchroniza-
tion in the bitstream when activated. When the busy signal for the active FSM goes
low, the setup processor transitions to the next state, as shown in Figure 2.

3.5.3 Testing and Debugging

The setup processor was first tested in simulation. The fake major FSM (Section 3.12.2)
was used to supply the bitstream, and six instances of the fake minor FSM (Section 3.12.1)
were used to verify the module’s state transitions and bitstream handling.

Most of the issues revealed during simulation were related to the timings of the busy
and start signals, and the bit requests of the minor FSMs. Since there is a clock cycle delay
before the busy signals of the minor FSMs go high, each state needs to detect the falling edge
of the signal - not simply a low busy. The testing also revealed a flaw in the fake minor FSM.
The module lowered its busy signal after requesting the designated number of bits (defined
using defparam), rather than after receiving that number. This caused the bitstream to go
out of sync since the setup processor would transition and divert the previous FSM’s bits to
the next module.

3.6 Codebook Processor

3.6.1 Overview

The codebooks are packed in the first section of the setup header and comprise a majority of
the entire packet. The codebooks, as described in Section 2.1, contain the Huffman codings
and vector quantizations (VQ).

The codebook processor is the most complicated module on the front-end. The module
extracts the Huffman lengths, computes the decoding sums (Section A), determines the VQ
lookup type and then unpacks the VQ based on the lookup type2. The codebooks can be
packed in an ordered or non-ordered manner. If they are ordered, then the number of entries
for a given length is read, otherwise the length for a given entry is read from the stream.
No Ogg files seem to use the ordered method, so the codebook processor only supports
non-ordered codebook lookups.

There are also three different VQ lookup types - “0” for no lookup, “1” for a lattice VQ
lookup table, and “2” for a VQ lookup table built from scalar values. Lookup types 0 and
1 were used in all the Ogg files inspected, so the codebook module ignored lookup type 2.
The module unpacks the Huffman codings into a format usable by the floor decoder (Section
4.4), and the VQs into a format usable by the residue decoder (Section 4.5).

2Refer to Vorbis I Specification, Section 3 for algorithmic details.
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3.6.2 Design

The codebook processor was implemented using a 16 state finite state machine. By abstract-
ing most of the functions into their own states, the design was simplified down to tractable
portions. The function states are essentially used as subroutine calls.

The codebook processor was designed with some limitations and assumptions in place.
The theoretical limit on the number of codebooks is 28 codebooks of 224 − 1 entries and
216 − 1 dimensions of VQ — something which we couldn’t possibly hold. A Python script
revealed that the typical Ogg Vorbis audio file has practical bounds of about 50 codebooks
of 650 entries and 4 dimensions. The Huffman codings are stored in their own 42-bit wide
RAM. The left 10 bits are the entry number, the next 6 are the length, and the right 26
are the decoder sums. As a result, the codebooks are packed in the RAM one after another,
with the start addresses written to the beginning of the RAM.

The number of elements in each VQ vector is equal to the codebook dimension, and that
number generally does not rise above 4. Since the residue decoder (Section 4.5) needs to read
all four at once, the complete vector for a given offset is stored at each address. The width
of the VQ ram is 48 bits, allocating 12 for each element of the vector. The VQ codebooks
are packed in a similar fashion to the Huffman - the start addresses are recorded at the
beginning of the RAM.

This final specification for the RAM was not completely implemented — the Huffman
output is only 32 bits and does not have the entry number in it. It was not completed
because the change in the specification was made fairly late into the project, and it seemed
wiser to spend time on other parts of the project since the floor decoder was not going to
be completed. It should be a relatively simple fix since the module only writes to the RAM
from one state.

• STATE INACTIVE: The module is outputting a low busy signal and is ready to start
processing codebooks. When the start signal is applied, the FSM transitions to
STATE CODEBOOK COUNT.

• STATE CODEBOOK COUNT: The codebook processor moves to FN STATE READ BITS to read
the number of codebooks present in the header. Once complete, the FSM transitions
to STATE CODEBOOK START.

• STATE CODEBOOK START: If the module has unpacked all the codebooks, then the mod-
ule has completed processing of the bitstream and transitions back to STATE INACTIVE.
Otherwise, the FSM reads the codebook sync sequence, and the number of entries
and dimensions in the codebook. These are read in using FN STATE READ BITS and
are written to the ram using FN STATE WRITE RAM. If the codebook sync is correct,
the FSM begins to read the sparse flag in STATE NORDERED START, otherwise it enters
STATE ERROR.

• STATE NORDERED START: One bit is read in this state to check if the codebook is sparse.
When sparse, a flag preceeds every entry length indicating whether or not to read
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the entry length or infer that it is 0. After reading the flag, the module enters the
STATE NORDERED CHECK FLAG state.

• STATE NORDERED CHECK FLAG, STATE NORDERED READ ENTRY: The FSM cycles through
STATE NORDERED CHECK FLAG once for each entry in the codebook. If it is sparse, a one
bit flag is read, and, if set, a length is read in via STATE NORDERED READ ENTRY. If it is
not sparse, then a length is always read in through the STATE NORDERED READ ENTRY

state. After the length for a given entry is determined, it is written to the ram using
FN STATE WRITE RAM. Once complete, the fsm transitions to STATE CALC HUFF SUM in
order to calculate the sums.

• STATE CALC HUFF SUM: After all the lengths have been unpacked, the STATE CALC HUFF SUM

state iterates through each length stored in the RAM, reading them with the FN STATE READ RAM

state. The module calculates 2(max length+current length) for each, and adds it to the pre-
vious. The module then wries this sum in the right 26 bits of the Huffman ram, with
the length in the left 6 bits. Once complete, the Huffman codings are complete and
the FSM enters STATE VQ LOOKUP TYPE.

• STATE VQ LOOKUP TYPE: The codebook processor reads the VQ lookup type in this
state. If the type is 0, then there is no VQ table and the FSM can transition back
to STATE CODEBOOK START to start the next codebook. Otherwise, it transitions to
STATE VQ 1 START to begin unpacking the VQ table.

• STATE VQ 1 START: In STATE VQ 1 START, the FSM reads variables that are used to
generate the vectors in the VQ table. Two of the values are unpacked using the
float32 unpack function defined in the Vorbis specification. The codebook processor
converts these values into unsigned integers since those were the only ones encoded in
the stream. The FSM also reads in the value for valuebits which is used to extract
the VQ multiplicands in STATE VQ MULTIPLICANDS. Once complete, the FSM enters the
function state FN STATE LOOKUP1 VALUES. After the function call is complete, the FSM
transitions to STATE VQ MULTIPLICANDS to read in the multiplicands used to calculate
the VQ.

• FN STATE LOOKUP1 VALUES: This state is responsible for determining how many VQ
multiplicands must be read from the bitstream when the lookup type is 1. The function
is defined as lookup values(entries, dimensions) = return value where return value
equals the greatest integer such that return valuedimensions ≤ entries. The value is
computed by checking each integer starting from 1. Once the correct value is deter-
mined, the FSM transitions to the state contained in register lv state with the return
value in lv ans.

• STATE VQ MULTIPLICANDS: While in STATE VQ MULTIPLICANDS, the FSM reads lookup values
multiplicands of length value bits. The codebook processor is finally ready to calculate
the actual vectors in the VQ table and transitions to STATE VQ CALCULATE VALUES.
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• STATE VQ CALCULATE VALUES: In STATE VQ CALCULATE VALUES, the VQ vectors are cal-
culated algorithmically from the multiplicands read in STATE VQ MULTIPLICANDS and
the values unpacked in STATE VQ 1 START. As the vectors are calculated, they are writ-
ten to the VQ RAM to be used by the back-end. After all have been calculated, the
codebook is complete and the processor cycles to STATE CODEBOOK START to work on
the next cycle.

• FN STATE READ BITS: This state is used to read bits from the bitstream. The calling
state fills the br bits register with the number of bits to be read, and the br state

with the state to return to. The calling state need not worry about reseting any
counters or buffers. Then, the FN STATE READ BITS state fills the br buffer register
with the bits received, transitions back to br state and asserts the br done signal for
one cycle.

• FN STATE WRITE RAM: This state is used to write data to the RAM. The calling state
fills the ram selector, ram addr, ram data registers with the corresponding data.
The selector is used to select between constants, Huffman and VQ, then the address
represents the entry to write to. By keeping this interface generic enough, it is simple to
change memory representations - only the FN STATE WRITE RAM state needs to change.
After complete, the FSM transitions back to the state held in ram state and asserts
the ram done signal for one clock cycle.

3.6.3 Testing and Debugging

The codebook processor was a fairly large module to debug. Once again, the module was
supplied a bitstream of known data in simulation. A test RAM module, consisting of a large
array of registers to simulate a block RAM, was used during testing. While this works in
simulation, it was not feasible for actual implementation since large arrays of registers seem
to take hours to synthesize.

The codebook processor was fairly difficult to debug. When there are so many states in
an FSM, it is easy to lose track of the connections between the states. The code becomes
separated enough that it becomes more difficult to reason about as a whole. The use of
function states made the job significantly easier.

The function states isolated the more complex operations that were commonly performed.
The timing associated with reading and writing to the RAM only needed to be worked out
in one state. Also, by abstracting the writing to the RAM, it is very easy to change the
storage schematic. The calls to the write state are generic enough only the contents of the
write state would have to be changed. The read state would also only need to be changed.
At one point we did change the memory scheme, and the subroutine calls minimized the
amount of work required by the change.
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3.7 Transform Processor

3.7.1 Overview

The transform processor is responsible for reading the time domain transforms from the
setup header. Vorbis I does not contain support for dynamically encoded transforms, so this
processor is simply a placeholder - reading the designated number of bits3. This module is
necessary in order to maintain bitstream synchronization.

3.7.2 Testing and Debugging

The transform processor was verified to read the correct number of bits in simulation. If any
transform has a nonzero type, then it transitions to STATE ERROR and outputs an active high
on the error port. Since the module does not write to any RAMs, no other outputs needed
to be verified. The module fairly simple, so it was not tested in isolation on the lab kit, only
once integrated with the setup processor.

3.8 Floor Processor

3.8.1 Overview

The floors are the third pieces of data located in the setup packet. The floor processor
connected directly to the setup processor. The module extracted various vectors from the
setup header which the floor decoder (Section 4.4) used to reconstruct the floor curve.

3.8.2 Design

The floor processor generally extracts a variable number of scalar values into a vector in
multiple different places. The module also constructs a two dimensional vector from the
bitstream. This presented an interesting challenge — storing the data in a way that was
both simple to write to and read from, but also space efficient. After dissecting many typical
Ogg Vorbis files, it appeared that there was usually no more than two floors. Each of the
vectors seemed to be bounded relatively low, so we decided to store all the vectors in the
same block RAM at fixed offsets. It seemed that little space could be saved by using a more
complex vector packing scheme. The benefit did not outweight the increased difficultly in
interfacing to a more complex scheme.

The memory scheme is described in Table 1. The module does not implement this scheme
completely since it is a relatively new specification, and the floor decoder was not going to
be done in time to use it. The changes would be fairly simple and would need to be done to
the FN STATE WRITE RAM state.

The floor processor was implemented using a 13 state FSM, where each state performed
a different part of the algorithm.

3See the Vorbis I Specification, Section 4.2.4.2. The number of time domain transforms are read, then
the type of each is read and verified to be “0”.
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Table 1: Floor RAM

Description Width Length Element Address
constants 7 4 —

floor1 partition class list 4 10 [i] = i + 4
floor1 class dimensions 3 5 [i] = i + 13

floor1 class masterbooks 8 5 [i] = i + 18
floor1 class subclass books 8 5 [i],[j] = (i � 3) + j + 23

floor1 X list 8 30 [i] = i + 63
floor1 class subclasses 2 5 [i] = i + 93

• STATE INACTIVE: In this state the FSM is ready for new data and transitions to
STATE COUNT when the start signal is asserted.

• STATE COUNT: In this state, the module reads the number of floors from the bitstream.
Decodes each floor by cycling through the subsequent states.

• STATE FLOOR START: In STATE FLOOR START, the FSM either reads scalar values which
determine how many iterations it will perform in the next state, STATE CLASS LIST,
or it enters the inactive state if it just completed the last floor.

• STATE CLASS LIST: In this state, the floor processor fills a vector by iterating over
the value read in the previous state. The module writes the vector to the floor RAM
module via FN STATE WRITE RAM.

• STATE CLASS, STATE MASTERBOOK, STATE SUB CLASSES: The FSM oscillates between
these states as it fills three different vectors interleaved in the bitstream. On a given
iteration, if the value entered in STATE SUB CLASSES is non-zero, then an additional
iteration occurs in STATE MASTERBOOK to enter values into one of the two dimensional
arrays4.

• STATE X INFO, STATE X VALUES: These states are used by the floor processor to unpack
the list of x values for which the floor applies to. These values are then used by the
floor decoder to reconstruct the actual floor spectrum curve.

3.8.3 Testing and Debugging

The testing of the floor processor proceeded very similarly to the other minor FSMs of the
setup processor. It was very important to verify that the processor changed states correctly
when filling the three interleaved vectors - an incorrect transition could render the stream

4See Vorbis I Specification, Section 7.2.2.
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undecodeable. It was also crucial to verify that the vector elements were being written to
the right addresses.

The floor module was tested alone on the lab kit with the fake major FSM supplying data.
The outputs were verified on the logic analyzer. The module was also tested in conjunction
with the setup processor and the rest of the front-end.

3.9 Residue Processor

3.9.1 Overview

The residues are located after the floors in the setup header. The residue information located
in the setup packet is used by the residue decoder (Section 4.5) in reconstructing the residue
spectral curve from the audio data. The residue processor is very similar to the floor processor
in that it essentially extracts a few vectors from the bitstream and places them in the block
RAM for the back-end to use.

3.9.2 Design

The same data management issues that arose when designing the floor processor also apply
to the residue processor. The vector produced by the module is two dimensional. Most
Vorbis files have at most two residues with bound vector sizes. As a result, we chose to store
the residue information at fixed memory locations as shown in Tables 2 and 3. Since the
constants are so much wider than the actual vectors, they are kept in a separate block ram.

Table 2: Residue Vector RAM

Description Width Length Element Address
residue cascade 8 64 [i] = i
residue books 8 512 [i], [j] = (i � 3) + j + 65

Table 3: Residue Constants RAM

Description Width Length Element Address
vorbis residue count 0 7 0
vorbis residue type 1 16 1

residue begin 2 24 2
residue end 3 24 3

residue paritition size 4 25 4
residue classifications 5 7 5

residue classbook 6 8 6
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Like in the floor, we did not have time to convert the RAM writes to the specification
in Tables 2 and 3. Since we knew the residue decoder was not going to be completed in
time, we focused on other aspects of the system. It would have presumably been a straight
forward task since the writes to the RAM were isolated into the FN STATE WRITE RAM state.

The residue setup module is implemented using an 8 state FSM5. Like the other mi-
nor FSMs attached to the setup processor, one state is dedicated to reading bits from the
bitstream and one is used for writing to ram.

• STATE INACTIVE: The module remains in this state while idle. When presented the
start signal, the FSM will transition into the STATE READ COUNT state and begin pro-
cessing the bitstream.

• STATE READ COUNT: The number of residues is read in this state. Upon completion, the
residue processor enters STATE RESIDUE START.

• STATE RESIDUE START: If there are additional residues to parse, then the residue type
is read and then the header information is read in STATE HEADER INFO. Otherwise, the
residue setup module becomes inactive.

• STATE HEADER INFO: A few different variables are read in this state. They are writ-
ten to their designated addresses in RAM, and upon completion, the FSM enters
STATE BITMAP.

• STATE BITMAP, STATE BOOKS: These two states in conjunction create a two dimension
vector of residue books. A bitmap is unpacked from the stream and then used to
determine what to read to create the residue books.

3.9.3 Testing and Debugging

The residue processor was first tested in simulation to verify state transitions and output
values. It was relatively easy to verify that the module was working correctly since the
contents of the residue books vector were highly dependent on the correctness of the preceding
steps. The residue processor required minimal debugging due to the similarity to the floor
processor.

3.10 Mapping Processor

3.10.1 Overview

The mapping processor unpacks the mappings from the Vorbis stream. The mappings are
used to set up the pipelines used for encoding multichannel audio. Since our decoder was
designed for mono audio files, no channel coupling had to take place and thus there was little
to no mapping data present in the setup header.

5See Vorbis I Specification, Section 8.6.1
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3.10.2 Design

Although most of the mapping data was not needed by the back-end, the unpacking algo-
rithm6 had to be implemented in order to maintain bitstream synchronization.

3.10.3 Testing and Debugging

The mapping processor was tested in simulation to verify that it read the correct number
of bits. The simulation used the fake major FSM to feed the mapping processor data. The
test module was then ported to the lab kit to verify that the bitstream sync was maintained
before plugging it into the setup processor.

3.11 Mode Processor

3.11.1 Overview

A Vorbis file can have multiple modes which define the set of configurations to use. For
example, a mode has a blocksize, window type, and mapping associated with it. The modes
are the last set of data in the setup header.

3.11.2 Design

The mode processor reads the number of modes, then it reads a fixed number of bits for
each mode. The various configurations are then written to a block RAM from which the
back-end can access as needed.

3.11.3 Testing and Debugging

The mode processor was tested in simulation and in isolation on the lab kit to verify that it
was reading the correct number of bits and correctly identifying the various settings.

3.12 Test Modules

A few modules were created in order to facilitate the testing of the front-end. The modules
and their uses are described below.

3.12.1 Fake Minor FSM

The fake minor FSM was a stub module that mimicked a minor FSM. The module’s BITS NUMBER

parameter controls how many bits it tried to read when activated. The module was partic-
ularly useful in testing the ROM reader, packet filter and setup processor.

6See Vorbis I Specification, Section 4.2.4.5.
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3.12.2 Fake Major FSM

The fake major FSM implemented the bit supply end of a bitstream connection. The module
could be instantiated with a sequence of bits, which when requested, it would respond with.
Like the fake minor FSM, this module proved vital in verifying that many of the front-end
modules worked in simulation and alone on the lab kit.

3.12.3 Test RAM

The test ram module implemented a simple block RAM interface. The module used an array
of registers to store the data. The length and width could be set with the RAM SIZE and
RAM WIDTH parameters, making it versatile in many testing situations.

4 Back-end Modules

4.1 Standardization

In order to facilitate a consistent design and to maximize ease of debugging, a standard set of
interfaces was designed for use by modules that needed their sort of functionality. The three
major standardized interfaces used by the back-end were the serial, control, and memory
interfaces.

4.1.1 The Serial Interface

The serial interface is used by modules to provide a means for synchronously requesting and
obtaining data from a bitstream-providing module. It consists of three signals: a bit request
signal, a bit availability signal, and a bit value signal. The bit request must be an input for
a bitstream provider and an output for the bitstream recipient, and the bit availability and
value signals must be outputs for bitstream providers and inputs for bitstream recipients.
Essentially, the bitstream provider will assert the bit availability signal and set the bit value
appropriately on the clock edge after the edge on which it received the bit request. When
the recipient gets an active bit availability signal on a positive clock edge, it should latch
or use the bit value during that clock cycle, since the provider is allowed to keep the value
there for only one cycle.

Figure 3: An example timing for the serial interface.
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4.1.2 The Control Interface

The control interface is used by most modules that provide a specific functionality or act as a
minor FSM. It consists of three signals: a start signal, which is an input to the controllee and
an output of the controller, a busy signal, which is an output of the controllee and an input
to the controller, and a done signal, which is also an output of the controllee and an input
to the controller. In general, receipt of the start signal by the controllee module indicates
that it should raise its busy signal for the next positive clock edge, and that it should begin
computing its function or transitioning through its states. The busy signal should remain
high until the controllee is done computing its function, in which case the busy signal is
de-asserted for the next clock edge and the done signal is raised for exactly one cycle. It is
not a requirement of the interface that a module operate the same way under a single-cycle
start pulse or a multi-cycle one, though in all cases in the back-end modules operate on an
“if start is high and busy is low” condition that makes this the case.

In cases where the control interface is used to emulate a mechanism similar to a software
function call (see 5.6 for an example), the function module’s input registers must be loaded
with the input data such that the data is present at the start of the clock cycle on which the
start is asserted (so data is present as soon as the module is started). When the module must
return data, the data must be valid for the cycle during which the done signal is asserted.

Figure 4: An example timing for the control interface.

4.1.3 The Memory Interface

The memory interface is used by modules that need to access, or provide multiplexed access
to, a particular block RAM module. The interface consists of two signals, address (or
select, usually suffixing a Verilog signal with “ sel”) and data (usually suffixing a Verilog
signal with “ data”). The interface does not impose timing requirements, other than that a
module must provide data at the selected address within some number of clock cycles after
the address is latched; for most modules that provide access to or use the block RAMs, this
number is two.

4.2 Why not stereo?

Our implementation of the project does allow multi-channel input files. Whether or not the
reasons for doing this are obvious, it is nonetheless important to explain our motivations in
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doing this. There are two significant motivating factors that drove our decision to implement
a mono-only decoder.

The first was complexity - stereo files were far more complicated than mono files (not
just twice so) from the perspective of the back-end. Stereo files interleaved data in numerous
places, which meant that additional states (and residue types) would have been necessary
to produce the correct data. In addition stereo files often used magnitude and angle to
represent residues, requiring channel coupling (a fair amount of extra computation) to occur
between generation by the residue decoder and storage by the dot product.

The second was processing power - the vast majority of computations had to be performed
once for each channel, so in general the decoder would have run at half the speed. Due to
variations in the maximum clock frequency that occurred as we added more modules, it was
highly unlikely that the decoder would have been able to decode a stereo file in realtime.

Figure 5: Arrow notation as used in back-end diagrams.

4.3 Audio Packet Processor

4.3.1 Overview

The audio packet processor module controls the process of audio decoding. When started,
the module starts the necessary submodules at the appropriate times. The audio packet
processor serves to act as a complete abstraction for the audio packet decoding process; it
provides a simple interface for starting the decode process, passing a bitstream, and receiving
notification that the module has finished decoding a packet.

4.3.2 Mechanics

The audio packet processor is essentially a pair of finite state machines containing instances
of those submodules that have a major role in audio decoding - the floor decoder, the residue
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decoder, and the IMDCT. The audio packet processor contains a total of 18 states, two of
which correspond to one state machine and 16 of which are used by the other. Most of the
states transition in a linear fashion, looping back to the first state only from the last state,
unless otherwise noted. It is important to note that two FSMs are used because the window
select process can occur in parallel with other computations.

• STATE IDLE: an idle state; the audio packet processor is in this state whenever the
decoder is reset, before it has started decoding a packet, or immediately after it has
finished decoding a packet.

• STATE READ MODE COUNT: this state is used to read the mode count from the RAM. The
mode count is used to determine how many bits are read for the packed mode number
at the start of a packet, and this mode number ultimately determines what methods
and codebooks will be used to decode the packet.

• STATE READ BS0, STATE READ BS1: these states are used to read the values of the two
block size types from RAM. The block sizes determine what window will be applied to
the time-domain waveform at the end of processing.

• STATE READ BLOCKFLAG: this state is used to read the blockflag parameter from RAM;
the blockflag is also involved in computing the window.

• STATE READ DELAY 0, STATE READ DELAY 1: these states are used to give the RAM
enough time to return the values that were selected for in previous states, since the
values are used in computations immediately and they must propagate from the block
RAM and get latched before they can be used.

• STATE INITIALIZE: this state is used to verify the mode bit that is selected during the
last read delay state; if the bit is not zero, than an error condition occurs, and the
FSM enters the error state.

• STATE INITIALIZE COUNT: the number of bits to read for the mode count is computed.
This calculation involves taking the integer log of the mode count read in an earlier
state. Since the count is bounded, it is computed using comparators and a multiplexer.

• STATE INITIALIZE BITS: the computed count is placed in a register for the bitreader,
and the bitreader is signaled to start.

• STATE INITIALIZE DONE: this state waits for the bitreader to finish computing, and
then parses the result to set window-related flags.

• STATE GET SUBMAP: this state is used to read the submap number from RAM. The
submap is used to determine the floor number. In our implementation, it is a place-
holder, since the submap number is zero for almost all single-channel files.

• STATE GET FLOOR: this state is used to read the floor number from RAM.
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• STATE FLOOR DELAY: this state is used to wait for the floor number to propagate from
RAM. It also signals the floor decoder to start computing. Our implementation only
decodes floor type 1, since floor type 0 was made obsolete in the 1.0 implementation
of the official Vorbis software encoder. Thus, floor type select logic is not included.

• STATE FLOOR DECODE: the FSM remains in this state while waiting for the floor decode
module to complete.

• STATE ERROR: this state is used to indicate that an error in packet decode occurs. The
FSM does not leave this state, and when in this state it raises an error signal, so that
the user/controller will know to reset the decoder.

• STATE WINDOW STATE IDLE: this state indicates that the second audio packet proces-
sor FSM is currently waiting to compute the window, or that it has already finished
computing the window.

• STATE WINDOW STATE COMPUTING: this state indicates that the window select module is
currently computing the window.

4.3.3 Dataflow

The audio packet processor contains the standard serial communication interface (see Section
4.1.1) for obtaining the bitstream. The bit request output is connected via a multiplexer
to the submodules that require interfacing to the bitstream (namely the floor and residue
decoders). The multiplexer switches on the state of the primary FSM, so that the proper
submodule has complete access to the serial interface at a given time. The audio packet
processor also wires address and data lines to the major memories (see 4.1.3) directly to the
proper submodules, multiplexing on state if necessary. The standard control interface (see
Section 4.1.2) for starting and stopping the decode process is also used by the audio packet
processor.

4.3.4 Testing and Debugging

The audio packet processor was not difficult to test, since many of its state transitions occur
instantaneously (for instance, when the FSM transitions from a read state to a delay state on
the first clock cycle after entering it, and then transitions to another read state on the first
cycle after that). The only states for which this was not the case were states that transitioned
on done signals asserted from submodules, and this activity was easily simulated as well. On
the lab kit itself, the audio packet processor was verified against the logic analyzer.

The audio packet processor itself was not actually completed, due to the fact that a
fully complete and verifiable implementation was dependent on the presence of the residue
decoder.
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4.4 Floor Decoder

4.4.1 Overview

The floor decode module is used to construct an approximation the base energy curve (in
frequency) of the original audio spectrum from the bitstream. It decodes only floor type
one; Vorbis specifies types zero and one, but the specification notes that as of the official 1.0
release of the Vorbis software encoder, floor type zero is not used.

This module involves an large number of relatively complex states, but conceptually there
are three important parts to the process. 7 First, for each floor partition, a value is computed
that determines which codebook to read from, and that codebook is used for Huffman-
decoding the bitstream to construct a vector of Y values. Next, each of the values are iterated
over and a search algorithm (“low/high neighbor” in the Vorbis spec) is employed with some
conditional calculations to transform the Y values vector into a “final” Y values vector.
Third, each of the vectors in use at this point are sorted (they are originally interleaved),
linear interpolation is performed to fill in gaps in the ”final” Y vector, and a look-up is
performed against the “inverse dB” table to replace each of the values in the “final” vector
to produce the (true) final floor curve.

4.4.2 Mechanics

The floor decoder is essentially a very large state machine that coordinates memory reads,
bitstream reads, various nested iterations, and dataflow to and from several helper function
modules. Most of the state transitions are linear, with a handful of “iterate” states that loop
back to a previous state. Many of the states start a submodule and then wait for completion
of its task. The states involved in floor decoding are:

• STATE READ NONZERO, STATE READ FLOOR 0, STATE READ FLOOR 1: these states are used
to read values from the bitstream via the bitstream reader submodule. The values read
are, respectively, a “this frame contains no audio energy” flag, and the first two values
of the floor intermediate values vector.

• STATE READ 2: this state reads the number of floor values for iteration in the subsequent
states.

• STATE ITERATE READ 0, STATE ITERATE READ 1, STATE ITERATE READ 2, STATE ITERATE READ 3:
these states read the a number of index values and parameters from the floor RAMs
that determine how many and from which codebook the Huffman-encoded intermediate
floor Y values are read.

• STATE ITERATE: this state activates the Huffman decoder and waits for it to return a
count for the next part of the decode process.

7Refer to the Vorbis I Specification, Section 7.2, for a detailed look at the process.
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Figure 6: The floor decoder and its helper modules.

• STATE VECTORIZE READ BOOK: this state is used to read the codebook value that will
determine how the Huffman-encoded parts of the bitstream in subsequent states will
be read.

• STATE VECTORIZE: this state is used to manage the loop branching condition and itera-
tion of the “vectorize” loop (the set of states responsible for decoding the intermediate
Y-values for the floor energy curve). It additionally uses the Huffman decoder module
to obtain these Y-values.
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• STATE VECTORIZE READ: this state is used to store the Huffman-decoded data produced
by the Huffman decoder according to the parameters it was given in the previous state.
The values are placed in an intermediate register vector.

• STATE CURVE START: this state is used to set up the point renderer, and it additionally
starts and waits on the two neighbor searches (“high” and “low”).

• STATE POINT: this state uses the neighbor search values and the point-renderer to find
a prediction point, that is optionally used depending on the settings of flags later in
the decode process.

• STATE PROCESS: this state performs a series of computations that determine the values
that are placed into the next intermediate vector of Y-values.

• STATE CURVE ITERATE: this state decides whether or not the algorithm must repeat
again from the CURVE START state or progress to the next state.

• STATE SORT: this state is used to invoke the sorter, which sorts three intermediate data
vectors based on the results of comparisons on one. The sorter module is described
in greater detail in section 5.4; it does not perform the actual reads and writes itself,
but rather requests data, makes comparisons on the data it receives, and then asserts
a swap signal if the values should be swapped, thus implementing the bubble sort
algorithm.

• STATE FINAL: this state starts performing the final iteration over intermediate data,
this time filling the floor final values RAM with data from the line renderer.

• STATE FINAL ITERATE: this state determines whether or not more line rendering must
occur; if so, it returns to the FINAL state instead of moving on.

• STATE FINAL CLEANUP: in some cases it is necessary to perform a final line rendering
to finish the floor curve; if it is, this state is responsible for invoking the line renderer
to complete that task.

• STATE FINAL SUBSTITUTE: this state performs the final processing of the data, iterating
over the final line and substituting its values (which are just indices for values from the
floor dB look-up table) for the correct values. When this is complete, the floor decode
process has finished.

4.4.3 Dataflow

The floor decoder is connected to the serial interface (see section 4.1.1) and floor block
RAMs (see section 4.1.3) indirectly, via the audio packet processor. It also uses the standard
control interface (see section 4.1.2), as a controllee of the audio packet processor, and also
as a controller of the numerous submodules that it uses. The floor decoder module, upon
starting, begins requesting bits, never directly but either by means of the bitreader module
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or the Huffman decoder module depending on the part of the decode algorithm that is
running. The floor decoder has a few small arrays of registers for storing intermediate data,
as well as a large block RAM for processing and finalizing its outputs before it sends them
off for storage by the dot product module. The floor decoder additionally produces a pair of
outputs for viewing its internal state on the logic analyzer.

4.4.4 Testing and Debugging

Testing the floor decoder module was easily one of the most time-consuming parts of the
project. It was incredibly difficult to test the floor decode module, since proper operation of
the module depended on meticulously coordinated data from RAMs and a Huffman-encoded
bitstream that was encoded using one of tens of codebooks. It was easy to demonstrate
that the floor decode module correctly transitioned states, but since in practice obtaining
a valid set of bits (the data for floor decoding was often not byte-aligned) was difficult, as
was manually extracting the codebooks and other configuration parameters from an actual
Vorbis file. Once this was accomplished for the first time, it was often the case that the floor
decoder’s outputs would match up perfectly with those of a reference software decoder for
certain audio files but not for others.

After finally perfecting the decoder in simulation, it was discovered that a register-based
implementation did not synthesize on the lab kit in any reasonable amount of time. Thus,
the floor decoder had to be heavily modified to make use of the block RAMs. In performance-
critical components of the back-end such as this one, use of the block RAMs often created
timing problems, since the RAMs’ registered outputs created the need for inserting delays
between states. (This was often necessary because data was fetched from memory and then
used immediately while running in a tight loop.) The debugging process had to be repeated
once again for the RAM-based floor decoder. It was finally demonstrated that the floor
decoder transitioned states correctly on the lab kit, and then that it produced the correct
values, but ultimately more than half of the time spent implementing the back-end was spent
in the modify-optimize-debug cycle for the floor decoder.

4.5 Residue Decoder

4.5.1 Overview

The residue decoder module is used to produce residue vectors from the bitstream. These
vectors are Huffman-encoded and packed in one of three different ways. Ultimately, the
decode process for all three types is similar; the only differences between the types occur
as a post-processing step of the main residue decode algorithm. Our implementation only
decodes type 1 residues, since none of the Ogg Vorbis audio files in our possession used type
0 residues, and type 2 residues were only used by stereo files (which we chose not to support,
given the large amount of extra processing required for multi-channel files; see 4.2).

The residue decoder was not nearly as complex as the floor decoder, but was a sizable
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module nonetheless. Essentially, the high-level process 8 of residue decoding involves iterating
over the partitions of the residue vectors and setting up an array of classifications, then
iterating over the partitions again then reading vector quantizations from codebooks selected
by these classifications using Huffman-encoded scalar values as offsets in the arrays of vector
quantizations. For residue type 1, a post-processing step is required to de-interleave the
computed residue vector. 9

4.5.2 Mechanics

The residue decoder essentially consists of a large state machine. Like the floor decoder,
it also implements the serial interface (see section 4.1.1), the memory interface (see section
4.1.3) for reading from residue, Huffman, and VQ block RAMs, and the control interface
(see section 4.1.2, as both a controller and a controllee. The residue decoder makes heavy
use of the Huffman decoder module via this interface, since nearly all of the computationally
intensive work in producing the residue vectors is Huffman decoding.

The finite state machine employed by the residue decoder transitions through the follow-
ing states:

• STATE IDLE: the FSM is in this state whenever the residue decoder has been reset, is
waiting to start, or has just finished decoding a residue vector.

• STATE PASS 0: the residue decode algorithm requires special pre-processing of data
when in the first (0th if considering the index) pass of the eight passes the algorithm
makes. This state begins that pre-processing by Huffman-decoding a value from the
bitstream.

• STATE PASS 0 PROCESS: this state is used to process the state read in the previous
state; a temporary register is set and the classifications vector (as described above) is
updated.

• STATE PASS 0 ITERATE: this state is used to control the iteration that occurs in the
pass-0 pre-processing. It checks for a transition condition and increments the loop
counter.

• STATE PROCESS: this state performs the data processing that occurs in each of the eight
passes, reading scalars from the Huffman decoder and using them as offsets in the VQ
RAM to obtain VQ vectors.

• STATE PROCESS ITERATE: this state is used to control iteration during the data process-
ing phase of the computation. Similar to other iteration states, it checks a condition,
transitioning if necessary, and increments a loop counter.

8The Vorbis I Specification, section 8.6.2, provides a detailed look at the residue decode process.
9The Vorbis I Specification, section 8.6.4, describes the additional steps for decoding residue format 1

vectors.
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• STATE FORMAT 0, STATE FORMAT 2: these states are placeholders for the post-processing
steps required by these residue formats. See above (section 4.5.1) for an explanation
of why our implementation does not decode these residue types).

• STATE FORMAT 1: this state is used for the de-interleaving process required by type 1
residues. It reads Huffman-encoded scalars that determine the vector indices for data
in the final vector.

• STATE FORMAT 1 PROCESS: this state is used to perform the required accumulations and
temporary calculations required for producing the final residue vector.

• STATE FORMAT 1 ITERATE: this state is used to determine whether or not the format
1 post-processing needs to be repeated, transitioning to STATE FORMAT 1 PROCESS if it
does. If not, then residue decoding is complete, and the decoder returns to STATE IDLE.

4.5.3 Dataflow

Using the control interface, the audio packet processor starts the residue decoder when the
floor decoder has finished decoding the floor. Data is sent from the residue decoder to the
dot product module, which stores it in its internal block RAMs, for later use by the IMDCT.

4.5.4 Testing and Debugging

Due to the incredible amount of time taken to decode the floor module, and the linear
approach to developing the back-end modules, there was not enough time to complete the
residue decode module. Some limited simulation was performed on the module, and it
was demonstrated that the module was correctly transitioning states and look-up indices.
However, the module was never connected to the VQ or residue RAMs, so complete testing
of the module in simulation, or any testing on the lab kits, was never accomplished.

4.6 Window Select/Look-up

4.6.1 Overview

The window select/look-up module is used to provide Y values for specified X values of a
window function. In Vorbis, there are two types of window: long and short. Each packet
specifies its window type, and the packet block size and various bits are passed to the window
select module to realize this window. The module is more than a simple look-up table; the
values that it returns are conditionally from a look-up table, depending on the exact shape of
the window itself. The module alleviates the need for the computationally-intensive IMDCT
(which is where the window function values are applied) to compute these values. Moreover,
to increase back-end efficiency, the window select module can be set up in parallel with floor
and residue decode. The window select module needs only to prepare itself once per audio
packet, and then it can be used rapidly by the IMDCT as often as needed.
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4.6.2 Mechanics

Internally, the window select/look-up module consists of a small state machine, a look-up
table, and a small amount of combinational logic. When the module is started with a set
of input flags, it sets up the window constraints as outlined in the Vorbis I specification 10.
The module implements the standard control interface (see section 4.1.2). It consists of a
three-state FSM, of which the states are:

• STATE START: when in this state, the module waits for a start signal to arrive, upon
which the FSM transitions to STATE SETUP.

• STATE SETUP: when in this state, the module computes the window constraints based
on the input parameters of the module. This operation takes a single clock cycle
in the current implementation, but for flexibility it is given its own state, so that
implementations dependent on external RAMs or resource-constrained devices (i.e.
without the space for the module’s large look-up table) can prepare the window values.
When setup is complete the FSM transitions to STATE READY.

• STATE READY: this state indicates that the window select module is no longer busy, and
can produce valid output values when presented with input requests.

The look-up table in the current implementation is a 32-bit wide, 4096-element deep ROM
(implemented as a read-only block RAM) that stores pre-computed values of the Ogg Vorbis
window function. 11 They are stored according to a maximal fixed-point representation,
where the value 1.0 is stored as 232 − 1, the value −1.0 is stored as −232, and values in
between are stored approximately as their value times 232.

The combinational logic in the window select module is used to determine whether an
input value is in range of the window itself; if the input value is not inside the range de-
fined by the input parameters (according to the start and end values that were produced
during the setup state), either 0 (32-bit hexadecimal 0x00000000) or 1 (32-bit hexadecimal
0x7fffffff). Otherwise, the appropriate value of the window function is read from the
look-up table and returned.

4.6.3 Dataflow

The window select module produces data that it utilized solely by the IMDCT module.
However, the module’s control interface is tied to the audio packet processor, so that it can
enter its setup phase and have its computations complete and ready by the time the IMDCT
is started.

10The Vorbis I Specification, section 4.3.1
11The window function is defined in the Vorbis I Specification, in section 4.3.1, to be y = sin(0.5 ∗ π ∗

sin2(x+0.5
n ∗ π).
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4.6.4 Testing and Debugging

The window select module was primarily tested via tests of the IMDCT. Since it was used
exclusively there, and was a primary factor in computing the IMDCT’s results, invalid or
incorrect window select outputs resulted in similarly invalid or incorrect IMDCT outputs.
Verification of the IMDCT in simulation helped to identify problems with the window select
module, and checking the IMDCT again on the lab kit via the logic analyzer confirmed that
the window select module was functioning properly there as well.

Figure 7: The IMDCT module and its helper modules.

4.7 Inverse Modified Discrete Cosine Transform

4.7.1 Overview

The IMDCT module is used to transform the dot product of the generated floor and residue
vectors from frequency domain back to time domain. The transform itself is essentially an
inverse, discrete, and real version of the Fourier transform. It is additionally modified so
that a vector twice the length of the input vector is produced.

4.7.2 Mechanics

Internally, the module uses the Xilinx fast Fourier transform core. This core computes an
ordinary discrete Fourier transform on a variable-length complex-valued vector. In order
to produce the correct values for an IMDCT, real and imaginary values are produced by
multiplying the input vector by the result of a cosine or sine (for the real and imaginary
values respectively). This computation occurs as values are fed into the FFT core, so no
additional clock cycles are introduced. The input vector is additionally mirrored horizontally
and flipped vertically; as in the case of the vector splitting this computation is also performed
on-the-fly. The module also contains a pair of 32-bit sine/cosine look-up tables. These are
used for multiplication against the input vector to produce the real and imaginary vector
pairs.
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The IMDCT module implements one of the three major computational processes of the
back-end as minor FSM. The audio packet processor is responsible for emitting its start
signal, and for monitoring its busy and done signals so that it may start other processes at
the appropriate time. The majority of the IMDCT module’s signals are connected directly
to the FFT core, and the rest are pre- and post-filtered with multiplies or additions. Thus,
the IMDCT module itself serves mostly as a wrapper for the FFT core, containing very little
sequential logic itself.

4.7.3 Dataflow

Data from the IMDCT module is ultimately provided by the dot product module. Recall
that the dot product module is a memory abstraction for producing the dot product of two
vectors. Thus, the IDMCT needs only to produce an address (the dot product vector index),
and the value of the dot product is produced and latched by the module on the next clock
cycle.

The data produced by the FFT is ultimately placed into a FIFO buffer, which is gradually
flushed to the AC97 codec. Additionally, the earlier portion of the FFT results must be
overlapped with the end of the previous frame, so the overlapped data is computed before
buffering. The later portion of the FFT results must be cached for overlapping with the next
frame, so this data is cached before buffering.

4.7.4 Testing and Debugging

Testing the IMDCT was rather difficult, since the FFT module could not produce values
in simulation, and testing on the lab kit was defeated by the large compile time of this
module. Ultimately, the majority of testing occurred by first removing the FFT module and
verifying that the inputs to the FFT core were correct. After the core’s inputs were verified,
it was replaced and programmed onto the lab kit. Connecting the module’s outputs to the
hex display provided a means of verifying that the IMDCT was producing something, and
running those numbers by hand allowed verification of the values themselves.

4.8 Dot Product

4.8.1 Overview

The dot product module is used to temporarily store the floor and residue vectors until they
are needed by the IMDCT. The dot product module is technically a misnomer, since the
dot product of two vectors is defined to be a scalar, and this module returns a vector that
is an element-by-element product of two vectors, but it is called the dot product module to
remain consistent with the Vorbis I specification.
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4.8.2 Mechanics

The dot product module is essentially a specialized RAM abstraction. The module has ready
and data inputs for each of two vectors. When the next value of one of the two vectors is
ready to be stored, the ready signal is asserted and the value of the data input during that
cycle is latched. The module is designed store vectors sequentially (as they are generated
by the floor and residue decoders), so no write address is necessary. An internal counter for
each of the two vector inputs is incremented each time a vector’s ready signal is asserted.

Additionally, there is a select input and data output for reading back from the RAM.
Reading from the module returns the dot product of the two vectors at the select index.

4.8.3 Dataflow

The decoder back-end uses the dot product module to store the results of floor and residue
decode. Since floor and residue vectors must be generated from the bitstream sequentially,
they cannot simply be multiplied on-the-fly and stored. Since the memory requirements for
the floor and residue vectors are relatively low (16 KB is an exaggerated upper bound for all
but the highest-quality files), the dot product module is a simple solution to the problem.

4.8.4 Testing and Debugging

The dot product module was tested and verified using a simulation waveform. It was never
added to the main module for synthesis on the lab kit, since it was dependent on the residue
decoder module, which remains incomplete.

5 Back-end Helper Modules

5.1 Huffman Decoder

5.1.1 Overview

The Huffman decoder module is an abstraction for restoring unsigned integers from a Huffman-
encoded stream of bits. The values produced by the Huffman decoder are almost always used
as either counts or array indices, and the Huffman decoder takes advantage of this fact, pro-
ducing results by a codebook look-up. The decoder interfaces to its controlling modules
using the control interface and the serial interface for bitstream reading. When appropriate,
modules multiplex the serial interface between the bitreader and Huffman decoder.

In Vorbis I, Huffman trees are always implicitly defined in the codebooks 12; they are
stored as a series of codeword lengths. During implementation of this project, an algorithm
was developed that exploits this arrangement to allow for high-performance decoding of even
very long (in some cases, up to 19-bit) codewords. This algorithm is described in detail in
appendix A.

12This is described in the Vorbis I specification, section 3.2.1.1.
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Figure 8: The Huffman decoder state transition diagram.

The Huffman module was implemented using a finite state machine. These states were:

• STATE IDLE: when in this state, the module is waiting for a start signal or has just
completed decoding.

• STATE READ COUNT: when in this state, the module is reading the last value in the
codebook, which is used by the algorithm defined in appendix A.

• STATE PROCESSING: when in this state, the module decides whether or not to continue
reading bits or to perform a search, based on the bit value signal (if a bit is available).

• STATE SEARCHING: when in this state, the module is performing a binary search on the
list of sums using the memory interface (see section 4.1.3). It remains in this state
until a value is found or searching cannot continue; for purposes of this algorithm the
latter case does not cause an incorrect value to be computed.

• STATE CHECKING: when in this state, the module decides whether or not it should
continue decoding values. According the algorithm, if the current number of bits read
from the stream is equal to the current value of the length list, it should finish.

• STATE WAITING: this state is used to insert a necessary single-cycle delay before entering
STATE PROCESSING if the condition checked in STATE CHECKING fails.
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5.1.2 Testing and Debugging

The Huffman decoder module took a particularly long time to debug, as refinements to
the algorithm were being made as the module was being implemented. The most effective
debugging strategy for this module involved the iverilog compiler and the use of the Verilog
$display task to print out as much state information as possible; in this way it was very easy
to identify a discrepancy (or an infinite loop, which was a common occurrence immediately
after the module was written). Eventually the module was tested as part of the floor decode
module on the lab kit, and using the logic analyzer its outputs were verified.

5.2 Bitstream Reader

5.2.1 Overview

The bitstream reader module was designed to make the task of conforming to the serial
interface (see section 4.1.1) easier. The bitstream reader essentially consists of a small FSM
that is passed a number of bits to read. When started, the bitstream reader produces the
appropriate signals to read a bit, wait for the value, and place the value in a buffer when the
value arrives. Since most operations required reading of a sequence of bits as an unsigned
integer, the bitstream reader could return a 32-bit integer (padded with zeros) when reading
was complete. Each time a bit arrived, the reader would increment an internal counter and
set a bit in the buffer according to the current value of the counter.

5.2.2 Testing and Debugging

Since it was placed in control of the bit request, availability, and value signals of major
modules like the audio packet processor, the floor decoder, and the residue decoder when
these modules were in certain states, testing the bitstream reader was mostly done implicitly,
by inspecting the values of the bit request, availability, and value signals when these modules
were in a particular state. As was often the case, the module was first perfected in simulation,
programmed onto the kit (in conjunction with one of the modules that used it), and then
debugged on the lab kit using the logic analyzer.

5.3 Trig Look-up

5.3.1 Overview

The trig look-up module essentially provides an interface for reading from a cosine look-up
table. The table contains 256 signed, 16-bit fixed point values (where 215− 1 represents 1.0
and −215 represents −1.0). The trig module interface allows values to be returned as though
calling the cosine function instead of reading from a table. Essentially, the module computes
cos( n

256
· π) for an input n. For instance, look-up values greater than 512 are taken modulo

512, and for those still greater than 256, 256 is subtracted and the output data is negated. In
this way, passing an “address” that would normally be out-of-bounds still returns a correct
result.
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5.3.2 Testing and Debugging

Given the simplicity of this module, testing was very easy, both in simulation and on the lab
kit. Simple tests were created, and both simulation and lab kit outputs were easily verified
by hand.

5.4 Sort

5.4.1 Overview

The Vorbis I Specification requires 13 that during the final stage of curve synthesis during
floor decode, three separate lists of intermediate values be sorted according to the values in
one of these vectors (i.e. as though we had a map of one vector to the other two and we
sorted the map by its keys). This was a particularly interesting challenge in hardware.

The original intention for this module was to implement an insertion sort, since it per-
forms well on short lists like those that needed sorting (despite that it is O(n2) in the
worst-case), and sorting performance would be a critical factor in achieving realtime de-
coding. However, to facilitate faster completion and testing of the floor decode, a simple
bubble sort was implemented and debugged quickly. The bubble sort worked well enough for
testing, but due to time constraints and resources spent debugging the floor decode module,
the insertion sort implementation was never created.

Regardless, the sort module has some interesting properties. It uses the control interface
for working with the floor decode module, and the memory interface for selecting values
to sort. The sort module does not perform the sorting itself. Instead, it selects data by
address, compares the data when it arrives, and if the data needs to be swapped, it asserts a
synchronous “swap” signal. The controller module (in this case, the floor decoder), which is
responsible for reading data to the sort module, is also responsible for performing the swap
when the signal is asserted.

5.4.2 Testing and Debugging

Testing the sort module proved to be a tedious task. It worked perfectly in simulation, yet
would not synthesize onto the lab kit, since the compiler did not seem to allow swapping of
two values in the same register array. However, the compiler did not make this clear, so a
great deal of time was spent attempting to fix the sort module to work on the lab kit. Finally,
the floor decoder was modified to store the small intermediate vectors in block RAMs instead
of registers, and the sort module was modified to account for the delays in reading from the
RAMs and for the inability to write twice in a single cycle. Once these modifications were
complete, debugging was performed on the lab kit using the logic analyzer.

13The Vorbis I Specification, section 7.2.2.2
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5.5 Neighbor Search

5.5.1 Overview

The neighbor search module implements the low neighbor function, as defined in the Vorbis
I Specification.14 The module uses the standard memory interface (see section 4.1.3) and
standard control interface (see section 4.1.2) to perform a search on a vector of values stored
in sequential indices in register arrays. The neighbor search function is defined as the great-
est vector element for which the element index is less than the argument and the element
value is less than the value of the argument value (for low neighbor, or greater than for
high neighbor). The module uses a type select input to determine which type of search (0
for low neighbor, 1 for high neighbor) the module will perform, so that a single module can
be used for one search type and then the other. In practice, however, the floor decoder uses
two neighbor search modules with the types hard-wired to 0 and 1 since the searches can be
run in parallel, but for implementations running on area-constrained devices, the type bit
might be a convenient option.

5.5.2 Testing and Debugging

The neighbor search function was tested in a manner similar to many of the other back-
end helper modules, through testbench waveforms in simulation and by confirming values
displayed on the logic analyzer when run as part of a larger module.

5.6 Line Renderer

5.6.1 Overview

The line renderer module implements the render line function, as defined in the Vorbis
I Specification.15 The line renderer, given a pair of endpoint coordinates, computes the
Y values that are on the line against a list of X-values and places these values into an
intermediate vector. The line renderer uses a set of registers for its data point inputs, and
adheres to the standard control interface (see section 4.1.2) for utilization by the floor decoder
module. Input values must be present in the registers on the clock edge on which the start
signal is asserted.

5.6.2 Testing and Debugging

The line renderer module was a simple module to implement, and as such took a very short
amount of time to verify. Sample data sets were passed to the module in simulation and
were hand-verified. On the lab kit, proper functionality of the line renderer was ensured by
tying its outputs to the logic analyzer as it was used in the floor decoder module.

14The Vorbis I Specification, sections 9.2.4, 9.2.4.1
15The Vorbis I Specification, section 9.4.2.3
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5.7 Point Renderer

5.7.1 Overview

The point renderer module implements the render point function, as defined in the Vorbis
I Specification.16 It computes the Y value for a given X value along a line defined by a pair
of given endpoints. The point renderer also uses the standard control interface (as defined
in section 4.1.2) for use by the floor decoder module.

5.7.2 Testing and Debugging

As one of the less-complex submodules, the point render was easy to test. At first, validation
of its outputs took place by confirming the outputs of modules that used it. Checking the
outputs of this module by hand was performed in simulation (via a test bench) and on the
lab kit (via the logic analyzer) later in the project for consistency.

6 The Mini-Decoder

Having determined that it was infeasible to complete the full Ogg Vorbis decoder given
the complexity of the back-end and the large amounts of time spent debugging back-end
components, we created our own lightweight audio code and a mini-decoder in an attempt
to demonstrate many of the working parts of the back-end. Ultimately, we were unable to
make the mini-decoder correctly play back a sample compressed by our codec, though we
did make great progress in integrating a number of modules to create a complete decoder
module, and in interfacing to the AC97 codec; these are two things that we did not have
time to complete for the Vorbis decoder.

The codec of which the mini-decoder was a part consisted of a twofold compression. First,
audio data was taken 32 samples at a time and transformed into frequency domain using the
MDCT, and the frequency values were quantized to 5 bits. Then, the quantized frequency
values were analyzed to create an optimal Huffman encoding for the data, and the data was
then compressed using that encoding.

Thus, the mini-decoder first had to Huffman-decode 32 values from the bitstream, per-
form the IMDCT with windowing on these values, and send them to the AC97 codec. The
decoder module used an FSM and the serial and control interfaces (see sections 4.1.1 and
4.1.2 respectively) to do this. Iterations were performed over the Huffman encoder until an
intermediate data vector was filled with 32 values. The IMDCT was then started, and it
selected values as necessary to produce 64 values, half of which it cached for overlap and the
other half it added to the last half of the previous frame and output. The IMDCT internally
utilized the trig look-up and window select modules from the Vorbis decoder back-end.

The decoder module also contained a FIFO for buffering audio samples to the audio
(AC97) module. This was required, since the IMDCT did not necessarily produce values at
the times the AC97 became ready for data. The FIFO write enable was connected to the

16The Vorbis I Specification, section 9.2.4.2
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IMDCT’s new data signal, and the FIFO read enable was connected to the audio module’s
ready-for-data signal. Additional logic used almost-full and almost-empty signals to start
and stop the decode process depending on the FIFO’s status: if the FIFO was nearly full, it
would cease Huffman-decoding new values and passing them to the IMDCT. If it was nearly
empty, it would start the process again to fill the FIFO. Though never explicitly measured,
it was estimated that the decode process produced data much, much faster than the audio
module consumed it, so coordinating the full and empty status of the FIFO was essential.

6.1 Testing and Debugging

Due to very large number of clock cycles required before output data was produced, it was
difficult to test the entire decoder in simulation. Each of the decoder’s core parts (the
Huffman decoder, IMDCT, and serial and control interfaces) had been previously verified as
parts of the Vorbis decoder. Assembled into the top-level decoder module and synthesized,
we were unable to get the mini-decoder working. Debugging was attempted using the logic
analyzer, but both Huffman and IMDCT outputs did not appear to be incorrect. Possible
causes for the failure of the mini-decoder include interfacing issues with the AC97 codec,
and also endianness of the compressed sample in memory.

7 Analysis

7.1 What Went Right

While we may not have achieved all of our goals in producing the decoder, we think that
there were two parts to our design that we would not change in retrospect.

The division of modules was one aspect that we feel was particularly good. Modules
were separated according to a major FSM/minor FSM pattern, where smaller, specialized
modules could be called as though they were functions by other modules, or even invoked in
parallel. The fact that the back-end itself was a minor FSM to the front-end, and that the
back-end contained utilized separate FSMs for floor and residue decode and the IMDCT,
and that these used their own minor FSMs for computing helper functions made it much
easier to visualize as well as implement our decoder.

The other aspect that simplified the implementation process and immensely helped avoid
bugs was the serial interface. The flow of bits through the decoder was fairly complex, and
without a simple but strictly followed method of passing bits from module to module, we
probably would not have made as much progress as we did. Passing of bitstreams was
particularly essential in the front-end, where the potential of losing sync with the stream
(and thus corrupting the decode) was greater.
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7.2 What Went Wrong

Despite the incredible amount of experience and insight into digital design that we feel we
gained, there were several things that, in retrospect, should have been done differently.

First, dividing the labor between the front-end and back-end was not a particularly good
idea. In the end, we were unable to finish the back-end, and not only did we have a working
front-end, but we had also written a software script earlier in our project to help with
debugging the front-end. This script was used to extract front-end data from an Ogg Vorbis
file; had we anticipated the amount of work the back-end would have taken to complete,
we could have targeted the back-end first, using data extracted using the script to emulate
the results of front-end processing. Then, once the back-end was complete and working, we
could have moved on to the front-end. Had we proceeded this way, we most likely would
have completed the back-end, and would have been able to decode Vorbis against front-end
data extracted in software.

Second, the back-end’s complexity and algorithms, which seemed to be reasonable to
implement in Verilog, turned out to be far more appropriate for running on a processor. An
ideal scenario would have been to implement a processor or PIC in Verilog, and to interface
this through interrupts to Verilog implementations of performance-critical modules like the
IMDCT. Creating a handful of instructions for working with bitstreams (a “read n bits”
instruction, for instance), would have made implementation of the back-end’s complex data
paths much simpler. We feel as though having used a processor of some sort would have
made this project much more feasible.

8 Conclusion

Ultimately, though we were unable to produce a working decoder, our project was still useful
to ourselves, and hopefully to others as well. We learned an incredible amount about digital
signal processing, audio compression codecs, and (most importantly) digital design. We
gained a relatively significant amount of experience not only writing Verilog code, but also
working through the pains of debugging in simulation and then all over again on the FPGA.
Finally, in making as much progress as we did in six weeks, we showed that it might not be
the case that a CPU and operating system re not necessarily required to decode Ogg Vorbis
audio.
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A The Huffman Decoding Algorithm

The Vorbis I specification defines a packing of Huffman data that involves packing only an
ordering of the lengths of codewords in a Huffman tree. Thus, the bit sequences of the
codewords themselves are implicitly defined. For instance, the Vorbis specification uses an
example codebook (packed Huffman tree) containing the values 2, 4, 4, 4, 4, 2, 3, 3. Assigning
codewords in order, this codebook implicitly contains the values 00, 0100, 0101, 0110,

0111, 10, 110, 111.
It is common that a Vorbis audio file might contain tens of these codebooks, some of

which contain hundreds of values, of lengths up to around 20. Thus, even for a software-
based implementation, creating the bit sequences for these values is an expensive task, and
for our hardware implementation, storing these sequences and iterating through them each
time we receive a bit would make realtime decoding nearly impossible.

Thus, our Huffman decoder implementation applies an algorithm where the bit sequences
are never computed. Instead, we store not just the length of each entry but also an “entry
sum” and “entry index”. The entry indices are essentially the results of the algorithm; when
the algorithm terminates, the entry index at its stopping point is to be returned.

The entry sums are computed as follows: find the maximum codeword length in the
codebook (call it n) and for each code length j compute 2n−j. However, instead of storing
this number alone, store this number added to the entry sum of the previous entry. For
example, given the example listing from the specification, the following entry sums would
be produced: 4 5 6 7 8 12 14 16. The corresponding entry indices would be 0 1 2 3 4

5 6 7. It is important to note that any length 0 codewords should be omitted; the entry
indices vector is created so that length 0 codewords may be skipped and the correct values
will still be returned.

In our implementation, all of the previous computation is done by the front-end as it
decodes the codebooks, so this data is ready for use by the time the back-end needs to
decode a value. When the back-end needs to decode a value, it must keep track of the
current bit count and its current position in the list (count is incremented whenever a bit is
received; position starts at zero). When it receives a bit, either one of two things happens:

• the bit received is a 0, and the bit count is less than the entry length at the current
index; request a new bit.

• the bit received is a 0, and the bit count equals the entry length at the current index;
return the entry index at the current index.

• the bit received is a 1; compute the value “max(entry sums) >> bit count” and perform
a binary search on the entry sums list for this value plus the value of the previous search
(or 0, if no search has occurred yet). When the value is found, set index to be the
index of this value plus one. If the bit count is equal to the entry length at the current
index, return the entry value at the current index. Otherwise, continue.

Using the example codebook, let us consider the bit sequence 0101, which corresponds
to an entry value of 2.
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1. Bit 1 is 0, so our index remains at 0 because the count is one and the current length
is 2.

2. Bit 2 is a one, so we compute 16 >> 2 to get 4. A searching for 4 finds it at index 0,
so we add one to this and set our index to 1. The current length is 4 and our count is
at 2, so we continue.

3. Bit 3 is a zero, the current length is 4, and our count is at 3, so we continue.

4. Bit 4 is a one, so we compute 16 >> 4, which is 1, and we add this to the previous
search (4) to get 5, and binary search for 5. We find it at index 1, and add one to this
and get 2. Since the bit count is 4 and the length at index 2 is 4, we stop and return
the entry at index 2, which is 2.

As it turns out, checking the implicit bit sequences defined earlier, the bit sequence 0101

corresponds to the value 2.
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