O'Brien, McCaughan, - 1 -

Perfect Pitch Sheet Music
Maker

John O’ Brien, Adam McCaughan

Final Project - 6.111

December 14, 2005

O'Brien, McCaughan, - 2 -

TABLE OF CONTENTS

Introduction 5

Overview of the Audio Handling SYSeMcoocuiiiiiiiiiieee e 5
Divider/ONe-32N0 GENEIALONccciveeiiiieeeiieeeieeesiee et e et e e ssee e sraeeessseeessseeesnseeeenes 6
AUdIo SAMPIE BUFFEN ..o 6
Discrete Fourier Transformoo e 6
D= 018 [0 [oo TR PR 8
TONE CONVEITE ...ttt et e e e e e e e e sse e e e e e nnb e e e e e nnnne e e e e nnnneeas 9
D= 018 [0 [To TR RS RUPRROPRRTI 10
TONE LUT e e e e e e e e e r e e e e e e e e e s nnnnees 11
D= o107 [0 [To TR USRI 11
SCOIE CONVEITEN ... ettt e ettt e e e st e e e e e ste e e e e e ssn e e e e e annneeesaannneeeeeannneeas 12
D= 018 [0 [To TR RUPRPPRRITI 13
Problem abDSIraCtioN.............ooo e 14
Notation Conventions: Display SPeCifiCatioN...........ccveiiieiiiie i 14
(o o TSRS 14
Sharps, Flats and NELUFalSoooiiiiiiieee e 14
Clefsand Ledger LINES........cooiii ettt 15
[0 = o o PSPPSRSO 15
DO NOLES ...ttt ettt e sae e snb e e ssae e e snbe e e snseeeenneeeas 15
RS .ottt e ae e e e be e e nnreeenreeeas 15
“PTand “d” TYPENOLES.eeieeiie e 16
BEAMEA NOLES.......oiiiiiieie et e e snee e 16
Bars and Time SIGNELUMEooiiiiieiiiee ittt e s e e e snee s 16
Display ArCHITECIUIEeeeieeee et e e e e 17

I MPIeMENtation SEFAEEJYcoooveeiiiieeiiie e e e e e ne e enes 19
Frame Buffer and BUffer Manager..........cooueoiiie e 19
DS o | o TP RUPRROPRRITI 19
.. 20
Implementation and DebUGGING........couuureiiiieiiiie i e e e sne e enes 20
MiINOK ArtISt MOTUIE ...ttt e b e e nnee e 21
.. 22
DS o | o TP RUPRROPRRITI 22

I mplementation and DeDUGGING........coiuereiiiieiiiie e enes 23
ATTISt MOAUIE IMBJOT ...ttt ettt e e nne e e nnne e e nnneeeenes 24
DS o | o TP RUPRROPRRITI 25
Implementation and DebUGGING........coiuuieiiiieiiiie e e e 26
GraphiCS CONLIOIIESo 27
DS o | o TP RUPRROPRRITI 27
Implementation and DebUGGING........couueieiiiieiiee e e e e enes 29

Fg 1 o = 1 o] o TR 30
EVAIUBLION. ...ttt e e st e e s bt e e e nne e e e ns e e e e nteeennneaeas 30

CONCIUSIONS. .. ettt e e e e et e e e e e e e e e e e e e e e e eaaeeeeeeneeeaeennaeeeeennaeeannns 31

O'Brien, McCaughan, - 3 -

Y o0l 0o (DG VA =] (oo R PRPR 32
DAY [0 (= 32
(0] SN 2R €= 1 = £ (o) SRRSO 32
] 32
B0 S O] 017 £ (= S 34
L0 = T O I PR 36
oo (X 0001 \V/< 1 (< ST 37
[= 10 0 =10 L L= S 39
ATTISE MOTUIE IVHINOL ... bbb bbb absbbssssassnssnnnns 42
ATTISt MOAUIE IMBJOT ..ottt ettt e e e e e s e e e s nneeeenes 47
GraphiCS CONLIOIES ... 53

LABDKT T Vs 67

O'Brien, McCaughan, - 4 -

Figure 1: Timing Diagram for the LogiCCOre FFTcooiiiiiiiieiee e 8
Figure 2: Diagram of the Score Converter FSM..........cocooiiieiiiie e 12
Figure 1: Using Accidentalsto Indicate PItCh...........cooceieiiiiiiiee e 14
Figure 2: Using aKey Signatureto Indicate PItChoccoeeiiiiiiiiiii e 14
Figure 3: Clef SYMDOISoooiiieie e nee e 15
Figure 4: Note DUration SYMDOIS..........coiiiiiiie et nee e 15
Figure 5: Common RESE SYMDOIS.........eiiiiiiiiiie e 16
Figure 6: A "d" note (left) and a"p" NOte (NGNt)coerveeeeiiieeeee e 16
Figure 7: BEAMEO INOLES...........eieiiiie ittt ettt sttt e e e snn e e ssneeesnnee e 16
Figure 8: 4/4 Time SIGNELUIE.eiiiiieeeiiee et eiee et ettt st sne e e snee e s naeeesnnee e 17
Figure 9: Slice Dimensions and EXamples..........cooeiiiieiieie e 17
Figure 10: DiSplay LayOUL.........ccocueieiiiieiiieeesiie e siiee ettt snae e s snne e ssneeesnneeens 18
Figure 11: Frame Buffer BIOCK Diagramc.cooiuiieiiiieiiee s 20
Figure 12: Artist MOAUIE IMITNOKcoiiiiiiiiie ettt e e 22
Figure 13: The "WhIte LINE" BUQG.cueiiiiiieiiieeiiee ettt 23
Figure 14: Minor Artist Module/Frame Buffer Interface..........ccccooveeiiiiiiieinieeiieene 24
Figure 15: Block Diagram showing state transitions for Artist Module Major................ 26
Figure 16: Meaning Of NO, N1, N2c.ooiiiiiiiiie it aee e snee e 28

Figure 17: Graphics Controller BIOCK Diagramccceeieeeniiee i eriee e 28

O'Brien, McCaughan, - 5 -

Hyrile g
ey -
R 1
g 5 2 § -
DO g e
M owr Ll uIe EIE £ o E 3 s
i | & £ 9 g £
v 7 | y
- A
Foadin Sarnie “i l“‘“' o ™ I maas™]
acdT [el b Intar e ez L] | stz o]
. nzin Snne |] CIMALT R fuhsr 1rer
‘ la~=111 > A T i | azn o] .
| |] e PR caTvarar | | Pl OV rrcedile IMANAHTEIT
S0z 1 o T .
1 * wurm- udina | bt e ’Lln::::’ | s
Ll Ut
........ .| " i
P . i T i
lagikal - naner R g 8
- [F2E] 40 - dez g g §|
R b 1898707 > % 2
’ I e g g £
rElew I s iy
| wamwanar s
(RERH N] *
T nuy aaed | “&re Lrar
uiz aed ‘
i Iy i i i
o W onwoag Eya 1'%y 'uyn o
1 1 1 1 1 1
I =

Introduction

The purpose of this project isto alow music to be transcribed automatically. It
consists of a microphone, input switches and avideo display. The device analyzes music
played into the microphone and updates the notes that have been played in real time on
the display. The display shows the notes in standard sheet music format, readable by
anyone with a basic knowledge of music. The switches are used to control the parameters
of the device, specifically the minimum volume necessary to register asa“note,” and a
harmonic selection device that allows the device take, as input, arange of instruments
with varying harmonics. Indeed, the device was shown to work as specified, and
properly transcribed music from a range of synthesized notes from a electronic keyboard.

Overview of the Audio Handling System

The audio handling system as a whole functions extremely linearly. At the start
of any given millisecond, the DFT module reads its necessary data from the audio sample
buffer, and then proceeds directly into computation. As soon as computation of the
transform is complete, the outputs head directly and only to the tone converter module,
which in turn outputs a characteristic frequency to match against aROM of predefined
frequencies in the tone LUT module. After finding a closest match, thetone LUT sends
its corresponding note and octave along to the score converter, whose final function isto
determine if the rest of the system should or should not be alerted to the completion of a
new note.

O'Brien, McCaughan, - 6 -

Divider/One-32nd Generator

The divider and one-32nd modules serve only to take the input from the 65 MHz
clock and output a synchronous signal to signify the passing of milliseconds and 32" s of
abeat. Embedded with their own count registers, the modules increments count each
clock edge until either count reaches 65 thousand (1 millisecond) or 1,015,625 (1/64™ of
a second/120 beats per minute). 1nthe former case, the one_khz_enable output pulsesto
high for one clock cycle, while in the latter, one_32nd pulses. In both cases, count is
reset to zero and its incrementing continues as before.

Audio Sample Buffer

The purpose of the audio sample buffer is to record the 20-bit samples that arrive
at 48 KHz from the ac97 and provide them to the FFT as needed. Since the ac97 sets
audio_ready to high when it has a new sample available, the buffer waits for this change
and then records the incoming sample. The address in the memory that it isrecorded to is
kept track of viathe adptr register, so any given sample that comes in from the ac97 is
written to a specific address, and then adptr is incremented so that the following sample
will be written to the next address. Dueto the fact that the memory is only as many
samples as the FFT requires as input in conjunction with the fact that the audio samples
need to be taken from a much longer time span than the FFT allows as input, means that
the buffer takes the form of aring buffer. Asaring buffer, once the pointer adptr reaches
the last writeable address, it loops back and instructs the next audio sample to be written
to the beginning of the memory. Since the FFT requires exactly as many samples as are
stored, this means no space is wasted holding unused or old samples. Since the times at
which the ac97 will provide a new sample are not mutually exclusive with the times that
the FFT may need to read data from the memory, the ring buffer isimplemented as a
dual-port block RAM, with one port serving only to write new samples, and the other to
read them as necessary. This addition doubles the size of memory necessary to storethe
samples, but eliminates the need to deal with troublesome read/write interference.

Discrete Fourier Transform

The discrete Fourier transform module performs a machine-efficient computation
of the discrete Fourier transform from the samples stored in the audio sample buffer. At
the core of the module is the LogicCore-implemented FFT submodule which, given the
correct inputs, performs the actual computation of the transform. At the beginning of
every millisecond, signaled by the input khz_enable, the DFT module activates its load
enable signal, le, begins the loading phase of the overall process. Since the audio
memory’s most current address is passed to the module, but there is no guarantee if it will
remain constant through the entirety of the transform, the address adptr is recorded
immediately at the beginning of the millisecond and held in the register held_adptr.

Once the load enable has been asserted, the FFT module begins its acquisition of
the audio samples. In order to accomplish this, it needs to be able to know which

O'Brien, McCaughan, - 7 -

memory address it should read as its real input, xn_re—the imaginary input xn_im istied
to zero because audio signals are purely real signals. Using the register held_adptr asits
base, the module adds on xn_index, an output from the LogicCore FFT that represents the
index of the input data requested, and puts this summed value into the register readaddr.
This register reads is output from the DFT module into the audio sample buffer, where
after one clock cycle, the appropriate is output from the memory and read directly into
the FFT input, xn_re. Once the FFT submodule is finished loading the final sample, it
proceeds directly into computing the transform, signaling this fact by setting the internal
busy signal to alogical high. During thistime, no special considerations are given to the
read address outputs or sample inputs; controlling these is unnecessary because they only
affect the FFT during its loading phase.

During the computation of the transform, the module remains static. However,
once the busy signal drops—signaling the completion of the computation—the DFT
module sends the LogicCore FFT submodule a single-cycle high pulse to its input
fft_unload, and so begins its unloading phase after a 7-cycle delay that changes the output
order of the unloaded data from “bit-reversed” into “natural,” which is both conducive to
debugging and easier for the tone converter module to work with. In the unloading
phase, the FFT submodule produces three outputs of relevance: xk _index, the index k of
the N-point discrete Fourier transform; xk_re, the signed real value of the kth point of the
transform; and xk_im, the signed imaginary value of the kth point of the transform. At
each clock cycle that the clock enable, ce, is high, the FFT submodule returns an
incremented value of xk_index, along with its associated real and imaginary values,
which the DFT module then outputs into the tone converter module that followsiit.

The DFT module tracks the completion of the unloading phase with the 1-bit
unload_done register, which simply castsitself as a logical high when xk_index reaches
the final (N-1) point of itsoutput. Though the DFT is capable of completing its full three
phases long before a new millisecond arrives, no early warning arrives for the next
khz_enable, so the choice was made to reset the FFT submodule and have it ready for
new input immediately following unload_done. In order to prepare the submodule for
the new loading phase, the unload done is propagated, a each clock enable, linearly
through scir, nfft_we, and fwd_inv_we [Figure 1].

O'Brien, McCaughan, - 8 -

73 o Y s T s TN e I T
e ; ; 5
i ZZ777777 TN B T T T T T
nti_we “ """" ' ."'—"\ ! | : !
Twed _inny i : : T f;-,.ff,.r:.-_
fwd_iny_we _____ .-" Y .
starf [,,r :

n_re T T T T T T T T T T T T T e G et K
xn_im 7777 T T T T T T TG oo e i X,

xn_index | o0 : W o H [» {lTE] p) :{

Figure 1: Timing Diagram for the LogicCore FFT

Thefirst signal, sclr, performs a synchronous reset, while the second and third allow
specification to occur for the input-length and transform-direction respectively. The
specification for nfft_we occurs because, when it goes high, the submodule sets how
many points it is going to input and compute according to the signal nfft, which istied to
the constant parameter fft_length. Similarly with fwd_inv_we, its corresponding value
fwd_invisset toalogical ‘1, which tellsthe FFT submodule that it will be computing
the forward transform, and not the inverse transform. This “reset-and-set” procedure
allows the DFT module to respond properly and immediately as soon as the next
millisecond arrives.

Debugging

The DFT module was by far the hardest of all the modules to debug. Inorder to
have easy access, realizable access to the data, the code from the vga_graph2_buf.v
module had to be adapted away from taking as input from the FPGA'’ s analog-to-digital
converter, and instead take its data, data clock, and data start from the FFT. Once,
however, that was accomplished, simple button controls allowed between viewing the
audio signal going into the DFT, and viewing the output from the FFT. It was after the
implementation of this side-module that the cause of the incorrect frequency the tone
converter module was reporting was discovered—initially, no option to examine the
fundamental frequency was available, and it was discovered that the dominant frequency
for the electric piano being used was in fact the third harmonic. Also, extremely useful to
test the DFT system was the side-module ddstester.v. With the help of the LogicCore
Direct Digital Synthesizer, producing a specified sine wave to appear a the input port of
the DFT became as simple as raising and lowering a frequency register that connected to
one of the input ports of the DDS.

O'Brien, McCaughan, - 9 -

Tone Converter

Relying primarily on frequency-domain input from the discrete fourier transform,
the tone converter module takes the unsigned versions of the real and imaginary
components of the DFT’ s output and intelligently decides what the characteristic
frequency should be. Since the computation of the characteristic frequency requiresthe
DFT to have finished computing the transform, the tone converter module waits until it
receives fft_unload to begin producing any meaningful output. Once it receives
fft_unload, the module clears the registers max_magsgsum, max_indexsum, fund_index,
fund_found, fund_freq, and dom freq, all of which are necessary to tracking the
characteristic frequency. Then, 7 cycles later, the unsigned versions of the DFT outputs
xk_re, xk_im, and xk_index appear at the inputs of the module in the form of re_pipe,
im_pipe, and index_pipe respectively. From there, the three inputs are pipelined into re,
im, and index respectively, in order to reduce total combinational delay time from the
output of the DFT to the computation of the magnitude.

Asindex increments each cycle, and along with it new values of re and im appear,
a magnitude for the fourier output is calculated by individually squaring the eight most
significant bits of the real and imaginary inputs and adding them together. The resulting
magnitude, magsg, is kept track of for three total iterations of the logic/clock cycles, by
loading magsg into the register magsg2, and magsgz2 into the register magsg3 at every
positive edge of the clock. If, however, the index is less than two, magsg2 and magsg3
are loaded with values of zero, the reason being that the inputs previous to index zero are
invalid and that the input associated with index zero itself (the DC offset of the DFT’s
input signal) is meaningless to the function of the tone converter module. The value of
magsg2, the “center” magnitude of the three inputs looked at in any given cycle, is
summed with half the value of each of magsg and magsg3 and stored into the register
magsgsum. Since this register isthe only one used in the logic for finding the
characteristic frequency, it effectively means that the computed “ magnitude” is actually
the shaped sum of three points of data in the frequency domain.

In order to give the user as wide a variety of instruments as possible to be able to
use on the microphone input, the algorithm used to find the characteristic frequency
char_freq must be adaptable. With adaptability in mind, the design choice was made to
allow the user to select between reporting either the microphone input’s fundamental
frequency (the lowest harmonic), or its dominant frequency (the harmonic with the most
energy). Theuser isableto select between reporting the fundamental and dominant
frequencies by setting the FPGA input switch[5], which is taken as input into the tone
converter viafund_select. A value of 1 reported to fund_select selects the dominant
frequency, while a value of 0 selects the fundamental frequency. To extend the
adaptability even further, the user is allowed to input the desired mag_threshold for
which the frequency domain magnitude must exceed in order to be reported. If no part of
the frequency spectrum achieves the desired threshold, the characteristic frequency is set
to zero and, farther down the line of modules, the score converter module will not report
it asanote. Inthe same manner as fund_select, these values are dynamically assigned
based on the FPGA inputs switch[4:0], which appear as inputsto the tone converter
module as the input mag_threshold. The ability to set the magnitude threshold is
especially useful with a microphone that is in the presence of external noise. Since the
design requires that a certain volume be reached, in noisy environments the threshold

O'Brien, McCaughan, - 10 -

may be raised in order to keep from reporting false frequencies and, in turn, allowing
false notes to appear.

So, with three registered magnitudes of the input signal summed and index above
the value of two and increasing at aregular frequency, the search for the fundamental and
dominant frequencies begin. For the fundamental frequency, the shaped magnitude
magsqsum is incremented linearly along each point of the frequency until a value is found
that exceeds the input value of mag_threshold. Once found, alogical 1 is stored into the
register fund_found and, simultaneously, the relevant frequency point, index-1 is stored
into the register fund_index. Once fund_found is set to one, the index of the fundamental
frequency is no longer allowed to be updated because the first harmonic has been found.
In the dominant frequency, however, this value is stored (because the threshold is the
same for both frequencies), but may be updated if the shaped magnitude magsgsum finds
another, larger value as it is updated with index. The search for both frequencies only
stops once index becomes greater than half the fft_length, because the nature of our
purely-real signal isto create a completely symmetric discrete Fourier transform across
this border. The last half of the transform, then, provides no new information and would
only serveto incorrectly update the dominant frequency.

The actual frequencies, in hertz, of the dominant and fundamental are calculated
by multiplying the values of their respective indices by 48000 (sample rate of the ac97)
and dividing the result by fft_length, which gives the whole system a maximum
reportable frequency of 24000 Hz—well above the highest frequency perceivable by the
human ear and far above the pitch necessary to meet the design specification. The actual
output of the characteristic frequency, char_freq, isthen output based on the user’s
selection between outputting the dominant or fundamental frequency. The characteristic
frequency is only accessed by the tone LUT module once it is done parsing the
spectrum—a single-cycle tc_done high pulse is sent upon reaching the halfway point of
the spectrum.

Debugging

The main method of debugging for the Tone Converter was the liberal use of the
hex display output. Since the both the index and output of the DFT could readily be
relied upon to show up on the VGA monitor, it was decided to use the hex display so that
both, heavily interconnected, modules could have rational outputs examined at the same
time. By outputting max_indexsum, max_magsgsum, and char_freq along with watching
the DFT output on the monitor, it was possible to immediately determine whether or not
the tone converter was, for instance, reporting the correct index, whether the calculation
of the frequency in Hz was correct, and what the minimum magnitude necessary as an
input to be able to pick up notes from a particular instrument. One major problem came
along in the form of the FFT reporting extraordinarily high values for the zeroeth index
of the system. Thiswas solved by realizing that it was DC offset of the signal that was
skewing things, and this problem was resolved by implementing the (index > 2) lines
seen inthe final Verilog code.

O'Brien, McCaughan, - 11 -

Tone LUT

The primary function of the tone lookup-table module isto receive the
characteristic frequency, char_freq, from the tone converter module, compare its value
with a ROM of predefined notes, and report the note and octave that the frequency
represents. Two ROMs, prefregrom and noteoctave, are coreto its functionality, the
former of which cycles through alist of predefined frequencies associated with valid
notes, and the latter of which holds the predefined frequencies’ relative note and octave.
The ROMs hold values corresponding to each of the 12 notesin the scale, from octaves 0
through 8, giving each atotal 108 locations. The predefined frequencies ROM contains
rounded values of the frequencies corresponding to each note/octave combination,
gpanning arange of 30 Hz to 13 Khz. The width of each location, then, for prefreqromis
15 bits. The second ROM, noteoctave, requires awidth of 8 bits because the first four
bits are used to represent the numeric range of notes (A as 0x0, A# asOx1 ... G# as OxC)
and the last four bits represent the associated octave.

Upon reception of its initializing signal, tc_done, from the tone converter, the tone
LUT module knows it has avalid, constant char_freq input. When it receivestc_done,
the module resets its internal address register, addr, to zero, and begins incrementing
through the various predefined frequencies. At each cycle, the wire abs diff r ¢
combinationally evaluates the absolute difference between a new predefined frequency
output from the prefregrom and the characteristic frequency it receives as input from the
tone converter module. Should this value be smaller than the current smallest-difference
found (computed by taking the absolute value of char_freq and subtracting the register
best_freq), this new, closest, value will be stored into the best_freq register, and its
location in the rom, addr_pipe2 will simultaneously be stored into the best_freq_addr
register. The noteoctave ROM'’ s input address is tied to best_freq _addr, and so asthe
module cycles through all the possible values of addr and updates its closest-fitting
frequency, noteoctave always makes the closest-fitting note and octave available.

Finally, in the cycle at which the ROM read address addr has reaches 108, the module
output note is registered to the top four bits of the note and octave ROM’ s output,
note_octave, the module output octave is registered to the bottom four bits of
note_octave, and the ROM read address is latched until the characteristic frequency is
determined again in the next millisecond. The exception, however, to the outputs of note
and octave is if the characteristic frequency is reported to be zero, in which case both 4-
bit outputs are registered as the reserved value OxF in order to signify that arest is
occurring.

Debugging

Similarly to the tone converter module, the Tone LUT debugging was best served
by ahex output. One of the primary problems that the module came across was the offset
of itsbest_freq_addr to the address that truly was the best frequency. By outputting
octave, note, rom freq, and best_freq as a precautionary measure, the problem was soon
realized—incorrect pipelining—because at a given stopping point in the module’s
runtime, the rom_freq displayed would be offset by a value of two.

O'Brien, McCaughan, - 12 -

Score Converter

Asthefinal step in handing off information about a note that was played to the
video portion of the entire Perfect Pitch system, the score converter modul€e' s primary
responsibility isthe tracking of what note and octave were played, what absolute time
they started at, and what duration of note it represents in standard sheet-music format
[Figure 2]. Dueto the design of the timing in the overall system [Figure XX], the score
converter module can rely on having a valid note and octave input available to it at the
beginning of every khz_enable and for some lengthy period after that. The 32™ of anote
timing, conversely, holds no promise about the validity of note and octave, and so once
score converter receives the one_32nd pulse from the one32ndgen module, it must latch
one_32nd into new_32nd until the beginning of the next millisecond to begin its function
towards outpui.

Score Converter
one_32nd
Increment
note 10ri i
majority logic
octave ‘
R one32nd_done less than 1.5 beats
and same as
khz_enable previous pitch
B :
What is
current note
& octave
valid note & different
1 than p;evious Report Old
Determine new score_element
score | ™| if majority logic
elements says not a rest
[EJO] ‘ [11‘:0] — [3:0]

; score
score_ [3:0] score_ — score_

octave SCOré_ startbeat ready note

* duration * ‘ *
L

Figure 2: Diagram of the Score Converter FSM

When khz_enable signals the beginning of score converter’s function and
new_32nd is asserted, the module has the wire same_pitch combinationally check to see
if current inputs note and octave are the same as the values old_note and old_octave
recorded at the previous 32™ beat. If same_pitch holds true, and the total duration
elapsed, duration_count, with this same pitch is less than 48 32"s (the longest note
available is a beat and a half), the module only increments the duration_count register
and waits until the next khz_enable to perform additional logic. If, instead, the current
pitch is different than the previously recorded one, or duration_count showsthat the note
has reached the longest displayable value, this signalsthat it’s time to update the outputs
score_octave, score startbeat, and score_duration, and to assert note_finish to begin the
next step of reporting the output of the score_ registers.

O'Brien, McCaughan, - 13 -

One of the features central to this module is its ability to do determine whether or
not a note should be conveyed, using majority logic. At the beginning of every
millisecond, score converter looks at the value of its input note and check to seeitisa
value from 0 to 11—avalid note. If indeed avalid note, it increments that particular
note’s location in the dual-port BRAM note_count; if not, it increments the register
silence, to show that the last millisecond elapsed was arest. When the score converter
decides it istime to fire off information about a note by asserting note finish, it first steps
through each location in note_count, storing the maximum value contained within in into
the maj_max register and its associated note into maj_note—this register holds the value
of the note with the greatest number of milliseconds associated during the period the
same pitch was playing.

Having thus determined score_octave, score startbeat, and score_duration, the
final step for the score converter module isto decide whether to or not to register
score_note as the note held in maj_note or to mark it down as arest and not to report any
of the new score_ values. It decides whether or not to ignore the note based on the ratio
between maj_max and silence. Unless the note with the greatest number of milliseconds
associated with it is four times greater than silence, the new score_ values are not
reported. If it is greater than four times silence, score ready sends a pulse and the new
score elements are available at the output. The reason for this skewed ratio is in order to
prevent false reports of notes during the period where the sound from an instrument may
be just rising or falling off: during these times the magnitude threshold may make the
tone converter waver between reporting a frequency and reporting zero every
millisecond. By ensuring alarge majority of “note reports’ during the milliseconds that
pass, the silence produced by wavering quickly overpowers maj _max and allows for a
sharp cutoff.

Debugging

Surprisingly, the score converter was relatively easy to debug—yet like the two
modules that linearly precede it, it was prudent to provide meaningful hex data. For this
purpose, aticker was created in the form of hex_sc. Dividing the outputs into quarters,
hex_sc simultaneously was able to track the changes of score _octave, score note,
score_startbeat and to count the increments of score ready. A particular problem that
arose occurred in the output of score _ready: it would pulse once at the beginning of the
note, and once at the end of the note. Given that it is only supposed to pulse when a note
has been completed, this led to some very strange output on the video portion of the
Perfect Pitch. By closely watching score _octave and score _note, it was found that the
score_note was not being properly reset to its value of OxF after the pulse of score _ready.
This led to an immediate discharge of another score_ready the next time a note was
played, because it thought it was changing over from one valid note to the other, and
should pulse, when in fact it should have been coming from arest to avalid note, in
which case it would not pulse.

O'Brien, McCaughan, - 14 -

Problem abstraction

The display side of the project was responsible for taking information about new notes
(pitch, octave, duration, start beat) and adding them to a graphical representation of the
piece played so far. Standard music notation convention was decided as the most easily
accessible graphical representation.

Notation Conventions: Display Specification

Pitch

Standard musical notation evolved from methods of notating vocal music (specifically
plainchant), which means that it was primarily intended to display pitch, with the
duration of the notes implied by the rhythm of the song’ s lyrics. It encodes information
about the pitch of anotein its vertical position on afive line staff.

This meant that the display was required to adjust the positioning of a symbol on a staff
depending on its pitch. The standard method for measuring pitch is the twelve note
chromatic scale. The twelve note scale includes the pitches A to G#. However asfar as
the positioning of a noteis concerned A and A# can be regarded as identical, so the
display needed to position notes based on an 8 note scale.

Sharps, Flats and Naturals

Sharps and flats are one semitone above or below their corresponding natural tone. They
can be notated using a key signature and accidentals. A key signature is a frame at the
beginning of the notation that specifies which tones are to be played as flats, sharps and
naturals. Notes will be interpreted by this scheme unless a different pitch is indicated
using an accidental. An accidental isasmall symbol placed next to the note’s symbol
indicating that it should be played sharp or flat.

7 i T

T

o

Figure 3: Usng Accidentalsto Indicate Pitch
-
e e
?r'n Y o W
v 1
o)

Figure 4: Usng aKey Signatureto Indicate Pitch

A key signature reduces clutter in the notation, however it was decided to use only
accidentals in the display. This decision was made because a key signature would have
required either user input or aclever analysis of the relative frequency of sharp, flat and
natural notes of a given pitch. Neither of these approaches would have added much to the
usability of the project.

O'Brien, McCaughan, - 15 -

Not using a key signature also meant that all semitones could be represented by the sharp
symbol (since A# = Bflat etc.) These decisions required the display to add a sharp symbol
to notes of the appropriate pitch.

Clefs and Ledger Lines

The position of a note on the staff shows its pitch relative to other notes on the same staff.
Its absolute pitch is shown relative to the clef. The clef setsaline on the stave to a
particular note and octave. There are alarge number of clefs, their symbols are shown in
Figure 5.

F
¥ |

5 - B—o

treble bass alto tenor french soprano percussion baritone subbass mezzosoprano
Figure5: Clef Symbols

Using clefs reduces the need to use ledger lines: small lines added to notes whose pitch is
above or below the staff. It was decided to make the display capable of supporting the
four most commonly used clefs (treble, bass, alto and tenor) and introduce ledger lines if
time permitted. This meant that the display was required to take a user input of the
desired clef and alter the positioning of the notes on the stave accordingly.

Duration

Duration is encoded symbolically. The standard symbols used are shown in Figure 6. To
simplify the project only the symbols 1 to 1/32 were used.
| ﬁ \
o ;o —_—
7

1 L2 Jd L& L/16 1/32 1/64
Figure 6: Note Duration Symbols

it

Dotted Notes

To reflect the fact that musical notes are not tied to the durations shown in Figure 6 music
notation allows the duration of a note to be extended by 150% through the addition of a
dot. It isalso possible to extend the note by 175% using two dots, 187.5% for three dots
etc., but thisusage israre. The display was required to add dotsto notes of the
appropriate duration.

Rests

Rests have a corresponding set of symbols representing duration. Since they do not
represent a pitch they should always be placed on the same line of the staff. The display
was required to infer from the durations and start beats of incoming notes whether arest
had occurred between them and draw the appropriate sprite.

O'Brien, McCaughan, - 16 -

_ - ¢ N
Fi
1 1/2 1/4 1/8 |

Figure 7: Common Rest Symbols

“p” and “d” Type Notes

By convention, notes are displayed differently depending on whether they are on/above
the central line of the staff or below it. For high notes the stem and flag are put below the
note head, for low notesthey are put above. In this report and in the verilog code
associated with it notes with the stem below are referred to as “p notes’ and those with
the stem below are referred to as “d notes’. The resemblancesto a“p” and a“d” can be
seen in Figure 8.

—F
Figure8: A"d" note (left) and a” p" note (right)

The display needed to be able to tell which category a particular note fell into and select
the appropriate sprite.

Beamed Notes

Another musical convention isto “beam” runs of short notes (notes equal to or shorter
than 1/8). The purpose of this convention is to make scores easier to read. Sometimes
notes of differing duration are joined as well, as shown in Figure 9.

J 13

Figure 9: Beamed Notes

Often short notes that follow alinear increase in pitch are a'so beamed, however to
simplify the display it was decided that only consecutive notes of the same pitch and
basic duration (not counting dots) would shown as beamed.

Bars and Time Signature

The time signature gives the meter of a particular musical piece, specifically how many
beats there areto abar. It is shown at the start of a piece of music, near the clef (). The
bars represent the periodic “pulse’ of the music. To show these elements the display
needed to take a user input of the time signature, display it at the start of the piece and
insert bar lines based on its value. The display was specified to deal with 4/4, 2/2, 4/2, %4
and 6/8 (the most common time signatures).

O'Brien, McCaughan, - 17 -

Figure 10: 4/4 Time Signature

Display Architecture

To give a high resolution and allow notesto be displayed sharply XVGA was used
(1024x768 pixels, 60Hz). This required that the project be clocked to 65MHz. To be able
to display notes of areasonable pitch above and below the staff, the height of asingle
“slice” was set to 14 note headstall. The width of a slice was chosen to be 32 pixels. This
value has the advantage of being a factor of 1024 (screen width). A reasonable aspect
ratio setsthe height of a slice to 140 pixels (i.e. 10 pixels per note head). The resulting
slice dimensions are shown in Figure 11. These dimensions allowed 4 rows of 30 slices
each to be displayed on the screen with reasonable margins, as shown in Figure 12.

32 = —

1
D

Iéigure 11: Slice Dimensions and Examples

O'Brien, McCaughan, - 18 -

LI
1
i

il
i
m

i
Tt
il
s
m
i
m

il 2 1 1 1 == LI 1 =I 'E' ,::| 'E' E ,: 1 1 =I 1 1 1
fb—-ﬁr—f - A — R e - e R o e R m—
ST

#E"F‘ .F=:.£ .F=:; .F==.£ .F=:£ .F=:.E '='£ .F=:E .F=:5E .F=:; Py
% e — e el —ar el o — e atald

ale e - - - T = | = £ - -
i - - - = - i - + - =
@ e T W T T E T T T IL—..IE.
I
T o aE o W T F mE T s | e mm—ar =

]

Figure 12: Display L ayout

Given the complexity of the display, recalculating the value for every pixel once a frame
(asin Lab 4: Pong Game) appeared unfeasible. Instead a frame buffer was planned. This
would allow the display modules to alter the screen incrementally. To make
communication with the frame buffer straightforward it was decided to make the data
word length for the frame buffer 32 bits. This would allow slices to be sent to the frame
buffer at the rate of one row per clock cycle.

The convention of beamed notes meant that a new note could alter how the previous two
notes were displayed. This in turn meant that immediately after receiving a new note
from the audio module the display modules would have to calculate new pixel values for
three slices — the new note and the two preceding slices. This was broken down into three
units;

Graphics controller Takes in a pitch, octave, duration, start beat and ready signals from
the audio module. On aready signal it will select the appropriate sprites to be drawn
(taking into account p/d notes, beamed notes etc.) for the last three dlices and passes them
along with pitch and octave to the artist module major.

Artist module major On aready signal from the graphics controller passes the
information about the three sprites in series to the artist module minor. It also calculates
the starting x and y position of each sprite to be drawn. The x position is passed directly
to the frame buffer while the y position is passed to the artist module minor. Thisis
because the artist module minor will need to increment the y position each time it draws a
NEW row.

Artist module minor Thiswill take information about which sprite to draw, its
pitch/octave and a starting y position from artist module major. It will load the sprite

O'Brien, McCaughan, - 19 -

from a sprite memory, mix it with a staff and pass the correct pixels and y coordinate
values to the frame buffer.

Originally it was planned to have two memories for graphics elements: one for sprites
and one for graphics elements that always have the same position on the staff (i.e. clef,
time signature, rests). There would have been separate loading routines for both memory
types, plus another routine that would draw a blank frame. Beamed notes were intended
to be drawn using ¥4 note sprites and then adding beams between them with
combinational logic. However as implementation progressed it became clear that all these
functions could be smoothly implemented using a single sprite memory.

Sprite dimensions were chosen to be 32x80 pixels (treble clefs take up about 7 note heads
= 70 pixels). Since both d and p type note symbols were included in these memory slots,
and because they are about 60 pixelstall, the sprites have their note heads at different
positions. To accommodate this the first row of each sprite includes the y coordinate of
the note's center relative to the top of the sprite in binary.

The labkit provides4MB of ZBT SRAM and 2.6Mbit of BRAM (144x18kbit). The main
memory requirement of the project will be the frame buffer. To provide aresolution of
1024x768 pixels with 3 bits per pixel it will need a capacity of 2.4Mbit. This can easily
be accommodated inaZBT SRAM. If the refresh rate is 60Hz then the ZBT will need to
provide anew 3 bit pixel value at the rising edge of the 65 Mhz pixel clock. The ZBT can
output 36 bits every clock cycle, and can be clocked at up to 167 Mhz so it should be able
to meet these demands.

Implementation Strategy

The implementation strategy was to work backwards from the frame buffer to the
graphics controller. This would allow each consecutive module to be tested on the display
with some simple input faking modules. Initially modules would be implemented without
any capability to produce anything other than the basic functions of the display (i.e. no
beams, rests, sharps, dots). The rationale behind this decision was that it is much easier to
add featuresto aworking project. Once the bare bones of the project were completed and
all the display modules had been successfully tested and integrated extra features could
be added.

The modules are described in the order they were constructed.

Frame Buffer and Buffer Manager

The frame buffer holds a black and white image of the whole screen in memory. It must
output all of these pixel valuesto the display in series every frame. It must also take pixel
values and coordinates from the artist module and update the frame buffer image to take
into account the changes.

Design

Originally the frame buffer was intended to use aZBT memory as the memory element
for the frame buffer. This would have had two advantages: firstly the zero turnaround
between writing and reading would maximize the number of pixels that could be saved

O'Brien, McCaughan, - 20 -

into the buffer every frame, secondly putting the frame buffer inaZBT would free up
BRAMSs for the FFT and the sprite memory.
Since each slice is only written into the frame buffer once any lost data during writes will
show up as glitchy pixels on the display. The periodic transition from writing to reading
must be coordinated such that no datais lost. To alow thisabusy signal is generated as
the frame buffer switches from writing to reading. This busy signal pausesthe artist
module so that no datais lost.
The buffer manager must generate an address for each row of 32 pixels based on their x
and y coordinate so that they can be saved in an unique location in memory. Thisis
generated using the formula below. Slice x has been divided by 32 because that isthe
width of aslice.

address = {dlice y[9:0], slice x[9:5]};
This generates a unique memory address for every possible slice coordinate within the
1024x768 display area. However slice x[10:0] and slice_y[9:0] can take values outside
this area. Although this situation should never occur intentionally the frame buffer is
designed to disable the memory write when the address becomes invalid. This feature is
exploited in other modules by setting slice_y to 768 whenever it is desired to avoid
writing to the frame buffer.
Generating an address to retrieve pixel information based on hcount and vcount is more
complicated because of the blanking regions.

wider output

ounddress = Swnourd. boourd, 329 .
_ Phayne = hayne : || 200201 mesart
[31 0] frare_dal=_tul Prosyne = waynic i [2:0] viwnl—
& E PHan= = flark _——

frame_buffer BRAM 32 5 25T |— - Pl = ool 19:32] P

[L} 4 KB Oty uslng blszk and swhka 5o plxal[2 = pleal1]2l Bl

Canurt looss Tromn 0==31, naremants on posade dk - Hark

IF count = 27 buey-1 .

Ilncanil == 51 aulreg == dala Psre—
rlnzk_sitmbe pliverc—is

[1&:0] frarra seldress

Cutrag = 32 bi shift registar

b ——
0] alxel—

-

LIl

—— 130 slice =

18 D] ol aderass—
TR sy
by (5100 wlive_pivels
. . dear aorean
s T 0] i avgnags
4 L B
¥ideo input
o in_ocedress = slice_s slice_yh
T [21:0] Frawa data I brusy == 0 deviar = slise_pixels
Ifusy == 0we =1

Frame_wi

Figure 13: Frame Buffer Block Diagram

Implementation and Debugging

The code supporting the ZBT was not available when work began on the frame buffer, so
aBRAM was used as a temporary measure. This meant increasing the number of busy
cycles per frame. Since the BRAM performed acceptably and there was no shortage of
memory blocks it remained in place after the ZBT became available.

O'Brien, McCaughan, - 21 -

A basic module to fake a flashing block input to the frame buffer was built to check its
function. The module was designed such that the user could move the flashing block
around the screen using the up, down, left and right buttons.

The input faking module showed that the buffer did not display the flashing block when it
was moved to x=0. Additionally when the block was moved to x=288 the flashing block
was displayed in two locations. Thisimplied that there was a problem with reading from
the memory since it was not possible for one data sample to be written to two memory
locations. Examining the code showed that while the read address was being dealt with
correctly during the blanking period between frames, it was not correctly assigned in the
blanking period between lines. Altering the logic for out_address fixed the problem.
Another bug was found when frame buffer was tested with the artist module.

Minor Artist Module

The minor artist module takes as inputs the number of the sprite to be drawn along with
its pitch and octave and generates a stream of 32 bit wide pixel values with corresponding
y coordinates that are passed to the frame buffer. It interfaces with the major artist
module using the artist_start and artist_done signals. When new sprite data (n_sprite,
n_octave, n_pitch) isavailable the major artist module generates a one clock cycle high
pulse on artist_start. This signal activates the drawing process. Once the minor artist
module finished drawing it responds to the major artist module with a one clock cycle
pulse on artist_done.

The minor artist module also receives a clef signal from the user. It needs this because the
offset of a sprite on the staff is a function of its pitch, octave and the clef being used for
the piece.

When the minor artist module receives a busy signal from the frame buffer it must stop
sending out new information until the busy signal is deasserted.

O'Brien, McCaughan, - 22 -

clef Clock_65mhz
Artist_start: = minor_wait
artist_done =0
< Artist_done
Start_row [

Artist_ done———

Sprite_memory ———[31:0] Sprite_data—»

32 bits wide
4800 addresses
First address of each sprite
contains its y_offset

la——artist_start

4—[9:0] Sprite_address—— . .
minor_sprite

sequencer; sprite_count 0 -> 143
sprite_address = f(n,clef, sprite_count)

sharp and dot pixel signals [—[31:0] sharp_pixels—-|
—[31:0] dot_pixels——»|

generate sharp_pixels and

dot_pixels from slice_y, [(9:0] slice_y
slice_pitch_pixel and start row slice_pixels
start_row < . - . sprite_pixels = fisprite_data)
lt——slice_pitch_pixel slice_pixels =

sharp_pixels||dot_pixels||sprite_pixels
(depending on n_sharp, n_dot)

[9:0]slice_y [31:0] slice_pixels busy
\ \
Figure 14: Artist Module Minor

Design

The module is based around a sequencer that, on receiving an artist_start signal,
increments the variable sprite_count from O to 143 before generating an artist_done pulse
and returning to await sate. In the first few clock cycles the module determines the
offset of the sprite from the top of the slice being drawn. It does this by loading the first
line of the sprite, which contains the offset of the note head from the top of the sprite. The
offset of the line the note is to be drawn on from the top of the slice is calculated in
parallel using the clef, n_pitch and n_octave signals. The address in the sprite memory
that matches up with the first line of the slice, initial_address, is then calculated.
Oncetheinitial_address has been found the address is incremented with sprite_count to
make current_address. The assertion of the memory address lags one cycle behind
receiving the data from the sprite_memory BRAM.

The data from the BRAM is used to generate the 32 hit sprite_pixels signal. First the line
of the slice being drawn is checked to see whether it is 60, 70, 80, 90 or 100 pixels from
the top of the slice. These values correspond to the staff lines, so those rows are set to
black lines. (current_address - 1) is then assessed to see whether the address that

O'Brien, McCaughan, - 23 -

generated the data currently coming from the BRAM lies within the 80 pixel range of the
sprite being drawn. If it is not and that row of sprite_pixels has not been detected as a
staff line then sprite_pixels is made to be white. If (current_address - 1) iswithin the
valid range sprite_pixelsis set to the data signal coming from the BRAM.

Two other 32 bit wide pixel signals are generated. Sharp_pixelsis set to contain the sharp
symbol whenever the row being drawn is in the right range. Likewise dot_pixels contains
the information to make a note dotted.

Dot_pixels, sharp_pixels and sprite_pixels are then combined. Depending on the values
of n_dot and n_sprite the correct signals are put through a bitwise OR gate to give

dice pixels, the output to the frame buffer. Sice y is asimple function of the sequencer
variable, sprite_count, and the initial y coordinate of the slice, start_row.

Implementation and Debugging

To test the modul€e’ s performance a simple two sprite ROM was prepared by editing a
.coe file. Sprite number O was given a cross image, while sprite 1 was given a diamond.
A simple module was prepared to give the minor artist module and the frame buffer a
series of sprite and coordinate instructions.

The input faking module allowed a couple of minor bugs to be fixed quickly and also
showed up amore serious one. The sprites contained white lines and repeated pixels, as
shown in Figure 15. Since the errors occurred 32 rows apart it seemed likely that the fault
was related to the busy signal.

1. Spriteasit should 2. Sprite before 3. Sprite after
appear debugging— note white debugging frame
line and repeated buffer. Whitelineis
pixels directly gone but repeated
afterwards. pixelsremain.

A

32 rows

Figure 15: The" WhiteLine" Bug.

Examining the inter face between the frame buffer and the minor artist module revealed that the
white line was caused by inappr opriate usage of synchronouslogic. Frame_addressand
frame_data in were generated from dice_y and dlice_pixelsrespectively within an “always

O'Brien, McCaughan, - 24 -

@(posedge clock)” block. Thismeant that they were written to the buffer a cycle after they were
received. However ascan beseenin

Figure 16 when busy goes high the delay causes a row of data not to be written to the
frame buffer (c, [c]). Thisomission causes the white line seen in Figure 15. It can also be
seen from the timing diagram that after the busy cycle “d” is written to both “[d]” and
“[€]”. This mismatch causes the repeated pixel bug and was due to the logic that handled
busy signals within the artist module. On receiving a busy signal the module did not
increment sprite_count until busy was deasserted. However, since the address for reading
from sprite_memory was prepared one clock cycle before the corresponding data could
be used as an output the pause caused the dice pixelsand dice y signals to get out of
sync.

The white line bug was solved by changing the calculation of frame_address and
frame_data in to combinational logic. The repeated pixel bug was solved by changing
how the sprite_address signal was assigned during abusy signal.

L | LY

w22) 28 Y 29 ij:c;: 30) 31 Yo Y1) 2y 34

- | & f A ik A &
w0 T 17 WO
seey) [b] 3 [c]) x X x i x [l) [e] X [[a]

mmesosress i [a] 51 [b] i [€]) x X x X x) [d]) [e]) []
shce_pixels ‘:g: b é':,: C ?:(f d é é ‘I: f ::}: g
Som N | s— ——
frame_data_in ::\ a :: b :\(C -:::. d : : :.:': f
frame_WE 1 E :rl:ﬂll D E ::xll’ 1 : :
afal b,ib | x || x || x || x |d[d dIel

Figure 16: Minor Artist M odule/Frame Buffer Interface

Red lines represent posedge clock. “[b]” represents the address to which the word of data, “b”, should be
written to. Data is written to the frame buffer memory based on the values of frame_address and
frame_data_in whenever a positive clock edge occurs and frame_WE is high. It can be seen that the clock
cycle delay between the inputs dice y and dlice_pixels and the data and address signals for the frame buffer
memory cause the word of data“c” to belost. It can also be seen that after the busy signal finishes thereis
atemporary mismatch in frame_address and frame_data_in that causes dataword “d” to be written to
address “[€]”.

Artist Module Major

Artist module major takes in inputs describing slices to be drawn and their relative
position and feeds the information to artist module minor one a atime, governing

O'Brien, McCaughan, - 25 -

communication using the artist_start and artist_done signals. It also calculates the
starting x and y coordinates of each slice (dice_x and start_row).

Design

The module is based around a four state FSM. The FSM startsin the wait state and
remains there until it receives agraphics_ready signal from the graphics controller
module. It then passes through the states draw_n2, draw_n1 and draw_nO. At each state
transition it shitsthe outputs n_sprite, n_octave, n_pixel, n_sharp, n_dot, dice x and
start_row to reflect the slice being drawn and then sends an artist_start pulse. The signals
prefixed with “n” are merely reassigned from n2_sprite, n0_dot etc., but dice x and
start_row must be calculated from the current dice’s countslice. Thissignal tells artist
module major how many slices have been drawn to the screen before the current one.
Artist module major must take into account margins and the number of slices per row to
convert this signal into the correct values of dice_x and start_row. When it receives an
artist_done pulse it moves on to the next state, and when it returnsto the wait state it
sends adisplay _ready signal to graphics controller informing it that it is ready to receive
anew set of glices.

O'Brien, McCaughan, - 26 -

display _ready

reset
[25:01n0 [25:0]n1 [250]n2 graphics ready ‘ i
draw_n0
wait n=ni
Artist_start=0 . Artist_start =1 .
Display _ready = 1 artist_done Start_row = f(remd2) —Artist_start-»-
Slice_x = 1025 Display _ready =0
reset— Slice_x = f(remd1)
A
. -Artist done—
artist_done .
artist_done
n——p
Y
draw _n2 draw_n0
n=n2 n=ni
—Start —-
Artist_start =1 it done Artist_start =1 Start_row
Start_row = f(remd2) - Start_row = firemd2)
Display_ready =0 Display_ready =0
Slice_x = f(remd1) Slice_x =f{remd1)

|
[7:0] n_countslice | o
[10:0] slice_x i start_divide [7:0] remd1 [7:0] remd2 divide_ready

divider X 2
Figure 17: Block Diagram showing statetransitionsfor Artist Module M ajor
The signalsn2_sprite, n2_countdice etc. have been collapsed into n2, n1, n0 and n to make the diagram
clearer. There are two instances of the divider module, one for calculating start_row and one for dice_x.

Implementation and Debugging
The calculation used to determine sice_x is shown below.

slice x countslicel/slices_per_row * pixels_per_slice + x_margin;
Previously all divisions had been by powers of two, S0 it was surprising when this line of
code failed to synthesize. The design had naively assumed that the compiler would
implement a combinational divider for a divide sign, but this was not the case. Therefore
synchronous dividers were added to the module as shown in Figure 17. Initially the
Xilinx |PCoregen dividers were used, but these proved unsuitable because they could not
be simulated in the version of | SE used. Also, these dividers were heavily pipelined to

O'Brien, McCaughan, - 27 -

maximize throughput, which was an inefficient use of resources for an application were
only latency was important.

Instead a simple divider was adapted from code available at

http://ww. ece. | su. edu/ ee3755/ 2002/ 1 07. ht m . The code was edited to make the
start and ready signals reliable and to reduce the bit width of the dividend and divisor.
The only changes made to the main FSM were to activate start_divide instead of
artist_start on a state transition and to trigger artist_start from dividers_ready.

A less elegant solution was used to deal with arandom bug that caused the mgjor FSM to
occasionally hang in one of the statesn2_draw, n1_draw or nO_draw. No reason could be
found for this bug, so an inelegant but effective solution was implemented. When
entering a new state a sequencer, cludge _count, was triggered. This would count to 800
clock cycles and then cause the FSM to move to the next state. If an artist_done signal
were received before this point the FSM would change state as usual. The delay caused
by 800 clock cycles is ample time for a slice to be drawn by artist module minor and not
long enough to give any noticeable lag to the display. With hindsight this bug may have
been due to long combinational delays within artist module minor. Since these
combinational delays have since been greatly reduced it may be that this fix is no longer
necessary.

Graphics Controller

The graphics controller converts information about a new note event into high level
instructions for updating the display. These instructions are passed onto the artist module
which performs the low level manipulation of pixels. The graphics controller deals with
the context dependent issues of choosing between a“p” and a“d” note and of adding
beams to short notes of the same duration and length.

Design

The block diagram for the graphics controller is shown in Figure 19. The module was
designed with implementing an extra playback function in mind so some of the states
used are superfluous (i.e. controller_save was intended to save new score_elements,
controller_pmaster would have kept track of where pages of notes begin and end in the
score_memory). n0, nl and n2 refer to the last three slices to be output to the artist
modules. For instance in Figure 18 if the display had just finished drawing a new note,
during the drawing process n0, nl1 and n2 would have referred to the notes shown.

xt
|]
L
L

N0 nl n2

http://www.ece.lsu.edu/ee3755/2002/l07.html

Figure 18: Meaning of n0, n1, n2

[2:0] score_octave, [3:0] score_pitch, [3:0] score_duration
[11:0] score_startbeat

O'Brien, McCaughan, - 28 -

score _ready

!

controller_wait I

score_ready

score_ready &
slice_count ==119

slice_count != 119

score_ready &

display _ready-»

controller_pmaster
if slice_count ==119
clear_screen

-+—display_ready

R
display _ready

controller_dsprite
n2 = f(pitch, duration)

controller_dbarred

controller_drest

ni =old n2 n2, n1, n0 = f(most 2? i :é
n0 = old n1 recent three notes) n0 = rest

slice_count++
graphics_ready

slice_count++
graphics_ready

A

slicecount+++
graphics_ready

\ Y
controller_setup
n0 = logo
n1 = f(clef)

Mot a rest & pitch, duration
= n0 pitch, n0 beatlength
n2 = f(time_sig)

Startbeat !=
graphic._ready default controller_save n0 startbeat + n0 beatlength

slicecount = 2 F Y

L display _ready

ol
250170 .01 m1

| T
[25:0] n2 | Graphics _ready f
l clear_screen [11:0] Slice_count l reset clef Clock_65mhz

Display _ready

+
Figure 19: Graphics Controller Block Diagram

The design is based around a sequencer, sice_count. This keeps track of how many slices
have been drawn to the screen. It is passed to the artist modules along with the sprite and
pitch information to allow slices to be properly positioned on the screen.

The system begins in the controller_wait state and returns there on areset. On receiving a
score_ready signal from the audio part of the project it moves to the setup state. It sets
the spritesto display a“ perfect pitch” logo, the appropriate clef and a time signature and
sends agraphics_ready signal. All of these graphical objects should appear in the same
place on the staff regardless of the clef chosen, but artist module minor is hardwired to
interpret sprites’ positions relative to the current clef. Therefore the pitch and octave sent
along with these “static” objects has to be changed according to the clef selected. The
signals static_octave and static_pitch accomplish thistask and are generated by a small
look up table.

Once artist module major signals that the logo, clef and time signature have been drawn
with the display_ready signal the FSM increments slice_count to three and switches to
the controller_dsprite state. This state only draws one new slice and leaves the previous
two unchanged. The controller decides on the sprite to be drawn (“p” or “d”) by

O'Brien, McCaughan, - 29 -

comparing the note's pitch and octave to the pitch and octave of the middle line of the
staff under the current clef. Once this new slice has been drawn by the artist modules the
FSM checks to see if the end of the screen has been reached and then waits for a new
score_ready signal.

Drawing beamed notes and rests follows a similar procedure. The signalsgo_bar and rest
are assigned combinationally to be high when the conditions are met to warrant a beamed
note or arest respectively (note it the two are mutually exclusive). If a beamed note isto
be drawn it needs to be known whether the previous three notes are also beamed. Two
logic signals, barl and bar2 are generated for this purpose. If the old value of nO has
equal duration and pitch to old nl then barl1 goes high. If the old value of n2 is beamed
with the old value of nl then bar2 goes high Depending on the values of barl and bar2
slices nO -> n2 will be assigned either aleft, middle or right hand beam sprite or the same
value as the slice that used to be in front of them before slice_count was incremented.
The FSM entersthe controller_drest state when a pause has elapsed between the end of
the last note and the start of the new note. The module determines this by comparing the
startbeat of the new note with the startbeat of the old note plus its duration in beats.

For rests the graphics controller needs to assign two new sprites — the rest and the new
note played. This means that dice_count is incremented by two. Since the difference will
not always be exactly 1/16, ¥4 etc. the module approximates to the nearest value rest
sprite.

Implementation and Debugging

Although the graphics controller worked reliably when it was integrated with the artist
modules and the frame buffer the display was very “noisy”. The background flickered
and there were many individual pixels that were displaying the wrong values. Some notes
were displayed several pitches below what they should have been at first and then were
redrawn correctly when the next note was drawn in.

It was theorized that this poor performance was due to timing errors caused by the
relatively high clock frequency. Examining the synthesis report revealed that there was a
maximum combinational delay of 24ns along one of the data paths in the display module.
The clock period was only 15ns (65MHz), so it seemed likely that this was what was
causing the glitches. The delay appeared to be mainly occurring in the artist module
minor, which contains a lot of combinational logic to compute the positions of the sprites
on the screen. Firstly the outputs of each module were pipelined, then when this had little
effect the internal logic of the artist module minor was pipelined. The data paths were
drawn out by hand to see where pipelines registers could be placed and five possibilities
were found. Two of these pipelines stages were implemented, bringing the delay down to
around 15.5ns (the other pipelines lay outside the critical step). It was difficult to see how
athird useful pipeline stage could be fitted into the module, but by examining the details
of the synthesis report it was seen that a single element of combinational logic was taking
almost 5ns to complete. The exact nature of this element was found using the rtl
schematic tool. The element in question dealt with the verilog statement below.

Assign slice_pitch_pixel =
140 - (n_octave_pl*7 + n_pitch_pl - slice_bottompl)*5

O'Brien, McCaughan, - 30 -

The rtl schematic showed that this statement was being implemented as two multipliersin
series: one to perform (x* 7) and another to perform the (y*5) operation. This approach
did not seem optimal, so the verilog code was changed to make it clear that all
multiplication could be performed in parallel.

assign slice_pitch_pixel =
140 - (n_octave*35 + 5*n_pitch - 5*slice_bottom;

The rtl schematic showed that this changed the layout to do the multiplicationsin
parallel. Thistook approximately 3ns off the delay for this assign statement without
changing its result and made the critical combinational delay path drop to 12.54ns. When
the pipelined code was synthesized and loaded onto the FPGA the display glitches had
almost all been fixed. The only glitch remaining was an occasional, seemingly random
pitch shift in a new notethat was repaired when the next note was drawn. Since this
seemed less frequent after pipelining than beforehand it is speculated that this bug is also
dependent on too long a combinational delay (although the simulated delay path is below
the critical value of 15nsiit is still close and when implemented the combinational delay
could exceed the clock period).

Integration

The integration of the two halves of the project was very straightforward. The point at
which work was divided had been carefully chosen to give as simple an interface as
possible, and that meant that getting the two modules to operate together only took about
two hours. There were, however, some integration issues when changes were made to the
project. The display remained very sensitive to long combinational delay paths and when
the width of the FFT was expanded beyond a certain value it became very glitchy,
displaying artifacts similar to those seen before the artist module minor was pipelined.
Also, adding the code for dealing with reststo the integrated project caused the display to
become very glitchy, even though the rest code worked without display issues when the
display half of the project was driven by a user input.

Evaluation

For the display side of the project improvements are needed to futher reduce
combinational delay paths and remove the remaining, seemingly timing related, glitch.
Thiswould also allow the FFT width to be expanded, improving the accuracy of the
audio segment, and the verilog code for handling reststo be inserted.

One suggestion would be to reduce the level of computation by increasing the memory
used per sprite. In the current implementation of the project the sprite memory slots are
not large enough to allow both “p” and “d” type notes to be drawn with their note heads
the same distance from the top of the sprite. For this reason the y offset of the note head
is encoded in the first row of the sprite. Manipulating this value to give the sprite address
that correspondsto the first row of the slice requires several steps of computation which
all occur within the current maximum combinational delay path. Increasing the sprite size

O'Brien, McCaughan, - 31 -

to 32x120 pixels would mean that “p” and “d” notes could be displayed with their note
heads on the same line and so remove much of the computation required. There were
sufficient BRAMs available at the conclusion of our project to accomplish this without
compromising other processes that use the memory.

Another possible improvement would be to greatly simplify the logic for writing to the
frame buffer. Instead of having a busy signal that halts the rest of the display modules for
3/32 clock cyclesthe artist module minor could be modified to write each new value of
dice pixelsand dice y to the frame buffer four times consecutively. Thiswould
guarantee that the value would be written on a least one of the four clock cycles (since
busy isonly 3 cycles long). Any datathat were sent to the frame buffer while busy was
high would not corrupt existing values because frame_WE would be set low.

Extra features which could be implemented on top of the existing project that would
improve its functionality would be the ability to play back a synthesized recording of the
piece played after recording was over. Support for drawing bars could also be added
relatively easily. By increasing the size of the sprite memory the current beamed note
functionality could be extended to dea with trains of notes following a steady rise in
pitch and to notes of different durations.

Conclusions

Overall, the project was an astounding success. Almost all of the functionality
laid forth in the design document was implemented [only rests were excluded, and even
they worked on a sidemodule]. Though connecting the two halves of the system proved
to be a difficult task, in the end the foresight of making this connection as minimal as
possible paid off greatly. Once connected, it became a simple matter of working out the
peculiarities of each side’' s code, and creating fixes for functions that disrupted others—
for instance, too large of an FFT module caused major glitching in the display half of the
system.

O'Brien, McCaughan, - 32 -

Appendix: Verilog

Divider

nodul e divider (cl ock_65mhz, reset, one_khz_enable);
i nput cl ock_65nhz, reset;
out put one_khz_enabl e;
reg [15:0] count;

al ways @ (posedge cl ock_65mhz) begin
if (count < 65000) count <= (reset ? 0 : count+1);
el se count <= O;

end

assi gn one_khz_enabl e = (count == 65000);

endnodul e

One-32" Generator

nodul e one32ndgen(cl ock_65nhz, reset, bpm one_32nd);
i nput cl ock_65nhz, reset;
i nput [7:0] bpm
out put one_32nd;
reg [23:0] count =0;

al ways @ (posedge cl ock_65mhz) begin
if (count < 1015625) count <= (reset ? 0 : count+1);
el se count <= O;

end

assign one_32nd = (count == 1015625);

endnodul e

DFT

nodul e dft(cl k, ce, khz_enable, adptr, xn_re, le, readaddr,
fft_unload, xk_index, xk_re, xk_im;

paraneter fft_length = 1024; /1l (fft_length-1)
paraneter fft_index_bits = 10; /1 (fft_index_bits-1)
paraneter fft_in_bits = 20; /1 (fft_in_bits-1)
paraneter fft_out_bits = 31; /'l (fft_out_bits-1)

i nput cl k;

i nput ce;

i nput khz_enabl e;

input [(fft_index_bits-1):0] adptr;

input [(fft_in_bits-1):0] xn_re;

output reg |e;

output reg [(fft_index_bits-1):0] readaddr;

/1

/1

/1

/1

output reg fft_unl oad;

output [(fft_index_bits-1):0] xk_index;
output [(fft_out_bits-1):0] xk_re;
output [(fft_out_bits-1):0] xk_im

/1 FFT: WRES AND ASSI GNMENTS

wire [4:0] nfft = fft_index_bits;
set NNFT = fft_length (27 ft_index_bits)

reg nfft_we;
WIl be set to high after calculation

wre fwd_inv = 1;
Conmpute forward transform

reg fwd_i nv_we;
WIl be set to high after calculation

reg sclr;

wire [(fft_in_bits-1):0] Xn_im= 0;

wire [(fft_index_bits-1):0] xn_i ndex;
wre fft_rfd;

wire fft_busy;

wre fft_dv;

wre fft_edone;

wre reset = 0;

reg unl oad_done;

reg [(fft_index_bits-1):0] held_adptr;

reg ol d_fft_busy;

al ways @ (posedge cl k) begin

/'l captures khz_enable in le until

le <= khz_enable ? 1 : ce ?2 0 : le;

if (ce) begin

O'Brien, McCaughan, - 33 -

ce occurs

/1 grabs the address pointed to in the ring buffer
hel d_adptr <= le ? adptr : held_adptr;
/'l Specifies the read address in the ring buffer

readaddr <= xn_index + hel d_adptr;

/'l xk_index reaches (fft_length-1),

unl oad_done pul ses 1

unl oad_done <= (xk_index == (fft_length-1));

sclr <= unl oad_done;
/1 then synchronously reset

nfft_we <= sclr;
/1] then set nfft size

fwd_inv_we <= nfft_we;
/1 then wite fwd_inv = 1

old_fft_busy <= fft_busy;

/1 Makes fft_unload go high for one cycle

fft_unload <= ~fft_busy & ol d_fft_busy;

/'l as soon as busy signal drops fromhigh to | ow

O'Brien, McCaughan, - 34 -

wire [5:0] mag_threshold =
wire [5:0] mag_threshold fund =

reg [(fft_out_bits-1):0] re;
reg [(fft_out_bits-1):0] im
reg [(fft_index_bits-1):0] index;

al ways @ (posedge cl k) begin

end
end
aco7fft myfft(Xn_re, /'l real data, input
Xn_im /1 imaginary data, input(always zero)
| e, /1 start data |loading & conversion, aka start
fft _unload, // start unloading data (busy nust be
/1 finished)
nfft, /l Tied
nfft_we, /1 hightorewite nfft
fwd_i nv, /1 forward or inverse, input
fwd_inv_we, // wite enable for fwd_inv, input
sclr,
ce,
cl k, /'l system synchronous cl ock
xk_re, /] output real data
xk_im /] output imeginary data
xn_i ndex, /1 index of input data (output)
xk_i ndex, /1 index of output data (output)
fft_rfd, /'l ready for data, out
fft_busy, /1 high while core is conputing fft
fft_dv, /1 data valid, output
fft_edone, /1 early done strobe, output
fft_done); /1 fft conpl ete strobe, output
endnodul e
Tone Converter
nodul e toneconv(cl k, fund_select, nag_select, re_pipe, impipe, index_pipe,
fft_unload, char_freq, tc_done, hex_tc);
paraneter fft_length = 1024; /'l (fft_length-1)
paraneter fft_index_bits = 10; /1 (fft_index_bits-1)
paraneter fft_in_bits = 20; /Il (fft_in_bits-1)
paraneter fft_out_bits = 31; Il (fft_out_bits-1)
i nput cl k;
i nput fund_sel ect;
i nput [4:0] mag_sel ect;
input [(fft_out_bits-1):0] re_pipe;
input [(fft_out_bits-1):0] i m_pi pe;
i nput [(fft_index_bits-1):0] i ndex_pi pe;
i nput fft_unl oad;
out put [14:0] char _freq;
out put reg t c_done;
out put [63:0] hex_tc;

mag_sel ect *2;
mag_sel ect *2;

O'Brien, McCaughan, - 35 -

re <= re_pipe;

im<= impipe;

i ndex <= i ndex_pi pe;
end

/1 Magnitude of the fft

wire [16:0] nagsq = re[(fft_out_bits-1): (fft_out_bits-8)]
*re[(fft_out_bits-1):(fft_out_bits-8)]
+ inm(fft_out_bits-1):(fft_out_bits-8)]

*inf (fft_out_bits-1):(fft_out_bits-8)];

reg [16: 0] nmagsqz;

reg [16: 0] magsqa3;

reg [18:0] magsqsum

reg [18:0] max_nagsqgsum

reg [18:0] fund_freq;

reg [18:0] dom freq;

reg f und_f ound;

reg [(fft_index_bits-1):0] max_i ndexsum
reg [(fft_index_bits-1):0] fund_index;

al ways @ (posedge cl k) begin
tc_done <= index == (fft_length/2);

magsq2 <= (index > 2) ? magsq : O;
magsq3 <= (index > 2) ? magsq2 : O;
magsqsum <= (i ndex > 2) ? (nmagsq/2)+magsq2+(magsq3/2) : O;

/! Reset index and magnitude if starting a new unl oad
/1 Otherw se, conpare old val ues
/1 Only the first half of the DFT is useful
if (index <= (fft_length/2)) begin
max_nmagsqsum <= fft_unload ? 0 : (nagsqsum >
mex_nagsqsum ? nagsqsum @ mex_nagsqsum

max_i ndexsum <= fft_unl oad ?
0 : (nmagsgsum > nmax_magsqsum) ?
i ndex : max_i ndexsum

fund_i ndex <= fft_unload ?
0 : ((max_nmgsgsum > mag_t hreshol d_f und)
& ~fund_found) ?
i ndex-1 : fund_index;

fund_found <= fft_unload ?
0 : (max_nmagsqsum > mag_t hreshol d_f und) ;
end

fund_freq <= fft_unload ?

0 : fund_found ? (fund_index * 48000 / fft_length) : O;
dom freq <= (max_magsqsum > mag_t hreshol d) ?

(max_i ndexsum * 48000 / fft_length) : O;

end
assign char_freq = fund_select ? domfreq : fund_freq;
assign hex_tc = {max_i ndexsum max_magsqsum 17' b0, char _freq};
endnodul e

ToneLUT

nodul e tonel ut (cl k, char_freq,tc_done, not e, oct ave,

i nput cl k;

i nput [14:0] char_freq;
i nput tc_done;

output reg [3:0] note;
output reg [3:0] octave;
output [63:0] hex_|ut;

reg [6:0]
reg [6:0]

addr ;

addr _pi pe;

reg [6:0] addr_pipe2;

reg [6:0] best_freq_addr;
wire [14:0] romfreq;

reg [14:0] best _freq;
wire [7:0] note_octave;
reg update_n_o;

wire [14:0]
wire [14:0]
wire [14:0]
wire [14:0]

diff_r_c
diff_b_c
abs_diff_r_c
abs_diff_b_c

romfreq - char

=

prefreqgrom prefreqroml(addr, clk,

assign rom freq[14] 1' bO;

not eoct ave not eoct avel(best_freq_addr,

al ways @ (posedge cl k) begin

/!l Increment addr if
if (addr <= 108) addr <=
/1l Otherw se,
el se addr <=

addr ;
addr _pi pe;

addr _pi pe <=
addr _pi pe2 <=

best _freq <=

romfreq : best_freq;

hol d addr until
tc_done ? O :

O'Brien, McCaughan, - 36 -

hex_lut);

_freq;
best _freq - char_freq;
diff_r_c[214] ? ~diff_r_c[13:0] + 1 :
diff_b c[14] ? ~diff_b_c[13:0] + 1 :

diff_r_c;
diff_b c;

romfreq[13:0]);

cl k, note_octave);

| ess than # of predefined frequences

addr + 1;
tc_done resets it to zero
addr ;

(abs_diff r ¢ < abs_diff _b c) ?

best _freq_addr <= (abs_diff_r_c < abs_diff_b _c) ?

addr _pi pe2 :

/1 Update note and octave only once it

/1 1f char_freq is zero (just noise), spit out
if ((addr == 108) & (addr_pi pe
note <= (char_freq == 0) ? 4'hF :
octave <= (char_freq == 0) ? 4'hF :
end
end

assi gn hex_| ut

endnodul e

best _freq_addr;

reaches the end of the Iist
invalid note/octave (OxF)
107)) begin

note_octave[7: 4] ;
note_oct ave[3: 0] ;

= {octave, 12' b0, not e, 17' b0, char _freq};

O'Brien, McCaughan, - 37 -

Score Converter

nodul e scoreconv(cl k, khz_enabl e, not e, oct ave, one_32nd,
startbeat, score_octave, score_not e, score_duration, score_st art beat,
scor e_r eady, hex_sc);

i nput cl k;

i nput khz_enabl e;

i nput [3:0] note;

i nput [3:0] octave;

i nput one_32nd;

output reg [11:0] startbeat;
output reg [3:0] score_octave;
output reg [3:0] score_note;
output reg [3:0] score_duration;
output reg [11:0] score_startbeat;
out put reg score_ready;

out put [63:0] hex_sc;

reg [3:0] ol d_oct ave;
reg [3:0] ol d_not e;
reg [5:0] durati on_count;

reg [11: 0] beatcount =0;

reg new_32nd;
reg note_finish;

/1 Updated only on (new_32nd & khz_enabl e)
wire sane_pitch = (old_octave == octave) & (old_note == note);

reg ol d_note_finish;

reg [10: 0] note_count[11:0];
reg [10: 0] maj _max;

reg [3:0] nmmj_note;

reg [3:0] n;

reg [10: 0] silence;

al ways @ (posedge cl k) begin

/1 Latch one_32nd until khz_enabl e cones

new 32nd <= khz_enable ? 0 : one_32nd ? 1 : new_32nd;
beat count <= one_32nd ? beatcount + 1 : beatcount;

if (~note_finish) begin
i f (khz_enable) begin
if (note < 12) note_count[note] <= note_count[note] + 1;
el se silence <= silence + 1;

/1 New- 32nd bl ock

if (new_32nd) begin
ol d_octave <= octave;
ol d_note <= note;

/'l Pitch_ready? bl ock
if (sanme_pitch & (duration_count < 48))

/!l Pitch that's been tallied

O'Brien, McCaughan, - 38 -

duration_count <= duration_count + 1;
is ready to be fired
el se begin
score_octave <= ol d_oct ave;
score_startbeat <= startbeat;

i f (duration_count >= 48) score_durati on <= 11; /1 Dotted 1
else if (duration_count >= 32) score_duration <= 5; /11
else if (duration_count >= 24) score_durati on <= 10; /! Dotted 1/2
else if (duration_count >= 16) score_duration <= 4; /1 1/2
else if (duration_count >= 12) score_duration <= 9; /! Dotted 1/4
else if (duration_count >= 8) score_duration <= 3; /1 1/4
else if (duration_count >= 6) score_duration <= §; /! Dotted 1/8
else if (duration_count >= 4) score_duration <= 2; /1 1/8
else if (duration_count >= 3) score_duration <= 7; /1 Dottedl/ 16
else if (duration_count >= 2) score_duration <= 1; /1 1/16
else if (duration_count == 1) score_duration <= 0; /1 1/ 32
el se score_duration <= 15; // invalid score_duration for debuggi ng
/1 Signal that there's a new note incomng with 1/32nd of time on it
/1 and that the previously tallied pitch is ready to be fired
duration_count <= 1;
note_finish <= 1;
startbeat <= beatcount;
maj _nmax <= 0;
maj _note <= O;
end
end
end /'l khz enabl e bl ock
end /'l note_finish block
el se begin /1 Majority Logic begin
if (n <= 11) begin
maj _max <= (note_count[n] > naj_nax) ?
not e_count[n] maj _mex;
maj _note <= (note_count[n] > maj_nmax) ?
n : mgj_note;
note_count[n] <= O;
n <=n+1; end
el se begin
score_note <= (mpj _max > silence*4) ?
maj _note : 4'hF;
note_finish <= 0;
n <= 0;
silence <= 0;
end
end
/1 Determ nes the clock cycle during which note_finish conpletes
ol d_note_finish <= note_finish;
score_ready <= ~note_finish & old_note_finish
& (score_note !'= 4'hF);
end
/1 For debuggi ng

reg [15:0] count_ready=0;

al ways @ (posedge cl k) count_ready <= score_ready ?

O'Brien, McCaughan, - 39 -

count _ready + 1 : count_ready;
reg [15:0] count_32nd=0
al ways @ (posedge cl k) count_32nd <= one_32nd ?
count _32nd + 1 : count_32nd

assi gn hex_sc = {count_32nd, count _ready, 12' b0, oct ave, 12' b0, not e};

endnodul e

Frame Buffer

/1 buffer_manager.v

/1 Provides a nmonochrome frame buffer for a 1024x768 pixel display
/1 John O Brien

/1 11/20/05

nmodul e buf fer_manager (hcount, vcount, hsync, vsync, bl ank
pvsync, phsync, pblank, pixel

/1 Debug 1/0

/*

//outreg,

frame_address,

i n_address, out_address,
frame_data in, frane_data out,
frame_we,

*/

slice_x, slice_y, slice_pixels, busy,
cl ear _screen,
reset, clock 65nhz

)
[IXVGA |/ 0O
i nput [10:0] hcount; //current pixel x from xvga
i nput [9:0] vcount; //current pixel y from xvga
i nput hsync, vsync; /1 sync pul ses
i nput bl ank; /1 bl anki ng pul se from XVGA
out put pvsync, phsync; /1 Sync signal outputs
out put pbl ank; /1 Bl anki ng out put for XVGA
out put [2:0] pixel; /1 Pixel output to XVGA
/1 ARTI ST MODULE MNOR |/ O
i nput [10:0] slice_x; //current slice X coord
i nput [9:0] slice._y; /lcurrent slice Y cocord
i nput [31:0] slice_pixels; //values of current slice
out put busy; //Busy signal to artist nodule

/| GRAPH CS CONTROLLER 1/ 0O

i nput cl ear_screen, reset; /1 Clear_screen has the sane effect as
//reset, but only applies to
/1 buf fer _manager. Used by graphics
//controller to clear the screen when the
//current one is ful

/1 GLOBAL 1/0O

i nput cl ock_65mhz;

//DEBUG I/ O (Used for

/*

//output [31:0]outreg;

out put [14:0] frane_address,
out put [35:0] frane_data_in,
out put frame_we;

*/

/I W RES

wire frame_we;

wire [14:0] franme_address;
wire [35:0] frame_data_out;
wire [14:0] in_address;

wire [14:0] out_address;
wire [14:0] current_address;
wire [35:0] frame_data_in;
Wi re busy;

W re address_invalid;

wire [2:0] pixel

/I REA STERS

reg [14: 0] reset_count;

reg [31:0] outreg;

reg resetting=0;

/1 Frame Buffer BRAM (tenp unti
frame_buffer franme_buffer(
frame_address,
cl ock_65mhz,
frame_data_in,
frame_data_out,
frame_we);

out address,
frame_data_out;

O'Brien, McCaughan, - 40 -

pul I'ing val ues out to simulate)

i n_address;

//Wite enable for frame buffer

/ | BRAM

// Addr ess for BRAM

// Data out for BRAM Note 36 pixels
/1 even though only 32 are used.
//This is to nake adding a ZBT

/ | easi er

// Address for witing to buffer

/1 Address for reading from buffer
//Where current outreg data comnes
[1from

//Data fromartist nodul e m nor

/1 Busy signal — other nodul es pause
/1 Goes high if the input coords are
/loutside the visible area

/1 This is needed as nmenory usage

[l assunmes addresses in 1024x768
//region

/1 Pixel output to XVGA

// Resetting the screen takes

/'l several clock cycles. Reset_count
/l keeps track of how far along it
/1is.

//Buffer for next 32 pixel values
// Reset takes nore than one clock
//cycle, so use resetting to

// keep track of

//whether a reset is taking place

ZBT arrives)

O'Brien, McCaughan, - 41 -

/1 SYNCHRONOUS LCOd C
al ways @ (posedge cl ock_65mhz)

begi n

/| RESET CODE

if (reset|clear_screen) begin /] See cl ear screen note above
resetting <= 1; /1 Enter resetting node
reset _count <= 0; //Start counting how

// many cycl es have been
/lresetting for
end
el se begin
if (resetting) begin
reset _count <= reset_count + 1; //Wrk way through BRAM
if (reset_count > 24574) resetting <= 0; //Finished reset
end

//1f are in the read portion the cycle put the nenory output into
//the 32 bit buffer register.
else if ((hcount¥82) == 31) outreg <= frame_data_out[31:0];
end
end

/1 COVBI NATI ONAL OUTPUTS

assign frame_address = busy ? out_address : in_address;
/1 Busy muxes between the reading
//and witing address

assign frame_we = (~busy & ~address_invalid);
// Do not wite when busy or when
//input coords are outside the
//valid screen area

assi gn pvsync = vsync; /1 No need to change sync/ bl anki ng
assi gn phsync = hsync;
assi gn pbl ank = bl ank;

/11f resetting put Os into nmenory, otherw se use data input
assign frame_data_in = (reset | resetting) ? O
slice_pixels;

/11f resetting incremenment address each clock cycle, otherwise wite

//address = f(slice_y and slice_x)

assign in_address = (reset | resetting) ? reset_count
{slice_y[9:0], slice_x[9:5]};

//Current address deals with reading from buffer
assign current_address = {vcount[9:0], hcount[9:5]};

/1 1f vcount/hcount is nowin the region off the bottomof the screen
/1 prepare to draw first el ement when they cone round
assign out _address = (current _address > 24574) ? 0

/11f hcount is in the blanking region off the right

//of the screen, prepare to draw the first elenment of the next row
:(hcount[10:5] > 30) ?
{(vcount[9:0] + 1), 5' b00000}

O'Brien, McCaughan, - 42 -

/[11f neither of these conditions is true |ook at the next elenment al ong
:(current _address + 1);

/1 Address invalid signal stops invalid co-ordinates from contamn nating
//the menory. Modul es al so use slice_y = 768 when they are 'resting'
//and do not want to wite to the nenory
assign address_invalid = (reset|clear_screen|resetting) ? 0
((slice_x > 1023)
| (slice_y > 767));

/1 Busy signal tells higher nodules that inputs will be ignored as the

[lframe buffer reads out the next 32 bits

assign busy = (reset|clear_screen|resetting) ? 0
((hcount 982) > 28);

assign pixel = (reset|clear_screen|resetting) ? 0
~(outreg[(31-hcount¥82)]* 7);

endnodul e

Artist Module Minor

nmodul e artist_nodule _mnor (artist_start, artist_done_p5
start_row, n_pitch, n_octave, n_sprite,
n_sharp, n_dot,
clef,
slice_y p5, slice_pixels_p5, busy,

/*

DEBUG |/ O

sprite_address, sprite_data,
//slice_pitch_pixel, sprite_y offset,
sprite_count,

initial_sprite_address,

current _sprite_address,

*/

m nor_state,

cl ock_65mhz, reset);

[ARTI ST MAJOR FSM I/ O

i nput artist_start; //Start drawi ng signa
i nput [9:0] start_row, /ly-coord start of slice
i nput [2:0] n_octave; //octave of slice
i nput [3:0] n_pitch; /Il pitch of sice
i nput [5:0] n_sprite; //sprite nunber to be used
i nput n_sharp; /11 if note is a sharp
i nput n_dot; /11 if note is dotted
out put artist_done_p5; /1 Fi ni shed, new slice please!
//USER |/ O
i nput [1:0] clef; /10 bass
/11 alto

/12 treble

O'Brien, McCaughan, - 43 -

/13 tenor
/| FRAME BUFFER |/ O
i nput busy; //Tells artist nodule to pause
output[9: 0] slice_y_p5; /ly-coord of row being outputted
out put [31:0] slice_pixels_pb5; /] pi xel val ues for row

/1 GLOBAL 1/0
i nput cl ock_65mhz, reset;

/I DEBUG I/ O

/*

out put [12:0] sprite_address;

out put [31:0] sprite_data;

//output [6:0] sprite_y_ offset;
//output [8:0] slice_pitch_pixel
output [7:0] sprite_count;

output [12:0] initial_sprite_address;
output [12:0] current_sprite_address;
*/

output [2:0] mnor_state;

/1 PI PELI NE REG STERS
/1 Pipeline paths are shown in | abbook
/1 _p neans “pipelined” nunber refers to which |layer of regs

/1 Piepline stage 5

reg [9:0] slice_y_p5;

reg [31:0] slice_pixels_p5
reg [12: 0] sprite_address_pb5;
reg busy_pb5;

reg [7:0] sprite_count_p5;
reg [31:0] sprite_data_p5;
reg [8:0] slice_pitch_pixel _p5
reg state_done_pb5;

reg artist_done_p5;

reg [5:0] n_sprite_p5;

reg artist_start_pb5;

/1 Pipeline stage 3 (see | ab book)

reg [12:0] initial _sprite_address_p3;
reg [12: 0] current_sprite_address_p3;
reg [5:0] n_sprite_p3;

reg busy_ps3;

reg [7:0] sprite_count_p3;

reg [31:0] sprite_data_p3;

reg [9:0] slice_y p3;

reg [9:0] start_row p3;

reg [8:0] slice_pitch_pixel_p3

reg artist_start_ps3;

reg n_sharp_ps3;

reg n_dot_p3;

/1 WRES
wire [31:0] sprite_data; // Data output fromsprite ROM
wire [12:0] sprite_address; /1 Address for sprite nenory

wire [12:0] current_sprite_address;

O'Brien, McCaughan, - 44 -

wire [8:0] slice_pitch_pixel;
wire artist_done;

W re state_done;

wire [9:0] slice_y;

wire [31:0] slice_pixels;
wire [4:0] slice_bottom

// SPRI TE MEMORY

/1 USI NG SPRI TE_MEMORY. CCE)

sprite_menory sprite_nmenory (
sprite_address_p5,
cl ock_65mhz,
sprite_data);

/ | PARAMETERI SE STATES
/I N.B ONLY TWD USED!

paranmeter mnor_wait = O;
paranmeter mnor_sprite = 1;
paranmeter mnor_slice = 2;
par ameter m nor_bar = 3;
par anet er m nor_bl ank = 4;

/I REGS FOR M NOR FSM

reg [2: 0] mnor_state = 0;

reg [7:0] sprite_count = O;

reg [12:0] initial_sprite_address;
reg [31: 0] sharp_pixels;

reg [31:0] dot_pixels;

reg [31:0] sprite_pixels;

/| PARAMETERI SE CLEFS (m ght want to change order |ater)
par amet er bass 0;
paraneter alto 1;
paraneter treble =2;
parameter tenor = 3;

//Slice bottomis what the 7*octave + n_pitch value is for the bottom
/lof the slice.

assign slice_bottom = (cl ef == bass) ? 12
“(clef == alto) ? 18
:(clef == treble) ? 24

16; //Last one is tenor

/1 SYNCHRONOUS LCd C
al ways @ (posedge cl ock_65mhz)
begi n
/| Reset Code
if (reset) begin
m nor_state <= 0;
sprite_count <= 0;
end

/! Mnor FSM state transition diagraminpl enmentation
el se begin
case (mnor_state)

O'Brien, McCaughan, - 45 -

m nor_wait: if (artist_start_p5) mnor_state
<=m nor_sprite;
el se mnor_state <= minor_wait;

defaul t: m nor_state <= (state_done_pb) ?
(mnor_wait) : (mnor_state);
//Al'l other states return to wait once
/lartist done is high

endcase

// Sequencer for Sprite Drawi ng Mdul e

if (mnor_state == minor_wait) sprite_count <= O;
if (mnor_state == mnor_sprite) begin
i f (~busy_pb5)
sprite_count <= sprite_count_p5 + 1
if (sprite_count_p5 == 2) initial_sprite_address <=

n_sprite_p5*80 + sprite_data_p5[7:0] -
slice_pitch_pixel _p5
end

/1 Pipeline stage 3 (see | ab book)

/1 This mess just transfers signals up the pipeline chain

{initial _sprite_address_p3, current_sprite_address_p3,
n_sprite_p3, busy p3, sprite_count_p3, sprite_data p3, slice_y p3,
start_row _p3, slice_pitch_pixel _p3, artist_start_p3, n_sharp_p3,
n_dot _p3}

<= {initial_sprite_address, current_sprite_address, n_sprite,
busy, sprite_count, sprite_data, slice_y, start_row, slice_pitch_pixel
artist_start, n_sharp, n_dot};

/1 Pipeline stage 5 (see | ab book)

{slice_y_p5, slice_pixels_p5, sprite_address_p5, busy_p5
sprite_count _p5, sprite_data_p5, slice_pitch_pixel _p5, state_done_p5,
artist_done_p5, n_sprite_p5, artist_start_p5}

<= {slice_y p3, slice_pixels, sprite_address, busy,
sprite_count _p3, sprite_data_p3, slice_pitch_pixel_p3, state_done,
artist_done, n_sprite_p3, artist_start_p3};

end
end

/ / COVBI NATI ONAL QUTPUTS
//Slice pitch pixel is the pixel row that the sprite should be centered
//on 140 is the nunber of pixels high a slice is, slice_bottomis a
[/ function of clef
assign slice_pitch_pixel
= 140 - (n_octave*35 + 5*n_pitch - 5*slice_bottom;
/I Orginally above line was |ike this but had hi gher conbi nationa
/] del ay!
/1140 - (n_octave_pl*7 + n_pitch_pl - slice_bottompl) * 5

assign current_sprite_address
= (initial _sprite_address + sprite_count - 3);

assign sprite_address
= (sprite_count_p3 < 2) ? (n_sprite_p3 * 80)
(sprite_count_p3 < 4) ? (initial_sprite_address_p3)

O'Brien, McCaughan, - 46 -

(busy_p3) ? (current_sprite_address_p3 - 1):
(current _sprite_address_p3);

/! Purpose of '768" is to tell frame buffer that output is now invalid
//so don't alter the nenory
assign slice_y

= ((mnor_state == 1)&(sprite_count > 3) & ~busy))

? start_row + sprite_count - 4 : 768

[/ Conmbi national logic to support sharps, dots
always @(current_sprite_address_p3, n_sprite_p3, sprite_data_p3,
sprite_count_p3,slice_y p3, start_row p3, slice_pitch_pixel _p3
n_shar p)
begi n
/1 Sharp pixels. Puts a picture of a sharp sign onto sharp_pixels
case ((slice_y p3 - start_row p3) - (slice_pitch_pixel _p3 + 5))

1 sharp_pi xel s = 32' b0O000000000000000000010000001000;
2: sharp_pi xel s = 32' b0O000000000000000000010000001000;
3: sharp_pi xel s = 32' b0OO0000000000000000111111221111111
4: sharp_pi xel s = 32' b0O000000000000000000010000001000;
5: sharp_pi xel s = 32' b0O000000000000000000010000001000;
6: sharp_pi xel s = 32' b00O000000000000000000010000001000;
7: sharp_pi xel s = 32' b0O0000000000000000111111221111111
8: sharp_pi xel s = 32' b0OO000000000000000000010000001000;
9: sharp_pi xel s = 32' b00O000000000000000000010000001000;
defaul t: sharp_pi xels =

32' b0O000000000000000000000000000000;

endcase

//Puts a dot onto dot_pixels
case ((slice_y p3 - start_row p3) - (slice_pitch_pixel _p3 + 2))

1: dot _pi xel s = 32' h0OOO00O00000000000000000000111000;

2: dot _pi xel s = 32' b0OOOO00O00000000000000000001111100;

3: dot _pi xel s = 32' h0OOOO0O0O00000000000000000000111000;

def aul t : dot _pi xel s = 32' h0OOOO0O0O00000000000000000000000000;
endcase

/] Stave |ines
i f (((sprite_count_p3 - 5) == 60)|
((sprite_count_p3 - 5) == 70)|
((sprite_count_p3 - 5) == 80)|
((sprite_count_p3 - 5) == 90)|
((sprite_count_p3 - 5) == 100)) sprite_pixels = 32" hffffffff;

/11f sprite address is in a region where it is |ooking at the right
sprite it uses the sprite data, otherw se bl anks
el se sprite_pixels
= (((current_sprite_address_p3 - 1)> (n_sprite_p3 *80))
&&((current_sprite_address p3) < (n_sprite_p3*80 + 80))) ?
sprite_data_p3 :
0;

end

assign slice_pixels

O'Brien, McCaughan, - 47 -

= (n_sharp_p3 && n_dot_p3) ?
(sharp_pixels | sprite_pixels | dot_pixels)
:(n_sharp_p3) ? (sharp_pixels | sprite_pixels)
:(n_dot_p3) ? (dot_pixels | sprite_pixels)
:sprite_pixels;

assign state_done = (sprite_count_p3 == 142) ? 1 : O;
assign artist_done = (sprite_count_p3 == 143) ? 1 : O;

endnodul e

Artist Module Major

/1 Artist Modul e Maj or FSM

/] Takes an input of three slices in parallel fromgraphics controller
//and passes themin series to the mnor FSM M nor and major FSM
//coordinate with artist_start and artist_done. The maj or FSM

//also computes val ues for the postioning of each slice on the screen
/1(it only receives that a particular slice represents the nth note).
/1 This requires use of a divider. The divider nodul e takes roughly
/112 clock cycles to conpute valid values of alice_x and start_row.

nmodul e artist_nodul e_maj or (nO_octave, nO_pitch, nO_sprite,
nO_countslice, nO_sharp, n0_dot,
nl_octave, nl_pitch, nl_sprite,
nl _countslice, nl_sharp, nl_dot,
n2_octave, n2_pitch, n2_sprite,
n2_countslice, n2_sharp, n2_dot,
graphi cs_r eady,
di spl ay_r eady,
slice_x_p5, start_row pO,
n_pitch_p0O, n_octave p0O, n_sprite_pO,
n_shar p_p0O, n_dot_pO,
artist_start_pO, artist_done,

/*

/ | Debug

//remdl, rend2, dividend, divisorl,
di vi sor2, quotl, quot?2,

start _divide,

/I'n_countslice, old n_countslice,
/1 divide_readyl, divide_ready2,
di vi de_ready_count,

*/

maj or _st at e,

maj or _t oggl e,

cl ock_65mhz, reset);

[/ GRAPHI CS CONTRCLLER 1/ 0O

/1 nO-> n2 are the next three slices to be drawn

i nput [2:0] nO_octave, nl_octave, n2_octave; // octave nunber

i nput [3:0] nO_pitch, nl pitch, n2_pitch; /I natural pitch
/1 (does not

O'Brien, McCaughan, - 48 -

//include sharps

/lor flats)
input [5:0] nO_sprite, nl_sprite, n2_sprite; [/ sprite nunber
i nput nO_sharp, nl_sharp, n2_sharp; /11 if sharp
i nput nO_dot, nl dot, n2_dot; /11 if dotted

i nput [11: 0] nO_countslice, nl_countslice, n2_countslice;
/I note nunber of new slices

i nput graphi cs_ready; /1 Graphics controller's
//command to start draw ng
/1 (A single clock cycle
/] pul se)

out put di spl ay_r eady; //Lets graphics controller
/' know when it can change nO-
/In2 and send a new
/1 graphi cs_ready
/1 Hi gh on ready
/1 G obal 10
i nput cl ock_65mhz, reset;

/1 Artist_nodul e_major to frame_buffer 1/0
out put [10:0] slice_x_p5; //Slice starting x coordinate (NB
[/ al ways divisible by 32)

//Artist_nodule_major - > Artist_nodule_nminor 1/0
i nput artist_done; /1 Pul ses high when mnor FSMis
/1 done drawi ng

out put artist_start_pO; /1 Pul ses high for mnor FSMto
//start draw ng

output [9:0] start_row pO; //Starting y coordinate for slice

out put [2:0] n_octave_pO; /In_ prefix indicates slice being

//drawn right now
output [3:0] n_pitch_pO;
output [5:0] n_sprite_pO;
out put n_shar p_pO;
out put n_dot _pO;

//DEBUG | O (Left in so that it can be easily unremed to show operation
of nodul e)

//output [11:0] rendl, rend2, dividend, divisorl, divisor2, quotl,
quot 2;

[/ out put start_divide;

//output [11:0] n_countslice, old_n_countslice;

//input start_divide;

/] out put divide_readyl, divide_ready?;

//output [1:0] divide_ready_count;

output [1:0] mmjor_state;

out put maj or _t oggl e;

/1 PI PELI NE REG STERS
reg artist_start_pO;
reg [9:0] start_row pO;
reg [2: 0] n_octave_pO;
reg [3:0] n_pitch_pO;

O'Brien, McCaughan, - 49 -

reg [5:0] n_sprite_pO;
reg n_sharp_pO;

reg n_dot_pO;

reg [10: 0] slice_x_p3;
reg [10: 0] slice_x_p5;

/1 DECLARE REG STERS FOR MAJOR FSM

reg [1: 0] major_state = O; /] State variable for major FSM

reg [1: 0] ol d_mmjor_state=3; // Needed for outputs on state
//transitions (start_divide)

//reg [1:0] divide_ready_count = 0; //Needed because nodule is waiting

//on two dividers to give valid outputs

//therefore need to count ready pul ses

reg major_toggle = 0;
reg [9:0] cludge_count

0; !/ Knocks FSM out of stuck states
reg ol d_dividers_ready 1

/1 DECLARE QUTPUTS FOR MAJOR FSM
/1 (Assigned conbi nationally)

wire [9:0] start_row, //Starting y coordinate for slice n
wire [10:0] slice_x; //Starting x coordinate for slice n
wire artist_start; //Signal to minor FSMthat all

//inputs are valid, begin draw ng
wi re display_ready; /1 Signal to graphics controller

//that major FSM can cope with a
/I new set of ns

wi re divide_readyl, divide_ready?2; //Ready signals fromdividers for
/lslice x, start_row

wi re dividers_ready;

assign dividers_ready = ((divide_readyl) && (divide_ready?2));

/1 Declare outputs for major FSM -> divider inputs

wire [11:0] dividend,; //Dividend is the same for both
(n_countslice)

wire [11:0] divisorl, divisor2; //Divisors for dl and d2

wire [11: 0] remdl, rend2; /1 The remai nder outputs. The

//dividers conpute the quotients as
//wellbut only the remainders are
/I needed

/In"s paraneters need to be regs because they are assigned within an
al ways bl ock, but do not end up | atched

reg [2: 0] n_octave;

reg [3:0] n_pitch;

reg [5:0] n_sprite;

reg [11: 0] n_countslice=0;

reg n_sharp;

reg n_dot;

/1 Di splay parameters. Paraneterised to nake changes easier and code
/I more readabl e.

// These paraneters are needed for the computation of slice_x and
/lslice_y

paranmeter slices_per_row = 30;

O'Brien, McCaughan, - 50 -

par aneter pixels_per_slice = 32;
paranmeter slices_per_screen = 120;
par anet er pixels_per_row = 160
paranmeter y_margin 64;

par amet er x_margin 32;

/| Parameteri se states
/] States for major FSM
paranmeter major_wait = O;

par amet er maj or_draw n2 = 1;
par amet er maj or _draw nl = 2;
par amet er maj or _draw n0 = 3;

//Originally had start_divide triggered off changes in n_countslice but
//that gave problens when the state changed

//but n_countslice didn't (although that shoul d never happen...) - need
//the artist_start signal which needs the

//start _divide signal

assign start_divide = ((old_major_state != najor_state)& mpjor_state I=
maj or_wait));

/1 SYNCHRONOUS LCd C
al ways @ (posedge cl ock_65mhz)
begi n
/| Reset code
if (reset) begin
maj or _state <= O;
ol d_maj or _state <=0;
/1 divide_ready_count <=0;
old _dividers_ready <=1
end

// Maj or FSM state transi stion diagram
el se begin

/1 Control |oops around states- see | ab book page 37
case (mmjor_state)

maj or _wait: maj or _state <= (graphlcs ready) ?
maj or _draw_n2 : maj or _wait;
maj or _draw_n2: maj or _state <=
(artist done|(c|udge count == 500))~?
maj or _draw _nl : maj or _draw_n2;
maj or _draw _nl: maj or _state <=
(artist done|(c|udge count == 500))~?
maj or _draw_nO : maj or _draw _n1l;
maj or _draw_nO: maj or _state <=
(artist_done| (cludge_count == 500))7?
maj or_wait maj or _draw_noO;
endcase

/1 Qther FSMregs

/] Start_divide triggers on state transitions, so need //level to
pul se on state changes

ol d_major_state <= major_state;

ol d_di vi ders_ready <= dividers_ready;

end

O'Brien, McCaughan, - 51 -

/1 Cludge count is a nonstrosity created to overcone an apparently
//random bug that soentines traps

//major FSMin a drawing state. If no artist_done cycl e has been
//received after 800 clock cycles

//(nmore than enough time for mnor to do its stuff) it skips to
//the next state regardl ess

if (start_divide) cludge_count <=1

el se cl udge_count <= (cludge_count == 0) ? 0
:(cludge_count == 500) *? 0 :
(cludge_count + 1);

// Major toggle is a useful debug output that toggles an |ed

/I whenever major FSM cycl es

maj or _toggle <= (artist_done & (major_state == major_draw n0)) ?
~maj or _toggle : major_toggle;

/1 Divide_ready_count keeps track of how many divi ders have
//finished conputing

/*
/1 Artist_start triggers when divide_ready_count ==
di vi de_ready_count <= (divide_ready_count == 2) ?
0

:(divide_readyl && divide_ready?)
? 2

:(divide_readyl | divide_ready?2)
? di vi de_ready_count +1

:di vi de_ready_count;
*/

/1 PI PELI NI NG

artist_start_pO <= artist_start;
start_row p0O <= start_row,
n_octave_p0 <= n_oct ave;
n_pitch_p0 <= n_pitch
n_sprite_p0 <= n_sprite;
n_sharp_pO <= n_sharp

n_dot _pO <= n_dot;

slice_x_p3 <= slice_x;

slice_x _p5 <= slice_x_p3;

end

/1 MAJOR FSM QUTPUTS
/! Display ready is high when magjor FSMis in the wait state
assign di splay_ready =

((major_state == major_wait)& ol d_major_state
= major_state)); //Only accept inputs in wait state

/1 Al ways bl ock makes assigning nultiple n variabl es easier
always @(nmmjor_state, nl_pitch, nl_octave, nl_sprite,

nl_countslice,n2_pitch, n2_octave, n2_sprite,
n2_countslice, 0_pitch, nO_octave, nO_sprite,
nO_countslice, n2_sharp, n2_dot, nl_sharp

O'Brien, McCaughan, - 52 -

nl_dot, nO_sharp, nO_dot)
begi n
case (mmjor_state)
/1 This case statement muxes nO -> n2 into n
maj or _wait: begin
//Originally all values here were x, but this caused probl ens
//with simulation
n_pitch = 4'bo0;
n_octave 3' bO;
n_sprite 6' bO;
n_countslice = 12' bO;
n_sharp = O;
n_dot = 0O;
end

maj or _draw _n2: begi n
n_pitch = n2_pitch
n_octave = n2_octave;
n_sprite = n2_sprite;
n_countslice = n2_countslice;
n_sharp = n2_sharp;
n_dot = n2 dot;

end

maj or _draw _nl: begi n
n_pitch = nl_pitch
n_octave = nl_octave;
n_sprite = nl_sprite;

n_countslice = nl _countslice;
n_sharp = nl_sharp;

n_dot = nl dot;

end

maj or _draw_nO: begi n
n_pitch = n0_pitch
n_octave = n0O_octave;
n_sprite = nO_sprite;
n_countslice = n0_countslice;
n_sharp = n0_sharp;
n_dot = nO_dot;

end
//No need for default - all possible states are
[/ used
endcase
end
/1 Di vi ders

/1 Set up divisors and dividend
assign divi dend n_countslice;
assign divisorl slices_per_row,
assign divisor2 slices_per_screen

/I Artist_start waits for both dividers to finish (i.e. start_row and
/1x_slice valid)

//assign artist_start = (divide_ready_count == 2);

assign artist_start = ((dividers_ready)&&(!ol d_dividers_ready));

O'Brien, McCaughan, - 53 -

/] Conmput ation of starting x coordinate for slice
assign slice_x = renmdl * pixels_per_slice + x_nargin;

/] Comput ation of starting y coordinate for slice. Orginally this would
/ /' have required anot her nodul o division
//but found a way around it using nuxes.

assign start_row = (remd2 < slices_per_row
? y_margin :
(remd2 > (slices_per_screen - slices_per_row -1)) ?

pi xel s_per_row * 3 + y _nargin:

(remd2 > (slices_per_screen - 2*slices_per_row -1)) ?
pi xel s_per_row * 2 + y nargin:

(pixel s_per_row + y_nargin);

/1 SUB MODULES -> DI VI DERS

easy_divider di(//quot1l,
rendl,
di vi de_readyl,
di vi dend,
di vi sor 1,
start _divide,
reset,
cl ock_65mhz);

easy_di vider d2(//quot2,
rend2,
di vi de_r eady?2,
di vi dend,
di vi sor 2,
start _divide,
reset,
cl ock_65mhz) ;

endnodul e

Graphics Controller
/1 Use postscript _p for pipelined outputs

nmodul e graphics_controller_sinmple (p_octave, p_pitch, p_startbeat,
p_duration, prov_ready,
nO_octave_p, nO_pitch_p,
nO_sprite_p, nO_countslice_p,
nO_sharp_p, n0_dot _p,
nl_octave_p, nl_pitch_p,
nl_sprite_p, nl_countslice_p,
nl_sharp_p, nl_dot_p,
n2_octave_p, n2_pitch_p,
n2_sprite_p, n2_countslice_p,
n2_sharp_p, n2_dot _p,
clef, tinmesig,

graphi cs_ready_p, display_ready,
cl ear _screen,

O'Brien, McCaughan, - 54 -

/I pl ayback,
/1 Debug 1/ O begins
/*

controller_state
n2_sprite_old, nl_sprite_old,
*/

go_bar, bar2, barl,

// Debug 1/ 0O ends
reset, clock_65nmz);

/! Adami s Side (audio processing) I/0O

i nput
i nput

/*

*/

i nput

i nput

*/

i nput

[2: 0] p_octave; /1 Cctave of new note (0-6 inlcusive)
[3:0] p_pitch; /1 Pitch of new note (0-11 inclusive)

Tabl e of score_pitch val ues

C
Csharp == Dfl at
D
Dsharp == Efl at

| 10: G

| 1:

I

I
E I

I

I

I

Gsharp == Afl at |

1
1
0
1 harp == Bfl at
2

® > >

F
Fsharp == G| at

CoNoURWG

[11: 0] p_startbeat;
/1 Countslice 0 -> 4000 (overkill
//allows a 20m nute 200bpm pi ece
/! to be recorded (N B nost House
//music < 140 BPMso this is safe
//for instrunmental!)

[3:0] p_duration; /1 0-11 inclusive

Tabl e of score_duration val ues

| O: 1/ 32 | 6: 1/32 dotted

| 1: 1/ 16 | 7: 1/16 dotted

| 2: 1/8 |8: 1/8 dotted

| 3: 1/4 |9: 1/4 dotted

| 4: 1/2 | 10: 1/2 dotted

| 5: 1 | 11: 1 dotted

| | |

prov_ready; /1 Pul ses hi gh when new score e

//elenment is avail able

/! Major artist FSM1/0O

out put
out put

out put

[2:0] nO_octave_p, nl_octave_p, n2_octave_p;

[/ octave nunber
[3:0] nO_pitch_p, nl_pitch_p, n2_pitch_p;

/I natural pitch (does not include sharps or flats)
[5:0] nO_sprite_p, nl _sprite_p, n2_sprite_p;

[/ sprite nunber

O'Brien, McCaughan, - 55 -

out put nO_dot _p, nl_dot_p, n2_dot_p;
/10 for not dotted, 1 for dotted
out put nO_sharp_p, nl_sharp_p, n2_sharp_p;
/10 nat ur al
/11 = sharp
output [11:0] nO_countslice_p, nl _countslice_p, n2_countslice_p;
/I note nunber of new slices
out put graphi cs_ready_p;
/1 Graphics controller's command to start draw ng
/1 (A single clock cycle pul se)
i nput displ ay_ready;

//'User inputs

i nput [1:0] clef; /1 See menory offsets bel ow for neani ng of clef,
//timesig

i nput [2:0] tinesig;

/! Frame buffer 1/0
out put cl ear_screen;
W re clear_screen;

// dobal 1/0

i nput reset;

i nput cl ock_65mhz;

/*

/1 Debug I/0

output [2:0] controller_state;

output [5:0] nl_sprite_old, n2_sprite_old;
*/

out put go_bar, bar2, bari;

/1 FSM Qut put Decl arati on
reg [2: 0] nO_octave=0, nl_octave=0, n2_octave=0;
[/ octave nunber
reg [3:0] nO_pitch=0, nl _pitch=0, n2_pitch=0;
/I natural pitch (does not include sharps or flats)
reg [5:0] nO_sprite=0, nl_sprite=0, n2_sprite=0;
[/ sprite nunber
reg n0_dot=0, nl dot=0, n2_dot =0;
/10 for not dotted, 1 for dotted
reg n0_sharp = 0, nl_sharp=0, n2_shar p=0;
/10 = natural
/11 = sharp

wire [11:0] nl _countslice, n2_countslice; //note nunber of new slices
wire [11:0] nO_countsli ce;
Wi re graphi cs_ready;

reg p_ready;

/1 FSM Pi pel i ned Qutput Decl aration

reg [2: 0] nO_octave_p=0, nl_octave_p=0, n2_octave_p=0;
[/ octave nunber

reg [3:0] nO_pitch_p=0, nl_pitch_p=0, n2_pitch_p=0;
//natural pitch (does not include sharps or flats)

O'Brien, McCaughan, - 56 -

reg [5:0] nO_sprite_p=0, nl_sprite_p=0, n2_sprite_p=0;
[/ sprite nunber

reg nO0_dot _p=0, nl_dot_p=0, n2_dot_p=0;
/10 for not dotted, 1 for dotted

reg nO_sharp_p = 0, nl_sharp_p=0, n2_sharp_p=0; /10
nat ur al

/11 = sharp
reg [11: 0] nl_countslice_p, n2_countslice_p; /1 note nunber of new
slices

reg [11: 0] nO_countslice_p;
reg graphics_ready_p;

reg [2: 0] nl_octave_old = 0, n2_octave old = 0, nO_octave_ol d=0;
reg [3:0] nl_pitch_old = 0, n2_pitch_old = 0, nO_pitch_ol d=0;

reg [5:0] nl_sprite_old =0, n2_sprite_old = 0, nO_sprite_old =0;
reg nl dot_old = 0, n2_dot_old = 0, nO_dot_old = 0;

reg nl_sharp_old = 0, n2_sharp_old = 0, nO_sharp_old;

//Duration registers are for working out what goes barred. Set themto
/17 at first (inmpossible value)

//so that don't get bars appearing randomy on a reset

reg [2: 0] n2_nduration_ol d=7, nl _nduration_ol d=6, nO_nduration_ol d=5;
reg [2: 0] n2_nduration=7, nl_nduration=6, nO_nduration=5;

reg [11: 0] nO_countslice_old = 0, nl_countslice_old = 0,
n2_countslice old = 0; //note nunber of new slices

/] Parameterise states
paranmeter controller_wait = O;
paranmeter controller_setup =1
paranmeter controller_dsprite = 2;
paranmeter controller_dbarred = 3;
paranmeter controller_drest = 4;

/! Parameterise Sprite Menory Locations
/] See al so spreadsheet spritenenoryspread. x| s

paranmeter nenory_clefs = 0;
/* CLEFS OFFSETS

O f set Type

0 Bass

1 Al to

2 Trebl e
3 Tenor
*/

paraneter menory_tinmesig = 4;
/* TIME SI GNATURE OFFSETS

O f set Type
0 4 4
1 22
2 24
3 34
4 6 8
*

/
par anet er menory_rests = 8;

O'Brien, McCaughan, - 57 -

/* RESTS OFFSET

O fset Type

0 1/ 32

1 1/ 16

2 1/8

3 1/ 4

4 1/2

5 1

*/

paranmeter nmenory_notes_p = 15;
/* NOTES (p) OFFSET

As for rests

*/

par ameter nenory_notes_d = 21;

/* NOTES (d) OFFSET

As for rests

*/

par amet er nenory_bar_p = 27;
/* BARRED NOTES (p) OFFSET

O f set Type O f set Type

0 1/32 left 6 1/8 left
1 1/32 middle 7 1/8 mddle

2 1/32 right 8 1/8 right

3 1/16 left

4 1/16 middle

5 1/ 16 right

*

/
par ameter nenory_bar_d = 36;
/* BARRED NOTES (d) OFFSET

O f set Type O f set Type

0 1/32 left 6 1/8 left
1 1/32 middle 7 1/8 mddle

2 1/32 right 8 1/8 right

3 1/16 left

4 1/16 middle

5 1/ 16 right

*

/

par amet er nenory_bl ank = 45;

/1 Cont ai ns not hi ng

par amet er nenory_special = 46;

/1 Things that mght be useful for debugging

/10 something to show that a barred note should have been drawn here
/11 sprite assigned in non-drawi ng states. Hopefully will never see
t hi s!

/12 sprite assigned if rest is |longer than a whole note

/13 perfect pitch | ogo!

/] Parameterise clefs (mght want to change order |ater)
par anet er bass = O;
paraneter alto = 1;

paranmeter treble = 2;
parameter tenor = 3;

// Parameterise the octave and pitch for "static" objects (rests and
clefs)

wire [2:0] static_octave;

wire [2:0] static_pitch;

O'Brien, McCaughan, - 58 -

assign static_octave = (clef == tenor) ? 3
‘(clef == alto) 2 4
:(clef == bass) *? 3
i(clef ==treble)? 4
assign static_pitch = (clef == tenor) ? 2
:(clef == alto) ? 0
:(clef == bass) ? 1
:(clef ==treble)? 6
. 6;

/! Regi sters for graphics controller FSM
reg [2: 0] controller_state =0
reg [2: 0] old_controller_state= 0;
reg [6:0] slice_count=2; /1Slice count keeps track of
how many slices have been drawn to the screen

//this page. It is needed
because the nunber notes does not equal the

/I nunber of slices drawn
(rests, clefs)

/] CONTRCOL SI GNALS

//Work out p_npitch and p_nduration

reg [2: 0] p_npitch;

/[l p_npitch takes the sharp information out of p_pitch and assigns it to
a different variable (p_sharp)

//This is useful as it allows p_npitch to be used as an offset for

cal cul ating note positions on the stave

/1 (f# should be on the sane line as f)

al ways @ (p_pitch)
case (p_pitch)
: p_npitch
p_npitch
p_npitch
p_npitch
p_npitch
p_npitch
p_npitch
p_npitch
p_npitch
: p_npitch
10: p_npitch
11: p_npitch
default: p_npit
endcase

CoNoTRLNMRO

OO RLVOUNNREOO

O I I wommnnonn

h

0;

assign p_sharp = ((p_pitch == 1)|(p_pitch == 4)|(p_pitch ==
6)| (p_pitch == 9)| (p_pitch == 11)) ?
1: 0

//Do a simlar thing to duration: dot does not determ ne type of
sprite.
wire [2:0] p_nduration;

O'Brien, McCaughan, - 59 -

assign p_nduration = (p_duration > 5) ? (p_duration - 6) : p_duration
//Deal with dots fromthe graphics side by whacking in a dot in a
simlar way to the lines (except wll

/1 be based on y_offset.) Fromthe controller point of view does not
alter sprite selected but will send

//a one bit signal saying "draw a dot™"

wire p_dot;
assign p_dot = (p_duration >5);
w re rest=0; /| Tenpor ary

wire go_bar, bar2, bari;

assign go_bar = ((p_octave == n2_octave_ol d) &&(p_npitch ==
n2_pitch_ol d) &&(p_ndurati on == n2_ndurati on_ol d) &(p_nduration < 3));
assign bar2 = ((nl_octave_old ==

n2_octave_ol d)&(nl _pitch_old == n2_pitch_old) && (nl_nduration_old ==
n2_nduration_ol d) &(n2_nduration < 3));

assign barl = ((nl_octave_old ==
nO_octave_ol d) & (nl_pitch_old == n0_pitch_old) && (nl_nduration_old ==
nO_ndurati on_ol d) &(nl_nduration <3));

/| Code above nmkes separate beans for 1/32 and 1/16 for exanple. Code
bel ow puts themin the same beamwi th different flags

/*

assign go_bar = ((p_octave == n2_octave_ol d) &&(p_npitch ==
n2_pitch_ol d) &&(p_nduration < 3));

assign bar2 = ((nl_octave_old ==
n2_octave_ol d) & (nl pitch_old == n2_pitch_old) &&(n2_nduration < 3));
assign barl = ((nl_octave_old ==

nO_octave_ol d) & (nl _pitch_old == n0_pitch_old) &&(nl_nduration <3));
*/

W re new state
assign new state = (controller_state != old_controller_state);

/| STATE TRANSI STI ON' SEQUENCER
al ways @ (posedge cl ock_65mhz)
begi n
/1 Only accept the ready signal if the note passed is within the
drawabl e range of the clef
//Do this for treble clef only initially, then expand)
p_ready <= (((p_octave < 8)&&(p_pitch<2))|]|((p_octave>2)&&(p_pitch>1)))
? prov_ready : O;
/| Reset code
if (reset) begin
controller_state <= 0;
old controller_state <= 0;
slice_count <= 2;
end
el se begin
old controller_state <= controller_state;

/] State Transistion Di agram
case (controller_state)
controller_wait: Dbegin

O'Brien, McCaughan, - 60 -

if (!'p_ready) controller_state <=

controller wait;

el se begin
if (slice_count == 2)

control ler_state <= controller_setup;

else if (go_bar)

controller_state <= controller_dbarred,

el se controller _state

<= controller_dsprite;

begi n

end
end

control l er_setup: controller_state <= (display_ready) ?
controller_dsprite : controller_setup

control l er_dsprite: controller_state <= (display_ready) ?
controller_wait : controller_dsprite;

control | er _dbarred: control l er_state <= (display_ready) ?
controller_wait : controller_dbarred,

/*

controller_drest: controller_state <= (display_ready) ?
controller _wait: controller_drest;

*/

defaul t: controller_state <= controller_wait;

endcase

/| Sequencer (sort of)
if (slice_count > 119) slice_count <= (slice_count - 118);
el se if (display_ready)

case (controller_state)

control | er_setup: slice_count <= 3;

control l er_dsprite: slice_count <= slice _count +
controller_drest: slice_count <= slice _count + 2
control |l er_dbarred: slice_count <= slice _count +
defaul t: slice_count <= slice_count;
endcase

// Backup nl, n2 once they have been reassigned (di scard nO)

if (((display_ready)&controller_state == controller_dsprite))|
((di splay_ready)&(controller_state == controller_setup))|
((di splay_ready)&(controller_state == controller_dbarred)))

{n1_countslice_old, nl octave old, nl_pitch_old, nl sprite_old,

nl_dot _old, nl_sharp_old, nl_nduration_old}

<= {nl_countslice, nl octave, nl _pitch, nl _sprite, nl_dot,

nl_sharp, nl_nduration};

{n2_countslice_old, n2_octave old, n2_pitch_old, n2_sprite_old,

n2_dot ol d, n2_sharp_old, n2_nduration_old}

<= {n2_countslice, n2_octave, n2_pitch, n2_sprite, n2_dot,

n2_sharp, n2_nduration};

{n0_countslice_old, nO_octave old, nO_pitch_old, nO_sprite_old,

nO_dot ol d, nO_sharp_old, nO_nduration_ol d}

<= {n0_countslice, n0_octave, nO_pitch, nO_sprite, nO_dot,

nO_sharp, n0_nduration};

end

O'Brien, McCaughan, - 61 -

/1 Pi peline

{n0_octave_p, nO_pitch_p, nO_sprite_p, nO_countslice_p,
nO_sharp_p, n0_dot _p,

nl_octave_p, nl_pitch_p, nl_sprite_p, nl_countslice_p,
nl_sharp_p, nl_dot_p,

n2_octave_p, n2_pitch_p, n2_sprite_p, n2_countslice_p,
n2_sharp_p, n2_dot _p,

graphi cs_ready_p} <=

{n0_octave, nO_pitch, nO_sprite, nO_countslice, nO_sharp, n0_dot,

nl_octave, nl_pitch, nl_sprite, nl_countslice, nl_sharp, nl_dot,

n2_octave, n2_pitch, n2_sprite, n2_countslice, n2_sharp, n2_dot,

graphi cs_ready};

end
end

/1 FSM QUTPUTS

//nl and n2 always follow on from nO

assign n2_countslice =
assign nl_countslice
assign nO_countslice
n2_countslice - 2;

/1 Graphi cs ready
assign graphics_ready =

control l er_dsprite)|
control | er _dbarred)|
controller_drest)));

al ways @ (control |l er_state,
timesig,
clef,

nl_sprite_old, p_dot,
n2_dot ol d,

nl_sharp_old, p_startbeat,
n2_pitch_old,
n2_nduration_ol d,
) begin

/I n_sprite, n_dot,
case (controller_state)

control | er_setup: begi n

but set themall different

p_npitch, p_

nl_dot _old, p_sharp
n2_
n2_octave_ ol d,

slice_count;
(n2_countslice < 1) ? 119
(n2_countslice < 2) ? (119-

n2_countslice - 1,

n2_countslice)

((new state) &
((controller_state
(controller_state

control | er_setup)|

(controller_state

(controller_state

octave, p_nduration, n2_sprite_old,
n2_sharp_ol d,
countslice,

nl pitch_old, nl octave_old,

nl nduration_old, barl, bar2

n_sharp signals

n2_sprite = menory_tinmesig + tinesig;
nl sprite = nenory_clefs + clef;
nO_sprite = nmenory_special + 2;

/] Setup sprites do not have "duration"

(and with n2 having an

O'Brien, McCaughan, - 62 -

/1 "inmpossible"” value so that don't get
go_bar signal initially.

n2_nduration = 7;
nl nduration = 6;
n0_nduration = 5;
n2_sharp = 0;
nl_sharp = 0;
n0_sharp = 0;
n2_dot = O;
nl dot = O;
n0_dot = O;
end

control l er_dsprite: begi n

// New sprite. First decide whether it is
ador pnote (tail pointing up or down)
//This depends on its position on the
stave, which depends on its pitch, octave
/land the clef. Then decide on which
sprite to use. This is a function of its duration
n2_sprite =
(clef == tenor) ? //Tenor clef is
the irritating one,
[/ cannot be
assigned with nultiplication)
(((p_npitch + p_octave * 7)<28)
? (p_nduration + nenory_notes_d)

(p_nduration + nenory_notes_p))
(((p_npitch + p_octave *
7)<(24+clef*6))? (p_nduration + menory_notes_d)

(p_nduration + nenory_notes_p));
/1Shift previous sprites one space back

nl _sprite n2_sprite_old;
n0_sprite nl_sprite_old;

//Deal with dots and sharps
n2_dot p_dot ;

nl dot n2_dot ol d;

nO_dot nl dot ol d;

n2_sharp
nl_sharp
nO_sharp

p_shar p;
n2_sharp_ol d;
nl_sharp_ol d;

n2_nduration
nl nduration
nO_nduration
end

p_ndur ati on;
n2_ndurati on_ol d;
nl nduration_ol d;

control | er_drest: begi n

O'Brien, McCaughan, - 63 -

//lf there is a rest procedure is simlar
except are assigning two slices - the nost recent

//contains the new note and the one
behind it contains the rest

// Note sprite assigned as before
n2_sprite =
(clef == tenor) ? //Tenor clef is
the irritating one,
[/ cannot be
assigned with nmultiplication)
(((p_npitch + p_octave * 7)<28)
? (p_nduration + nenory_notes_d)

(p_nduration + nenory_notes_p))
(((p_npitch + p_octave *
7)<(24+clef*6))? (p_nduration + menory_notes_d)

(p_nduration + memory_notes_p));

/1 Assigning the rest sprite is simlar to
assigning a note sprite, the differences are
//that there is no d/p decision to nmake
and that the rest will always be assigned to
//the sane position on the stave. Wen
nore than 32 beats have passed then the rest cannot
/1 be represented with a single rest
sprite, so the device uses a special sprite
/1 (probably a break)
nl sprite = ((p_startbeat -
n2_countslice) < 33) ?
(menmory_rests +
(p_startbeat - n2_countslice))
: (menory_speci al
+ 2);
nO_sprite = n2_sprite_old;

//Deal with dots (no dotted/sharp rests!)
n2_dot p_dot ;

nl dot 0;

nO_dot n2_dot ol d;

n2_sharp
nl_sharp
nO_sharp

p_shar p;
0;
n2_sharp_ol d;

[/ TH S | S PROBABLY WRONG - REVI SE WHEN
YOU DO RESTS

n2_nduration

nl nduration

nO_nduration

end

p_ndur ati on;
n2_ndurati on_ol d;
nl nduration_ol d;

control | er _dbarred: begi n
//Deals with sprites for barred notes

//First off decide on p or d type

O'Brien, McCaughan, - 64 -

i f ((((clef==tenor)& p_npitch +
p_octave * 7)<28))
| ((clef!=tenor)& (p_npitch +
p_octave * 7)<(24+clef*6))))
begin //d type note
if (barl & bar?2) begin
//1ast three notes were all sanme duration etc.
/In2 will be a "right" type
n2_sprite = (3* p_nduration +
2 + nenory_bar_d) ;
//nl will be a "mddle" type
nl _sprite = (3*
n2_nduration_old + 1 + nenory_bar_d);
//n0 is also a "mddle"type
n0_sprite = (3*
nl nduration_old + 1 + nenory_bar_d);
end

else if (Ibarl & bar2) begin
//1last two notes were sane duration etc

/In2 will be a "right" type

n2_sprite = (3* p_nduration +
2 + nenory_bar_d) ;

//nl will be a "mddle" type

nl _sprite = (3*
n2_nduration_old + 1 + nenory_bar_d);

//n0O will be a "left" type

n0_sprite = (3*
nl nduration_old + nmenory_bar _d);

end

el se begin //last two notes
were not the same duration etc

/In2 will be a "right" type

n2_sprite = (3* p_nduration +
2 + nenory_bar_d) ;

//nl will be a "left" type

nl _sprite = (3*
n2_nduration_old + nmenory_bar _d);

//n0O will be old nl

nO_sprite = nl_sprite_old;

end

end
el se begin //p type note - code the sane
as for d expect use nenory_bar_p instead
if (barl & bar?2) begin /11 ast

three notes were all sanme duration etc.

/In2 will be a "right" type

n2_sprite = (3* p_nduration +
2 + nenory_bar_p) ;

//nl will be a "mddle" type

nl _sprite = (3*
n2_nduration_old + 1 + nenory_bar_p);

//n0 is also a "mddle"type

n0_sprite = (3*
nl nduration_old + 1 + nenory_bar_p);

end

O'Brien, McCaughan, - 65 -

else if (Ibarl & bar2) begin
//1last two notes were sane duration etc

/In2 will be a "right" type

n2_sprite = (3* p_nduration +
2 + nenory_bar_p) ;

//nl will be a "mddle" type

nl _sprite = (3*
n2_nduration_old + 1 + nenory_bar_p);

//n0O will be a "left" type

n0_sprite = (3*
nl nduration_old + nmenory_bar_p);

end

el se begin //last two notes
were not the same duration etc

/In2 will be a "right" type

n2_sprite = (3* p_nduration +
2 + nenory_bar_p) ;

//nl will be a "left" type

nl _sprite = (3*
n2_nduration_old + nmenory_bar_p);

//n0O will be old nl

nO_sprite = nl_sprite_old;

end

end

//Deal with dots, sharps and durations
n2_dot p_dot ;

nl dot n2_dot ol d;

nO_dot nl dot ol d;

n2_sharp
nl_sharp
nO_sharp

p_shar p;
n2_sharp_ol d;
nl_sharp_ol d;

n2_nduration
nl nduration
n0_nduration

p_ndur ati on;
n2_ndurati on_ol d;
nl nduration_ol d;

end

defaul t: begi n
n2_sprite = nenory_special +1
nl _sprite = nenory_special +1
nO_sprite = nenory_special +1

//Deal with dots
n2_dot = O;
nl dot 0;
nO_dot 0;

// Deal with sharps
n2_sharp 0;
nl_sharp 0;
nO_sharp 0;

endcase

/I n_pitch and n_octave signals
case (controller_state)

control | er_setup:

begi n

(clefs and tinme signatures)

controller_drest:

"static'

defaul t:

endcase
end
assign clear_screen =

endnodul e

begi n

n2_ndurati
nl ndurati
nO_ndurati
end

/1At setup

n2_pitch
nl_pitch
nO_pitch

n2_octave
nl octave
n0_oct ave
end

O'Brien, McCaughan, - 66 -

on = p_ndurati on;
on = n2_nduration_ol d;
on = nl nduration_old;

all sprites are 'static'

static_pitch;
static_pitch;
static_pitch;

stati c_octave;
stati c_octave;
stati c_octave;

//When drawing a rest the rest sprite is

n2_pitch
nl_pitch
nO_pitch

n2_octave
nl octave
n0_oct ave
end

begi n

n2_pitch
nl_pitch
nO_pitch

n2_octave
nl octave
n0_oct ave
end

(slice_count == 12

p_npitch;
static_pitch;
n2_pitch_ol d;

p_oct ave;
static_pitch;
n2_octave_ ol d;

p_npitch;
n2_pitch_ol d;
nl _pitch_ol d;

p_oct ave;
n2_octave_ ol d;
nl octave ol d;

0);

O'Brien, McCaughan, - 67 -

Labkit.v

nmodul e vi deol abki t (beep, audio_reset_b, ac97_sdata_out,
ac97_sdata_in, ac97_synch,
ac97_bit _cl ock,

vga_out _red, vga_out_green, vga_out_blue, vga_out_sync_b,
vga_out _bl ank_b, vga_out _pi xel _cl ock, vga_out _hsync
vga_out _vsync,

tv_out_ycrcb, tv_out_reset_b, tv_out_cl ock
tv_out _i2c_cl ock,
tv_out _i2c_data, tv_out_pal _ntsc, tv_out_hsync_b,
tv_out _vsync_b, tv_out_blank_b, tv_out_subcar_reset,
tv_in_ycrch, tv_in_data valid, tv_in_line_clockl
tv_in_line clock2, tv_in_aef, tv_in_hff, tv_in_aff,
tv_in_i2c clock, tv_in_i2c data, tv_in fifo_read,
tv_in fifo clock, tv_in_iso, tv_in reset b, tv_in_clock
ranD_data, ranD_address, ranD_adv_|d, ranD_cl Kk,
ranD_cen_b,
ranD_ce b, ranD_oe b, ranD_we b, ranD_bwe b,
raml_data, ranl_address, raml_adv_|d, ranl_clKk,
ramlL_cen_b,
ramlL _ce b, ranl_oe b, raml_we b, raml_bwe b,

cl ock_feedback out, clock feedback in,

flash_data, flash address, flash ce b, flash oe b,
flash_we b,

flash_reset b, flash_sts, flash_byte_b,

rs232 txd, rs232 rxd, rs232 rts, rs232 cts,

mouse_cl ock, nouse_data, keyboard_cl ock, keyboard_data,

clock_27mhz, clockl, clockz2,

di sp_bl ank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
di sp_reset _b, disp_data_in,

buttonO, buttonl, button2, button3, button_enter,
button_ri ght,

button_l eft, button_down, button_up,

swi t ch,

| ed,

userl, user2, user3, userd4,

daught ercard

systemace_dat a, systenmace_address, systenmace_ce_b,

systemace_we_b,
syst emace_npbrdy,

anal yzer1_dat a,
anal yzer 2_dat a,
anal yzer 3_dat a,
anal yzer4_dat a,

out put beep, audi o_reset b,
i nput ac97_bit_cl ock,
output [7:0] vga_out_red,

vga_out _green,

O'Brien, McCaughan, - 68 -

systemace_oe_b, systenmace_ird,

anal yzer1_cl ock,
anal yzer 2_cl ock,
anal yzer 3_cl ock,
anal yzer4_cl ock);

ac97_synch, ac97_sdata_out;

ac97 _sdata_in;

vga_out bl ue

out put vga_out_sync_b, vga_out_blank_b, vga_ out _pixel _cl ock

vga_out _hsync

out put [9: 0]
out put tv_out _reset_b,
tv_out i2c _data
tv_out _pal _ntsc
tv_out bl ank b,
tv_out subcar _reset;

i nput

i nput
tv_in_aef,
tv_in_hff,
out put tv_in_i2c_clock

tv_in_iso,

tv_in_reset b,
tv_in_i2c_data,;

[19: 0]
tv_in_data valid,

i nout

i nout
out put
out put
ranD_we b;
out put

[35:0]
[18: 0]
ranD_adv_|d,

ranD_dat a

[3:0] ranD_bwe_b;
i nout
out put
out put

rami_we b;
out put

[35:0]
[18: 0]
raml_adv_|d,

raml_dat a
[3:0] ranl_bwe_b;

i nput cl ock_feedback_i n;

out put cl ock_f eedback_out;

i nout

out put

out put flash_ce_b,
flash_byte_b;

i nput flash_sts;

[15: 0] flash_dat a;

out put
i nput

rs232 txd
rs232 rxd

i nput

tv_out _ycrcb
tv_out cl ock,

tv_out _hsync_b,

tv_in_ycrchb
tv_in_line_clockl

tv_in_aff;
tv_in_fifo_read,

mouse_cl ock, nobuse_dat a,

vga_out _vsync;

tv_out _i2c_cl ock,

tv_out _vsync_b,

tv_in_line_clock2,

tv_in_fifo_clock,

tv_in_clock;

ranD_addr ess;
ranmD_cl k,

ranD_cen_b, ranD _ce_ b, ranD_oe b,

raml_address;
raml_cl k,

ramL_cen_b, raml ce_ b, raml_oe b,

[23: 0] flash_address;
flash_oe b,

flash we b, flash reset b,

rs232 rts;
rs232 _cts;

keyboard_cl ock, keyboard_dat a;

O'Brien, McCaughan, - 69 -

i nput clock_27nmhz, clockl, clock2;

out put di sp_bl ank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
i nput disp_data_in;
out put di sp_data_out;

i nput buttonO, buttonl, button2, button3, button_enter
button_ri ght,
button_l eft, button_down, button_up;
input [7:0] switch
output [7:0] Ied;

i nout [31:0] userl, user2, user3, userd4,;
i nout [43:0] daughtercard;

i nout [15:0] systenace_dat a;

output [6:0] systemace_address;

out put systenmace_ce_b, systemace_we_b, systemace_oe_b;
i nput systemace_irqg, systemace_npbrdy;

out put [15:0] analyzerl data, analyzer2 data, anal yzer3_data,
anal yzer4_dat a;
out put anal yzer1 _cl ock, anal yzer2_cl ock, anal yzer3_cl ock
anal yzer4_cl ock;

NN NN NN NNy
I

/1

/1 1/ 0 Assignnents

/1

(EEEEEErr bbb r bbbt rrrrrr
111

/1 Audi o I nput and Qut put

assi gn beep= 1' bO;

/1 assign audio_reset_b = 1'bO0;
/1 assign ac97_synch = 1'b0;

/1 assign ac97_sdata out = 1'bO;
/1 ac97_sdata_in is an input

/1 Video CQutput

assign tv_out_ycrcb = 10' hO;
assign tv_out _reset_b = 1'Db0O;
assign tv_out_clock = 1'bO0;
assign tv_out _i2c_clock = 1'bO;

assign tv_out _i2c_data = 1'bO0;
assign tv_out _pal _ntsc = 1'bO0;
assign tv_out_hsync_b = 1'b1;
assign tv_out_vsync_b = 1'Db1;
assign tv_out_blank_b = 1'b1;
assign tv_out_subcar_reset = 1'DbO;

/1 Video Input
assign tv_in_i2c_clock = 1'bO0;

assign
assign
assign
assign
assign
assign

/1 tv_in_ycrcb

O'Brien, McCaughan, - 70 -

1' bO;
1' bO;

tv_in fifo read =
tv_in fifo_clock =
tv_in_iso = 1'b0
tv_in_reset b = 1'b0O;
tv_in_clock = 1'bO;
tv_in_i2c data = 1' bz

tv_in_data valid, tv_in_line_clockl

tv_in_line_clock2,
/1 tv_in_aef, tv_in_hff, and tv_in_aff are inputs
/1 SRAMs
assign ranD_data = 36' hz;
assign ranD_address = 19' hO;
assign ranD_adv_Ild = 1' b0
assign ranD_clk = 1' bO;
assign ranD_cen_b = 1'bl;
assign ranD_ce b = 1'Db1;
assign ranD_oe b = 1'Db1;
assign ranD_we b = 1'Db1;
assign ranD_bwe b = 4'hF;
assign ranl_data = 36' hz;
assign ranil_address = 19' hO;
assign ranl_adv_Id = 1' b0
assign ranl_clk = 1' bO;
assign ranl_cen_b = 1'bl;
assign ranl_ce b = 1'Db1;
assign ranl_oe b = 1'b1;
assign ranl_we b = 1'Db1;
assign ranl_bwe b = 4'hF;

assign

cl ock_feedback out = 1'hbO;

/'l clock_feedback_in is an input

/1 Flash ROM

assign flash_data = 16' hz;
assign flash_address = 24' hO;
assign flash_ce_b = 1'bl;
assign flash_oe_b = 1'bl;
assign flash_we_ b = 1'bl;
assign flash_reset_b = 1'bO;

assign

flash_byte b = 1'b1;

/1 flash_sts is an input

/1 RS-232 Interface

assign rs232_txd = 1' b1,

assign rs232_rts = 1' b1,

/1 rs232_rxd and rs232_cts are inputs

/1 PS/I2 Ports
/1 rmouse_cl ock, nouse_dat a,
i nputs

keyboard_cl ock, and keyboard_data are

/*
/1 LED Displ ays

assign di sp_blank = 1'bl;
assign disp_clock = 1'bO0;
assign disp_rs = 1'b0

assign disp_ce b = 1'Db1;

O'Brien, McCaughan, - 71 -

assign disp_reset_b = 1'bO0;

assign di sp_data_out = 1'bO;

/1 disp_data_in is an input
*/

/1 Buttons, Swi tches, and Individua
/11 ab3 assign |l ed = 8 hFF;

/! buttonO, buttonl, button2, button3, button_enter,
/1 button_left, button_down, button_up, and swi tches

LEDs

button_ri ght,
are inputs

[l User 1/GCs

assign userl = 32'hz
assign user2 = 32'hz
assign user3 = 32' hz
assign user4 = 32' hz

/1 Daughtercard Connectors

assi gn daughtercard = 44' hz;

/1l SystemACE M croprocessor Port
assign systenmace_data = 16' hz;
assign systenace_address = 7' hO;
assign systemace_ce_b = 1'Db1l;
assign systemace_we_b = 1'Dbil;
assign systemace_oe b = 1'Dbil;

/1 systemace_irq and systenace_npbrdy are inputs

/1 Logic Analyzer

// assign anal yzer1_data = 16' hO;
//assign analyzer1l clock = 1'b1l
assign anal yzer2_data = 16' hO;
assign anal yzer2_cl ock = 1'bl;
assign anal yzer3_data = 16' hO;
assign anal yzer3_cl ock = 1'bl;
assign anal yzer4 _data = 16' hO;
assign anal yzer4 clock = 1'bl;

(EEEEEErr bbb r bbbt rrrrrr
111

/1
/1
/1

| ab4 : a sinple pong gane

(EEEEEErr bbb r bbbt rrrrrr
111

/1l use FPGA's digital clock manager to produce a

/1 65MHz clock (actually 64.8Mz)

wi re cl ock _65nmhz_unbuf, cl ock_65mhz;

DCM vcl k1(. CLKI N(cl ock_27mhz), . CLKFX(cl ock_65mhz_unbuf));
/1 synthesis attribute CLKFX D VIDE of vclkl is 10

/1 synthesis attribute CLKFX MILTIPLY of vclkl is 24

/1 synthesis attribute CLK FEEDBACK of vclkl is NONE

/1 synthesis attribute CLKIN PERI OD of vclkl is 37

BUFG vcl k2(. O(cl ock_65mhz), .1 (cl ock_65mhz_unbuf));

O'Brien, McCaughan, - 72 -

/1 power-on reset generation

W re power_on_reset; /1 remain high for first 16 cl ocks

SRL16 reset_sr (.D(1'b0), .CLK(clock 65mhz), .Q power_on_reset),
.AO(1'bl), .AL(1'bl), .A2(1'bl), .A3(1'bl));

def paramreset _sr.INIT = 16" hFFFF;

/1 ENTER button is user reset
Wi re reset, user_reset;
debounce dbl(power_on_reset, clock _65mhz, ~button_enter

user_reset);

/*

*/

assign reset = user_reset | power_on_reset;

/1 UP, DOWN, LEFT and RIGHT buttons for user input

wi re up,down, left, right;

debounce db2(reset, clock_65nmhz, ~button_up, up);
debounce db3(reset, clock_65nmhz, ~button_down, down);
debounce db4(reset, clock_65nmhz, ~button_right, right);
debounce db5(reset, clock_65nmhz, ~button_left, left);

Wi re nextnote;
debounce db6(reset, clock_65nmhz, ~button3, nextnote);

(EEEEEErrrrr bbb bbb rrrrr
(EEEEEErrrrr bbb bbb rrrrr
/1 SO BEG NNETH ADAMS CCDE

(EEEEEErrrrr bbb bbb rrrrr
(EEEEEErrrrr bbb bbb rrrrr

Copy procedure:

-copy changed .v files into ./ Source

-copy changed xco and .v files fromlogiccore nodules into ./
-del ete any changed .ngo files from./

-make sure everything is off read-only

-regenerate cores (?)

-conpi l e

(EEEEEErrrrr bbby
/1 COPY AFTER THI S LI NE
(EEEEEErrrrr bbby

wire clk = cl ock_65nhz;
/1 Creates debounced/synced swi tches (ssw tch)

debounce dbswi tch4(reset, clk,switch[3],ssw tch3);

debounce dbswi tch5(reset, cl k, switch[4],ssw tch4);

/1 Creates debounced/synced buttons (sbuttons)

Wi re sbuttonO, shuttonl, sbutton2, sbutton3;

debounce dbbuttonO(reset, cl k, ~button0, sbuttonO);

debounce dbbuttonl(reset, clk, ~buttonl, sbuttonl);

debounce dbbutton2(reset, cl k, ~button2, sbutton2);

debounce dbbutton3(reset, cl k, ~button3, sbutton3);

debounce dbbutton_left(reset, clk,~button_left,sbutton_left);
reg old_sbutton_left;

/1

O'Brien, McCaughan, - 73 -

reg sbutton_|l eft_pul se
al ways @ (posedge cl k) begin
old sbutton |left <= shutton left;

sbutton_l eft _pul se <= ~old_sbutton_left & sbutton_left;
end

FEEEEEErrrrr bbb bbb rrrrr

W RES
(EEEEEErrrrr bbb bbb rrrrr

w re khz_enabl e;

wire [19:0] fromac97_data, to_ac97_data, ac97_data_dds;

re [14: 0] char_freq

re clk_sanple; [/ Synchronous version of audi o_ready
re tc_done;

re fft _unl oad,

re le;

re one_32nd;

222

s

re audi o_ready;

paranmeter fft_length = 8192; /1 (fft_length-1) 1023

paranmeter fft_index bits = 13; // (fft_index_bits-1) 9

paranmeter fft_in_bits = 20; [l (fft_in_bits-1) 19

paranmeter fft_out_bits = 34; [(fft_out_bits-1) 30

reg [(fft_in_bits-1):0] xn_re; /1 Signal input
into FFT

wire [(fft_index_bits-1):0] readaddr

/! Address to read fromin ring buffer

wire [(fft_index_bits-1):0] xk_index;

wire [(fft_out _bits-1):0] xk_re;

wire [(fft_out_bits-1):0] abs_xk re = xk_re[(fft_out_bits-1)] ?

~xk_re[(fft_out_bits-1):0] + 1 : xk_re;

wire [(fft_out _bits-1):0] xk_im
wire [(fft_out _bits-1):0] abs_xk_im

xk_inf(fft_out_bits-1)] ?

~xk_inf (fft_out_bits-1):0] + 1 : xk_im

f ake

/1

/1

wire [(fft_out_bits): 0] xk_magsq = abs_xk re + abs_xk_iny // Just

"magni t ude"

(EEEEEErrrrr bbb bbb rrrrr
1KHZ DI VI DER
(EEEEEErrrrr bbb bbb rrrrr

di vi der onekhz(clk, reset, khz_enable);

(EEEEEErrrrr bbb bbb rrrrr
32ND OF A BEAT GENERATOR

O'Brien, McCaughan, - 74 -
ILELLITILLI L it

wire [7: 0] bpm
one32ndgen one32ndgenl(cl k, reset, bpm one_32nd);

reg [4:0] net_count;

al ways @ (posedge cl k) nmet_count <= one_32nd ? nmet_count + 1
net _count;

wire netronone = (net_count == 0);

(EEEEEErrrrr bbb bbb rrrrr
/1 AUDI O RI NG BUFFER
(EEEEEErrrrr bbb bbb rrrrr

reg [(fft_in_bits-1):0] audi odat[(fft_length - 1):0];
/1 Audio ring buffer (1024 20-bit sanples)
reg [(fft_index_bits-1):0] adptr = 0;

/1 Audi o data pointer

al ways @ (posedge cl k) begin
if (clk_sanple) begin
/1 Inverts the top bit to store the data as unsigned
audi odat [adptr] <= {~to_ac97_data[(fft_in_bits-
1)],to_ac97_data[(fft_in_bits-2):0]};
adptr <= adptr + 1;
end
end

(EEEEEErrrrr bbb bbb rrrrr
/1 DDS

(EEEEEErrrrr bbb bbb rrrrr

wire [63:0] hex_dds;
ddstester ddstest(clk, button_up, button_down, audi o_ready,
reset, swtch,
ac97_data_dds, clk_sanple, hex_dds);

assign to_ac97 _data = ~sbutton3 ? fromac97_data : ac97_dat a_dds;

(EEEEEErrrrr bbb bbb rrrrr
[l DFT

O'Brien, McCaughan, - 75 -

(EEEEEErrrrr bbb bbb rrrr

/1 32.5 MHz clock ce for the fft
reg fftcount;

wire clk fft = (fftcount 0);

al ways @ (posedge cl k) fftcount

<= fftcount + 1;

al ways @ (posedge cl k) xn_re <= audi odat[readaddr];

dft dftl(clk, clk_fft, khz_enable, adptr, xn_re, le, readaddr
// G VE ME A SHOT
fft_unload, xk_index, xk_re, xk_im;
defparamdftl.fft_length = fft_I ength; /1
(fft_length-1) 1023
defparamdftl.fft_index_bits = fft_index_bits; [/
(fft_index_bits-1) 9
defparamdftl.fft_in_bits = fft_in_bits; /1
(fft_in_bits-1) 19
defparamdftl.fft_out_bits = fft_out _bits; /1
(fft_out_bits-1) 30
reg [63: 0] hex_dft=0;
reg [15:0] glhex_dft =0;
reg [15: 0] g2hex_dft =0;
reg [15: 0] g3hex_dft =0;
reg [15: 0] g4hex_dft =0;
al ways @ (posedge cl k) begin
glhex_dft <= fft_unload ? glhex_dft + 1 : glhex_dft;
g2hex_dft <= clk _fft ? g2hex_dft + 1 :
g2hex_dft;//(readaddr == 1000) ? g2hex_dft + 1 : g2hex_dft;
g3hex_dft <= readaddr;// ? q3hex_dft + 1 : q3hex_dft;
g4hex_dft <= (xk_index == 1000) ? gd4hex_dft + 1 :
g4hex_dft;
hex_dft <= {qdhex_dft, q3hex_dft, g2hex_dft, glhex_dft};
end

(EEEEEErrrrr bbb bbb rrrrr
/1 TONE CONVERTER
(EEEEEErrrrr bbb bbb rrrrr

wire [63:0] hex_tc;

toneconv toneconvl(clk, clk_fft, switch[5],sw tch[4:0],
abs xk re, abs xk_im xk_index, fft_unload,
char_freq, tc_done, hex_tc);

def param toneconvl.fft_length = fft_I ength;

/1 (fft_length-1) 1023

def param toneconvl.fft_index_bits = fft_index_bits;
(fft_index_bits-1) 9

def param toneconvl.fft_in_bits = fft_in_bits;

[l (fft_in_bits-1) 19

/1

O'Brien, McCaughan, - 76 -

def param toneconvl.fft_out_bits = fft_out_bits;
/1 (fft_out_bits-1)

(EEEEEErrrrr bbb bbb rrrrr

/1 TONE LUT

(EEEEEErrrrr bbb rrrrr

wre
wre
wre

[3: 0] octave;
[3:0] note;
[63: 0] hex_lut;

t onel ut
tonelut1(clk,clk_fft,char_freq,tc_done, note, octave, hex_|ut);

(EEEEEErrrrr bbb bbb rrrrr

/1l SCORE CONVERTER

(EEEEEErrrrr bbb bbb rrrrr

re
re
re
re
re
re
re
re

22222228

[11: 0] startbeat;

[3:0] score_octave
[3:0] score_note

[3:0] score_duration;
[11: 0] score_startbeat;
scor e_r eady;

[63: 0] hex_sc;

[63: 0] hex_sc2;

scoreconv scoreconvl(clk, khz_enabl e, not e, oct ave, one_32nd,

startbeat, score_octave, score_note, score_duration, score_start beat,
score_ready, hex_sc2);

reg [15: 0] glhex_sc=0;
reg [15: 0] g2hex_sc=0;
reg [15: 0] g3hex_sc=0;
reg [15: 0] g4hex_sc=0;

al ways @ (posedge cl k) begin

glhex_sc <= score_octave;//khz_enable ? qlhex_sc + 1 :

glhex_sc;

g2hex_sc <= score_note;//one_32nd ? g4hex_sc + 1

g4hex_sc;

g3hex_sc <= score_ready ? g3hex_sc + 1 : g3hex_sc;

g4hex_sc <= score_startbeat;

end

assign hex_sc = {qlhex_sc, g2hex_sc, q3hex_sc, g4hex_sc};

/*

O'Brien, McCaughan, - 77 -

(EEEEEErrrrr bbb bbb rrrr
/1 PLAYBACK BUFFER
(EEEEEErr bbb bbb rrrrr

reg [8:0] playback_i ndex=0;
reg [23:0] playback_ buffer[511:0];
al ways @ (posedge cl k) begin
if (score_ready & ~playing) begin
pl ayback_buf fer[pl ayback_i ndex] <=
{score_octave, score_note, score_duration, score_startbeat};
pl ayback i ndex <= playback_i ndex + 1;
end
end
*/

FEEEEEEEE bbb rrrn
/1 AC97
FEEEEEEEE bbbt rrrnn
/1 Synchronous (but skewed) 65/2 = 32.5 MHz clock for the ac97
reg cl k_ac97=0;
reg cl kcount ac97=0;
al ways @ (posedge cl k) begin
cl kcount ac97 <= cl kcount ac97+1
cl k_ac97 <= cl kcountac97 == 0;
end

audi o nyaudi o(cl k_ac97, power_on_reset, fromac97_data,
to_ac97_dat a,
audi o_ready, audio_reset_b, ac97_sdata_out, ac97_sdata_in,
ac97_synch, ac97_bit_cl ock);
def par am nyaudi 0. VOLUME = 4' d10;

/1 assign led = g3hex_sc[7:0];
FEEEEEEEE bbb rrrn
/1 HEX DI SPLAY
FEEEEEEEE bbb rrrn

wire [63:0] hex_input = sbutton0 ? hex_dds : /1
[switch | sinwave | | freqgselect]
sbuttonl ? hex_dft
/1 [unloadcount | clk_fft | readaddr | xk_index =

1000]
sbutton2 ? hex_tc
/1 [max_index | max_magsq | | char_freq]
hex_sc;

/1 [octave | note | score_ready |
score_duration]

/1 Slow al beit synchronous 65/8 = 8.125 MHz clock for the hex
reg cl k_hex=0;
reg [3:0] clkcount=0;

reg [63:0] b_hex_input;

reg [63: 0] b_hex_input?2;

al ways @ (posedge cl k) begin
cl kcount <= cl kcount +1
cl k_hex <= cl kcount == 0;
b _hex_i nput <= (cl kcount
b _hex_input2 <= (cl kcount

b_hex_i nput 2;
end

di spl ay_16hex dl(reset, clk_hex,

di sp_reset b, disp_data_out);

(EEEEEErrrrr bbb bbb rrrrr
(EEEEEErrrrr bbb bbb rrrrr
/1 SO BEG NNETH JOHNS CCDE

(EEEEEErrrrr bbb bbb rrrrr
(EEEEEErrrrr bbb bbb rrrrr

/1 generate basic XVGA video signals
wire [10: 0] hcount;

wire [9:0] vcount;

wi re hsync, vsync, bl ank;

0) ? hex_i nput
0) ? b_hex_input

O'Brien, McCaughan, - 78 -

b_hex_i nput;

b_hex_i nput 2,
di sp_bl ank, disp_clock, disp_rs,

di sp_ce_b,

xvga xvgal(cl ock_65nmhz, hcount, vcount, hsync, vsync, bl ank) ;

/1 feed XVGA signals to user's pong gane

wire [2:0] pixel

wi re phsync, pvsync, pbl ank;

wire [1: 0] major_state;

wire [2:0] mnor_state;

Wi re maj or_toggl e;

wire [10:0] slice_x;

wire [9:0] slice_y;

wire [31:0] slice_pixels;

wire artist_start, artist_done, busy;

wire [2:0] nO_octave, nl_octave, n2_octave,
wire [3:0] nO_pitch, nl_pitch, n2_pitch;
wire [5:0] nO_sprite, nl _sprite, n2_sprite;
wire [5:0] n_sprite;

wire [11:0] nO_countslice, nl_countslice,
wire [11: 0] p_startbeat = score_startbeat;
wire [3:0] p_duration = (score_duration);
wire [2: 0] p_octave = score_octave[2:0];

n_oct ave;

n2_countslice;

O'Brien, McCaughan, - 79 -

wire [3:0] p_pitch = score_note

wire p_ready = score_ready;

Wi re graphi cs_ready; //start draw ng
wire [3:0] n_pitch;

wire [1:0] clef;

assign clef = {switch[6], 1 b0};

wire [2:0] tinesig = 0;

wi re display_ready;

wire [9:0] start_row,

w re clear_screen;

/ I Debug
wire go_bar, barl, bar?2;

graphics_controller_sinple a4(p_octave, p_pitch, p_startbeat,
p_durati on,

p_ready,

nO_octave, nO_pitch, nO_sprite,
nO_countslice, nO_sharp, n0_dot,

nl_octave, nl_pitch, nl_sprite,
nl_countslice, nl_sharp, nl_dot,

n2_octave, n2_pitch, n2_sprite,
n2_countslice, n2_sharp, n2_dot,

clef, tinmesig,

graphi cs_ready, display_ready,
cl ear _screen,

/I pl ayback,

/1 Debug 1/ 0O begi ns
/lcontroller _state

go_bar, bar1, bar?2,

// Debug 1/ 0O ends

reset, clock_65nmz);

buf f er _manager a3(hcount, vcount, hsync, vsync,
bl ank,
pvsync, phsync, pblank, pixel
slice_x, slice_y, slice_pixels,

busy,
cl ear _screen,
reset, clock 65nhz
);
artist_nodul e_m nor a2 (artist _start, artist_done

start_row, n_pitch, n_octave,
n_sprite, n_sharp, n_dot,

clef,

slice_y, slice_pixels, busy,

//sprite_address, sprite_data,

//slice_pitch_pixel
sprite_y_offset,

//sprite_count,

/[linitial _sprite_address,

m nor_state,

cl ock_65mhz, reset);

O'Brien, McCaughan, - 80 -

artist_nodul e_maj or al(nO_octave, nO_pitch, nO_sprite
nO_countslice, nO_sharp, n0_dot,

nl_octave, nl_pitch, nl_sprite,
nl _countslice, nl_sharp, nl_dot,

n2_octave, n2_pitch, n2_sprite,
n2_countslice, n2_sharp, n2_dot,

graphi cs_r eady,

di spl ay_r eady,

slice_x, start_row,

n_pitch, n_octave, n_sprite,
n_sharp, n_dot,

artist_start, artist_done,

/*

/ | Debug

//remdl, rend2, dividend, divisorl,
di vi sor2, quotl, quot?2,

start _divide,

/I'n_countslice, old n_countslice,

//divide_readyl, divide_ready2,
di vi de_ready_count,

*/

maj or _st at e,

maj or _t oggl e,

cl ock_65mhz, reset);

/*
user _i nput ul(up, down, left, right, clef, tinmesig, p_pitch
p_octave, p_duration
di sp_bl ank, disp_clock, disp_rs, disp_ce_b,
di sp_reset _b, disp_data_out,
next note, p_ready,
cl ock_65mhz, reset);
*/

/1 switch[1:0] selects which video generator to use
/1 00: user's pong gane
/1 01: 1 pixel outline of active video area (adjust screen
controls)
/1 10: color bars
reg [2:0] rgb
reg b, hs, vs;
al ways @ posedge cl ock_65nmhz) begin
[*if (switch[1:0] == 2'b01) begin
/1 1 pixel outline of visible area (white)
hs <= hsync;
VS <= vsync;
b <= bl ank;
rgb <= (hcount==0 | hcount==1023 | vcount==0 | vcount==767) ? 7

end else if (switch[1:0] == 2'bl0) begin
/1 color bars

hs <= hsync;

VS <= vsync;

b <= bl ank;

rgb <= hcount[8:6];

end el se begin

/'l default: nusical ator

*/

hs <= phsync;

VS <= pvsync;

b <= pbl ank;

rgb <= pi xel

// end
end

/1 VGA Qutput.

/1 AD7125, we send it ~clock _65mhz.

assign vga_out_red = {8{rgb[2]}};
assign vga_out_green = {8{rgb[1]}};
assign vga_out_blue = {8{rgb[0]}};
assign vga_out_sync_b = 1' b1, /! not used
assign vga_out_blank_b = ~b;
assign vga_out _pixel _clock = ~cl ock_65nhz;
assign vga_out _hsync = hs;
assign vga_out_vsync = vs;
assign led = ~{netronone, naj or _t oggl e, go_bar,
bar 1, down, reset };
assign analyzerl data = {p_octave, p_pitch
m nor_state, artist_start, artist_done, busy};
assign anal yzer1l cl ock = cl ock_65nhz;
endnodul e
/*
nodul e
pl ayback(cl k, cl k_dds, char_freq, startbeat, tc_done,
i nput cl k;
i nput cl k_dds;
i nput [14:0] char_freq;

i nput tc_done;
output reg [3:0] note;
out put reg [3:0] octave;
out put [63:0] hex_|lut;

endnodul e

In order to neet the setup and hold tinmes of

O'Brien, McCaughan, - 81 -

t he

bar 2,

p_ready, major_state,

not e, oct ave, hex_Il ut);

*/

