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Abstract: 

 We implemented a game of five card draw poker for one person to play against the 

computer.   All the parameters of the game (cards, chips in pot, scores, etc.) are displayed on the 

screen for the user to see. To simulate the experience of playing poker in person, we have the 

user enter a “poker face” every time he/she is dealt cards by placing one of four pre-defined face 

cards (smile, frown, angry, straight face) in front of a video camera at the appropriate times.  The 

computer decides on its moves based on an algorithm accounting for various states in the game 

such as its current hand of cards, the user’s poker face, etc.  The computer also must decide on a 

poker face whenever it is dealt cards, which is also displayed on the monitor. 
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Introduction 
We implemented a game of five card draw poker for a single player (against the 

computer). To summarize the rules of the game, at the beginning of each round, each player is 

dealt five cards. A hand of five cards is ranked based on the standard poker point system (exact 

point system unimportant for now).  After five cards are dealt to each player, the non-dealer 

makes his/her bet after which the dealer must either match the bet or fold (drop out of the round).  

Players can continue to increase bets, and a round of betting is over either when each player has 

bet the same amount and neither wishes to raise, or if a player decides to fold. Then, each player 

can trade any of his/her current cards. After the new cards are dealt, one more round of betting 

takes place, after which the players must reveal their cards.  The player with the highest ranked 

hand wins the round and keeps all the chips in the pot.  The game continues until one of the 

players is out of chips. 

Since much of the fun of poker is in the psychology of the game (e.g. psyching out one’s 

opponent, maintaining a “poker face”, etc.) we decided to incorporate these aspects into the 

project, giving the computer some “human” qualities.  The computer will be able to “see” the 

expression on the player’s face (smile vs. straight face vs. frown) by analyzing the input from a 

video camera which is monitoring the player’s facial expression (in actuality, the player will 

simply chose one of a set of pre-made face cards with easily detectible facial features) and may 

use this information to strategize its next move. Furthermore, the computer will generate a facial 

expression after each set of cards is dealt which is somehow related to the computer’s current 

hand and other variables of the game (e.g. opponent’s facial expression). The player may then 

use this information to strategize his/her next move.  To make the game even more interesting, 

the player may choose which of the computer’s “personas” to play against. Each persona will 

have a different strategy which determines which cards it will trade, how much it will bet for 

each round, and what facial expression it displays, all as a function of its current hand of cards 

and its opponents facial expression.  For example, one persona might simply always bet high, 

never trade any cards, disregard the facial expression of its opponent, display a smiley face when 

it has a bad hand of cards, and a frown when it has a good hand of cards. 

To simplify the design of this game, we divided it into several subsystems which could be 

designed and tested individually before being integrated into the final product.  The main blocks 

of our project are the Video Controller, Game Controller, and Facial Feature Detector (Figure 1), 

each divided further into smaller subsystems. Amy worked on the Video Controller and 

Elizabeth worked on the Game Controller.  These blocks are described in more detail below. 
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Figure 1. Top-Level Block Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

Detailed Design and Implementation 
 

Video Controller 
 The Video Controller is the top level module of this project.  It contains all of the labkit 

components and inputs from external sources, such as the video camera and mouse.  Within the 

Video Controller, the XVGA module creates the appropriate timing signals (hcount, vcount, etc.) 

for all the modules creating images, so the appropriate pixels are generated at the correct time to 

produce the desired image on the monitor.  The Video Controller then sends the pixel data to the 

digital to analog converter which sends the appropriate signals to the monitor, generating the 

desired image. 

 

 
 

Figure 2. Detailed Diagram of Video Controller 
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Poker Table 
The Poker Table module controls which images (which components of the poker game) 

are sent to the monitor at any particular time, creating a visual interface for the user.  The Poker 

Table module takes as inputs various states of the game (not to be confused with the states of the 

FSM); the current hand of each player, each player’s current score (chip count), current total bet 

for the round, current number of chips in the pot, players’ poker faces, and the current stage 

within a round (Figure 3). It will output on the computer monitor an image of a poker table with 

some combination of: the players’ cards, scores, number of chips bet, facial expressions, and 

instructions for the player or a declaration of the winner at the end of the round, depending on 

the current state (Table 1). An example layout of the poker table image is below (Figure 4).  The 

monitor display will update at the start of every stage within a round according to the states of 

the inputs, so the Poker Table module can essentially be modeled as an FSM.  The FSM waits for 

a particular user input to change states. For example, at the betting state, this module waits for 

the user to enter a bet (by clicking on various “betting buttons” on the screen with the mouse, 

then pressing the labkit’s enter button), before transitioning to the next state.  The next state is 

determined by the Game Controller.  

Each image on the screen (cards, chips, etc.) will be created using replicable sprite 

modules, which create an image at a desired location on the screen by generating the correct 

pixels at the appropriate times.  These sprite modules are described below:   

 

 

 
 

Figure 3. Finite State Machine for Poker Table 
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Button 

 The button module creates an image of button to the screen (a colored rectangle) with the 

appropriate text on it.  It also takes input from a mouse to determine whether it has been clicked.  

In our game, the buttons were used during the betting stage, with possible betting amounts on 

each button.  The user clicks on any series of these buttons to place his/her bet.  The buttons also 

change color when being clicked, so the user knows his/her actions are being registered by the 

game. 

 

Card 

 The card module takes as input a card’s value (Ace, 2, 3, etc.) and suit and generates an 

image of the card with these parameters.  The character representing the value is read from a 

Font ROM and the suit images are taken from four Suit ROMs.  This module also takes input 

from the mouse, so that during the card exchange state the user can click on the cards he/she 

wants to exchange. The card changes color when the user clicks on it to distinguish the cards that 

have been chosen. 

 

Character String Display 

 The Character String Display module takes as input a string of characters and outputs the 

characters to the monitor at a desired location. It is used to display text to the screen, such as 

instructions for the user, each player’s score, etc. This module gets the pixels for a particular 

character from the Font ROM.    

 

Chip 

 The chip module takes as input a number of chips and generates an image of a pile with 

the appropriate number of chips. This module is used to display how much each user has bet thus 

far in the current round (i.e. the pot). 

 

Face Display 

 The Face Display module takes as input one of four possible face parameters (angry, 

smile, frown, and straight face) and outputs an image of a face corresponding to the given facial 

expression.  These faces images are stored in four Face ROMs. 

 

Mouse Cursor 

 The mouse cursor module displays a small square to the screen representing the mouse so 

the user knows its current location.  The input to this module comes from the ps2_mouse module 

which calculates the absolute position of the mouse (on the monitor) based on the signals coming 

from the mouse.   

 

Number Display 

 This module outputs numbers to the screen as characters. To do this, it converts a binary 

value to that number’s ascii code (done in the bin_to_ascii module), and the ascii code is sent to 

the character string display module to generate the image of that number. 
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Figure 4. Example layout of the poker table 

 

 

Table 1.  Table of images displayed during each state of poker game 

 

S_START S_DEAL_FACE1 S_BET1 S_DISCARD S_DEAL_FACE2 S_BET2 S_SHOWDOWN S_GAME_OVER 

instruction instruction instruction instruction instruction instruction instruction instruction 

mouse curser cards mouse curser mouse curser cards mouse curser cards scores 

opponent 
buttons scores cards cards scores cards 

(p2_cards face 
up)   

    scores scores chips in pot scores scores   

    bet buttons chips in pot faces bet buttons chips in pot   

    chips in pot faces   chips in pot     

    faces     faces     
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Game Controller 

 
 Game play is directed by a large game controller.  It tells the video controller what to 

show on the screen and when to show it.  From the video controller module, it takes user 

controlled signals as inputs and outputs to it the computer’s face, bet, and discard choices.  From 

the sorting module, it inputs sorted cards and outputs unsorted cards.  Figure 5 is a block diagram 

for the game controller module. 

 

 

 

 
  

    Figure 5: Game Control Block Diagram 

 

 

 

 

 

The Game Controller uses a finite state machine (FSM) to cycle through the various phases of 

game play.  Figure 6 is the state transition diagram, which demonstrates how the states of the 

FSM pass from one to the next. 
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Figure 6: The 15 States of the Game Controller FSM 
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 Start_Screen is the first state in the game.  During Start_Screen, the user sees the opening 

screen on the video display, where he is asked to choose an opponent.  The computer player has 

a personality in order to better simulate a live opponent.  The personalities are Nasty and The 

Bluffer.  Nasty is an aggressive player, and The Bluffer always bluffs.  The default personality is 

called Eye for Eye and simply does whatever the user does.  Start_Screen tells the video 

controller to output the instruction “Choose your opponent”, and we remain in the Start_Screen 

state until the user enters this choice.  When the user selects an opponent, the change state signal 

goes high, and we move to the state Deal.   

 

 During Deal, the cards are dealt.  User and computer each have a hand made up of five 

cards.  We represent a card as a six bit binary number.  Bits 0 and 1 are the suit (00 = Clubs, 01 = 

Diamonds, 10 = Hearts, 11 = Spades), and the other four bits are the value of the card.  Values 

can range from 2 to 14; Jack is given a value of 11, Queen 12, King 13, and Ace 14.  Thus, each 

card will be one of the 52 cards in a deck. A linear feedback shift register can be used to generate 

a pseudo-random sequence, so we use it to generate the 10 cards making up the user and 

computer’s original hands.  In addition, we generate 10 additional “replacement cards” during 

the deal state, which will be used later to replace cards discarded in the Discard state.   

 

 Also, the cards are sorted in the deal state.  During the deal state, we output a signal to the 

sorter indicating that a sort is needed.  The sorting module takes as input five randomly 

generated 6 bit cards and outputs the same five cards but in sorted order.  The sorter uses a 

sorting algorithm called the odd-even transposition sort, which is a parallel version of bubble-

sort.  Since it takes more than one clock cycle to complete sorting, we wait until we receive a 

data ready signal from the sorter.  Once it is received, we transition to the next state, 

Human_Face_1.  

  

 It is necessary to sort the cards because of the way our Hand Evaluator works.  The type 

of hand a player has needs to be determined so that hands can be compared to find a winner and 

so that the computer can make decisions appropriate for its hand rank.  It is much easier to 

evaluate the hand if the cards are sorted.  A series of registers indicate whether a player’s cards 

are all the same suit (last two bits equal), are in consecutive increasing order, contain exactly 

three cards of the same value, contain two pairs, or contain one pair.  We can then use the values 

of these indicators to determine the type of hand we have.  For example, if all the cards are the 

same suit and are also in consecutive increasing order, the hand type is a Straight Flush.  Or, if 

the hand contains both three cards of the same value and two more cards of a different value, the 

hand type is Full House. 

 

 The hand evaluator also finds the best cards for the computer to discard.  There are a 

series of discard signals.  Each is a 5 bit number, where each bit represents a card in the hand.  If 

a bit is equal to 1, the corresponding card should be discarded, and if it is 0, the card should be 

kept.  For example, when the computer has a Three of a Kind, the discard indicator, 

Trip_discards, will have 3 bits equal to 0 - representing the three cards in the triple, and 2 bits 

equal to 1 - representing the unmatched cards that should be thrown away. 

 

 After dealing, the next state is Human_Face.  In the Human_Face_1 state, we output the 

instruction, “Choose poker face”, and remain in the state until the user makes this choice.  Once 
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the choice is made and the change state signal goes high, we move to the state, 

Computer_Face_1.  Here the computer gets his turn to choose a face.  Each personality considers 

his hand, his total money, the user’s total money, and the user’s face to pick his face.  The Nasty 

personality always frowns, unless he has a good hand (better than three of a kind) and the user is 

frowning, in which case he makes a neutral face.  The personality called The Bluffer frowns if he 

has a good hand or more money than the user and smiles if he has a bad hand.  Both players now 

have on their poker faces, and we transition to the next state, Human_Bet_1, which is part of the 

first betting stage.   

 

 We first output the instruction “Place a bet” and wait for the user to select the amount of 

money he wants to bet.  This amount is taken as an input and is 9 bits long.  The least significant 

bit represents whether or not the user is folding.  If it is equal to 1, it means the user folds.  The 

computer is declared as the winner, and the pot is deposited into its bank account.  If the user has 

no money left when he folds, we transition to the state Game_Over since one of the players is 

bankrupt.  If he still has money left, we transition to the state Round_Over.  If the least 

significant bit of the player’s bet is equal to 0, it means he is staying in the game, and we need to 

test that his bet amount, (the other 8 bits) is a valid one.  If the bet is greater than the user’s total 

amount of money, it is an invalid bet.  We output the instruction “Bet too high” and remain in the 

Human_Bet_1 state, waiting for the user to enter an allowable bet.  Otherwise, the user is making 

a valid bet.  We increase the pot size by the user’s bet, increase the user’s total bet amount by the 

new bet size, and subtract the bet from the user’s bank account.  If the user’s bet is equal to the 

computer’s, the betting stage is over and we transition to the state Human_Discard.  If not, it 

means the user has made a raise, and we transition to Computer_Bet_1 to give the computer a 

chance to match the user’s bet or re-raise.   

 

 In the state Computer_Bet_1, the computer decides what bet to make based on its 

personality, its hand, its total money, the user’s face, and the user’s bet.  Regardless of 

personality, if the computer has the hand Royal Flush, the best hand possible, he bets all the 

money he has.  If this amount is equal to the user’s last bet, we transition to the next state 

Human_Discard.  Otherwise, we return to the state Human_Bet_1 to give the user a chance to 

match the computer’s raise.  If the computer does not have a Royal Flush, it will either match the 

user’s bet, raise, or fold.  After a match or raise, the bet amount is added to the pot, added to the 

computer’s total bet amount, and subtracted from the computer’s bank account.  The state 

transitions to Human_Discard after a match, and it transitions back to Human_Bet_1 after a 

raise.  After a fold, the user is declared as the winner and the pot is deposited in the user’s bank 

account.  We transition to Game_Over if the computer has gone bankrupt and to Round_Over if 

it still has money left.   

  

 In the Human_Discard state, the instruction “Discard” is output, and we wait for the user 

to confirm his discard choice.  The user’s discard choice is sent to the game controller as a 5 bit 

binary number.  Each of the numbers represents a card.  If the number is 0, the corresponding 

card has not been selected for discard;  if it is 1, the user wants to throw away that card.  Each 

card selected for discard is replaced by one of the replacement cards that was randomly 

generated in the Deal state.  The need_sort signal goes high to prompt sorting to begin, and we 

wait for the sorter’s data ready signal before transitioning to the state Computer_Discard. 
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 In the Computer_Discard state, we use the discard signals described earlier.  For each bit, 

we randomly replace the corresponding card if the bit is equal to 1 and keep the card if the bit is 

equal to 0.  We output a high need sort signal to the sorting module, wait for a high data ready 

signal, and then transition to Human_Face_2. 

 

 The next four states - Human_Face_2, Computer_Face_2, Human_Bet_2, and 

Computer_Bet_2 give the user and computer the chance to select new faces and make new bets 

based on their new set of cards.  They perform as the states Human_Face_1, Computer_Face_1, 

Human_Bet_1, and Computer_Bet_1 do. 

 

 Next we move to the Showdown state, where the winner is determined.  Since each hand 

has a rank, we compare the rank of the user’s hand with the rank of the computer’s hand.  

Whoever has the highest ranking hand is the winner and receives the money in the pot.  If the 

two players have hands of equal rank, the game is a tie, and the pot is split.  If the two players 

both still have money left, we move to Round_Over.  After a high change state signal from the 

video controller, we move back to the Start_Screen state and begin a new round.  If either of the 

two players are bankrupt, we finally transition to Game_Over, where the game must be reset in 

order to start a new game. 
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Facial Expression Detector 

The Facial Feature Detector will detect the facial expression of the player (smile, straight 

face, frown, or angry).  Since it will be too difficult to detect such features on a human face, we 

created four simple “face cards” each with one of the above expressions easily detected (Figure 

7). 

 

 
 

Figure 7.  Predefined “Poker Faces” 

 

The input to this module will come from a video camera which monitors the player.  

Instead of interpreting a constant feed of video data, each player will enter his/her face at specific 

times during a round (as specified in the game controller FSM), by pressing the labkit’s enter 

button to register the current video input.  This module will output one of four possible values 

(representing the four different facial expressions) to the game controller, which will modify the 

computer’s strategy accordingly.  The Poker Table module will also display the user’s face on 

the screen. 

 After the user registers a face (by pressing enter), the Facial Expression Detector will 

scan through the next frame of data.  Since each of the predefined poker faces has a distinctive 

color feature (“smile” has a red mouth, “frown” has a blue tear, “angry” has green eyebrows, and 

“straight” is simply a yellow face), this module will simply keep a counter of the number of red, 

blue, and green pixels in the appropriate frame and will determine which face the user entered by 

seeing which color was most represented in the frame.  If neither red, blue, nor green was 

significantly represented in the frame, the facial feature detector will assume the user entered a 

straight face.  After detecting a face, this module will send a face_ready signal to the Poker 

Table, at which point Poker Table will display the face on the monitor. 
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Figure 8.  Detailed Block Diagram for Facial Expression Detector 
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Testing and Debugging 
 

Video Controller: 

 Fortunately, the Video Controller was straightforward to test, since all of the outputs 

were displayed to the screen.  One problem I encountered, though, was the lack of 

synchronization between signals.  For example, when I didn’t synchronize the user inputs, such 

as the button presses, the video display didn’t update correctly.  Another problem I encountered 

was “fuzzy” looking sprites.  Unfortunately, I didn’t have time to fix this problem, but I imagine 

the problem results from the fact that the logic to combine all the sprites (by “or-ing” them 

together) took longer than the clock period.  If I had time, I would have pipelined the sprites so 

that the chains of or-gates would be shorter between registers and their total propagation delay 

would be shorter than the clock period. 

 

Game Controller: 

 The modularity of the design made it easy to test and debug the system piece by piece.  

The necessary processes for each state were written and tested one at a time.  After giving a 

section simulated user inputs, the products from the section were output on the LEDs and 

displayed on the hex display. Each piece functioned as expected.  Dependent pieces were then 

gradually put together; all components functioned properly, and game play cycled correctly.  The 

most common problem was a delay in output.  This was fixed by removing elements from the 

clock dependent always blocks and putting them in different always blocks, which were 

dependent on the correct signals.  Finally, the game controller was connected to the video 

controller.  This integration caused some problems.  While both game controller and video 

controller functioned properly separately, when put together, the states of the Game FSM did not 

always run in the correct order.  To try to debug this, we output various important signals on the 

hex display and used the LEDs; but we were unable to find what caused the problem.  We have 

not been able to solve the problem and achieve full functionality to the entire system. 

 

System Integration: 

 The system was hardest to debug once we combined our blocks together.  First of all, we 

had different ideas of which signals were to be generated by which block, so first we had to go 

through our blocks to make sure our inputs and outputs were compatible.  After making these 

changes, though, we still had problems synchronizing some of our signals.  The Poker Table 

states weren’t changing correctly with the user inputs.  If we had a few more days, I think we 

could have worked through this problem. 
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Conclusion 
 

 We tried to implement this poker game in a straightforward, testable, and modular form.  

This made debugging simple.  It also means that it is easier for another person to understand the 

code and its purpose. 

 

 Integrating the major controllers was the most difficult and posed the most problems.  

Most of the testing and debugging was devoted to this process.  While the game controller and 

video controller functioned separately, there were problems with game behavior once they were 

combined.  Most of the problems were resolved, but we have been unable to correct some.  

While a user is still able to play a game of poker against the computer, he sometimes has to go 

through too many bet or discarding states than he should; and he is unable to choose his 

opponent since the first state is skipped.  Also, we have not been able to fix the problems that we 

had with the facial feature detector, and it does not work.  For this reason, we have the user select 

their poker face using the labkit switches instead of by showing a picture to the camera.  

 

 The investigation, analysis, and experimentation that went into planning and 

implementing the project educate us about the challenges that engineers face when designing 

similar systems.  Having to make design choices for an original project help to cement concepts 

learned in class since we had to put them into practice on our own. 

 


