The Design and Implementation of an

Automated Dartboard

6.111 Final Project Report
Submitted By:
Ankush Patel and
Michael Ehrenberg
December 14™ 2005

ABSTRACT

Our final project describes the creation of a dartboard that can score the popular 2 player
dart games 301 and 601. Dart detection was performed by acoustic triangulation, which
uses the difference in arrival times of the sound of contact made with the dartboard to
determine individual dart location. Once x and y coordinates are determined they are
displayed on a graphical user interface showing their position on the dartboard and
indicating the status of the game. This project successfully illustrates many of the
concepts that are essential to digital design and implementation discussed throughout
6.111.

TABLE OF CONTENTS

PROJECT OVERVIEW ...ttt easaeaeseasaeassesssssasssssssssssesssssesnessnsens 3
(DN W I = I (O 1 1) 4
L] I R 2N O 6

(DY O = I ol I L] 7
TRIANGULATION LOGIC INTRODUGCTION: 1iiiiiiiiiitttiiiieeeeeiiitbtiieeeesssibbattessesssesbbbbesssesssassbtbsassessssssssbasssasssens 7
DART DETECTION BLOCK DIAGRAM DESCRIPTION ...uviiiiieiiiiiitiiiiieesseiitbisis e s s sessbbasssesssssabbasssesessssssanesesas 9

(0700 01 (= TSRS 9
Convert CYCIES 10 MITIIMELEISouiieii et te s aeera e eneesrens 10
(81 (o0 =1 (=Y (oo (V] L= 10
DG (5T T SRS 11
Dart Register & RESEE ANAIOGviveicie ettt sr et neere e s 11
GUI BLOCK DIAGRAM DESCRIPTIONcivviieiitieieiitteeesitteeeeeteeeesseeeessasessssssessesssessssssessssssessesssssssssssenesns 13
ADTISPIAY ...t bbbt bbbt bbbttt 14
(o =110 (o] o FH SRR 14
(001 0] (o] o TSRS 14
(o F 1 11010 (TSR 15
(o0 01 V/=1 (0] (o] (RS OPR 15
LE L0 [o] PN UPOUR 16

TESTING AND DEBUGGING ... 16
DART DETECTION TESTING AND DEBUGGINGccoiiiuvitiiieieeiiiiitiiitiesssesstieessesssssabbasssasssssssbesssesesssassnenes 16
USER INTERFACE TESTING AND DEBUGGINGccceiiiittitiiieieeiiiiittiitieessssitieessesssssssbasssessssssssssssssesssassssnes 19
INTEGRATION TESTINGciiecttttiitieeiieitttettseeesasssbettseessssasbbeaesasesssasbbabeeesesssasbbebesesesssabbabeesseessessbbbanssasesaies 21

(O(0]\ [0 I ST] TR 22

F N 1 V| 5 R 24

TABLE OF FIGURES

Figure 1: Dartboard............coovoiiiieiice e 4
Figure 2: Dartboard with MICIOPNONES.........cccciiiiiiiiiiee e 5
Figure 3: Graphical USer INterfaceccceviiiiiiiii e 7
Figure 4: Dart Detection BIOCK DIAQram..........ccceoueiireiiienininieieeese et 9
Figure 5: Dart Detection HardWare............cccooveveiieiieii e 12
Figure 6: User Interface BIOCK Diagram..........cccooviiiiiiiieieiescseseeeeeeee s 13
Figure 7: game301 module teSt DENCcovviiiiiecece e 20

PROJECT OVERVIEW

Darts is traditionally a game that does not involve electronics. All you need is a
board and a set of darts to play, and scoring is most often performed by hand. For this
reason we chose to fully automate a dartboard, providing a no hassle approach to
enjoying darts. On a high level, our dartboard has the ability to tell where darts have
been thrown by a player and subsequently keep score according to the rules of the two
player game 301 or 601.

In the dart world, automatic dartboard scoring already exists; however, it is not
used in competitive play because players are looking for the simplest and most
inexpensive interface. While most scoring is performed by hand, there are two different
types of automation that are currently available. The first scoring device is the simpler of
the two which simply keeps score but does not incorporate dart detection. A human
player must enter the score for a given turn, and the electronics will do all the work of
displaying the total score and status of the game. The second type of scoring device is
fully automated and uses lasers or has pressure sensors; however, a board like this is quite
expensive with an average price of around 400 dollars, and these boards are cumbersome
and awkward looking. As a result, this project aims to advance automated dartboard
scoring by minimizing the board price and reducing the bulk of the board.

Before describing the functionality of the dartboard, we must first understand the
rules of 301. 301 is a simple and common dart game played between two people. After
each player throws three darts, the sum of their points scored is subtracted from the
number 301. The first player to reach zero wins. 601 is the same as 301 except the

starting number that both players subtract from is 601. Figure 1 below displays a

dartboard so that you can see how scoring is calculated. Each triangle wedge is worth the
number of points listed on the outside. The outer ring is worth double that number of
points, and the middle ring is worth triple that number of points. Last but not least, the
inner ring otherwise known as the bullseye is worth 25 or 50 points depending on
whether your dart lands in the green inner circle (25) or the red inner circle (50). There
are two additional rules that are important to the game of 301. Before a player can begin
subtracting points from 301, he must “double in”, and this means he must throw a dart in
the outer ring of the board which counts as double the score for whatever number wedge
the dart lands in. Also, the player must “double out” reaching exactly zero to end the
game. For example, if player one is down to 10, he must hit a double 5 to win. A double
5 is pointed to by the red arrow in the dartboard illustration below. If he hits a single 15
or any number greater then 10 instead, it is called a
“bust” and he must wait until his next turn to throw
again. However, if the player scores a combined 6
between his three darts that will be subtracted from
his score and the player will be required to hit a

double 2 on his next turn to win.

Figure 1: Dartboard

Arrow points to double 5

DART DETECTION

With this game in mind, there are two main components to our dartboard, dart

detection, and a graphical game interface. First, in order to detect dart location we used

acoustic triangulation. Using this method, we placed three microphones around the board.
When a dart is thrown the relative amount of time it takes the sound of impact to reach
the microphones will indicate the darts position using triangulation. More specifically,
when the microphone closest to the dart detects impact, we count the number of clock
cycles until the other microphones hear the dart impact. This difference between times
allows us to convert clock cycles into a distance from the center using the speed of sound,
and the frequency of the clock. In order for the computer to learn when it should start

listening, the user will press a button to indicate the beginning and end of each turn.

rnic 1

mic 3

Figure 2: Dartboard with Microphones

Three microphones used for acoustic triangulation

USER INTERFACE

Once the x and y coordinates of the three darts for a given players turn are
determined, our system illustrates the progress of the game on a video display. The
display contains an image of a dartboard, with player 1’s score to the left and player 2’s
score to the right. After all three darts are thrown, their calculated location is drawn on
the board. Once the darts are displayed, the user has the ability to correct the darts if
there are any discrepancies due to a microphone misreading or not a suitable amount of
resolution. After allowing the user to correct darts, the score is updated appropriately and
it becomes the next players turn. Figure 2 is a picture of the final product graphical user
interface of the automatically scoring dartboard. In this image you can see the dartboard,
the dart locations being displayed on the screen as well as each darts appropriate score.
In addition, the individual player scores are illustrated as well as the turn indicator to tell

whether it is the turn of player 1 or player 2.

turnblab Rlayer T score dartblobs player 2 score

PLAYER 1

PLAYER 2

"

dartscores of darthlobs

Figure 3: Graphical User Interface

The above image shows the final graphical user interface for the automated dartboard

The details of the graphical user interface and dart detection implementation are

described in more detail in the next section as we describe our design in more detail.

DESCRIPTION

Triangulation Logic Introduction:
Calculation of the position of darts proved to involve a number of complex math

operations. To set up the problem we modeled the dart board in a Cartesian coordinate

system centered at the bull’s eye. Each of the three microphones were positioned at some
offset (x0, y0, x1, y1, x2, y2) and using the differences in times of detection (d0, d1, d2)
the intersection of three circles is calculated to reveal the position of the dart. More

formally we have three equations

(d +d0)? = (x—x0)? + (y — y0)?
(d+dD)?* =(x—x1)* +(y - yl)*
(d+d2)° =(x-—x2)* +(y-y2)*
and three unknowns, d (distance to closest microphone), x (x-coordinate of dart) and y (y-

coordinate of dart), with the rest of the variables either being constants we control with
placement of the microphones or values we measure. After substituting in values and

solving we obtain for d:

_ —d0® +80000d1+d0?d1+d0d1? —d1° +80000d2 + d0?d2 +d0d 22 —d2° —+/...
- 2(-80000 +2d 02 + d1? + d 22 — 2d0(d1+d2))

Substituting this in for d and solving two equations for y results:

y 80000 — 2dd0 — d0? + 2dd1+ d12 — /(80000 + 4d 2 + 0% + 2d 0d1+ d12 + 4d(d 0+ d1))

800
Finally substituting both into one equation and solving reveals:

x =4/(d +d0)* —(y - 200)°
As expected the resulting equations only rely on the differences in times of detection of

d

the darts. Luckily many other terms drop out as well when one of d0O, d1 or d2 terms is

zero, signifying the associated microphone was the first to detect the noise from impact.

Deltal
Delta |
Delta 2

w1
¥l
v
w2
¥3
w3
data ready
data taken

Counter Beset

Eew

F N ormal
t TzesCordic
P RO

Figure 4: Dart Detection Block Diagram

reset analog

Dart Detection Block Diagram Description

Counter - The first module needed in the process of dart detection is the Counter
Module. The purpose of the Counter Module is to record differences in detection time
between the three microphones. When a dart is thrown and impacts the board, one of the
three microphones will detect the sound of impact first, triggering counts associated with
the other two microphones to be started to record the time between the detection by the

first microphone and the detection by the second and third microphones. Once the second

microphone detects the impact its count is stopped, still incrementing the last count until
the last microphone detects the sound of impact. Counts are incremented at each 2.7mhz
enable provided by the divider module. This module is implemented as a Finite State
Machine (fsm) with eight stages, one reset state, one ready state and six states
corresponding to each combination of counts, for example micl count state and micl &
mic2 count state. A ready signal is also established to alert other modules that new time
differences and eventually distances are available.

Convert cycles to millimeters - In order to convert differences in cycles into

distances, we utilize the speed of sound in air and the clock cycle rate:

1s mm

340000 0 -
s 2.7x10°cycles cycle

The Cycles to Millimeters Module utilizes this relation to calculate the distances

associated with the microphones. Fortunately, every eight clock cycles corresponds to
1mm traveled. Thus the calculation simply becomes a shift by 3 bits and no complicated
multiplication/division circuitry is needed. This explains why a seemingly arbitrary 2.7
MHz sample rate was used. From here the three distances are inputted into the three
major math modules.

Calculate Modules - The first math module used in the calculation of the position of
the dart is the Calculate D module. This module implements the equation written above
through a cascaded Cordic square rooters and multipliers. Once this value is ready it is
passed to Calculate Y Module which in turn implements the second equation above. This
module also uses many of the provided Cordic square rooters and multipliers to calculate
the y value of the dart. Again this value is fed forward to the Calculate X module where

the value of y and d are used to finally find the value of x.

10

X Steady - In order to assure that the value provided by the Calculate X module is valid
another module was implemented. The purpose of the X Steady Module is to wait
through enough clock cycles to ensure that the latest ready signal provided by the
Calculate X module is actually for the latest data provided by the counter module and not
for some intermediate values calculated along the way.

Dart Register & Reset Analog - Once it is known that the values calculated by the
X and Y modules are correct a module called the Dart Register saves the values of x and
y, so they can be provided to the display logic in three-dart pairs. After each dart is stored
a reset signal is sent to the counter module so it can begin to detect new darts. Also, the
latches in the analog circuitry amplifying the signals from the microphones must also be
reset. Unfortunately, the analog circuitry cannot be reset with a signal for only one clock
cycle. For this reason the Reset Analog & Counter Module provides a reset signal to the
counter module and the latches for one third of a second. In practice a third of a second
proves enough to consistently reset the latches and the chances of all three darts arriving
in the same second is nearly impossible if the darts are thrown sequentially. Once three
sets of x and y coordinates are provided to the dart register a data ready signal is asserted
so that the display logic can take the three saved pairs and display them on the screen.
Once the signal data taken is asserted the dart register knows to reset all of the logic in
the dart detection part of the system. Thus the counter will begin to detect darts again and

the dart register will clear the previous three saved darts coordinates.

11

Figure 5: Dart Detection Hardware

The breadboards in this image are the circuitry for microphone amplification. You can also see the
connections between the microphones on the dartboard to the labkit circuitry

12

65 Mhe Clock

(xly1)
(z2.y2)
(x3.53)

L J

M ormal

- r o
- ._ -

Figure 6: User Interface Block Diagram

GUI Block Diagram Description

The graphical user interface is made of several components. Each time that a
player throws three darts, the x and y coordinates of each are fed into the interface
modules. The user interfaced modules run on a 65 Mhz clock, which differs from the

dart detection clocks. Since only a few values are transferred, and they are all transferred

13

simultaneously we were able to avoid integration bugs by simply latching the data in the
dart detection module before sending it to the interface modules.
Once dart data has been retrieved it is important to look in more detail at the

individual modules that display the status of the dart game on the monitor.

dbdisplay - this is the most important module of the interface. Dbdisplay in addition
to accepting as input the dart values displays all of the images and text shown on the
screen. The first and most important of those images is the dartboard. The dartboard is a
453x453 image read from a ROM. The size 453x453 is significant because it is the size
of an actual dartboard, and by displaying an image with similar dimensions a conversion
was avoided from the dart detection coordinates to the screen coordinates. Also, dart
blobs which illustrate dart location, a turn blob which is an indicator that illustrates
whether it is player 1 or player 2 who is next, and screen text are all generated in this
module. Finally dart correction is performed in this module. Dart correction is
performed by moving dart blobs based on the arrow keys on the 6.111 labkit, and then re-

calculating the score of a dart.

dartblob - Based on hcount and vcount, dartblob indicates whether pixels indicating a

dart should be displayed in the dbdisplay module.

turnblob - Based on hcount and vcount, turnblob indicates whether pixels indicating
whether playerl should be highlighted with a red square next to the player one score or

player two should be highlighted with a red square next to the player two score.

14

dartscore - This module accepts the x and y value of an individual dart and returns the
appropriate ascii score from 1 — 60 or indicates “NO SCORE” if the dart is off of the
board. Dartscore performs this operation by using a cordic module to convert the x and y
coordinates to polar coordinates, r and theta. The value r is generated by taking the
squareroot of x* + y?and theta is determined by taking the inverse tangent of y divided by
X. Once this conversion has been made, theta is used to determine which pie shaped
region the dart is in between 1 and 20. Next r is used to determine if the dart is within the
single bullseye, double bullseye, single score, double score, or triple score. This number

is returned as an ascii string to make it easier to display.

game301 — This module acts as either 301 or 601 based on a switch on the labkit. The
two games can be interchanged only before the start when both players still have a score
of 301 or 601 and can be changed unless the game is restarted. This module accepts the
scores of the three darts as ascii strings when all dart modifications have been made and
the user presses button zero on the labkit. The game301 module then converts the ascii
strings to binary, adds up the scores, and determines which score to subtract from. This
module also includes logic to include the double in and double out rules. Once this has
been determined, the final binary score is then converted back to ascii by using a simple

lookup table that has all of the numbers from 1 to 601 listed and returns to the dbdisplay.

convertcolor - this module is a lookup table necessary to display the proper colors for

the dartboard image on the screen. The dartboard image utilized in this project is an 8 bit

15

bitmap. Therefore each pixel contains 8 bits of color information. 8 bits means that there
are 256 different possible colors. Unfortunately these 8 bits do not correspond directly to
a red green and blue color value but instead refer to an index in a color palette. As a

result, when a pixel of the dartboard image is retrieved an 8 bit index number is given and
the main module looks at the convertcolor module to find the exact ratio of red green and

blue at the given index value in the color palette.

textdisplays — There are 9 different text displays on the user interface. Each has its
own text module which has a position on the screen. These text display modules are

combined with a bitwise OR in the dbdisplay module to correctly illustrate them.

TESTING AND DEBUGGING

Dart Detection Testing and Debugging
The first stage of debugging for the detection part of the project involved the

microphones and the corresponding analog circuitry. After the circuitry was built up
using cascaded op amps, BJT’s and nand-gate latches we had to make sure that the output
was reasonably related to the real world sound input. In order to do so we connected an
oscilloscope to various points along the circuit’s path. To begin the output after the last
op amp was monitored and by providing sudden large impulses of sound, snapping of the
fingers, while also providing more monotone signals, like whistling. Next we needed the
output voltage to be TTL compliant so passed the output through a BJT and again

monitored the output on the oscilloscope. This time we expected and found that the

16

output would be a series of square waves with peaks at 5V and lows at 0V. Now the
output is ready to pass through cascaded nand-gates to form a latch. The output from the
latch, which we later inputted into the labkit, was pretty remarkable as well. Given an
input, usually snapping of the fingers, to a microphone the output of the latch viewed on
the oscilloscope was always a perfect step function. To test that there wasn’t a significant
delay in this logic two channels of the oscilloscope are used to display the output of the
op amp and the output of the latch. These two signals were perfectly synchronized
proving that the circuitry not only functioned correctly but also very efficiently. Except
for the occasional burnt out chip this circuitry worked well and was consistent throughout
the latter part of the project.

After the inputs from the microphone circuitry were inputted into the labkit, the
first module that needed to be tested was the counter module. The most convenient
method to do this utilized both the oscilloscope and the logic analyzer. The oscilloscope
was used to monitor the actual output and differences in detection times of the three
latches. A one mhz enable signal was provided to the counter module so the counts
outputted by the module would correspond exactly to the output on the oscilloscope (both
would be in microseconds). The output of the counter module was wired to the pins for
the logic analyzer so the values from the module could be compared to the actual
differences. At first a weird “bug” emerged as the counter module counted exactly twice
as many microseconds as the oscilloscope measured. It turns out that the logic analyzer
was connected improperly to the labkit, providing a shift by one bit to the analyzer. In
retrospect, it may have been better to use a different output rather than the logic analyzer

to test this module, such as the hex-display, since using the logic analyzer in this manner

17

seemed quite wasteful. After a reasonable amount of testing using this method it became
clear that the counter module worked correctly.

The cycles to millimeters module was implemented by shifting by 3 bits. For this
reason | found it adequate to use a simple test bench waveform to test the module and
only come back to this module if later results seemed incorrect. The test bench proved
that the module would do the simple shift and provide an approximate division by 8 as
required for the rest of the logic in the system.

The next three modules proved to be the most difficult to implement and test.
The calculations of d, y and x were done in separate modules and thus tested
independently. First specific values for the inputs to the calculate d module (d0, d1, d2)
were chosen where the resulting d is known. Then the output of the module was
connected to the hex-display on the labkit to compare the exact values expected to the
actual values calculated by the logic. In almost every case the values calculated were only
one millimeter off from the expected value. This one millimeter discrepancy was due to
the truncation of floating point numbers in the multiplication, square root and division
modules. After d was verified as correct, the same method was repeated to test the
calculate y and then the calculate x module. In the end switches on the labkit were used to
load in different values for d0, d1, d2 and the output was again displayed on the hex-
display. Once satisfied with the results for constant values, the three modules were
connected to the rest of the system to test integration with the counter module. To make
sure all the modules were working correctly together, the latched output of the
microphones were connected to the oscilloscope again. Using the oscilloscope values for

do, d1, d2 can be observed and the appropriate x and y coordinates can be calculated. The

18

outputs x and y are once again connected to the hex-display on the labkit and the
calculated values are compared to the displayed values. If there are any discrepancies
values for d and d0, d1 and d2 can be displayed to find the root of the problem.

The last module to be implemented and tested was the dart register. This module
provides the interface between the dart detection and dart display portions of the project.
To ensure proper functionality of this module three darts were thrown at the dart board
and their calculated positions were recorded. Switches on the labkit choose which of the
three darts stored in the module were displayed on the hex-display. If the recorded values
matched the displayed values the module is functioning correctly. Unfortunately, in order
to test this module the automatic reset of the latches and counter had to be replaced with
reset on a button press. In the end the automatic reset was returned and the register was

connected to the dart display logic.

User Interface Testing and Debugging

In order to test the graphical user interface two methods were used. For the text displays,
the dartboard image display, the dartblobs, the turnblob and dart scoring | used the output
on the screen to debug. In contrast for the game301, numtotext, and polargen, | used the
test bench wave forms to guarantee correct values. During integration, the hex display
was used to ensure that the values that the user interface displayed were the same as the
values that the microphone was providing.

First, the dartboard image display was the first component that | added to the user
interface. | formatted it in an 8 bit format and then created a *.coe file which was loaded

into a rom. In order to test this | made sure that the image on the screen was the same as

19

the image in the image file that | used to create the *.coe file. Once I initially was able to
get the image to display there were several problems with the coloring. In order to
correct this | created a color palette which is found in the convertcolor module and this
corrected the bad coloration.

Next | added the text displays to the interface. These were easy to test because |
needed to ensure that they displayed what I intended them to display on the screen.

Once | could display text, | added the dartblobs to the screen. | set up sample
coordinates for three different darts and fed that into the dbdisplay module. One dart |
assigned x, y coordinates of (0,0) which is a bullseye one | assigned at the outer edge of
the board (170, 170) and the other | put at a random. By simply looking at the output
screen it was easy to tell when | had the correct locations.

One of the more challenging modules to test was the 301module. The 301

module includes all of the game logic for 301 and 601. | used this testbench to insure

=d bl 16 10 2 | & 5

3354673 : 3354673 : 3354873 :13289911 : 3280011 : 3280011 : 280011 : 3280011 : 3280011

aopepouneoRg’

3354673 [3354673 | 3354673 | 3354673 [3354673 | 3354673 | 3354673 [3354673 [3354673
Lo Y] /1 ['1 [t [1 ['1 [1 [1

Figure 7: game301 module test bench

Test bench waveform used to test and debug the 301 game module

double in and double out worked properly. 1 did this by making sure scores only changed
when a double was high in the beginning. | also used this test bench to make sure the
scores were being updated appropriately based on the correct player turns. Another
interesting problem that the test bench helped me to solve was converting a score from
ascii to binary. Out of my entire test bench use for different modules, my 301module
testbench was the most important and the most helpful.

Another place where | spent a lot of time testing and debugging was the dart score
module. In this instance | used both the test bench waveform as well as the output of a
given darts score to the screen. | used the testbench to make sure that the values |
received from the x, y to polar coordinates conversion were correct, and then by looking
at the screen it was simple to determine if a dartblob in a certain scoring area gave the

correct output.

Integration Testing

To test how well the system integrated we physically threw darts at the board and
compared expected values calculated using the oscilloscope and a calculator program to
labkit calculated values. Furthermore, we compared the outputted x and y values from
the labkit which we outputted to the hex display to placement on the screen and ensured

that they were accurately placed

21

CONCLUSION

Building an automated dartboard was an exciting idea when we first thought of its
possibilities, and after the completion of our project it still is exciting because our
automated dartboard accomplished nearly all of our original goals. In addition, we were
able to compensate for several of the boards weaknesses by implementing several nice to
have features that were not considered must haves for the success of this project, but
which significantly contribute to the game experience.

Originally, we set out to create a dartboard that was not as bulky and expensive as
current boards that automatically score a competitive darts match. Through our design,
we achieved this by using an unmodified dartboard and simply adding three small
microphones around the outside, and extending wires to the labkit. This non-obtrusive
hardware element does not interfere with the game and is hardly noticeable. We are
confident that our approach to automating a dartboard would cost significantly less then
$400 if commercially implemented due to the cheap cost of microphones as opposed to
lasers or pressure sensors.

We also exceeded our goals by implementing nice to have features such as dart
correction and the additional game of 601. Dart correction is extremely important,
especially, when the microphones did not give the values that were expected. In these
circumstances dart correction allows the user to move the darts on the user interface into
their correct scoring region regardless of what the hardware determined as the value. In
addition by programming the game of 601 in addition to 301 our project offers a wider

variety of game play which allows the dartboard to appeal to a wider audience.

22

Unfortunately, with all of the success we had with this dartboard we were not able
to achieve a dart resolution of less then one inch. This lack of resolution is due to several
factors. First the microphones that we used were not always reliable and often gave
incorrect results. In hindsight we should have spent more money to get a better set of
microphones that did not require us to build the amplification circuitry ourselves. Also,
in our design we chose to specific locations for our microphones along the x and y axis
and truncated a lot of the floating point values during mathematical operations, both of
which we estimate reduced our resolution by several millimeters. One possible way that
we could have avoided this reduced resolution would rely on a successful implementation
of a lookup table that gives X, y coordinates for each set of varied clock differences in the
triangulation calculations. We chose not to use this approach due to limited memory
resources, but assuming this was not a problem it would be a nice addition. Also, for our
calculations we used the speed of sound in air to determine dart location, by calibrating
the microphones to use the speed of sound in cork our resolution could possibly be
further enhanced.

As a whole, this project was still very much a success. We compensated for
weaknesses in our implementation by adding additional nice to have features and as a
result our final project accomplished our primary objective to produce an automated
dartboard that allows two players to play 301. The tradeoffs that were made in our
design and implementation were made with the best interests of the final product in mind.
Weighing the importance of different tradeoffs was the most educational part of this
project for our team and as a result we will both take these improved skills with us to

future design initiatives.

23

APPENDIX

T N
1

// Pushbutton Debounce Module (video version)

1
T]

module debounce (reset, clock_65mhz, noisy, clean);
input reset, clock_65mhz, noisy;
output clean;

reg [19:0] count;
reg new, clean;

always @(posedge clock_65mhz)
if (reset) begin new <= noisy; clean <= noisy; count <= 0; end
else if (noisy != new) begin new <= noisy; count <= 0; end
else if (count == 650000) clean <= new;
else count <= count+1,

endmodule

T

I

/1 6.111 FPGA Labkit -- Template Toplevel Module

1

/l For Labkit Revision 004

1

I

/Il Created: October 31, 2004, from revision 003 file

/I Author: Nathan Ickes

I

T

I

/l CHANGES FOR BOARD REVISION 004

I

// 1) Added signals for logic analyzer pods 2-4.

I/ 2) Expanded "tv_in_ycrcb" to 20 bits.

/I 3) Renamed "tv_out_data" to "tv_out_i2c_data" and "tv_out_sclk" to
/["tv_out_i2c_clock™.

/I 4) Reversed disp_data_in and disp_data_out signals, so that "out" is an
/I output of the FPGA, and "in" is an input.

24

1

/l CHANGES FOR BOARD REVISION 003

1

/I 1) Combined flash chip enables into a single signal, flash_ce_b.

1

/Il CHANGES FOR BOARD REVISION 002

1

// 1) Added SRAM clock feedback path input and output

I/l 2) Renamed "mousedata” to "mouse_data"

// 3) Renamed some ZBT memory signals. Parity bits are now incorporated into
/I the data bus, and the byte write enables have been combined into the

/I 4-bit ram# _bwe b bus.

/I 4) Removed the "systemace_clock" net, since the SystemACE clock is now
/I hardwired on the PCB to the oscillator.

1

U |

1

/I Complete change history (including bug fixes)

I

// 2005-Sep-09: Added missing default assignments to "ac97_sdata_out™,

I "disp_data_out", "analyzer[2-3]_clock" and

I "analyzer[2-3] data".

1

/1 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices
I actually populated on the boards. (The boards support up to

1 256Mb devices, with 25 address lines.)

I

/1 2004-Oct-31: Adapted to new revision 004 board.

I

// 2004-May-01: Changed "disp_data_in" to be an output, and gave it a default
I value. (Previous versions of this file declared this port to

I be an input.)

I

/1 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices
I actually populated on the boards. (The boards support up to

I 72Mb devices, with 21 address lines.)

I

[/ 2004-Apr-29: Change history started

I

I T |

module finalproject (beep, audio_reset_b, ac97_sdata_out, ac97_sdata_in, ac97_synch,
ac97_bit_clock,

vga_out _red, vga_out_green, vga_out_blue, vga_out_sync_b,
vga_out_blank b, vga_out_pixel_clock, vga_out_hsync,

25

vga_out_vsync,

tv_out_ycrchb, tv_out_reset b, tv_out_clock, tv_out_i2c_clock,
tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,
tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,
tv_in_ycrch, tv_in_data_valid, tv_in_line_clockl,
tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
tv_in_fifo_clock, tv_in_iso, tv_in_reset b, tv_in_clock,

ramQ_data, ram0_address, ram0_adv_Id, ramQ_clk, ram0_cen_b,
ramQ_ce b, ramQO_oe b, ram0_we_b, ram0_bwe b,

raml_data, ram1_address, raml_adv_ld, ram1_clk, ram1_cen_b,
raml ce b, raml oe b, raml_we b, raml_bwe b,

clock_feedback_out, clock feedback in,

flash_data, flash_address, flash_ce_b, flash_oe b, flash_we_b,
flash_reset_b, flash_sts, flash_byte b,

rs232_txd, rs232_rxd, rs232_rts, rs232_cts,
mouse_clock, mouse_data, keyboard_clock, keyboard_data,
clock_27mhz, clockl, clock2,

disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
disp_reset_b, disp_data_in,

button0, buttonl, button2, button3, button_enter, button_right,
button_left, button_down, button_up,

switch,

led,

userl, user2, user3, user4,
daughtercard,

systemace_data, systemace_address, systemace_ce_b,
systemace_we_b, systemace_oe_b, systemace_irg, systemace_mpbrdy,

analyzerl data, analyzerl clock,

26

analyzer2_data, analyzer2_clock,
analyzer3_data, analyzer3_clock,
analyzer4 data, analyzer4 clock);

output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
input ac97_bit_clock, ac97_sdata_in;

output [7:0] vga_out_red, vga_out_green, vga_out_blue;
output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,
vga_out_hsync, vga_out_vsync;

output [9:0] tv_out_ycrcb;

output tv_out_reset b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,
tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank b,
tv_out_subcar_reset;

input [19:0] tv_in_ycrcb;

input tv_in_data_valid, tv_in_line_clockl, tv_in_line_clock2, tv_in_aef,
tv_in_hff, tv_in_aff;

output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,
tv_in_reset_b, tv_in_clock;

inout tv_in_i2c_data;

inout [35:0] ramO_data;

output [18:0] ramQ_address;

output ramO_adv_Id, ramO_clk, ram0_cen_b, ramO_ce_b, ram0_oe_b, ram0_we_b;
output [3:0] ramO_bwe_b;

inout [35:0] raml_data;

output [18:0] ram1_address;

output ram1_adv_Id, ram1_clk, ram1_cen_ b, raml ce b, raml oe b, raml we b;
output [3:0] ram1_bwe_b;

input clock_feedback _in;
output clock _feedback out;

inout [15:0] flash_data;

output [23:0] flash_address;

output flash_ce b, flash_oe_b, flash_we b, flash_reset b, flash_byte b;
input flash_sts;

output rs232_txd, rs232_rts;
input rs232_rxd, rs232_cts;

input mouse_clock, mouse_data, keyboard_clock, keyboard_data;

27

input clock_27mhz, clockl, clock2;

output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
input disp_data_in;
output disp_data_out;

input button0, buttonl, button2, button3, button_enter, button_right,
button_left, button_down, button_up;

input [7:0] switch;

output [7:0] led,;

inout [31:0] userl, user2, user3, user4;
inout [43:0] daughtercard,;

inout [15:0] systemace_data;

output [6:0] systemace_address;

output systemace_ce_b, systemace_we_b, systemace_oe_b;
input systemace_irg, systemace_mpbrdy;

output [15:0] analyzerl_data, analyzer2_data, analyzer3_data,
analyzer4_data;
output analyzerl_clock, analyzer2_clock, analyzer3_clock, analyzer4_clock;

i
I

/1 11O Assignments

I
T T L |

// Audio Input and Output
assign beep= 1'b0;

assign audio_reset_b = 1'b0;
assign ac97_synch = 1'b0;
assign ac97_sdata_out = 1'b0;
// ac97_sdata_in is an input

// Video Output

assign tv_out_ycrcb = 10'h0;
assign tv_out_reset_b = 1'b0;
assign tv_out_clock = 1'b0;
assign tv_out_i2c_clock = 1'b0;
assign tv_out_i2c_data = 1'b0;
assign tv_out_pal_ntsc = 1'b0;
assign tv_out_hsync_b =1'b1;
assign tv_out_vsync_b =1'b1;

assign tv_out_blank b =1'b1;
assign tv_out_subcar_reset = 1'b0;

/I Video Input

assign tv_in_i2c_clock = 1'b0;

assign tv_in_fifo_read = 1'b0;

assign tv_in_fifo_clock = 1'b0;

assign tv_in_iso = 1'b0;

assign tv_in_reset_b = 1'b0;

assign tv_in_clock = 1'b0;

assign tv_in_i2c_data = 1'bZ;

// tv_in_ycrch, tv_in_data_valid, tv_in_line_clockl, tv_in_line_clock2,
I/ tv_in_aef, tv_in_hff, and tv_in_aff are inputs

Il SRAMs

assign ramQ_data = 36'hZ;
assign ramQ_address = 19'h0;
assign ram0_adv_Id = 1'b0;
assign ram0_clk = 1'b0;
assign ram0_cen_b = 1'b1;
assign ram0_ce_b =1'b1;
assign ram0_oe_b = 1'bl;
assign ram0_we_b =1'b1;
assign ram0_bwe_b = 4'hF;
assign ram1_data = 36'hZ;
assign ram1_address = 19'h0;
assign ram1_adv_Id = 1'b0;
assign ram1_clk = 1'b0;
assign raml1 cen_b =1'b1;
assign raml _ce b =1'bl;
assign raml1l oe b =1'bl;
assign raml_we_b =1'b1;
assign raml1l_bwe b = 4'hF;
assign clock_feedback_out = 1'b0;
/I clock_feedback_in is an input

// Flash ROM

assign flash_data = 16'hZ;
assign flash_address = 24'h0;
assign flash_ce b =1'b1;
assign flash_oe b =1'b1;
assign flash_we_b = 1'b1;
assign flash_reset b = 1'b0;
assign flash_byte b =1'b1;
/l flash_sts is an input

29

Il RS-232 Interface

assign rs232_txd = 1'b1;

assign rs232_rts = 1'b1;

I/ rs232_rxd and rs232_cts are inputs

I/l PS/2 Ports
/ mouse_clock, mouse_data, keyboard clock, and keyboard_data are inputs

/I LED Displays

/lassign disp_blank = 1'b1;
/fassign disp_clock = 1'b0;
/assign disp_rs = 1'b0;
/assign disp_ce b =1'bl;
/lassign disp_reset_b = 1'b0;
/assign disp_data_out = 1'b0;
// disp_data_in is an input

// Buttons, Switches, and Individual LEDs

//lab3 assign led = 8'hFF;

// buttonO, buttonl1, button2, button3, button_enter, button_right,
// button_left, button_down, button_up, and switches are inputs

I/ User 1/0s

/lassign userl = 32'hZ;
/assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign user4 = 32'hZ;

// Daughtercard Connectors
assign daughtercard = 44'hZ;

/I SystemACE Microprocessor Port

assign systemace_data = 16'hZ;

assign systemace_address = 7'h0;

assign systemace_ce b = 1'b1;

assign systemace_we_b = 1'b1;

assign systemace_oe b =1'b1;

I/ systemace_irq and systemace_mpbrdy are inputs

Il Logic Analyzer

assign analyzerl data = 16'h0;
assign analyzerl clock = 1'b1;
/lassign analyzer2_data = 16'h0;
assign analyzer2_clock = 1'b1;
assign analyzer3_data = 16'h0;
assign analyzer3_clock = 1'b1;

30

assign analyzer4 data = 16'h0;
assign analyzer4_clock = 1'b1;

T |
I

/' lab4 : a simple pong game

I
T L |

Il use FPGA's digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

wire clock_65mhz_unbuf,clock_65mhz;

DCM vclk1(.CLKIN(clock 27mhz),.CLKFX(clock_65mhz_unbuf));
/I synthesis attribute CLKFX_DIVIDE of vclkl is 10

/I synthesis attribute CLKFX_MULTIPLY of vclkl is 24

/I synthesis attribute CLK_FEEDBACK of vclkl is NONE

/I synthesis attribute CLKIN_PERIOD of vclk1 is 37

BUFG vclk2(.O(clock_65mhz),.1(clock_65mhz_unbuf));

// power-on reset generation

wire power_on_reset; // remain high for first 16 clocks

SRL16 reset_sr (.D(1'b0), .CLK(clock_65mhz), .Q(power_on_reset),
A0(1'b1), .AL(1'bl), .A2(1'bl), .A3(1'b1));

defparam reset_sr.INIT = 16'hFFFF;

i
/l Mike's Initialization code
i

/l ENTER button is user reset

wire reset,user_reset;

debounce db1(power_on_reset, clock_65mhz, ~button_enter, user_reset);
assign reset = user_reset | power_on_reset;

// UP, DOWN, LEFT, and RIGHT buttons for dart correction
wire up,down,left,right, bO;

debounce db2(reset, clock_65mhz, ~button_up, up);
debounce db3(reset, clock_65mhz, ~button_down, down);
debounce db4(reset, clock_65mhz, ~button_left, left);
debounce db5(reset, clock_65mhz, ~button_right, right);

//BUTTONO used to add up score of 3 darts and subtract from a players score
debounce db6(reset, clock_65mhz, ~button0, b0);

/IBUTTONR used by koosh to turn on hex display
debounce db7(reset, clock_65mhz, ~button3, button_3);

/I generate basic XVGA video signals
wire [10:0] hcount;
wire [9:0] vcount;
wire hsync,vsync,blank;
xvga xvgal(clock_65mhz,hcount,vcount,hsync,vsync,blank);

I/ feed XV GA signals to user's pong game
wire [7:0] pixel;
wire phsync,pvsync,pblank;

reg [7:0] rgb;
wire [7:0] red, green, blue; //8 bits of color info for r, g, and b limited however by
colorpalette in convert color module

convertcolor cnvrt(clock_65mhz, rgb, red, green, blue); //color palette lookup table

reg b,hs,vs;
always @(posedge clock_65mhz) begin
hs <= phsync;
VS <= pVSync;
b <= pblank;
rgb <= pixel;
end

/' VGA Output. In order to meet the setup and hold times of the
/Il AD7125, we send it ~clock_65mhz.

assign vga_out_red = red,;

assign vga_out_green = green;

assign vga_out_blue = blue;

assign vga_out_sync_b =1'b1; //notused

assign vga_out_blank_b = ~b;

assign vga_out_pixel_clock = ~clock_65mhz;

assign vga_out_hsync = hs;

assign vga_out_vsync = vs;

T
/l Koosh's Initialization code
NN

wire latch_reset; //output used to reset analog circuitry
assign userl = {latch_reset, 31'b0};
assign user2 = 32'hZ;

32

/linputs from outside world wired to outputs from latches
wire micl, mic2, mic3;

assign micl = user2[31];

assign mic2 = user2[30];

assign mic3 = user2[29];

wire mhz_enable;

/ldivider provides 2.7mhz signal for counter module
divider my_divider(clock_27mhz, mhz_enable);
/ldifferences in cycles for microphones

wire [11:0] deltal, delta2, delta3;

/Iready and reset signals

wire counter_ready, counter_reset, reset_Ic, x_steady, x_ready, data_ready, data_taken;

//differences in distance for microphones

wire [8:0] dO, d1, d2;

/linput and output for dart register

wire signed [8:0] y, x, x1, y1, X2, y2, X3, y3, steady_X, steady_vy;
/Ivalue of d

wire [9:0] d;

/Inumber of darts in dart_register

wire [1:0] dart_count;

/lthis module holds the latches and counter in reset for 1/3 secs
analog_latch_reset auto_reset(clock_27mhz, reset_Ic, latch_reset, counter_reset);

//counter counts cycles between mic detection

counter count_fsm(clock_27mhz, mhz_enable, counter_reset, micl, mic2, mic3, deltal,

delta2, delta3, counter_ready);

/lconverts cycles to distance by shifting bits
cycles to_mm convert_cycles(deltal, delta2, delta3, doO, d1, d2);

/lcalculates d, distance to closest microphone, given three differences in distances
calc_d calculate_distance(d0, d1, d2, d, clock_27mhz);

//calulated y position of dart
calc_y calculate_y coord(d0, d1, d2, d, y, clock_27mhz);

//calculates x position of dart
calc_x calculate_x_coord(d0, d1, d2, d, y, X, clock_27mhz, x_ready);

/lprovides ready signal for x value, ensuring x is not changing
steady x_coord is_Xx_steady(clock_27mhz, counter_ready, x_ready, X, y, X_steady,
steady_x, steady_y);

//holds three darts in registers and asserts data_ready when three darts are stored

33

dart_register dart_reg(clock_27mhz, x_steady, X, y, X1, y1, X2, y2, x3, y3, reset_Ic,
data_ready, data_taken, dart_count);

//leds tied to mics to show detection of sound

assign led[0] = ~mic1l,;

assign led[1] = ~mic2;

assign led[2] = ~mic3;

assign led[3] = ~counter_ready;

assign led[4] = ~data_ready;

/llets us know how many darts are currently stored in register
/Ihelps recognize noise or missed darts

assign led[7:6] = ~dart_count;

//debug output from display logic

wire signed [9:0] outx1, outx2, outx3, outyl, outy2, outy3;
/lassign 4 digits of the hex display at a time to different values
wire signed [63:0] hex_out;

assign hex_out[63:48] = steady_x;

assign hex_out[47:32] = steady y;

assign hex_out[31:16] = outx3;

assign hex_out[15:0] = outy3;

display_16hex hexdispl(button_3, clock _27mhz, hex_out,
disp_blank, disp_clock, disp_rs, disp_ce_b,
disp_reset_b, disp_data_out);

I
/I Mike's code
i

/[PRIMARY DISPLAY MODULE
dbdisplay boarddisplay(clock_65mhz,reset,b0,up,down,left, right,switch[7:5],
hcount,vcount,hsync,vsync,blank,
phsync,pvsync,pblank,pixel, switch[0], x1, y1, X2, y2, X3, y3,
data_ready, data_taken, outx1, outx2, outx3, outyl, outy2, outy3);

endmodule

HHHHHTH T
I

34

Il xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)
1
T |

module xvga(vclock,hcount,vcount,hsync,vsync,blank);
input vclock;
output [10:0] hcount;
output [9:0] vcount;

output VSYNc;
output hsync;
output blank;

reg hsync,vsync,hblank,vblank,blank;
reg [10:0] hcount; // pixel number on current line
reg [9:0] vcount; I line number

I/ horizontal: 1344 pixels total

/I display 1024 pixels per line

wire hsyncon,hsyncoff,hreset,hblankon;
assign hblankon = (hcount == 1023);
assign hsyncon = (hcount == 1047);,
assign hsyncoff = (hcount == 1183);
assign hreset = (hcount == 1343);

/I vertical: 806 lines total

/ display 768 lines

wire vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount == 767);
assign vsyncon = hreset & (vcount == 776);
assign vsyncoff = hreset & (vcount == 782);
assign vreset = hreset & (vcount == 805);

// sync and blanking
wire next_hblank,next_vblank;
assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
always @ (posedge vclock) begin

hcount <= hreset ? 0 : hcount + 1;

hblank <= next_hblank;

hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

veount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
vblank <= next_vblank;
vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

blank <= next_vblank | (next_hblank & ~hreset);

end
endmodule

U |

1

// dbdisplay: Main display module, puts text, images and darts on screen
/[also performs dart correction

I

/I Implementation By Michael Ehrenberg

I

1

U |

module dbdisplay (vclock,reset,enter, up,down, left, right,dartcorrection,
hcount,vcount,hsync,vsync,blank,
phsync,pvsync,pblank,pixel,gamechoice,
kooshx1, kooshy1, kooshx2, kooshy2, kooshx3,
kooshy3, data_ready, data_taken, x1, x2, X3, y1, y2, y3);

input vclock; / 65MHz clock
input reset; /' 1 to reset module
input enter; // maps to buttonO - indicates when to combine all three darts and

subtract from score
input [10:0] hcount; // horizontal index of current pixel (0..1023)

input [9:0] vcount; /[vertical index of current pixel (0..767)
input hsync; /I XVGA horizontal sync signal (active low)
input vsync; Il XVGA vertical sync signal (active low)

input blank; /I XVVGA blanking (1 means output black pixel)
input up; /I 1 when correct dart upwards

input down; /I '1 when correct dart downwards

input left; /I 1 when correct dart left

input right; /I 1 when correct dart right

input [2:0] dartcorrection; // indicates which dart to correct: 100 - dart 1, 010 - dart 2,
001 - dart 3

input gamechoice; //301=0,601=1

input signed [8:0] kooshx1, kooshx2, kooshx3, kooshy1, kooshy2, kooshy3; //dart
inputs from hardware

input data_ready; /lready signal to indicate dart coordinates are ready

output data_taken; /Iset to 1 after display has put dart coordinate values into
registers

output phsync; /I dartboard's horizontal sync

output pvsync; /I dartboard's vertical sync

output pblank; /I dartboard's blanking
output [7:0] pixel; // dartboard's pixel
output signed [9:0] x1, X2, x3, y1, y2, y3;

36

parameter screen_width = 1023; //screen width

parameter screen_height = 767, /Iscreen height

parameter dartboard_height = 453; //dartboard image height

parameter dartboard width = 456; //dartboard image width - 456 because 3 bits

of padded data added to bitmap

parameter center_image = 261, //center dartboard image by this
many pixels from left

parameter centerxy = 226; /[center of dartboard image

parameter imagearea = 206568; /ltotal number of pixels in dartboard
image 453x456

koosh

board

reg signed [9:0] x1, x2, x3, y1, y2, y3; //dart coordinate registers
wire data_ready;
reg data_taken;

reg [7:0] pixel = 8011111111, //default pixel values
reg [7:0] pixel_delay = 8011111111,
reg [7:0] pixel_delay2 = 8'011111111;

wire [7:0] dbout; [Iwire from dartboard image ROM
reg [17:0] addr = 0; /laddress for dartboard image ROM
/lreg signed[9:0] x1 = 15; /[Test dart data used before integration with

/lreg signed[9:0] y1 = 55;

/reg signed[9:0] x2 = 100;
/reg signed[9:0] y2 = 100;
/reg signed[9:0] x3 = -100;
/reg signed[9:0] y3 = 100;

wire [63:0] scoreltemp, score2temp, score3temp; //temporary scores

wire rdy1, rdy2, rdy3;

wire [2:0] tpixel7, tpixel8, tpixel9; //individual dart score text pixels
parameter[10:0] cx7 = 200; /llocations of individual dart scores below

parameter[9:0] cy7 =500;
parameter[10:0] cx8 = 350;
parameter[9:0] cy8 =500;
parameter[10:0] cx9 = 500;
parameter[9:0] cy9 = 500;
wire[2:0] dartl, dart2, dart3;

parameter[10:0] cx1 = 40;

37

parameter[9:0] cyl = 10; /IPLAYER 1
parameter[10:0] cx2 = 20;

parameter[9:0] cy2 = 40; /11301

parameter[10:0] cx3 = 800;

parameter[9:0] cy3 = 10; /IPLAYER 2
parameter[10:0] cx4 = 780;

parameter[9:0] cy4 = 40; /11301

parameter[10:0] cx5 = 40;

parameter[9:0] cy5 = 50; /[UNDERLINES
parameter[10:0] cx6 = 800;

parameter[9:0] cy6 = 50; /[UNDERLINES
wire[2:0] tpixell,; Itext pixels for game text

wire[2:0] tpixel2;
wire[2:0] tpixel3;
wire[2:0] tpixel4;
wire[2:0] tpixel5;
wire[2:0] tpixel6;

wire [63:0] cstringl = "PLAYER 1";
reg [23:0] cstring2 = "301";
wire [63:0] cstring3 = "PLAYER 2";

wire [63:0] cstring4 =" ;

reg prev_vsync = 1; //used to determine falling edge of vsync
reg old_enter = 0; /lused to determine rising edge of enter button

/1301 GAME
reg [63:0] scorel, score2, score3; //ascii score of individual darts
wire [31:0] netscorel, netscore2; //ascii score of playerl and player2

parameter[10:0] gamex1 = 20; //P1 SCORE location
parameter[9:0] gameyl = 80;
parameter[10:0] gamex2 = 780; /P2 SCORE location

parameter[9:0] gamey2 = 80;

wire[2:0] tpixelpls, tpixelp2s;

wire tempdoublel, tempdouble2, tempdouble3;
reg doublel, double2, double3;

reg ce = 1; /lclock enable for dartscore
reg [7:0] dbpic_latchl, dbpic_latch2;

wire turn; //0-playerl, 1- player2
wire turnpixel,

reg [9:0] turnx = 20; /fturnblob coordinates

reg [10:0] turny = 40;

always @ (posedge vclock) begin

38

old_enter <= enter; /Istore previous enter button press to determing rising

edge

prev_vsync <= vsync; //store previous sync - used to determine falling edge of
vsync

ce <=0;

pixel <= dbpic_latch2; //Attempt to eliminate dbpicture glitching by

latching image pixel
dbpic_latch2 <= dbpic_latch1;

data_taken <=0;

if (gamechoice) //determine 301 vs. 601 on display based on
switch[0]
cstring2 <="601";
else if (gamechoice)
cstring2 <= "301";

if (reset) begin
addr <=0;
ce<=1,;
turnx <= 20;
turny <= 40;
end

/IDISPLAY DARTBOARD, DARTS, AND TEXT
else if (vcount < dartboard_height && hcount > center_image && hcount <
dartboard_width + center_image) begin
if (dartl >0 || dart2 > 0 || dart3 > 0) begin
dbpic_latchl <=8'h00100111; //display orange

darts
end
else begin
dbpic_latchl <= dbout; /ldisplay
dartboard image
end

/ladjust address to compensate for different arrangement of pixels
in memory
addr <= vcount*dartboard_width + (dartboard_width-1 +
center_image - hcount);
end
else begin
dbpic_latchl <=8'h11111100 | tpixell | tpixel2 | tpixel3 | tpixel4
|tpixel5 | tpixel6 | tpixel7 | tpixel8 | tpixel9 | tpixelpls | tpixelp2s | turnpixel;

39

if (addr >= imagearea-1)
addr <=0;
end

//ICONVERT KOOSH's DATA POINTS to my coordinate system 0,0 at top left

corner as opposed to bottom left

if (data_ready) begin
x1 <= {kooshx1[8], kooshx1};
x2 <= {kooshx2[8], kooshx2};
x3 <= {kooshx3[8], kooshx3};
y1 <= ~{kooshy1[8], kooshy1} + 1;
y2 <= ~{kooshy2[8], kooshy2} + 1;
y3 <= ~{kooshy3[8], kooshy3} + 1;
data_taken <=1;

end

[ICOUNT UP SCORES FROM INDIVIDUAL DARTS AND SUBMIT TO

GAME LOGIC
else if (enter && 'old_enter) begin
scorel <= scoreltemp;
score2 <= score2temp;
score3 <= score3temp;
doublel <= tempdoublel,;
double2 <= tempdouble2;
double3 <= tempdouble3;
if (turn) begin
turnx <= 770;
turny <= 40;
end
else if (turn) begin
turnx <= 20;
turny <= 40;
end
end
[/[CORRECT MISPLACED DARTS

else if ('vsync && prev_vsync && dartcorrection == 3'b100) begin

ce<=1;

if (up)

yl<=yl-1,;
else if (down)

yl<=yl +1;
else if (left)

Xxl<=x1-1;
else if (right)

x1l<=x1+1;

end

else if ('vsync && prev_vsync && dartcorrection == 3'n010)

40

begin

ce<=1;
if (up)
y2<=y2-1,
else if (down)
y2<=y2+ 1,
else if (left)
X2 <=x2-1;
else if (right)
X2 <=x2 +1,
end
else if ('vsync && prev_vsync && dartcorrection == 3'n001)
begin
ce<=1;
if (up)
y3<=y3-1,
else if (down)
y3<=y3+1,;
else if (left)
x3<=x3 -1,
else if (right)
x3<=x3 +1,
end

end

assign phsync = hsync;
assign pvsync = vsync;
assign pblank = blank;

colordb image_reader(imagearea-1 - addr, vclock, dbout);

//dart display modules

dartblob d1(x1+centerxy,yl+centerxy,hcount-center_image,vcount,dartl)
dartblob d2(x2+centerxy,y2+centerxy,hcount-center_image,vcount,dart2)
dartblob d3(x3+centerxy,y3+centerxy,hcount-center_image,vcount,dart3);

/ltext display modules

char_string_display text1(vclock,hcount,vcount,tpixell,cstringl,cx1,cyl);
char_string_display text2(vclock,hcount,vcount,tpixel2,cstring2,cx2,cy?2);
char_string_display text3(vclock,hcount,vcount,tpixel3,cstring3,cx3,cy3);
char_string_display text4(vclock,hcount,vcount,tpixel4,cstring2,cx4,cy4);
char_string_display text5(vclock,hcount,vcount,tpixel5,cstring4,cx5,cy5);
char_string_display text6(vclock,hcount,vcount,tpixel6,cstring4,cx6,cy6);
char_string_display scoretext1(vclock,hcount,vcount,tpixel7,scoreltemp,cx7,cy7);

41

char_string_display scoretext2(vclock,hcount,vcount,tpixel8,score2temp,cx8,cy8);
char_string_display scoretext3(vclock,hcount,vcount,tpixel9,score3temp,cx9,cy9);

/lreturns scores of individual darts

dartscore dartscorel (vclock, ce, x1, y1, rdy1, scoreltemp, tempdoublel);
dartscore dartscore2 (vclock, ce, X2, y2, rdy2, score2temp, tempdouble2);
dartscore dartscore3 (vclock, ce, x3, y3, rdy3, score3temp, tempdouble3);

11301 GAME

/Iplayer 1 and player 2 scores

char_string_display
playerlscore(vclock,hcount,vcount,tpixelpls,netscorel,gamex1,gameyl);

char_string_display
player2score(vclock,hcount,vcount,tpixelp2s,netscore2,gamex2,gamey?2);

game301 gamel(vclock, reset, scorel, score2, score3, doublel, double2, double3,
netscorel, netscore2, enter, turn, gamechoice);

turnblob turn_indicator(turnx,turny,hcount,vcount,turnpixel);

endmodule

U
1
// Dart Blob: Places a dart at an x and y coordinate on screen
1
T
module dartblob(x,y,hcount,vcount,pixel);
parameter WIDTH = 4; // default width: 8 pixels...4 pixels to center
parameter HEIGHT = 4; // default height: 8 pixels
parameter COLOR = 3'b111; // default color: blue
input signed[9:0] x;
input [10:0] hcount;
input signed[9:0] y;
input [9:0] vcount;
output [2:0] pixel;
reg [2:0] pixel;

always @ (x or y or hcount or vcount) begin
if (hcount >= x-WIDTH && hcount < (x+WIDTH)) &&
(veount >= y-HEIGHT && vcount < (y+HEIGHT)))
pixel = COLOR;
else pixel =0;

42

end
endmodule
T
I
/[Turn Blob: Places a turn indicator at an x and y coordinate
I turn indicator shows if it is playerl turn or player2 turn
1
U
module turnblob(x,y,hcount,vcount,pixel);
parameter WIDTH = 16; // default width: 8 pixels
parameter HEIGHT = 16; // default height: 8 pixels
parameter COLOR = 3'b111; // default color: red
input [9:0] x;
input [10:0] hcount;
input [9:0] v;
input [9:0] vcount;
output [2:0] pixel;
reg [2:0] pixel;

always @ (x or y or hcount or vcount) begin
if ((hcount >= x-WIDTH && hcount < (x+WIDTH)) &&
(veount >= y-HEIGHT && vcount < (y+HEIGHT)))
pixel = COLOR,;
else pixel = 0;
end
endmodule

T |

1

I/l 'Score Module: Converts x-y coordinates to polar coordinates and returns ascii value
1

T |

module dartscore(vclock, ce, X, y, rdy, score, double);

input vclock; 1165 MHz clock

input signed [9:0] x; //Between -230 and 230

input signed [9:0] y; //Between -230 and 230

input ce; /lclock enabled if 1

output rdy; /11 - output read

output [63:0] score; //ascii score between 0 and 60. uses low
order bits unless "NO SCORE"

output double; /11 - in double scoring region

wire signed [9:0] theta, r; /Ipolar coordinates between -1 and 1 in

20N decimal format
wire signed [9:0] x, y;
reg signed [9:0] invtheta; /12's complement of theta
reg [63:0] score; //ascii score

43

reg double;
wire rdy;

/Iparameters indicate score boundaries on actual dartboard as decimals

/loutput theta between -1 and 1 so each boundary is .1 wide

/[format is high order bit sign, second and third high order bits integers all others
decimal

parameter [9:0]theta0 = 10'b0000000000; //0.0

parameter [9:0]theta5 = 10'b0000000110; //.05

parameter [9:0]thetal5 = 10'b0000010100; //.15
parameter [9:0]theta25 = 10'b0000100000; //.25
parameter [9:0]theta35 = 10'b0000101100; //.35
parameter [9:0]theta45 = 10'b0000111010; //.45
parameter [9:0]theta55 = 10'b0001000110; //.55
parameter [9:0]theta65 = 10'00001010100; //.65
parameter [9:0]theta75 = 10'b0001100000; //.75
parameter [9:0]theta85 = 10'00001101100; //.85
parameter [9:0]theta95 = 10'b0001111010; //.95
parameter [9:0]thetal = 10'00010000000; //1.0

always @ (posedge vclock) begin
if (ce) begin

//IORDER OF IF STATEMENTS STARTS WITH 0 DEGREES AND
CONTINUES CCW
if (r<=170) begin //if dart is on the board
double <= 0;
invtheta <= ~theta + 1;
if (r <=7) begin //double bullseye
score <= "50";
double <=1;
end
else if (r > 7 && r <=16) //single bullseye
score <= "25";
else if (theta > thetaO && theta < theta5) begin /[Bottom
Half Of Board
if (r>=99 && r<=107) [[triple
score <= "18";
else if (r >= 162 && r<=170) begin //double
score <= "12";
double <= 1;
end
else /lsingle

44

score <="06";
end
else if (theta >= theta5 && theta < thetal5)begin
if (r>=99 && r<=107) [[triple

score <="30";
else if (r >= 162 && r<=170) begin //double
score <="20";
double <=1,
end
else /single
score <="10";
end

else if (theta >= thetal5 && theta < theta25)begin
if (r>=99 && r<=107) [[triple

score <= "45";

else if (r >= 162 && r<=170) begin //double
score <="30";
double <=1;

end

else /single
score <="15";

end

else if (theta >= theta25 && theta < theta35) begin
if (r>=99 && r<=107) [triple

score <="06";

else if (r >= 162 && r<=170) begin

/[double

score <="04";
double <=1,

end

else /single
score <="02";

end

else if (theta >= theta35 && theta < theta45)

begin

if (r>=99 && r<=107) [[triple
score <= "51";

else if (r >= 162 && r<=170) begin //double
score <= "34";
double <= 1;

end

else /lsingle
score <="17";

end

else if (theta >= theta45 && theta < theta55)begin
if (r>=99 && r<=107) [[triple

45

score <="09";
else if (r >= 162 && r<= 170)begin //double

score <="06";
double <=1,
end
else /single
score <="03";
end
else if (theta >= theta55 && theta < theta65)
begin
if (r>=99 && r<=107) [Itriple
score <="57";
else if (r >= 162 && r<=170) begin //double
score <= "38";
double <=1,
end
else /single
score <="19";
end
else if (theta >= theta65 && theta < theta75)
begin
if (r>=99 && r<=107) [[triple
score <="21";
else if (r >= 162 && r<=170) begin //double
score <= "14";
double <=1,
end
else /lsingle
score <="07";
end
else if (theta >= theta75 && theta < theta85)
begin
if (r>=99 && r<=107) Iltriple
score <= "48";
else if (r >= 162 && r<= 170)begin //double
score <="32";
double <=1,
end
else /single
score <="16";
end
else if (theta >= theta85 && theta < theta95)
begin
if (r>=99 && r<=107) [[triple
score <= "24";
else if (r >= 162 && r<=170) begin //double

46

score <= "16",

double <=1;

end

else /single
score <="08";

end

else if (theta >= theta95 && theta < thetal)

begin

if (r>=99 && r<=107) [Itriple
score <="33";

else if (r >= 162 && r<=170) begin //double
score <="22":
double <=1,

end

else /single
score <="11",

end

else if (invtheta >= theta0 && invtheta < thetab) /[Top Half Of
Board

begin

if (r>=99 && r<=107) [ltriple
score <="18";

else if (r >= 162 && r<=170) begin //double
score <= "12";
double <=1,

end

else /lsingle
score <= "06";

end

else if (invtheta >= theta5 && invtheta < thetalb)

begin

if (r>=99 && r<=107) Iltriple
score <="39";

else if (r >= 162 && r<=170) begin //double
score <="26";
double <=1,

end

else /single
score <="13";

end

else if (invtheta >= thetal5 && invtheta < theta25)

begin

if (r>=99 && r<=107) [[triple
score <= "12";

else if (r >= 162 && r<=170) begin //double

47

score <="08";
double <=1,
end
else /single
score <="04";
end
else if (invtheta >= theta25 && invtheta < theta35)
begin
if (r>=99 && r<=107) [Itriple
score <= "54";
else if (r >= 162 && r<=170) begin //double
score <= "36";
double <=1,
end
else /single
score <="18";
end
else if (invtheta >= theta35 && invtheta < theta4b)
begin
if (r>=99 && r<=107) [triple
score <= "03"
else if (r >= 162 && r<=170) begin //double
score <="02";
double <=1,
end
else /single
score <="01";
end
else if (invtheta >= thetad5 && invtheta < theta55)
begin
if (r>=99 && r<=107) Iftriple
score <="60";
else if (r >= 162 && r<=170) begin //double
score <="40";
double <=1,
end
else /single
score <="20",
end
else if (invtheta >= theta55 && invtheta < theta65)
begin
if (r>=99 && r<=107) [[triple
score <= "15";
else if (r >= 162 && r<=170) begin //double
score <= "10";
double <=1;

48

end
else /single
score <="05";
end
else if (invtheta >= theta65 && invtheta < theta75)
begin
if (r>=99 && r<=107) [Itriple
score <= "36";
else if (r >= 162 && r<=170) begin //double
score <="24";
double <=1,
end
else /single
score <="12";
end
else if (invtheta >= theta75 && invtheta < theta85)
begin
if (r>=99 && r<=107) [triple
score <="27";
else if (r >= 162 && r<=170) begin //double
score <= "18",
double <=1,
end
else /single
score <= "09";
end
else if (invtheta >= theta85 && invtheta < theta95)
begin
if (r>=99 && r<=107) Iftriple
score <= "42";
else if (r >= 162 && r<=170) begin //double
score <= "28",
double <=1,
end
else /single
score <= "14";
end
else if (invtheta >= theta95 && invtheta <= thetal)
begin
if (r>=99 && r<=107) [[triple
score <= "33";
else if (r >= 162 && r<=170) begin //double
score <="22";
double <= 1;
end
else /lsingle

49

score <="11";

end
else
score <= "NO SCORE™";
end
else
score <="NO SCORE";
end
end

polargen convertl(x, y, vclock, ce, r, theta, rdy); //converts X,y to r, theta

endmodule

T T T

1

/ game301: Maintains state of 301 game. Enforces

I double in and double out rules. Outputs

I ascii score of playerl and player2 in addition
I to whose turn it currently is.

1

M|
module game301(vclock, reset, scorel, score2, score3, doublel, double2, double3,
netscorel, netscore2, enter, turn, gamechoice);

input vclock; /165 MHZ clock

input reset; Ireset

input [63:0] scorel, score2, score3; //input dart scores

input doublel, double2, double3; //double indicators- 1 in double region
0 not in double region

input enter; /lindicates when to update scores

input gamechoice; //0: 301, 1:601

output[31:0] netscorel; /Iplayerl ascii net score

output[31:0] netscore2; /Iplayerl ascii net score

output turn; /10 - playerl turn 1- player2 turn

reg [9:0] score = 0;

reg [9:0] playerscorel = 301,
reg [9:0] playerscore2 = 301,
reg scoreschanged = 0;

reg [9:0] maxscore = 301;
reg turn = 0;

reg playerlwin = 0;

reg player2win = 0;

reg bustl = 0;

reg bust2 = 0;

50

reg logic = 0;

reg old_enter = 0;
reg old_enter2 = 0;
wire [23:0] doutl;
wire [23:0] dout2;

always @ (posedge vclock) begin
old_enter2 <= enter;

old_enter <= old_enter2;

main module

if (gamechoice && !scoreschanged)begin

end

else if ('gamechoice && !scoreschanged)begin

end

if (reset)

end

playerscorel <= 601;
playerscore2 <= 601;
maxscore <= 601,

playerscorel <= 301;
playerscore2 <= 301;
maxscore <= 301,

begin

if ('"gamechoice) begin
playerscorel <= 301;
playerscore2 <= 301;
maxscore <= 301,

end

else if (gamechoice) begin
playerscorel <= 601;
playerscore2 <= 601;
maxscore <= 601,

end

turn <=0;

score <= 0;
playerlwin <= 0;
player2win <= 0;
bustl <=0;

bust2 <= 0;

logic <= 0;
old_enter <=0;
old_enter2 <= 0;
scoreschanged <= 0;

//Need 2 due to two clock cycle delay from

51

else if (old_enter2 && 'old_enter && (('turn && playerscorel == maxscore) ||
(turn && playerscore2 == maxscore))) begin //PLAYER1 NEEDS TO DOUBLE
IN
logic <=1;
if (scorel == "NO SCORE" && score2 == "NO SCORE" &&
score3 == "NO SCORE")

score <= 0;
else if (!doublel && 'double2 && !double3)
score <= 0;
else if (scorel == "NO SCORE" && score2 == "NO SCORE"
&& double3)
score <= score3[7:0] - 48 + 10*(score3[15:8] - 48);
else if (score2 =="NO SCORE" && score3 =="NO SCORE"
&& doublel)
score <= scorel[7:0] - 48 + 10*(scorel[15:8] - 48);
else if (scorel == "NO SCORE" && score3 == "NO SCORE"
&& double?)

score <= score2[7:0] - 48 + 10*(score2[15:8] - 48);
else if (scorel == "NO SCORE" && double2)
score <= score2[7:0] - 48 + 10*(score2[15:8] - 48) + score3[7:0]
- 48 + 10*(score3[15:8] - 48);
else if (scorel == "NO SCORE" && double3)
score <= score3[7:0] - 48 + 10*(score3[15:8] - 48);
else if (score2 == "NO SCORE" && doublel)
score <=scorel[7:0] - 48 + 10*(scorel[15:8] - 48) + score3[7:0]
- 48 + 10*(score3[15:8] - 48);
else if (score2 == "NO SCORE" && double3)
score <= score3[7:0] - 48 + 10*(score3[15:8] - 48);

else if (score3 == "NO SCORE" && doublel)
score <= scorel[7:0] - 48 + 10*(scorel[15:8] - 48) + score2[7:0]
- 48 + 10*(score2[15:8] - 48);
else if (score3 == "NO SCORE" && double2)
score <= score2[7:0] - 48 + 10*(score2[15:8] - 48);

else if (doublel)
score <= scorel[7:0] - 48 + 10*(scorel[15:8] - 48)+ score2[7:0]
- 48 + 10*(score2[15:8] - 48) + score3[7:0] - 48 + 10*(score3[15:8] - 48);
else if (double2)
score <= score2[7:0] - 48 + 10*(score2[15:8] - 48) + score3[7:0]
- 48 + 10*(score3[15:8] - 48);
else if (double3)
score <= score3[7:0] - 48 + 10*(score3[15:8] - 48);
else
score <= 0;
end

52

/l[F PLAYER HAS ALREADY DOUBLED IN
else if (old_enter2 && 'old_enter && ((!turn && playerscorel <
maxscore) || (turn && playerscore2 < maxscore))) begin
logic <=1;
if (scorel == "NO SCORE" && score2 == "NO SCORE" &&
score3 == "NO SCORE")
score <= 0;
else if (scorel == "NO SCORE" && score2 =="NO SCORE")
score <= score3[7:0] - 48 + 10*(score3[15:8] - 48);
else if (score2 == "NO SCORE" && score3 =="NO SCORE")
score <= scorel[7:0] - 48 + 10*(scorel[15:8] - 48);
else if (scorel == "NO SCORE" && score3 =="NO SCORE")
score <= score2[7:0] - 48 + 10*(score2[15:8] - 48);
else if (scorel =="NO SCORE")
score <= score2[7:0] - 48 + 10*(score2[15:8] - 48) + score3[7:0]
- 48 + 10*(score3[15:8] - 48);
else if (score2 =="NO SCORE")
score <=scorel[7:0] - 48 + 10*(scorel[15:8] - 48) + score3[7:0]
- 48 + 10*(score3[15:8] - 48);
else if (score3 =="NO SCORE")
score <= scorel[7:0] - 48 + 10*(score1[15:8] - 48) + score2[7:0]
- 48 + 10*(score2[15:8] - 48);
else
score <= scorel[7:0] - 48 + 10*(scorel[15:8] - 48)+ score2[7:0]
- 48 + 10*(score2[15:8] - 48) + score3[7:0] - 48 + 10*(score3[15:8] - 48);

end
//UPDATE SCORES
if (logic && !'playerlwin && !player2win) begin
logic <= 0;
scoreschanged <= 1;
if (turn && score < playerscorel - 1) begin -1
because a 1 is a bust
playerscorel <= playerscorel - score;
bustl <=0;
bust2 <= 0;
turn <=turn + 1,
end
else if ('turn && score == playerscorel && ((doublel && score2
=="NO SCORE" && score3 == "NO SCORE") || (double2 && score3 == "NO
SCORE") || double3)) begin
playerscorel <= 0;
playerlwin <=1;
bustl <= 0;
bust2 <=0;
turn <=turn + 1;

53

end
else if ('turn && (score > playerscorel - 1 || !(score ==
playerscorel && ((doublel && score2 == "NO SCORE" && score3 == "NO SCORE")
|| (double2 && score3 == "NO SCORE") || double3)))) begin -1
because a 1 is a bust
bustl <=1,
bust2 <= 0;
turn <=turn + 1,
end
else if (turn && score < playerscore2 - 1)begin
playerscore2 <= playerscore2 - score;
bustl <= 0;
bust2 <= 0;
turn <=turn + 1,
end
else if (turn && score == playerscore2 && ((doublel && score2
=="NO SCORE" && score3 == "NO SCORE") || (double2 && score3 == "NO
SCORE") || double3)) begin
playerscore2 <= 0;
player2win <=1,
bustl <= 0;
bust2 <= 0;
turn <=turn + 1;
end
else if (turn && (score > playerscore2 - 1 || !(score ==
playerscore2 && ((doublel && score2 =="NO SCORE" && score3 =="NO SCORE")
|| (double2 && score3 == "NO SCORE") || double3))))begin

bustl <=0;
bust2 <=1;
turn <=turn + 1;
end
end
end

/loutput netscore or "WIN" or "BUST" if player has gone below zero

assign netscorel = (bustl) ? "BUST" : (playerlwin) ? "WIN" : {8'b00000000,
doutl};

assign netscore2 = (bust2) ? "BUST" : (player2win) ? "WIN" : {8'b00000000,
dout2};

/ILUT converts binary to ascii net score

numtotext numZ1(vclock, playerscorel, doutl);
numtotext num2(vclock, playerscore2, dout2);

54

endmodule

T ||
1

I/l Convert 8 bit bitmap color palette LUT

1

1
T |
module convertcolor(vclock, rgb, r, g, b);

input vclock;

input [7:0] rgb;

output [7:0] r, g, b;

reg [7:0] r, g, b;

always @ (posedge vclock) begin

case(rgb)

0: beginb <=0; g<=0; r<=0; end

: beginb <=0; g<=0; r<=128;end
: begin b <=0; g <=128; r <=0;end
: begin b <=0; g <= 128; r <= 128;end
: begin b <=128; g <=0; r <= 0;end
: begin b <=128; g <=0; r <=128;end
: begin b <=128; g <= 128; r <= 0;end
: begin b <=192; g <=192; r <=192;end
- begin b <=192; g <= 220; r <= 192;end
- begin b <= 240; g <= 202; r <= 166;end
10: begin b <=0; g <= 32; r <= 64;end
11: begin b <=0; g <= 32; r <= 96;end
12: begin b <= 0; g <= 32; r <= 128;end
13: begin b <=0; g <= 32; r <= 160;end
14: begin b <= 0; g <= 32; r <= 192;end
15: begin b <= 0; g <= 32; r <= 224;end
16: begin b <= 0; g <= 64; r <= 0;end
17: begin b <=0; g <= 64, r <= 32;end
18: begin b <= 0; g <= 64; r <= 64;end
19: begin b <=0; g <= 64, r <= 96;end
20: begin b <= 0; g <= 64; r <= 128;end
21: begin b <= 0; g <= 64; r <= 160;end
22: begin b <=0; g <= 64; r <= 192;end
23: begin b <=0; g <=64; r <= 224;end

OCoO~NOoO U WN P

55

24
25.
26:
27.
28:
29:
30:
31:
32:
33:
34.
35:
36:
37.
38:
39:
40:
41.
42:
43:
44
45:
46:
47.
48:
49:
50:
51:
52:
53:
54.
55:
56:
57:
58:
59:
60:
61:
62:
63:
64.
65:
66:
67:
68:
69:

begin b <=0; g <= 96; r <= 0;end
begin b <=0; g <= 96; r <= 32;end
begin b <=0; g <=96; r <= 64;end
begin b <=0; g <= 96; r <= 96;end
begin b <= 0; g <= 96; r <= 128;end
begin b <=0; g <= 96; r <= 160;end
begin b <=0; g <=96; r <= 192;end
begin b <=0; g <= 96; r <= 224;end
begin b <=0; g <=128; r <= 0;end
begin b <=0; g <=128; r <= 32;end
begin b <=0; g <=128; r <= 64;end
begin b <=0; g <=128; r <= 96;end
begin b <=0; g <=128; r <= 128;end
begin b <=0; g <= 128; r <= 160;end
begin b <=0; g <=128; r <= 192;end
begin b <=0; g <= 128; r <= 224;end
begin b <= 0; g <= 160; r <= 0;end
begin b <=0; g <= 160; r <= 32;end
begin b <=0; g <= 160; r <= 64;end
begin b <=0; g <= 160; r <= 96;end
begin b <=0; g <= 160; r <= 128;end
begin b <=0; g <= 160; r <= 160;end
begin b <=0; g <= 160; r <= 192;end
begin b <=0; g <= 160; r <= 224;end
begin b <=0; g <=192; r <= 0;end
begin b <=0; g <=192; r <= 32;end
begin b <= 0; g <=192; r <= 64;end
begin b <=0; g <=192; r <= 96;end
begin b <=0; g <= 192; r <= 128;end
begin b <=0; g <=192; r <= 160;end
begin b <=0; g <= 192; r <= 192;end
begin b <=0; g <=192; r <= 224;end
begin b <=0; g <= 224; r <= 0;end
begin b <= 0; g <= 224; r <= 32;end
begin b <= 0; g <= 224; r <= 64;end
begin b <= 0; g <= 224; r <= 96;end
begin b <=0; g <= 224; r <= 128;end
begin b <= 0; g <= 224; r <= 160;end
begin b <=0; g <= 224; r <= 192;end
begin b <= 0; g <= 224; r <= 224;end
begin b <= 64; g <=0; r<=0;end
begin b <=64; g <=0; r <= 32;end
begin b <= 64; g <= 0; r <= 64;end
begin b <=64; g <=0; r <= 96;end
begin b <= 64; g <= 0; r <= 128;end
begin b <= 64; g <=0; r <= 160;end

56

70: begin b <=64; g <=0; r <=192;end
71: begin b <= 64; g <= 0; r <= 224;end
72: begin b <=64; g <=32; r<=0;end

73: begin b <= 64; g <= 32; r<=32;end
74: begin b <= 64; g <= 32; r <= 64;end
75: begin b <= 64; g <= 32; r <= 96;end
76: begin b <= 64; g <= 32; r <= 128;end
77: begin b <= 64; g <= 32; r <= 160;end
78: begin b <= 64; g <= 32; r<=192;end
79: begin b <= 64; g <= 32; r <= 224;end
80: begin b <=64; g <= 64; r <= 0;end

81: begin b <=64; g <= 64; r <= 32;end
82: begin b <=64; g <= 64, r <= 64;end
83: begin b <= 64; g <= 64; r <= 96;end
84: begin b <= 64; g <= 64, r <= 128;end
85: begin b <= 64; g <= 64; r <= 160;end
86: begin b <= 64; g <= 64; r <= 192;end
87: begin b <= 64; g <= 64; r <= 224;end
88: begin b <=64; g <= 96; r <= 0;end

89: begin b <= 64; g <= 96; r <= 32;end
90: begin b <= 64; g <= 96; r <= 64;end
91: begin b <= 64; g <= 96; r <= 96;end
92: begin b <= 64; g <= 96; r <= 128;end
93: begin b <= 64; g <= 96; r <= 160;end
94: begin b <= 64; g <= 96; r <= 192;end
95: begin b <= 64; g <= 96; r <= 224;end
96: begin b <= 64; g <= 128; r <= 0;end
97: begin b <=64; g <= 128; r <= 32;end
98: begin b <= 64; g <= 128; r <= 64;end
99: begin b <= 64; g <= 128; r <= 96;end
100: begin b <= 64; g <= 128; r <= 128;end
101: begin b <= 64; g <= 128; r <= 160;end
102: begin b <= 64; g <= 128; r <= 192;end
103: begin b <= 64; g <= 128; r <= 224;end
104: begin b <= 64; g <= 160; r <= 0;end
105: begin b <= 64; g <= 160; r <= 32;end
106: begin b <= 64; g <= 160; r <= 64;end
107: begin b <= 64; g <= 160; r <= 96;end
108: begin b <= 64; g <= 160; r <= 128;end
109: begin b <= 64; g <= 160; r <= 160;end
110: begin b <= 64; g <= 160; r <= 192;end
111: begin b <= 64; g <= 160; r <= 224;end
112: begin b <= 64; g <= 192; r <= 0;end
113: begin b <=64; g <= 192; r <= 32;end
114: begin b <= 64; g <= 192; r <= 64;end
115: begin b <= 64; g <= 192; r <= 96;end

116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141
142:
143:
144
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:

begin b <= 64; g <= 192; r <= 128;end
begin b <= 64; g <= 192; r <= 160;end
begin b <= 64; g <=192; r <= 192;end
begin b <= 64; g <= 192; r <= 224;end
begin b <= 64; g <= 224; r <= 0;end
begin b <= 64; g <= 224; r <= 32;end
begin b <= 64; g <= 224; r <= 64;end
begin b <= 64; g <= 224; r <= 96;end
begin b <= 64; g <= 224; r <= 128;end
begin b <= 64; g <= 224; r <= 160;end
begin b <= 64; g <= 224; r <= 192;end
begin b <= 64; g <= 224; r <= 224;end
begin b <= 128; g <=0; r <= 0;end
begin b <= 128; g <=0; r <= 32;end
begin b <=128; g <=0; r <= 64;end
begin b <= 128; g <=0; r <= 96;end
begin b <= 128; g <=0; r <= 128;end
begin b <= 128; g <=0; r <= 160;end
begin b <= 128; g <=0; r <= 192;end
begin b <= 128; g <=0; r <= 224;end
begin b <= 128; g <= 32; r <= 0;end
begin b <= 128; g <= 32; r <= 32;end
begin b <= 128; g <= 32; r <= 64;end
begin b <= 128; g <= 32; r <= 96;end
begin b <= 128; g <= 32; r <= 128;end
begin b <= 128; g <= 32; r <= 160;end
begin b <= 128; g <= 32; r <= 192;end
begin b <= 128; g <= 32; r <= 224;end
begin b <= 128; g <= 64; r <= 0;end
begin b <= 128; g <= 64; r <= 32;end
begin b <= 128; g <= 64; r <= 64;end
begin b <= 128; g <= 64; r <= 96;end
begin b <= 128; g <= 64; r <= 128;end
begin b <= 128; g <= 64; r <= 160;end
begin b <= 128; g <= 64; r <= 192;end
begin b <= 128; g <= 64; r <= 224;end
begin b <= 128; g <= 96; r <= 0;end
begin b <= 128; g <= 96; r <= 32;end
begin b <= 128; g <= 96; r <= 64;end
begin b <= 128; g <= 96; r <= 96;end
begin b <= 128; g <= 96; r <= 128;end
begin b <= 128; g <= 96; r <= 160;end
begin b <= 128; g <= 96; r <= 192;end
begin b <= 128; g <= 96; r <= 224;end
begin b <=128; g <= 128; r <= 0;end
begin b <= 128; g <= 128; r <= 32;end

58

162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194.
195:
196:
197:
198:
199:
200:
201:
202:
203:
204.
205:
206:
207:

begin b <= 128; g <= 128; r <= 64;end
begin b <= 128; g <= 128; r <= 96;end
begin b <= 128; g <=128; r <= 128;end
begin b <= 128; g <= 128; r <= 160;end
begin b <= 128; g <=128; r <= 192;end
begin b <= 128; g <=128; r <= 224;end
begin b <= 128; g <= 160; r <= 0;end
begin b <= 128; g <= 160; r <= 32;end
begin b <= 128; g <= 160; r <= 64;end
begin b <= 128; g <= 160; r <= 96;end
begin b <= 128; g <= 160; r <= 128;end
begin b <= 128; g <= 160; r <= 160;end
begin b <= 128; g <= 160; r <= 192;end
begin b <= 128; g <= 160; r <= 224;end
begin b <= 128; g <=192; r <= 0;end
begin b <= 128; g <=192; r <= 32;end
begin b <= 128; g <=192; r <= 64;end
begin b <= 128; g <=192; r <= 96;end
begin b <= 128; g <=192; r <= 128;end
begin b <= 128; g <=192; r <= 160;end
begin b <= 128; g <=192; r <= 192;end
begin b <= 128; g <=192; r <= 224;end
begin b <= 128; g <= 224; r <= 0;end
begin b <= 128; g <= 224; r <= 32;end
begin b <= 128; g <= 224; r <= 64;end
begin b <= 128; g <= 224; r <= 96;end
begin b <= 128; g <= 224; r <= 128;end
begin b <= 128; g <= 224; r <= 160;end
begin b <= 128; g <= 224; r <= 192;end
begin b <= 128; g <= 224; r <= 224;end
begin b <=192; g <= 0; r <= 0;end
begin b <=192; g <=0; r <= 32;end
begin b <=192; g <=0; r <= 64;end
begin b <=192; g <=0; r <= 96;end
begin b <=192; g <=0; r <= 128;end
begin b <=192; g <=0; r <= 160;end
begin b <=192; g <=0; r <= 192;end
begin b <=192; g <= 0; r <= 224;end
begin b <=192; g <= 32; r<=0;end
begin b <=192; g <= 32; r <= 32;end
begin b <=192; g <= 32; r <= 64;end
begin b <=192; g <= 32; r <= 96;end
begin b <= 192; g <= 32; r <= 128;end
begin b <= 192; g <= 32; r <= 160;end
begin b <=192; g <= 32; r <= 192;end
begin b <= 192; g <= 32; r <= 224;end

59

208:
209:
210:
211:
212:
213:
214.
215:
216:
217:
218:
219:
220:
221
222:
223:
224
225:
226:
227.
228:
229:
230:
231.
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244
245:
246:
247:
248:
249:
250:
251:
252:
253:

begin b <=192; g <=64; r <= 0;end
begin b <= 192; g <=64; r <= 32;end
begin b <= 192; g <= 64; r <= 64;end
begin b <= 192; g <= 64; r <= 96;end
begin b <= 192; g <= 64; r <= 128;end
begin b <= 192; g <= 64; r <= 160;end
begin b <=192; g <= 64; r <= 192;end
begin b <= 192; g <= 64; r <= 224;end
begin b <=192; g <= 96; r <= 0;end
begin b <= 192; g <= 96; r <= 32;end
begin b <= 192; g <= 96; r <= 64;end
begin b <= 192; g <= 96; r <= 96;end
begin b <= 192; g <= 96; r <= 128;end
begin b <= 192; g <= 96; r <= 160;end
begin b <=192; g <= 96; r <= 192;end
begin b <= 192; g <= 96; r <= 224;end
begin b <=192; g <=128; r <= 0;end
begin b <= 192; g <= 128; r <= 32;end
begin b <=192; g <= 128; r <= 64;end
begin b <= 192; g <= 128; r <= 96;end
begin b <=192; g <=128; r <= 128;end
begin b <= 192; g <= 128; r <= 160;end
begin b <=192; g <=128; r <= 192;end
begin b <= 192; g <= 128; r <= 224;end
begin b <= 192; g <= 160; r <= 0;end
begin b <= 192; g <= 160; r <= 32;end
begin b <= 192; g <= 160; r <= 64;end
begin b <= 192; g <= 160; r <= 96;end
begin b <=192; g <= 160; r <= 128;end
begin b <= 192; g <= 160; r <= 160;end
begin b <=192; g <= 160; r <= 192;end
begin b <= 192; g <= 160; r <= 224;end
begin b <=192; g <= 192; r <= 0;end
begin b <=192; g <=192; r <= 32;end
begin b <=192; g <= 192; r <= 64;end
begin b <=192; g <=192; r <= 96;end
begin b <=192; g <= 192; r <= 128;end
begin b <=192; g <=192; r <= 160;end
begin b <= 240; g <= 251; r <= 255;end
begin b <= 164; g <= 160; r <= 160;end
begin b <=128; g <= 128; r <= 128;end
begin b <=0; g <=0; r <= 255;end
begin b <= 0; g <= 255; r <= 0;end
begin b <= 0; g <= 255; r <= 255;end
begin b <= 255; g <= 0; r <= 0;end
begin b <= 255; g <=0; r <= 255;end

60

254: begin b <= 255; g <= 255; r <= 0;end
255: begin b <= 255; g <= 255; r <= 255;end

endcase

end
endmodule
T ||
1
/I Convert Decimal to Ascii values for text display
1
T §nn

module numtotext (vclock, score, txtscore);
input vclock;
input[9:0] score;
output[23:0] txtscore;

reg [23:0] txtscore;
always @ (posedge vclock) begin

case (score)
O:txtscore<=" 0";
1:txtscore<=" 1";
2:txtscore<=" 2";
3:txtscore<=" 3";
4:txtscore<=" 4";
5:txtscore<=" 5";
6:txtscore<=" 6"
7:txtscore<=" 7"
8:txtscore<=" 8"
9:txtscore<=" 9";
10:txtscore<=" 10";
11:txtscore<="11";
12:txtscore<=" 12";
13:txtscore<=" 13";
14:txtscore<=" 14";
15:txtscore<=" 15";
16:txtscore<=" 16";
17:txtscore<="17";
18:txtscore<=" 18";
19:txtscore<=" 19";

61

20:txtscore<=" 20";
21:txtscore<=" 21",
22:txtscore<=" 22";
23:txtscore<=" 23",
24:txtscore<=" 24",
25:txtscore<=" 25",
26:txtscore<=" 26";
27 txtscore<=" 27",
28:txtscore<=" 28";
29:txtscore<=" 29",
30:txtscore<=" 30";
31:.txtscore<=" 31",
32:txtscore<=" 32";
33:txtscore<=" 33",
34:txtscore<=" 34";
35:txtscore<=" 35",
36:txtscore<=" 36";
37:txtscore<=" 37",
38:txtscore<=" 38";
39:txtscore<=" 39";
40:txtscore<=" 40";
41:txtscore<="41";
42:txtscore<=" 42";
43:txtscore<=" 43";
44:txtscore<=" 44";
45:txtscore<=" 45";
46:txtscore<=" 46";
47:txtscore<=" 47",
48:txtscore<=" 48";
49:txtscore<=" 49";
50:txtscore<=" 50";
51:txtscore<="51";
52:txtscore<=" 52";
53:txtscore<=" 53";
54:txtscore<=" 54";
55:txtscore<=" 55";
56:txtscore<=" 56";
57:txtscore<=" 57";
58:txtscore<=" 58";
59:txtscore<=" 59";
60:txtscore<=" 60";
61:txtscore<=" 61";
62:txtscore<=" 62";
63:txtscore<=" 63";
64:txtscore<=" 64";
65:txtscore<=" 65";

62

66:txtscore<=" 66";
67 .txtscore<=" 67",
68:txtscore<=" 68";
69:txtscore<=" 69",
70:txtscore<="70";
71:.txtscore<=" 71",
72:txtscore<="72";
73:txtscore<=" 73",
74:txtscore<=" 74",
75:txtscore<=" 75",
76:txtscore<="76";
77:.txtscore<=" 77",
78:txtscore<="78";
79:txtscore<=" 79",
80:txtscore<="80";
81.txtscore<=" 81",
82:txtscore<=" 82";
83:txtscore<=" 83";
84:txtscore<=" 84";
85:txtscore<=" 85";
86:txtscore<=" 86";
87:txtscore<=" 87";
88:txtscore<=" 88";
89:txtscore<=" 89";
90:txtscore<="90";
91:txtscore<="91";
92:txtscore<=" 92";
93:txtscore<=" 93";
94:txtscore<=" 94";
95:txtscore<=" 95";
96:txtscore<=" 96";
97:txtscore<=" 97";
98:txtscore<=" 98";
99:txtscore<=" 99";
100:txtscore<="100";
101:txtscore<="101";
102:txtscore<="102";
103:txtscore<="103";
104:txtscore<="104";
105:txtscore<="105";
106:txtscore<="106";
107:txtscore<="107";
108:txtscore<="108";
109:txtscore<="109";
110:txtscore<="110";
111:txtscore<="111";

63

112:txtscore<="112";
113:txtscore<="113";
114:txtscore<="114";
115:txtscore<="115";
116:txtscore<="116";
117:txtscore<="117";
118:txtscore<="118";
119:txtscore<="119";
120:txtscore<="120";
121:txtscore<="121";
122:txtscore<="122";
123:txtscore<="123";
124:txtscore<="124";
125:txtscore<="125";
126:txtscore<="126";
127:txtscore<="127";
128:txtscore<="128";
129:txtscore<="129";
130:txtscore<="130";
131:txtscore<="131";
132:txtscore<="132";
133:txtscore<="133";
134:txtscore<="134";
135:txtscore<="135";
136:txtscore<="136";
137:txtscore<="137";
138:txtscore<="138";
139:txtscore<="139";
140:txtscore<="140";
141:txtscore<="141";
142:txtscore<="142";
143:txtscore<="143";
144:txtscore<="144";
145:txtscore<="145";
146:txtscore<="146";
147 txtscore<="147";
148:txtscore<="148";
149:txtscore<="149";
150:txtscore<="150";
151:txtscore<="151";
152:txtscore<="152";
153:txtscore<="153";
154:txtscore<="154";
155:txtscore<="155";
156:txtscore<="156";
157:txtscore<="157";

64

158:txtscore<="158";
159:txtscore<="159";
160:txtscore<="160";
161:txtscore<="161";
162:txtscore<="162";
163:txtscore<="163";
164:txtscore<="164";
165:txtscore<="165";
166:txtscore<="166";
167:txtscore<="167";
168:txtscore<="168";
169:txtscore<="169";
170:txtscore<="170";
171:txtscore<="171";
172:txtscore<="172";
173:txtscore<="173";
174:txtscore<="174";
175:txtscore<="175";
176:txtscore<="176";
177:txtscore<="177";
178:txtscore<="178";
179:txtscore<="179";
180:txtscore<="180";
181:txtscore<="181";
182:txtscore<="182";
183:txtscore<="183";
184:txtscore<="184";
185:txtscore<="185";
186:txtscore<="186";
187:txtscore<="187";
188:txtscore<="188";
189:txtscore<="189";
190:txtscore<="190";
191:txtscore<="191";
192:txtscore<="192";
193:txtscore<="193";
194:txtscore<="194";
195:txtscore<="195";
196:txtscore<="196";
197:txtscore<="197";
198:txtscore<="198";
199:txtscore<="199";
200:txtscore<="200";
201:txtscore<="201";
202:txtscore<="202";
203:txtscore<="203";

65

204:txtscore<="204";
205:txtscore<="205",
206:txtscore<="206";
207:txtscore<="207",
208:txtscore<="208";
209:txtscore<="209",
210:txtscore<="210";
211:txtscore<="211",
212:txtscore<="212";
213:txtscore<="213",
214:txtscore<="214";
215:txtscore<="215",
216:txtscore<="216";
217:txtscore<="217",
218:txtscore<="218";
219:txtscore<="219",
220:txtscore<="220";
221:txtscore<="221",
222:txtscore<="222";
223:txtscore<="223";
224:txtscore<="224";
225:txtscore<="225",
226:txtscore<="226";
227:txtscore<="227",
228:txtscore<="228";
229:txtscore<="229";
230:txtscore<="230";
231:txtscore<="231";
232:txtscore<="232";
233:txtscore<="233";
234:txtscore<="234";
235:txtscore<="235";
236:txtscore<="236";
237:txtscore<="237";
238:txtscore<="238";
239:txtscore<="239";
240:txtscore<="240";
241:txtscore<="241";
242:txtscore<="242";
243:txtscore<="243";
244 txtscore<="244",
245:txtscore<="245";
246:txtscore<="246";
247 txtscore<="247";
248:txtscore<="248";
249:txtscore<="249";

66

250:txtscore<="250";
251:txtscore<="251",
252:txtscore<="252";
253:txtscore<="253",
254:txtscore<="254";
255:txtscore<="255",
256:txtscore<="256";
257 txtscore<="257",
258:txtscore<="258";
259:txtscore<="259",
260:txtscore<="260";
261:txtscore<="261",
262:txtscore<="262";
263:txtscore<="263",
264:txtscore<="264";
265:txtscore<="265",
266:txtscore<="266";
267 txtscore<="267",
268:txtscore<="268";
269:txtscore<="269";
270:txtscore<="270";
271:txtscore<="271",
272:txtscore<="272";
273:txtscore<="273";
274:txtscore<="274";
275:txtscore<="275";
276:txtscore<="276";
277:txtscore<="277";
278:txtscore<="278";
279:txtscore<="279";
280:txtscore<="280";
281:txtscore<="281";
282:txtscore<="282";
283:txtscore<="283";
284:txtscore<="284";
285:txtscore<="285";
286:txtscore<="286";
287:txtscore<="287",
288:txtscore<="288";
289:txtscore<="289";
290:txtscore<="290";
291:txtscore<="291";
292:txtscore<="292";
293:txtscore<="293";
294:txtscore<="294";
295:txtscore<="295";

67

296:txtscore<="296";
297:txtscore<="297",
298:txtscore<="298";
299:txtscore<="299",
300:txtscore<="300";
301:txtscore<="301",
302:txtscore<="302";
303:txtscore<="303",
304:txtscore<="304",
305:txtscore<="305",
306:txtscore<="306";
307:txtscore<="307",
308:txtscore<="308";
309:txtscore<="309",
310:txtscore<="310";
311:txtscore<="311",
312:txtscore<="312";
313:txtscore<="313",
314:txtscore<="314";
315:txtscore<="315";
316:txtscore<="316";
317:txtscore<="317";
318:txtscore<="318";
319:txtscore<="319";
320:txtscore<="320";
321:txtscore<="321";
322:txtscore<="322";
323:txtscore<="323";
324:txtscore<="324";
325:txtscore<="325";
326:txtscore<="326";
327:txtscore<="327",
328:txtscore<="328";
329:txtscore<="329";
330:txtscore<="330";
331:txtscore<="331";
332:txtscore<="332";
333:txtscore<="333";
334:txtscore<="334";
335:txtscore<="335";
336:txtscore<="336";
337:txtscore<="337";
338:txtscore<="338";
339:txtscore<="339";
340:txtscore<="340";
341:txtscore<="341";

68

342:txtscore<="342";
343:txtscore<="343",
344:txtscore<="344";
345:txtscore<="345",
346:txtscore<="346",
347 txtscore<="347",
348:txtscore<="348";
349:txtscore<="349",
350:txtscore<="350";
351:txtscore<="351",
352:txtscore<="352";
353:txtscore<="353",
354:txtscore<="354",
355:txtscore<="355",
356:txtscore<="356"
357:txtscore<="357",
358:txtscore<="358";
359:txtscore<="359",
360:txtscore<="360";
361:txtscore<="361";
362:txtscore<="362";
363:txtscore<="363";
364:txtscore<="364";
365:txtscore<="365";
366:txtscore<="366";
367:txtscore<="367";
368:txtscore<="368";
369:txtscore<="369";
370:txtscore<="370";
371:txtscore<="371";
372:txtscore<="372";
373:txtscore<="373";
374:txtscore<="374";
375:txtscore<="375";
376:txtscore<="376";
377:txtscore<="377",
378:txtscore<="378";
379:txtscore<="379",
380:txtscore<="380";
381:txtscore<="381";
382:txtscore<="382";
383:txtscore<="383";
384:txtscore<="384";
385:txtscore<="385";
386:txtscore<="386";
387:txtscore<="387";

69

388:txtscore<="388";
389:txtscore<="389",
390:txtscore<="390";
391:txtscore<="391",
392:txtscore<="392";
393:txtscore<="393",
394:txtscore<="394",
395:txtscore<="395",
396:txtscore<="396";
397:txtscore<="397",
398:txtscore<="398";
399:txtscore<="399",
400:txtscore<="400";
401:txtscore<="401",
402:txtscore<="402";
403:txtscore<="403",
404:txtscore<="404";
405:txtscore<="405",
406:txtscore<="406";
407 txtscore<="407",
408:txtscore<="408";
409:txtscore<="409";
410:txtscore<="410";
411:txtscore<="411",
412:txtscore<="412";
413:txtscore<="413";
414:txtscore<="414",
415:txtscore<="415";
416:txtscore<="416";
417:txtscore<="417";
418:txtscore<="418";
419:txtscore<="419";
420:txtscore<="420";
421:txtscore<="421";
422:txtscore<="422";
423:txtscore<="423";
424 txtscore<="424",
425:txtscore<="425";
426:txtscore<="426";
427:txtscore<="427";
428:txtscore<="428";
429:txtscore<="429";
430:txtscore<="430";
431:txtscore<="431";
432:txtscore<="432";
433:txtscore<="433";

70

434:txtscore<="434";
435:txtscore<="435",
436:txtscore<="436";
437 txtscore<="437",
438:txtscore<="438";
439:txtscore<="439",
440:txtscore<="440";
441:txtscore<="441",
442:txtscore<="442";
443:txtscore<="443",
444:txtscore<="444",
445:txtscore<="445",
446:txtscore<="446";
447 txtscore<="447",
448:txtscore<="448";
449:txtscore<="449",
450:txtscore<="450";
451 :txtscore<="451",
452:txtscore<="452";
453:txtscore<="453";
454:txtscore<="454";
455:txtscore<="455",
456:txtscore<="456";
457 txtscore<="457",
458:txtscore<="458";
459:txtscore<="459";
460:txtscore<="460";
461:txtscore<="461";
462:txtscore<="462";
463:txtscore<="463";
464:txtscore<="464";
465:txtscore<="465";
466:txtscore<="466";
467:txtscore<="467";
468:txtscore<="468";
469:txtscore<="469";
470:txtscore<="470";
471:txtscore<="471";
472:txtscore<="472";
473:txtscore<="473";
474:txtscore<="474";
475:txtscore<="475";
476:txtscore<="476";
477:txtscore<="477";
478:txtscore<="478";
479:txtscore<="479";

71

480:txtscore<="480";
481:txtscore<="481",
482:txtscore<="482";
483:txtscore<="483",
484:txtscore<="484";
485:txtscore<="485",
486:txtscore<="486";
487 .txtscore<="487",
488:txtscore<="488";
489:txtscore<="489",
490:txtscore<="490";
491:txtscore<="491",
492:txtscore<="492";
493:txtscore<="493",
494:txtscore<="494";
495:txtscore<="495",
496:txtscore<="496";
497 txtscore<="497",
498:txtscore<="498";
499:txtscore<="499";
500:txtscore<="500";
501:txtscore<="501";
502:txtscore<="502";
503:txtscore<="503";
504:txtscore<="504";
505:txtscore<="505";
506:txtscore<="506";
507:txtscore<="507";
508:txtscore<="508";
509:txtscore<="509";
510:txtscore<="510";
511:txtscore<="511";
512:txtscore<="512";
513:txtscore<="513";
514:txtscore<="514";
515:txtscore<="515";
516:txtscore<="516";
517:txtscore<="517";
518:txtscore<="518";
519:txtscore<="519";
520:txtscore<="520";
521:txtscore<="521";
522:txtscore<="522";
523:txtscore<="523";
524:txtscore<="524";
525:txtscore<="525";

72

526:txtscore<="526";
527 txtscore<="527",
528:txtscore<="528";
529:txtscore<="529",
530:txtscore<="530";
531:txtscore<="531",
532:txtscore<="532";
533:txtscore<="533",
534:txtscore<="534",
535:txtscore<="535",
536:txtscore<="536";
537:txtscore<="537",
538:txtscore<="538";
539:txtscore<="539",
540:txtscore<="540";
541:txtscore<="541",
542:txtscore<="542";
543:txtscore<="543",
544:txtscore<="544";
545:txtscore<="545",
546:txtscore<="546";
547 txtscore<="547",
548:txtscore<="548";
549:txtscore<="549";
550:txtscore<="550";
551:txtscore<="551",
552:txtscore<="552";
553:txtscore<="553";
554:txtscore<="554";
555:txtscore<="555";
556:txtscore<="556";
557:txtscore<="557";
558:txtscore<="558";
559:txtscore<="559";
560:txtscore<="560";
561:txtscore<="561";
562:txtscore<="562";
563:txtscore<="563";
564:txtscore<="564";
565:txtscore<="565";
566:txtscore<="566";
567:txtscore<="567";
568:txtscore<="568";
569:txtscore<="569";
570:txtscore<="570";
571:txtscore<="571";

73

572:txtscore<="572";
573:txtscore<="573",
574:txtscore<="574";
575:txtscore<="575",
576:txtscore<="576"
577 txtscore<="577",
578:txtscore<="578";
579:txtscore<="579",
580:txtscore<="580";
581:txtscore<="581",
582:txtscore<="582";
583:txtscore<="583",
584:txtscore<="584",
585:txtscore<="585",
586:txtscore<="586";
587:txtscore<="587",
588:txtscore<="588";
589:txtscore<="589";
590:txtscore<="590";
591:txtscore<="591";
592:txtscore<="592";
593:txtscore<="593";
594:txtscore<="594";
595:txtscore<="595";
596:txtscore<="596";
597:txtscore<="597";
598:txtscore<="598";
599:txtscore<="599";
600:txtscore<="600";
601:txtscore<="601";

endcase
end

endmodule

M
I

I KOOSH'S CODE
I
i

74

HHTHHHTTTT T T T

1

//Analog Latch Reset - holds counter in reset state for 1/3 second

I this is time needed to reset the analog latch
1

T LT T
module analog_latch_reset (clk, reset_Ic, latch_reset, counter_reset);

/lreset_Ic is enable signal for this module
input reset_Ic, clk;

/lcounter reset resets counter module
/latch_reset tied to output to analog circuitry
output counter_reset, latch_reset;

reg [23:0] count = O;
reg latch_reset = 1,
reg counter_reset = 0;

reg started;

always @ (posedge clk) begin
/Iwait for enable signal
if (reset_Ic) begin
count <= 0;
started <=1;
end
//count 1/3 second
if (started) begin
count <=count + 1;
/llatch reset opposite of counter reset
/llatch resets on low input
latch_reset <= (count == 9000000) ? 1 : 0;
counter_reset <= (count ==9000000) ? 0: 1;
end
if (count == 9000000) started <= 0;
end

endmodule

T T T

I

//steady_x_coord - gives enable when x has been ready and unchanging
I for 30 clock cycles. Compenstates for "ready"
I signals between calculations of d and y

I

T T

75

module steady x_coord (clk, counter_ready, x_ready, X, y, X_steady, steady X,
steady_y);

input clk, counter_ready, x_ready;

input signed [8:0] x, v;

output x_steady;

output signed [8:0] steady_x, steady vy;

reg [5:0] steady_count = 6'd0;
reg signed [8:0] old_x = 6'dO;
reg signed [8:0] steady_X, steady _y;

IIx_steady after 30 cycles
assign x_steady = (steady_count >=30) ?1: 0;

/Iwaits for 30 consequtive consistant x values after "x_ready" and
"counter_ready"
always @ (posedge clk) begin
if (counter_ready & x_ready) begin
old_x <= (steady_count == 6'd0) ? x : old_x;
if (old_x==Xx)

steady_count <= (steady_count <=60) ? steady _count + 1 :

steady_count;
else steady_count <= 0;
if (steady_count >= 30) begin
steady X <=X;
steady y <=vy;
end
end
/Ireset when old and current dont match
else steady count <=0;

end
endmodule

HHTHHHTTTTT T T T

1

/I dart register - holds values of 3 latest darts, controls

I automatic reset and asserts data_ready when
I 3 darts have accumulated

1

T T

76

module dart_register(clk, x_steady, X, y, X1, y1, x2, y2, X3, y3, reset_Ic, data_ready,
data_taken, dart_count);

begin

input clk, x_steady, data_taken;

input signed [8:0] X, y;

output reset_Ic, data_ready;

output [1:0]dart_count;

output signed [8:0] x1, y1, x2, y2, X3, y3;

reg reset_lIc;

reg [1:0] dart_count = 2'b00;

reg signed [8:0] x1, y1, x2, y2, x3, y3;
reg old_x_steady;

reg data_ready, start_ready_count = 0;

always @ (posedge clk) begin
old_x_steady <= x_steady;
reset_Ic <=0;
/lreset values when darts taken by display logic
if (data_taken) begin
dart_count <= 0;
data_ready <= 0;
reset_lc <=1,
x1 <= 9'011100110;
x2 <= 9'h011100110;
x3 <= 9'011100110;
y1l <=9'h011100110;
y2 <=9'h011100110;
y3 <=9'h011100110;
end
//if this is new x_steady, save new dart information
else if ((x_steady !'=old_x_steady) && X_steady) begin
case (dart_count)
2'b00 : begin
data_ready <= 0;
//off screen darts moved to one location
if (x>226) || (x <-226) || (y > 226) || (y < -226))

x1 <=175;
yl <=175;
end
else begin
X1l <=x;
yl<=y;
end
/lincrement dart count
dart_count <= 2'b01,

77

begin

begin

endmodule

2'b01 : begin

2'b10 : begin

{Ireset latch and counter
reset_Ic <=1,
end

data_ready <= 0;
if (x>226) || (x <-226) || (y > 226) || (y < -226))

x2 <= 175;
y2 <= 175;
end
else begin
X2 <=X;
y2<=y;
end
dart_count <= 2'b10;
reset_lc <=1,
end

if (x> 226) || (x < -226) || (y > 226) || (y < -226))

X3 <= 175;
y3 <= 175;
end
else begin
X3 <=X;
y3<=y;
end
dart_count <= 2'b11,
reset_Ic <=1,
/[after dart three, data is ready to be taken
data_ready <=1,
end

2'b11 : reset_lc <= 1;

endcase

T T

I

/I Cycles to Millimeters - This module converts cycles to

I
I

distances using a 3 bit shift

T |
module cycles_to_mm (delta0, deltal, delta2, d0, d1, d2);

78

[leight 2.7mhz cycles = 1 mm traveld by sound in air
input [11:0] delta0, deltal, delta2;
output [8:0] dO, d1, d2;

wire [11:0] dO_temp, d1_temp, d2_temp;
/Ishift by three approx divide by eight

assign d0_temp = delta0>>3;

assign d1_temp = deltal>>3;

assign d2_temp = delta2>>3;

//dont need first three bits anymore, always 0
assign d0 = d0_temp[8:0];

assign d1 = d1_temp[8:0];

assign d2 = d2_temp[8:0];

endmodule

HHTHHHTTT T T nnnnn

I

/[Calculate X - calculates x position of dart given differeces in distances,
I distance to first mic and y position of dart

I

U
module calc_x (d0, d1, d2, d, y, X, clock_27mhz, ready);

input [8:0]d0,d1,d2;

input signed [8:0]y;

input [9:0]d;

input clock_27mhz;

output signed [8:0]x;

output ready;

wire [20:0] radical;

wire [20:0] rad_term1,;

wire [19:0] rad_term2;

wire signed [9:0]sqrt_term2;
wire mul_ready;

assign rad_term1 = (d+d0) * (d+d0);

assign sqrt_term2 = y-200;

/Ixilinx module used to do signed multiplication

x_mul sqr_term2(clock_27mhz, sqrt_term2, sqrt_term2, rad_term2, mul_ready);
/lcalculate value under radical

assign radical = rad_term1 - rad_term2;

wire signed [10:0] temp_x, neg_temp_X;

/[cordic module used to compute truncated square root

x_sqgrtl gen_x(radical, clock_27mhz, mul_ready, temp_X, ready);

/lanswer can be plus of minus, save minus value as well

79

assign neg_temp_x = (0 - temp_Xx);
/ldepeding on which half dart is on output correct +/- x
assign x = (d1 <=d2) ? temp_x[8:0] : neg_temp_x[8:0];

endmodule
|||

/I Calculate Y - Calculates Y term based on d0, d1, d2 and d distance

to closest microphone

T |
module calc_y (d0, d1, d2, d, y, clock_27mhz);

input [8:0] dO, d1, d2;
input [9:0] d;

output signed [8:0] y;
input clock_27mhz;

wire signed [21:0] term1;

[[first part of dividdend

assign term1 = 80000 - (2*d*d0) - (d0*d0) + (2*d*d1) + (d1*d1);

wire signed [20:0] sqrt_term1;

wire signed [23:0] sqrt_term2;

/Ivalues multiplied under the radical

assign sqgrt_term1 = 80000 - (d0*d0) + (2*d0*d1) - (d1*d1);

assign sqrt_term2 = (4*d*d) - 80000 + (d0*d0) + (2*d0*d1) + (d1*d1) +

(4*d*d0) + (4*d*d1);

wire [44:0] radical;

wire mul_rdy;

[Ixilinx multiplier used to do signed multiplication

y_multiplierl gen_radical(clock_27mhz, sqrt_term1, sqrt_termz2, radical,

mul_rdy);

wire [22:0] sqrt_out;

wire sqrt_rdy;

/[cordic module used to compute truncated square root
y_sqrty_square_root(radical, clock_27mhz, mul_rdy, sgrt_out, sqrt_rdy);

wire signed[23:0] dividend = term1 - sqrt_out;
//dont use these remder

wire [10:0] remd,

wire [23:0] temp_y;

/Ixilinx tool to do division

y_divy_divider(.dividend(dividend), .divisor(11'001100100000), .quot(temp_y),

.clk(clock_27mhz), .ce(sgrt_out));

80

/lonly need last 9 bits
assign y = temp_y[8:0];

endmodule

T L

1

/I Calculate D - compute d, distance to closest microphone, based on
1 do, d1, d2

1

o

module calc_d (d0, d1, d2, d, clock_27mhz);
input [8:0] dO, d1, d2;

output [9:0]d;

input clock_27mhz;

/Ibasically implement quadratic equation
wire signed [31:0]negb;

wire [7:0] count_negb;

wire [27:0] sqrt_out;

wire [22:0] d_long;

/lthis sub module does multiplication to determine first term

math_negb math_mod1(d0, d1, d2, negb, count_negb, clock_27mhz);

/lthis sub module does the square root to get the second part of the dividend
math_sqrt math_mod2(d0, d1, d2, sqrt_out, clock_27mhz);

/lthis module divides top term (negb - sqrt) by 2a

math_divison math_mod3(d0, d1, d2, negb, sqrt_out, d_long, clock_27mhz);

//d can only be 10 bits long in the real world
assignd =d_long[9:0]; //know d will be less than 10 bits

endmodule

T T

1

/I Counter - Counts cycles of enable between micl mic2 and mic3 going high
I implemented as a fsm

1

T i T T

module counter (clock, mhz_enable, reset, micl, mic2, mic3, d1, d2, d3, ready, state);

input clock, mhz_enable, micl, mic2, mic3, reset;
output[11:0] d1, d2, d3;

reg [11:01d1=0,d2=0,d3 =0;

output ready;

output [2:0]state;

81

reg ready = 0;

reg [2:0]state = 0;

/leach state represents a combination of the 3 counters counting
parameter RESET_STATE = 3'b000;
parameter MIC12COUNT = 3'b001;
parameter MIC13COUNT = 3'b010;
parameter MIC23COUNT = 3'b011;
parameter MICICOUNT = 3'b100;
parameter MIC2COUNT = 3'b101;
parameter MIC3COUNT = 3'b110;
parameter READY_STATE = 3'b111,

always @ (posedge clock) begin
if (mhz_enable) begin
case (state)

/lin reset keep all counts at 0 wait for a mic to go high

RESET_STATE : begin
dl<=0;
d2 <=0;
d3<=0;
ready <= 0;

/[depending on which mic(s) go high

go to appropriate count state
state <=reset ? RESET _STATE
:(micl & mic2 & mic3) ? READY_STATE :
(micl & mic3) ?
MIC2COUNT : (micl & mic2) ? MIC3COUNT :
(mic2 & mic3) ?
MIC1COUNT : micl ? MIC23COUNT : mic2 ? MIC13COUNT :
mic3 ?
MIC12COUNT : RESET_STATE;
end
/Imics 1 and 2 counting
MIC12COUNT : begin
dl<=d1l+1;
d2<=d2 +1;
//go ready if all mics go high

state <=reset ? RESET_STATE :

(micl & mic2) ?
READY_STATE : micl ? MIC2COUNT : mic2 ? MICLCOUNT : MIC12COUNT;
end
//mics 1 and 3 counting
MIC13COUNT : begin
dl<=dl+1;
d3<=d3+1;
/lgo ready if all mics go high

82

state <=reset ? RESET_STATE :

(micl & mic3) ?
READY_STATE: micl ? MIC3COUNT : mic3 ? MIC1COUNT : MIC13COUNT;
end
/Imics 2 and 3 counting
MIC23COUNT : begin
d2 <=d2 + 1;
d3<=d3+1;
//go ready if all mics go high

state <=reset ? RESET_STATE :

(mic2 & mic3) ?
READY_STATE : mic2 ? MIC3COUNT : mic3 ? MIC2COUNT : MIC23COUNT,;
end
/lonly mic 1 counting
MIC1COUNT : begin
dl<=d1l+1;
//go ready if all mic 1 goes high

state <=reset ? RESET_STATE :

micl ? READY_STATE : MIC1COUNT;
end
/lonly mic2 counting
MIC2COUNT : begin
d2<=d2 +1;
//go ready if all mic 2 goes high

state <=reset ? RESET_STATE :

mic2 ? READY_STATE : MIC2COUNT;
end
/lonly mic3 counting
MIC3COUNT : begin
d3<=d3 +1;
//go ready if all mic 3 goes high

state <=reset ? RESET_STATE :

mic3 ? READY_STATE : MIC3COUNT;
end
/loutput ready when all mics done counting
READY_STATE : begin
ready <= 1;

state <=reset ? RESET_STATE :

READY_STATE;
end
endcase

end
/lgo to reset state even in reset signal comes in between enable signals
if (reset) state <= RESET_STATE;

83

end
endmodule

T
1
/I Math Negative B - Compute the negative b term of the calculate d equation

I
T T nn§n

module math_negb(d0, d1, d2, negb, count, clk);
input clk;
input [8:0] dO, d1 ,d2;
output signed [31:0] negb;
output [7:0] count;
reg [7:0]count;
reg signed [31:0]old_negb = 0;

wire signed [31:0] negb;
[[simply * to compute term
assign negb = (80000 * d1) - (2*d0*d0*d0) + (d0*d0*d1) + (dO*d1*d1) -
(d1*d1*d1) + (80000*d2) + (d0*d0*d2) + (d0*d2*d2) - (d2*d2*d2);
/[count how many clock cycles befor valid
always @(posedge clk) begin
count <= (old_negb !'=negb) ? count + 1 : count;
old_negb <= negb;
/lcount <=1;
end

endmodule

T nnnn

I
/I Math Negative B - Do division part of calculate d equation

I
T T §

module math_divison (d0, d1, d2, negb, sqrt_out, d, clk);
input clk;
input [8:0] dO, d1, d2;
input [31:0] negb;
input [27:0] sqrt_out;
output [31:0]d;

wire signed [31:0]top;

84

/ldividend
assign top = negb - sqrt_out;

wire signed [22:0]divisor;

assign divisor = (-80000 + (2*d0*d0) + (d1*d1) + (d2*d2) - (2*d0*d1) -
(2*d0*d2))<<<1;

wire rfd;

wire [22:0]remd;

/Ixilinx tool to do division

divide div(top, divisor, d, remd, clk, rfd);

endmodule

T

I

/I Math Square Root - Compute the square root of term in the calculate d equation
1

T L T

module math_sqrt (dO, d1, d2, sgrt_out, clk);
input clk;
input [8:0] dO, d1, d2;
output [27:0]sqrt_out;

wire [17:0] dO_sqr, d1_sqr, d2_sqr;
wire [19:0] d0d1, d0d2, d1d2;

/lterms in equation

assign d0_sqr = d0*d0;
assign d1_sqr = d1*d1;
assign d2_sqr = d2*d2;
assign dod1 = 2*d0*d1;
assign d0d2 = 2*d0*d2;
assign d1d2 = 2*d1*d2;

wire signed [16:0] term1, term2, term3;

//do shifts to make math easier/use less bits

assign term1 = (20000 - dO_sqr[17:2] + d0d1[19:4]*4 - d1_sqr[17:2]);
assign term2 = (20000 - d0_sqr[17:2] + d0d2[19:4]*4 - d2_sqr[17:2]);
assign term3 = (40000 - d1_sqr[17:2] + d1d2[19:4]*4 - d2_sqr[17:2]);

wire [50:0]sqgrt_in_long;

wire [33:0] term1_term2;

wire multlready, mult2ready;

//multipl term1 and term 2 and term 3 using cascaded multipliers
multiplierl termlterm2(clk, terml, term2, term1_term2, multlready);

85

multiplier2 final_mul(clk, term1_term2, term3, sqrt_in_long, multlready,
mult2ready);

wire [47:0]sgrt_in_trunc;
assign sqrt_in_trunc = sqrt_in_long[47:0]; //no way to get more than 48bits
/lonly have it
at 51 because of twos complement
wire [24:0]sqgrt_out_short;
wire ready;
/luse cordic to take square root of long equation
d_sqrt my_sqrt (sqrt_in_trunc, clk, mult2ready, sqrt_out_short, ready);
assign sqrt_out = sqrt_out_short<<3;
endmodule

U
1
/I Divider - Provide 2.7 mhz enable signal
1
U
module divider (clock, mhz_enable);

input clock;

output mhz_enable;

reg[4:0] count = 0;

/[count from 0 - 9 = 10 cycles

assigh mhz_enable = (count==9)?1:0;

always @ (posedge clock) begin
count <= (count==9) ? 0 : count + 1;
end
endmodule

86

