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For our final project, we developed Pac-Man on the FPGA. The game contains modules to 

handle both the display of the Pac-Man world and logic to control all of the characters and define 

the rules of the game. Cassie predominantly worked on the display portion of the game and Mike 

mostly worked on the game logic portion of the game.  

 

Essentially, all display modules revolve around drawing objects from memory. The map, the 

dots, the ghosts and Pac-Man all had separate ROMs which dictated how to draw each 

corresponding sprite on the VGA display. The lone exception was the dots, which involved a 

RAM, as we wished to eat them at some point and make them disappear from the screen.  

 

We made it such that Pac-Man runs around a maze while avoiding the ghosts, all of which were 

controlled by separate AI modules. Pac-Man would die if he touched a ghost. However, he could 

eat an Energizer and temporarily eat the ghosts. A game over occurred if the player died three 

times but if the player ate all of the dots on the screen, they would win and be treated to a 

humorous animation.  

 

As a result of creating this project, we were able to faithfully recreate a classic arcade game. We 

also learned how to work as a team in order to build a complex digital system from the ground 

up.  
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1.  Introduction 

 

Pac-Man was created in 1980 by Namco. The idea came from Namco employee Ioru Iwatani
1
. 

One day, he was eating pizza and noticed that a pizza pie with a slice missing looked like it could 

be a cartoon character.  Namco wanted to create a game that would appeal to many different age 

groups so they decided to base a game on maneuvering a maze and eating. The resulting game 

was originally called PUCK MAN, which stems from the Japanese word pakupaku which 

literally means, “to flap one’s mouth open and closed.” When the game was first released in 

Japan, it received a decent response, but nothing terribly exciting. As a result, Midway picked up 

the license and brought the game over to America. The title was changed to Pac-Man to prevent 

the most obvious vandalisms on the old name and the cabinet artwork was redesigned. The game 

was a huge success and many spin-offs and other versions resulted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Essentially, Pac-Man is a game of hide and seek. The player controls the yellow blob that is Pac-

Man and maneuvers him throughout the maze. The object of the game is to eat all of the dots on 

the screen while avoiding the four ghosts that patrol the maze. Since Pac-Man is outnumbered 

four to one, there are four larger dots, called Energizers, which allow Pac-Man to eat the ghosts 

for a brief period of time. During this time, the ghosts turn deep blue and run in the opposite 

direction. A player earns more points for eating a ghost and the points are cumulative, meaning 

that it is beneficial if a player eats all four ghosts before they turn back to their normal colors. 

                                                 
1
  All background history information on Pac-Man was taken from Wikipedia (http://en.wikipedia.org/wiki/Pac-

Man)  

 



Furthermore, there are fruits which appear every level. A player can eat the fruit to gain bonus 

points. Also, a player can gain lives by attaining a certain number of points.  
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Figure 1b – Block Diagram: This figure represents the block 

diagram for the Pac-Man game in its most complete form.  



For our final project, we sought to re-create the Pac-Man experience via the FPGA. Refer to 

figure 1b above for a picture of our final block diagram. We wanted to faithfully reproduce the 

features that the original game had. The user is presented with a VGA display and a keyboard. 

Upon startup, the game goes to its title screen, which proudly displays our names, the title of our 

project and the controls for the game. The user interfaces with the game via the keyboard. The 

enter key starts the game. The space bar is used to pause the game during play. The WADS 

configuration, as it is generally known as, is employed to control Pac-Man. The W key moves 

Pac-Man up, the A key moves him left, the D key moves him right and the S key moves him 

down. From the title screen, the player can press the enter key to begin the game.   The block 

diagram of the project is shown above in Figure 1. 

 

After pressing Enter, the game will draw the side display (consisting of a score counter and a life 

counter), draw the map, fill it with dots and place all the characters in their respective starting 

positions. For the four ghosts, they are placed within the “ghost pen,” which is a 4x1 area in the 

middle of the screen and Pac-Man is placed near the bottom of the screen, about halfway across 

from either side. The game would then play a sound corresponding to the level starting. After 

this sound plays, the user could then move Pac-Man and eat the dots. The ghosts would move 

from their pen and behave as they have been told to. Each ghost has a unique strategy and those 

are described in greater detail later on. Located in the top right and the bottom left hand corner of 

the maze is a blue dot. These blue dots are Energizers. When the player eats them, the ghosts 

turn dark blue, they slow down, and they run away from Pac-Man, albeit slowly. If a ghost is 

ever eaten, they will disappear for some length of time and then reappear, emerging from the 

ghost pen and returning to normal.  

  

For every dot that the player eats, they gain one point. For every Energizer that the player eats, 

they gain ten points. For every ghost that the player eats, they gain one hundred points. This 

value is maintained in a register and displayed on the VGA next to the maze for the player to see.  

 

If a player ever touches a ghost and isn’t in power pill mode, the mode where the player can eat 

ghosts, then the player dies. Ideally, the game transitions out of the playing state so that no 

character can move and a short sound is played corresponding to the player dying. After the 

music is done, the game will decrement the player’s lives by one. If the lives are greater than 

zero, the game will then reset all of the characters to their starting positions and start the level 

again. In this case, the dots will not be reset nor will the score be reset. If the player’s lives have 

dropped to zero, then the game will return to the title screen and all game states will be reset: 

lives, score, etc.  

 

Furthermore, if a player manages to eat all of the dots on the screen, then a brief sound will play 

corresponding to victory. After this sound, the player will be treated to a short, humorous 

animation involving Pac-Man and one of the ghosts. After this animation, the game will reset the 

board, reset all characters’ starting positions and the level will start again. The player’s score and 

lives will be retained.  

 

Lastly, there is a global reset button, the enter button on the labkit, which allows for the entire 

game to be reset at any time. Whenever the global reset is asserted, the game returns to the title 

screen and all states are reset.  



2. Cassie’s Modules and Implementation 
 

I was responsible for designing the map and the sprites, and displaying everything on the screen.  

I had to design the map and dots displays twice, because I attempted to brute force the display 

with combinational logic and real time display instead of reading information from ROM and 

RAM.  I was also responsible for Pac Man eating the dots as he moves around the screen, and the 

display and effects of the power pills.  The last features I was responsible for are the score 

display and the ending animation. 

 

2.1 Video Displays 

The video display is a collection of modules that display the map, the dots, the ghosts, and Pac 

Man as well as the current score and the number of lives that Pac Man has.  All display modules 

use XVGA.  The video is displayed in real time though images are read from ROM.  Each 

element is drawn independently and their outputs are connected using an or gate and sent to the 

screen.  Each display modules takes as inputs the 65 MHz pixel clock, and hcount and vcount 

signals from the XVGA modules, and output a pixel value.  Figure 2.1 shows a block diagram of 

the video display. 
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Figure 2.1 – Block Diagram of the Video Display 
Each display modules takes in as inputs the pixel clock, 

hcount, and vcount, and outputs pixel data. 



2.1.1 Map Display 

 

The map is an arrangement of 32x32 pixel blocks, called tiles, of walls and blank space.  The tile 

pattern of the map is stored in a 16x24 ROM, and read when the map is displayed.  Each bit 

stored in memory represents a block.  A bit that is 0 is a space tile while a bit that is 1 is a wall 

tile.  Each bit is read 32 times horizontally and vertically to draw the tile. 

 

Each row read from the ROM is a row of the map.The address given to the ROM resets to 0 

when the entire map has been displayed, and hcount is equal to 1343 and vcount is equal to 805.  

The address increases once when vcount is equal to a multiple of 32.  As each row is displayed, 

the current bit displayed is selected by the current value of hcount.  The last five bits of hcount 

are ignored so the bit only changes when hcount is a multiple of 32.  To center the map, which is 

16 tiles wide, the map is only displayed when the higher 6 bits of hcount are between 8 and 24.  

The bit selected is then determined by the higher 6 bits of hcount subtracted by 8 to ensure the 

map is properly centered. 

 

2.1.2 Dots Display 

 

The dots display module handles displaying dots on the map, Pac Man eating dots as he wanders 

around, and refreshing the dots after a reset or after the board has been cleared.  In addition to the 

inputs that all display modules take, the dots display takes as inputs a reset signal, the current x 

and y tile coordinates of Pac Man, and vsync from the XVGA module.  It outputs score, a signal 

that is high for one clock cycle after a dot is eaten, and dots_reset_done, a signal that tell the 

game state machine that the dots have finished refreshing. 

 

The dots display consists of a 16x24 RAM that contains the current dot locations to be displayed 

and a 16x24 ROM that contains the permanent locations of all the dots that will be loaded into 

the RAM on a reset.  The RAM has three possible addresses depending on which function the 

dots display is asked to perform.  A tristate buffer is connected to each possible address and the 

address port of the RAM to prevent more than one value driving the address port at a given time. 

 

The first address is the display address, which selects the row in the RAM to be displayed on 

screen.  This address is similar to the address of the map ROM.  It resets to 0 when hcount is 

1343 and vcount is 850, and increases by 1 when vcount is a multiple of 32.  This address is only 

active when vsync is high, and reset is low. 

   

The second address selects the row of tiles that Pac Man currently occupies, and is used to select 

the bit in the RAM to overwrite if Pac Man has eaten a dot.  Since this address may need to be 

rewritten, the address is only active when vsync is low, and reset is low to prevent the RAM 

from being rewritten as it is being displayed.   

 

The last possible address is the refresh address, which is only active when reset is high.  This 

address selects the row in the RAM to be rewritten with data from the ROM. 

 



Dots are displayed in a similar manner to how the map is displayed.  Each bit that is 1 in the 

RAM represents a dot to be displayed on the screen.  The display address selects the row to be 

displayed, and the upper 6 bits of hcount select the bit to be displayed.  The dots display is 

centered like the map display is.  Each dot is centered in the tile by only displaying the dot when 

the lower 5 bits of hcount and vcount are between 14 and 18. 

 

On reset, data from the ROM is loaded into the RAM.  A counter called the reset counter is 

activated.  The reset counter determines the addresses for the RAM and for the ROM.  The 

address of the ROM is one higher than that of the RAM because there is a lag of one clock 

period between when data is read from the ROM and when data is written to the RAM.  Having 

the same address for the RAM and ROM results in the dots display being shifted by a row.  

Write enable to the RAM is activated one cycle after the data has been read from ROM.  This is 

to prevent the RAM from writing invalid data.  The signal dots_reset_high is activated when the 

reset_counter is 31. 

 

During each cycle when vsync is negative, the dots display checks for eaten dots.  The eat 

address is only active when vsync is negative, and selects the current row that Pac Man is 

occupying.  The x tile coordinate of Pac Man is loaded into a register, and used to select the bit 

in the RAM that will be overwritten.  A 2 bit counter is activated to separate process that would 

interfere with each other.  When the counter is 0, the row just read from RAM is loaded into the 

write port of the RAM, dots_write.  On the next count, the x tile coordinate is used to select the 

bit of dot_write.  If the selected bit is a 1, Pac Man is in the same tile as a dot, and that dot is 

rewritten to a 0.  The score is set to high.  If the selected bit is a 0, nothing happens.  When the 

counter is equal to 2, write enable for the RAM is set to high, and the updated data is written to 

RAM.  Score is then set to 0 to ensure that it is high only for one cycle.  After that, the write 

enable is set 0.  When vsync is high, both the counter and write enable are set to 0 to prevent the 

RAM from being rewritten as its contents are being displayed. 

 

2.1.3 Pac Man Sprite Display 

 

The Pac Man sprite display takes as additional inputs the coordinates for the upper left pixel of 

sprite, the direction the sprite is facing, the current animation frame, and the negative edge of 

vsync.  The sprite for Pac Man is stored in a set of 32x32 ROMs.  Pac Man is only displayed if 

the pixel is within 32 pixels vertically and horizontally of the x and y coordinates given to the 

module.  The x and y offset value represent how far from the upper left pixel the current pixel is. 

 

Since Pac Man is nothing more than a yellow circle with a slice taken out, it is fairly 

symmetrical.  The sprite for Pac Man can change which way it is facing given a direction by 

changing how the ROM is read.  If the sprite is facing up or down, the row read from ROM is 

determined by the x offset with a shift of 3 added.  A new row is read each time the x offset 

changes.  If the sprite is facing left or right, the row read from ROM is determined by the y 

offset. The address increases by 1 each time the y offset is less than 32, and the x offset is 32.  In 

all cases, the address is set to 0 when the x and y offsets are greater than 32.  The pixel to be 

displayed is determined by the y offset if Pac Man is facing up or down, and the x offset if he is 



facing left or right.  The new direction for Pac Man is stored in a register at every negative edge 

of vsync so the sprite does not respond to direction changes in the middle of display. 

 

There are 8 separate frames of animation for Pac Man.  The animation cycles from the mouth 

being wide open, to the mouth closing, to the mouth opening again.  Five ROMs store the images 

for the animation.  All ROMs use the same address.  The ROM to be read from is selected by the 

animation frame input. 

2.1.4 Ghost Sprite Displays 

 
Four instances of the ghost display module are created, one for each ghost.  The ghost display 

takes as additional input the coordinates for the upper left pixel of the ghost to be displayed, and 

the animation frame.  This module behaves very similarly to the Pac Man display module.  The 

ghost sprite is stored in a 32x32 ROM.  The ghost is only displayed when the current pixel is 

within 32 pixels both horizontally and vertically of the coordinates of the upper left corner of the 

sprite.  The x and y offsets measure how far from the upper left pixel the current pixel is.  The 

row of the ROM to be displayed is chosen by the y offset, and the bit of the row to be displayed 

is chosen by the x offset.  Ghost colors are parameterized with the default color as red. 

 

The ghost animation has 4 frames, each of which is stored in a separate ROM.  The ghost will 

rotate its eyes and wiggle its feet when it is animated.  The animation frame determines which 

ROM is read from.  Ghosts will respond to certain signals if the Pac Man has eaten a power pill.  

Those effects will be discussed in the power pill section. 

2.1.5 Lives Display 

 

The lives display is a simple module that takes the number of lives Pac Man has from the game 

state machine, converts the number to an ASCII character using a lookup table, and displays that 

character using the module char_string_display.  The modules locks in the number of lives Pac 

Man has at every negative edge of vsync so the characters to be displayed don’t change while 

they are being displayed.   

 

2.2 Power Pills 

 

Pac Man is not left completely defenseless against the seeking ghosts.  Two power pills, located 

at the upper right and lower left corners of the map, allow him to be invincible for a short period 

of time after eating them.  The effects of the pills are as follows.  If Pac Man eats a power pill, all 

the ghosts turn blue, and start to move away from him at a fraction of their normal speed.  If Pac 

Man encounters a ghost after he has eaten a power pill, he can eat the ghost.  Invincibility for Pac 

Man only lasts for 16 seconds.  Ghosts that Pac Man eats will disappear from the map for 16 

seconds, and then return.  Power pills are implemented with three modules, and the effects of the 

power pills require changes to the collision detector and modules that control displaying ghosts, 

ghost movement, and ghost AI.  Figure 2.2 shows the signals involved in implementing  power 

pills. 

 



 

2.2.1 Power Pill Display 

 

The power pill display module displays a power pill in the upper right and lower left corners of 

the map.  This module takes as inputs the 65 MHz pixel clock, hcount and vcount from the 

XVGA module, and the current x and y tile coordinates of Pac Man.  It outputs the pixels of the 

pills and the eat_pill signal, which goes high when a power pill has been eaten.  The pill display 

refreshes on the signal dots_reset from the game controller FSM. 

 

The pills are a pair of enabled blobs.  Blobs display a block of color given the coordinates of the 

upper left pixel, and the size of the block.  An enabled blob only displays a blob if the enable 

signal is high.  If the tile coordinates of Pac Man match the tile coordinates of a power pill, then 

that pill becomes disabled, and not displayed on the screen.  The pills are only regenerated 

during when the dots are reset.  The eat_pill signal goes high when a pill is disabled, and lasts for 

longer than one clock cycle. 

2.2.2 Power up Counter and Dead Ghost Counter 

 

The power up counter counts the number of seconds Pac Man has been in power up mode.  It 

turns power up mode on if it receives a high eat_pill signal, and turns power up mode off if 16 

seconds have passed.  There is an instance of the dead ghost counter for each ghost.  The counter 

counts the number of seconds a ghost has been dead.  The counter activates when it receives a 

Power Pill 

Display 

Power 

Pill 

Counter 

Collision 

Detector 

Dead Ghost 

Counter 

Ghost 

Display 

Ghost AI 

char_move 

eat_pill 

powerup 

powerup 

ghost_death 

ghost_dead 

ghost_dead 

ghost_dead 
pac_x, pac_y 

pixel 

Figure 2.2 – Block Diagram of the Power Pills Modules 

This shows the signals generated by the modules involved in 

implementing effects of power pills. 



signal saying a ghost has died.  The output signal ghost_dead is high as long as the counter is 

active.  The counter turns off after 16 seconds. 

 

Both the power up counter and the dead ghost counter receive a signal called tick from the 

divider module.  The divider module generates a signal that is high for one cycle every second.  

The power up counter takes as other inputs the eat_pill signal from the power pill display, the 65 

MHz clock, a reset signal, and outputs the signal powerup, which is high for 16 seconds after Pac 

Man has eaten a powerpill.  The power up counter detects the rising edge of eat_pill because 

eat_pill is high for more than one cycle.  At that rising edge, the counter is activated, and 

powerup is set to high.   

 

The dead ghost counter takes as other inputs the ghost_death signal from the collision detector, 

the clock, and a reset signal.  It outputs the signal ghost_dead, which remains high for 16 

seconds.  The dead ghost counter detects the rising edge of ghost_death because ghost_death is 

high for more than one cycle.  At that rising edge, the counter is activated, and ghost_dead is set 

to high.  Both the power up counter and the dead ghost counter set their timers and outputs to 0 

when they receive the dots_reset signal from the game controller FSM. 

2.2.3 Changes in Other Modules to Handle Ghost Death 

 

When a ghost dies, it is moved back to the ghost pen, and not displayed or handed new moves 

until its dead ghost counter expires.  Modules that control ghost movement and display required 

additional logic and inputs to handle ghosts being eaten by Pac Man and disappearing off the 

screen after they die.  When a ghost dies, it is moved back to the ghost pen, and not displayed or 

handed new moves until its dead ghost counter expires.   

 

The collisions module required the additional input of powerup, and the additional outputs of 

ghost_death for Inky, Pinky, Blinky, and Clyde.  If powerup was high, then a collision would not 

be reported to the game state module if Pac Man collided with a ghost.  Instead, the collision 

detector would check to see which ghost collided with Pac Man, and send a ghost_death signal to 

the corresponding dead ghost counter.   

 

The movement module  and the ghost AIs added the inputs powerup and ghost_dead.  The 

movement module sets the speed the ghosts to 1 if the powerup is high.  When a ghost is dead, 

the movement module behaves as if it was in the reset state, and does not move the ghost.  The 

ghost AIs will tell the ghosts to move away from Pac Man if powerup is high.  When the 

ghost_dead signal is high for a ghost, that particular AI will stop generating moves for that ghost, 

and behaves as if it was in the reset state.   

 

The ghost display modules also take in powerup and ghost_dead as additional inputs.  When in 

powerup mode, all the ghosts change their color to blue.  When ghost_dead is high for a 

particular ghost, the ghost display module for that ghost no longer draws the ghost on screen. 

 

 



2.3 Scoring 

 

The player earns one point for each dot Pac Man eats, ten points for each power pill, and one 

hundred points for each ghost.  The maximum score the player can earn for a game is 999 points.  

The score counter modules keeps track of the current score, and converts the score to a series of 

ASCII characters to be displayed.  The module takes the signals score from the dots display 

module, eat_pill from the pill display module and eat_ghost, a signal generated by connecting all 

4 ghost_death signals from the collision module with an or gate, to generate the score.  It takes as 

other inputs a reset signal, the clock signal, and the negative edge of vsync.  This module outputs 

the signal board_cleared, which tells the game controller FSM that Pac Man has eaten all the 

dots on the screen, and score_char, the numerical score converted to ASCII characters.  The 

score cleared each time it received the dots_reset signal from the game controller FSM. 

 

Edge detectors are used on the input signals eat_pill and eat_ghost since those signals are longer 

than one clock cycle, and the score should only respond once to a high signal.  The score module 

has three four bit registers that represent the hundreds, tens and ones digits of the score, hscore, 

tscore, and oscore. An 8 bit register that counts the total number of dots eaten.  The dots eaten 

register is incremented by 1 every time the module receives the score signal from the dots 

display.  The signal board_cleared is set to 1 when the dots eaten register is equal to 179, the 

total number of dots on the board.  The ones digit, oscore, increases by 1 each time the module 

receives the signal score.  When oscore is equal to 9, it is set to 0 on the next clock cycle, and 

tscore is incremented by 1.  When oscore is equal to 9 and tscore is equal to 9, both are set to 0 

on the next cycle, and hscore is incremented by 1.  The tens digit, tscore, is incremented by 1 

either when a one is carried from the ones digit or when the signal eat_pill is received.  The 

hundreds digit, hscore, is incremented by 1 each time the signal eat_ghost is received or when a 

1 is carried from the lower digits.  

 

A look up table for each digit converts the number into an ASCII character.  The characters are 

loaded into the output registers score_char on the negative edge of vsync so the characters string 

display does not receive new input when it is displaying an ASCII string. 

 

2.4 Victory Animation 

 

The victory animation occurs when the player has cleared a board.  The red ghost, Blinky, chases 

Pac Man across the screen.  Then, Pac Man chases a now blue Blinky back across the screen.  

The animation module takes as inputs the pixel clock, a reset signal, the negative edge of vsync, 

hcount, vcount, and the anim_start signal from the game controller FSM.  Its outputs are the 

anim_done signal, and the pixels of the animation.  

 

The animation modules creates a red ghost sprite and a Pac Man sprite.  It has registers 

containing the x and y pixel coordinates of both sprites, a frame counter that controls the sprite 

animations, the direction that Pac Man is facing, and if the ghost is blue or not.  The frame 

counter is a 6 bit counter that increments by 1 at each negative edge of vsync.  Only the upper 3 

bits of frame counter affect the animation frame of the sprites so the sprite animations are slow 

down.  The animation module resets the locations of Pac Man and the ghost to their starting 



locations when it receives the reset signal dots_reset from the game controller.  The animation 

starts if the game controller FSM is in the victory starte, and the signal anim_start is high.  The 

ghost chases Pac Man across the screen until Pac Man’s coordinates reach the right side of 

screen.  At that point, Pac Man flips direction, the ghost turns blue, and Pac Man begins chasing 

the ghost.  The signal anim_done is activated when the ghost’s x coordinate becomes 0. 

 

3.  Mike’s Modules and Implementation 
 

I was most responsible for the game logic. While Cassie generally worked on display stuff, I 

ensured that they were put to good use. I made it possible for all of the characters to move within 

the maze while obeying the physical constraints of the maze. Namely, I made it such that the 

characters wouldn’t run through the walls. I also coordinated the animation of each character. 

Cassie made all of the frames of animation and I coordinated which frame was displayed. I was 

also responsible for all of the collision detection. Furthermore, I wrote the high level game logic; 

I controlled the flow of events while a user plays the game. I also wrote the four strategies for the 

ghosts. In addition to all of this, I set up the interface (PS2 Keyboard), wrote a soundboard for 

playing the numerous sound effects in the game and designed the title screen display. The title 

screen is the one bit of display work that I did.  

 

3.1  Char_move.v 

 

The character moving module generalizes movement for the five sprites in the Pac-Man world. 

This module was designed with the intent for working with both Pac-Man and the ghosts, even 

though there are slight nuances between the two groups of characters. In short, this module takes 

in the direction that a character wishes to go in, determines if they can go in that direction, 

animates their movement from point a to point b and then updates their coordinates. The actual 

execution of this idea is slightly more complex, and we shall get to that.  

 

As one may recall from Cassie’s explanation of the display, we tile set our map into 32x32 boxes 

so when we wish to go up, for example, we really want to move upward by 32 pixels into the tile 

above the character, but we shouldn’t do that in one clock cycle (or one vertical retrace for that 

matter). We would like to smooth out that motion over a time on the order of a second so this 

module takes care of that. Throughout our project, we have this notion of a tile location and a 

pixel location. When we speak of a tile location, we are generally referring to some form of 

game logic and when we refer to pixel location, we are generally referring to some form of 

display.  

 

This module takes in a clock, which was a 65mhz clock in our case, the global reset signal, the 

edge of a vertical retrace, the up, down, left, right and pause signals, a reset_x and reset_y 

coordinate, a character speed, a playing signal, a beign_sfx signal, an ai_done signal, a 

char_dead signal, a powerpill, a victory and a collision signal. This is a lot of inputs, but they are 

all essential.  

 



Outputs include the character’s x and y tile coordinate, their x and y pixel coordinates, their 

frame of animation, a ready signal, the character’s current direction and passing information 

about where the character is located.  

 

The clock input is necessary because we wish to synchronize our movements to a clock. We also 

take in the negative edge of a vertical retrace on the VGA. This is necessary because the 

char_move module is responsible for animating a character and we would like the animation to 

be smooth and pleasing to the human eye.  

 

We take in the up, down, left, right and pause signals because these give us the information we 

need about the user’s (whether it be a human or computer’s) input. Without these signals, the 

move module would never do what it’s supposed to do: move the character. The reset_x and 

reset_y are 5 bit registers that describe the tile location where we wish for the character to move 

to whenever we wish to reset their location. We may reset their location for a variety of reasons. 

In my implementation of moving a character, their location is reset whenever the global reset is 

asserted, whenever a collision is detected between Pac-Man and a ghost, whenever a level begins 

(begin_sfx asserted), or if the character ever dies (char_dead asserted).  

 

The character speed is simply a 3 bit register that describes how long we wait before changing 

the character’s frame of animation. While other people would use speed to describe how many 

pixels a character moves at a given time, I use the speed to describe how long we wait before 

moving a set number of pixels (which is four pixels in this case).  

 

Playing is a signal is that asserted from the game logic and it tells us when we are playing the 

game, as opposed to being at the title screen or starting a level. We use this signal to enable all 

actions throughout the module. If we’re not in the process of playing the game, characters 

shouldn’t move.  

 

Begin_sfx also comes from the game logic. This signal refers to the period in time where a level 

is starting up. This would be the time where some sound effect would be playing and it is the 

period just before one could play the game. In this module, it is used to prevent a character from 

moving.  

 

The ai_done signal is given to us by the ghosts’ individual AI modules. While the user can input 

the up, down, left and right signals at any time, the ghosts determine these signals by an 

algorithm described later on. We don’t want the ghost to move until he makes a decision about 

where he wishes to move next so we use this signal as another form of enable on moving. 

Without this signal, we would run into some timing issues where the ghost would be 

continuously confused about his location and state and he would simply move back and forth 

between the same two locations. Since Pac-Man is not an AI, we hard wire a zero for this input 

when declaring Pac-Man’s moving module.  

 

The char_dead and powerpill signals are also used exclusive by the ghosts. When Pac-Man dies, 

the game logic will shift out of playing mode so all user input will be ignored. However, when a 

ghost is eaten, the game continues so we don’t wish for a ghost to move if he is eaten so this is 

yet another enable that we use on the movement. We use the powerpill signal to ensure that 



ghosts move at speed one while Pac-Man is Energized. Since we only want these two signals to 

apply to ghosts’ movement, we hard wire two more zeroes in place of these inputs for Pac-Man’s 

moving module.  

 

Finally, we use the collision signal to tell the module when Pac-Man collides with a ghost and 

should die. In this case, we halt his movement. If we did not do this, then we would have some 

synchronization issues where Pac-Man would run into a wall upon being rest to his starting 

position. Since this signal only applies to Pac-Man, we hard wire zeroes for this input when 

declaring all of the ghost’s moving modules. We use the victory signal for the same purposes 

because sometimes the player will actually clear the board and we don’t want the same bug to 

happen.  

 

Since this module is responsible for maintaining the character’s position, we have it output the 

character’s tile and pixel coordinates. The pixel coordinates are used for display purposes, and 

for collision detection. The tile coordinates are used to determine if Pac-Man eats a dot as well as 

determining the ghost’s behavior. This information is also used to compute the possible 

directions that the character can move in.  

 

The frame of animation output is assigned and sent to the character display controllers so they 

know which frame to display. This is used to animate the character as they move from square to 

square.  

 

The ready signal is applicable only to the instances of char_move that are used to move ghosts. 

Even though it is assigned anyway for Pac-Man, nothing uses it. The ready signal tells the 

corresponding ghost AI module that the move module is ready for a new input. This is the AI’s 

module to go ahead and compute the next direction that the ghost should take.  

 

The direction and passing information are used primarily for the ghost modules. Essentially, we 

want the ghost to know what direction he was going and what directions he can go in. The 

direction output is a 2 bit register that describes the four possible directions that the character 

could have been going. Table 3.1, illustrated below shows the information that is represented by 

the direction register. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: Character’s Direction 

 

Direction Name Symbol 
Parameter 

Number 

Right D_RIGHT 
00 

Left D_LEFT 01 

Down D_DOWN 10 

Up D_UP 11 

 



The passing information is read from a ROM, which we’ll refer to as a constraint ROM. This is 

represented as a four bit register. In essence, the ROM takes in an address, which is directly 

related to the character’s x and y position and outputs a four bit number. Our map is 16x24 so the 

ROM has 16*24 = 384 entries.The MSB (bit 3) of this number tells whether the character can 

move up from their current location. Likewise bit 2 tells whether you can move down, bit 1 tells 

whether you can move left and the LSB, bit 0, tells whether you can move right from your 

current position. The bit is a zero if you can’t go in that direction and a one if you can.  

 

The moving module utilizes a simple finite state machine to control moving. Below is a 

summary of the control flow for moving. 

 

• At rest, the module is in S_WAIT. In this state, the module is ready and waiting for a 

directional input. 

• The user (or controller) sends a direction that the character wishes to go.  

• The move module checks the information from the passing ROM to see if the character 

can, in fact, go in that direction. 

• If the character can, the character’s direction register is updated and the FSM transitions 

in the S_MOVING state.  

• If the character cannot go in that direction, the input is ignored and the FSM stays in the 

S_WAIT state. 

• When in the moving state, the character animates in its set direction. Every frame of 

animation corresponds to moving 4 pixels. As a result, there are 8 frames of animation. 

The amount of time between frames of animation is 8 vsyncs/speed. In the case where the 

speed is 1, the character changes frames every 8 vertical syncs and enumerates through 8 

frames for a total of 64 vsyncs (approximately one second) to move from one tile to 

another. In the default settings, Pac-Man’s speed is 4, Blinky’s is 4, Pinky’s is 3, Inky’s is 

3 and Clyde’s is 2.  

• While in the moving state, all input is ignored so a controller cannot try to change 

direction while we’re moving from one tile to another.  

• After going through all 8 frames, we have finished moving and the FSM transitions out of 

the moving state into the S_UPDATE state. 

• In the update state, the character’s x and y tile coordinate is updated dependent on their 

previous coordinate and their direction.  

• After this state, we go into the S_DELAY state. This state is more or less a hack. The 

constraint ROM needs time to catch up and read the new directional information. I delay 

4 clock cycles, but the ROM only has a pipeline latency of 1 clock cycle so the extra 

delay isn’t really necessary, but added as a safety.  

• We now know which directions the character can move so we transition into the S_WAIT 

state and wait for the next input.  

 

Of course, all of this happens as long as all of the enable checks described above are met. For 

example, we must be in the playing state of the game; the character can’t be dead, etc.  

 

Now, one thing we will see later on is that the constraint ROM may have been placed needlessly 

in the char_move module. When we examine the ghost AI’s, we will see that a ghost will only 

emit a signal (up, down, left, right) such that they go in a valid direction.   



3.2  Cdetect.v 

 

Now that we are capable of moving characters around, we want to determine when they collide 

with each other. While one would imagine that collision detection would be dependent on the 

character’s x and y tile coordinate, I decided not to do this because then we didn’t get very 

accurate results. Since the characters move at different speeds, it is quite possible for a character 

to collide with another while they’re both in the moving state. Remember that a character’s x and 

y tile coordinate is only updated AFTER the character completely moves into the next tile. For 

this reason, we use the character’s x and y pixel coordinates to determine collisions.  

 

In the appendix, my_x and my_y refer to Pac-Man’s x and y pixel coordinates and all of the 

other pixel coordinates correspond to the individual ghost’s x and y pixel coordinates. We also 

take in the powerpill signal as an input because while in power pill mode, we wish to detect 

collisions between Pac-Man and each individual ghost. Because of this desired behavior, we 

output not only a collision signal, but a signal for each individual ghost that tells them if they’re 

dead or not.  

 

In essence, we create a giant tree of logic that synchronously checks to see if Pac-Man’s x or y 

coordinate matches each ghost’s x or y coordinate and then checks to see if the unmatched 

coordinate overlaps with the width (or height) of the ghost. This is done synchronously, but only 

at the vertical retrace to lower the propagation delay. We don’t need to check for a collision 

every clock cycle because a character changes x and y coordinates every few retraces (dependent 

on the character’s speed). This keeps our data stable and our delay down a little. If we’re not in 

powerpill mode and a collision is detected, then we signal collision so the game logic knows to 

decrement Pac-Man’s life and start the level again (if he still has lives that is). If we are in 

powerpill mode, we know to tell the display and the moving module that the ghost is dead so he 

can be placed in the pen and not move, or be displayed until he respawns.  

 

3.3 Pac_game.v 

 

We’re finally starting to get something here. We can draw characters, move them around (given 

that the user tells them where to go), and even eat the dots. We’re still missing the actual game 

part. The game module serves as a wrapper for all of the other modules that we have written. It 

utilizes a FSM to control the game state and inform the other modules information about what 

state the game is in.  

 

This module is clocked with the 65 MHz clock (much like all other modules). It also inputs the 

global reset. In addition, this module receives: start_button, collision, board_cleared, 

dots_reset_done, sfx_done, and anim_done. These signals primarily are used to trigger changes 

in the game state.  

 

This module outputs: title_screen, reset_dots, begin_sfx, death_sfx, victory_anim, playing and a 

lives count. Most of these signals are used to signal other modules.  

 

The FSM is fairly linear and illustrated below (on the next page).  



 

 

 
 

Figure 3.3 above shows the FSM that represents the control flow for Pac-Man. The game FSM is 

responsible for maintaining the player’s lives. The default lives that the game gives a player upon 

reset is given as a parameter, and subsequently can be redefined using the defparam command. 

Pac-Man is given lives at the title screen. Lives are only decremented while in the Death state. 

The only thing that may be a little misleading is that edge detection is done on the collision 

signal so that signal really transitions the game from the Playing state to the Death state. The 

FSM will output a signal corresponding to all states except for the Delay state.  

 

The game starts at the Title Screen state. When the user presses the button, the maze will be 

drawn and dots will be drawn. The game will then go into the Begin SFX mode where the sprites 

will be places in their starting positions and ideally a sound is played to signify a level starting. 

In actuality, this state seems to pass through in one clock cycle. This occurs because the sound 
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Figure 3.3 – Pac-Man FSM: This is the primary FSM for the 

game of Pac-Man.   
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module didn’t work as intended. We shall get to that later on, but the state is still present. After 

the SFX is “done” we go into the main state of the game: the Playing state. This is the state 

where all of the interesting stuff happens. After all, this is the state where you can move around, 

eat the dots and get hit by ghosts. If Pac-Man ever gets the collision signal while in this state, 

signifying that he hit a ghost and wasn’t Energized, then we transition to the Death state. In this 

state the lives are decremented by one and we go to a brief Delay cycle. The delay cycle is to 

ensure that the life counter contains the proper value. This ensures that we actually trigger a 

game over and go to the title screen if we lose all of our lives. We then go into the Delay SFX 

state where, ideally, we would play a sound effect and transition out. Once again, the bug in the 

sound module causes this state to transition out after one clock cycle. At this point we determine 

if we still have lives or not. If we do, we go back to the Begin SFX state and play the level again. 

In this state, the dots are not reset but all of the character’s positions are. If we have run out of 

lives, we go back to the Title Screen.  

 

3.4 Ghost AI 

 

At this point, we have a game where you can pretty much do everything you would want to. The 

only problem is that the autonomous characters don’t move autonomously yet. The game would 

not be very much fun if the player controlled all five sprites (which is how everything was tested 

up until this point). I then sought to create a scheme to move the ghosts in an interesting fashion.  

 

In the Pac-Man game there are four ghosts. Their names are Blinky, Pinky, Inky and Clyde (as 

one may have discovered by this point). While it would be possible to make every ghost move 

randomly, this wouldn’t be very interesting because a careful player could easily avoid all of the 

ghosts and gobble up all of the dots. Part of the charm of Pac-Man was that each ghost had its 

own personality. I took inspiration from the Pac-Man Wiki entry and sought to use them as a 

basis for creating my own ghosts with personalities. However, in order to do this, I created two 

generic strategies: wander and prioritized moves.   

  

3.4.1  Ghost_ai_wander.v 

 

In an effort to create a somewhat random strategy, I made set of rules to define what it means to 

wander. This module takes in the 65 MHz clock, a ready signal, the ghost’s direction and their 

pass data. The wander strategy will use this information to determine the up, down, left and right 

signals to output to the higher ghost AI module (which will then, in turn go to the moving 

module).  

 

Since there is pseudo-randomness to this module, there is a 32-bit Linear Feedback Shift 

Register. This system was created via the IPCoregen tool chain. What the system creates is a 

series of shift registers all fed back into a 32-bit XOR gate. The data was seeded synchronously 

with the hex value ABCDE and the entire number was read out in parallel. We then picked a bit, 

designed by the concatenation of the bits 0, 1, 5, 7, and 3 from the 32 bit “random” number. I 

could have just as easily picked the LSB or the MSB, but I figured to be creative on choosing 

which bit to use.  



 

In our maze, all squares that a ghost can exist in are either two directional, three directional or 

four directional. The lone exception is the narrow 1x2 channel at the lip of the ghost pen (which 

is one directional), but we will see that the ghosts will have logic to handle the case where they 

are in the ghost pen.  

 

If the ghost is in a two directional pathway, they will simply continue along their way. If, for 

some reason, the ghost wasn’t traveling in either direction, he will pick a random direction and 

stick with it. This happens when the ghost first leaves the ghost pen. He is traveling up, but the 

square he lands in only allows him to move left or right. The extra rule serves as a failsafe to 

ensure that the ghost doesn’t get stuck (at least not at a two directional pathway).  

 

If the ghost is in a three directional pathway, then they will use the random bit to decide which 

pathway to take. They will choose between the paths such that they only consider the ones that 

keep them from going backwards. We don’t use the failsafe explained above because I reasoned 

that the ghost could never be stuck at a three way intersection. The only time a ghost could be 

stuck is if he is coming out of a one way passageway and can no longer continue in his previous 

direction. Let’s briefly examine the case where the ghost goes up from the ghost pen. If there 

were a three way passageway, he would have to be able to go right, left and up. He can’t go 

down because he came from a one way passageway. In this case, the ghost would simply 

continue going up until the next intersection. This also assumes that there are no dead end 

pathways, which is quite the reasonable assumption for Pac-Man.  

 

Lastly, if the ghost is at a four directional intersection, they will simply do nothing and maintain 

their direction (much like the two direction case). In the case where the ghost reaches a corner, 

he will take the corner and continue along his merry way.  

 

While this scheme is fairly simple to explain, it was very tedious to make. Under this strategy, 

the ghost knows the direction that he was traveling in and he knows which directions he can go 

in. Therefore I had to enumerate all of the permutations of his possible direction and his previous 

direction. This logic is only valid when the ready signal is asserted. This means that the ghost 

only makes a decision when the char_move module tells the ghost module that it is ready for 

new input. This keeps the ghost from running past his mark and becoming confused about his 

location.  

 

3.4.2 Ghost_ai_precmove.v 

 

Other than a strategy that just wanders aimlessly, I sought to create a more powerful strategy. 

After some careful thought, I realized that I could generalize a lot of strategies to the idea of 

prioritized moves (or moves with precedence as I initially called them). This module accepts the 

65 MHz clock, the ready signal, the ghost’s pass information and a sequence of precedent moves. 

With this information, the module outputs the up, down, left and right signals.  

 

Everything is as before, except for the removal of the ghost’s direction and the addition of this 

prec_move register. This register is 8 bits wide and contains a sequence corresponding to the 



directions that the ghost wishes to go in. Every set of two bits corresponds to a direction, as 

described in Table 1 above. The top two bits correspond to the move with highest priority. The 

next two bits correspond to the direction with second highest priority. The 3
rd

 and 2
nd

 bits 

correspond to the direction with third highest priority and the lowest two bits correspond to the 

move with lowest priority.  

 

The goal of this strategy is to move the ghost in the direction with highest priority possible. The 

module knows the order of moves that the ghost wishes to go in and it also knows the directions 

that the ghost could move in. Using these two pieces of information, it is fairly easy to design 

logic to move the ghost in a valid direction with the highest priority possible. This was 

accomplished with a fairly complex set of case logic wherein all possible sets of valid directions 

were enumerated and all possible precedent moves were enumerated. This was done for all sets 

of two, three and four way intersections. Consistent with the wander strategy presented above, 

this logic is only valid for when the ready signal is asserted.  

 

We will see the power of this prioritized move strategy when it comes to generating the 

behaviors of each individual ghost.  

 

3.4.3 Clyde_ai.v 

 

Clyde is the green ghost that moves erratically. For this reason, we have him generally wander. 

This module takes in vclock, reset, playing, ready, clyde_x, clyde_y, dir, pass, and dead as inputs 

and gives up, down, left, right and ready_done as outputs.  

 

The clock is our 65 MHz clock as usual. The ready signal still tells us whether or not to generate 

our next move. The rest signal resets all outputs to zero. We use dead and playing as enables on 

our logic. We don’t want the AI to generate moving signals if the ghost is either dead or if we’re 

not playing. The pass and dir inputs are sent to the wander module and are used as described 

above. We use the ghost’s x and y coordinates in order to get him out of the ghost pen. Since the 

ghost pen is a one directional pathway, we do not wish to break our system because it doesn’t 

know how to handle one directional pathways. Therefore we hard code all coordinates that he 

could have while in the ghost pen and tell him explicitly how to get out. In the case for Clyde, he 

must move left first and then up twice.  

 

If Clyde is not in the ghost pen, then we simply output the up, down, left and right signals as 

given in the wander module. While most other ghosts will adopt a separate strategy when Pac-

Man is Energized, we allow Clyde to be the stupidest form of a ghost and continue to wander 

aimlessly while he is helplessly gobbled up by Pac-Man. While his actions are irrespective of 

Pac-Man’s actions, this ghost can be the trickiest to avoid because his moves are fairly 

unpredictable. Of course, the ghost will repeat his actions after a set period of time, but a higher 

degree of randomness is introduced when the player dies. The shift register is seeded only on 

reset. This means that every time after the reset button is pressed, the ghost will move in the 

same pattern as he always does after the reset button is pressed. After watching this for a while, 

his movements become quite predictable (believe me, I would know). However, after a player 

has played for a while and dies, the random number generator isn’t reset; it will continue 



generating the same bits as it always has. However, what has changed is the ghost’s location 

relative to the bits that the shift register is outputting. This means that the ghost will run more 

random patterns than expected, unless the player happens to die at the exact time that the 

generator begins to repeat itself.  

 

Finally, the ready_done signal is asserted and sent to the move module to let it know that the AI 

is done computing its next move. In this case (and the case of all the ghost AI modules), the 

ready_done signal is merely a hack where was delay for a “magic number” of clock cycles. In 

this case, I picked that magic number to be four clock cycles and it behaved well. This may be a 

slight inefficiency in my logic, as we may not need to wait that long, but it’s a safe delay.  

 

3.4.4 Blinky_ai.v and Pinky_ai.v 

 

Blinky’s AI module is quite different from Clyde’s. However, it is quite symmetric to Pinky’s 

AI. It accepts all of the same inputs as Clyde’s (naturally, it receives it’s own x and y coordinates 

instead of Clyde’s), except this ghost also receives the power pill signal and Pac-Man’s x and y 

coordinates.  

 

The goal for Blinky is to actively chase Pac-Man. We accomplish this by using the idea of a 

prioritized move. If we are not in powerpill mode, then the ghost wants to chase Pac-Man. If we 

are in powerpill mode, we want the ghost to run away from Pac-Man. Pinky follows the same 

rule set. However, each ghost chases Pac-Man in a different fashion.  

 

For Blinky, we have him examine his x and y coordinates and Pac-Man’s x and y coordinates. 

Depending on the position of Pac-Man with respect to Blinky, he prioritizes his movements to 

approach Pac-Man in a clockwise fashion. Figure 3.4.4a below shows how Blinky would go 

about approaching Pac-Man given that Pac-Man is to Blinky’s lower right.  



 
 

If we prioritize our movements in this manner, then we will cause Blinky to always move 

towards Pac-Man in a clockwise manner. For Blinky’s AI, we have him wander if Pac-Man’s x 

coordinate is more than 6 away from Blinky or if Pac-Man’s y coordinate is more than 10 away. 

This makes the ghost less ruthless in chasing Pac-Man. If Pac-Man is within this range, we have 

the ghost chase him using the strategy outlined above. 

 

For Pinky, we do something very similar. The only difference is that Pinky now approaches Pac-

Man in a counter-clockwise fashion. Figure 3.4.4b below illustrates this idea.  
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Figure 3.4.4b – Pinky’s Chase Strategy: This illustration 

shows how Pinky would precedent chasing Pac-Man if Pac-

Man is to Pinky’s lower right. 
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Figure 3.4.4a – Blinky’s Chase Strategy: This illustration 

shows how Blinky would precedent chasing Pac-Man if Pac-

Man is to Blinky’s lower right. 



The neat thing about this set of strategies is that combined, we have a set of ghosts that will 

effectively trap Pac-Man. In testing, this simple, yet powerful strategy caused many frustrations 

for the player, as the ghosts would trap the player if they got too close. By using a wander 

strategy, we allowed for the ghosts to have a false sense of being harmless. Also, without mixing 

the two strategies, the ghosts would sometimes get stuck because they would be unsure as to how 

to get to Pac-Man. This occurred if Pac-Man was too far away from the ghosts or near the ‘S’ 

patterns that the walls make near the sides of the middle of the maze. Therefore, I made them 

wander a bit just to jump start them again so they wouldn’t continuously move back and forth 

between the same two spots. This is the one aspect of the project that I am most proud of. 

Although it appears to be too simplistic in explanation, it is a very effective strategy that allowed 

for much better gameplay. The player now has to think harder about the directions that he wishes 

to take. Of course, a really smart player could beat the ghosts every time because their moves are 

mostly deterministic, but this system is far superior to the generic random movement.  

 

If the ghosts see that we are in powerpill mode, they will run away from Pac-Man. We will 

explain how this is done in the next section, because Inky’s strategy is to run away all the time.  

 

3.4.5 Inky_ai.v 

 

Our last ghost, Inky, is the bashful one. He loves to run away. His AI setup is very much like 

Blinky and Pinky’s. He gets all of the same inputs and gives the same outputs as them. What is 

different is how Inky precedents his moves. We precedent Inky to move counter-clockwise 

AWAY from Pac-Man. We are still using the same module that moves the ghost in a prioritized 

fashion. Figure 3.4.5 illustrates how Inky would move given that Pac-Man is to his lower right. 

We should note that prioritizing our moves clockwise away from Pac-Man will still move the 

ghost away from Pac-Man. In this case, Blinky will move clockwise away from Pac-Man and 

Pinky will move counter-clockwise away from Pac-Man.  
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Figure 3.4.5 – Inky’s Run Away Strategy: This illustration 

shows how Inky would move, given that Pac-Man is to his 

lower right. In short, Inky will run away.  



 

There isn’t much benefit to assigning priority to clockwise over counter-clockwise when we 

wish for the ghost to run away. The only thing I can really think of is that the ghosts will split up 

and force Pac-Man to choose which one he wants to eat. Since all of the ghosts are the same 

color, the player may not remember which one is the speedy, red ghost and they may eat Inky by 

accident (who is by most means harmless).  

 

In order to prevent monotony, we have Inky mix between running away and just generally 

wandering. We set him to wander if Pac-Man’s x coordinate is more than 8 away or if his y 

coordinate is more than 12 away. Essentially, Pac-Man must be on the other half of the board; 

otherwise, Inky will run away. This implies that Inky will tend to stay either at the top or the 

bottom of the board.  

 

3.5 Keyboard Interface 

 

For the better part of this project, we used the labkit buttons to control moving Pac-Man up, 

down, left and right. While this wasn’t horrible, it did become a pain, literally. The buttons on 

the labkit definitely hurt one’s fingers after a while. We had initially intended to interface with a 

PS2 controller, but we never quite got around to it. We didn’t think it was a huge part of our 

design. Since Professor Chris Terman wrote a module that would handle keyboard input, I 

figured that it would be silly not to put it to good use. On the top level labkit module, I declared 

an instance of Prof. Terman’s module and wrote the logic to handle what would happen when the 

W, A, D, S, enter or space bar was pressed. We left the reset button to still be wired to the 

labkit’s enter button because it was a global reset value (almost like the reset button on a gaming 

console). In essence, I made it such that whenever one of those buttons were pressed, the 

corresponding signal (up, down, left, right, start and pause) and only that corresponding signal 

was asserted. This caused an accidental behavior that was actually desirable. In the original Pac-

Man, the controls were such that Pac-Man goes in a direction and keeps his direction until you 

change it. When we simply used the labkit buttons, one would have to hold down the button to 

move. Now, one only has to press the button when they wish to change direction. The behavior is 

more true to the original and our fingers are spared.  

 

3.6 Soundboard.v and play_sound.v 

 

The soundboard was made initially as an external system. Its intention was to play a given sound 

when triggered to. The sound files were actually WAVE files that were first sampled to 12khz, 

read in Matlab to attain amplitude information and then converted to be a number between 0 and 

256 (8-bit data). The converted data was saved as the .coe file and read into a ROM in Xilinx 

through the standard IPCoregen process. In my soundboard, there were 5 possible sounds: 

begin.wav, ghosteaten.wav, interm.wav, siren.wav and killed.wav. Begin.wav was the sound that 

corresponded to the startup music that plays when a player starts a level. Ghosteaten.wav is the 

sound that is played when the game is in powerpill mode and a ghost is eaten. Interm.wav is the 

short interlude that plays when the player clears the board and the victory animation is displayed. 

Siren.wav is the looping background sound that a player hears when the ghosts are active and 



can eat Pac-Man. Lastly, killed.wav is the sound that plays when Pac-Man is defeated and eaten 

by the ghosts. 

 

Another module, play_sound.v, was written to play an individual sound. The sound samples are 

interpolated linearly for a better playback. The code for this module was inspired heavily by the 

recorder/playback system that we developed earlier in the semester. It also utilizes the audio and 

audiocommands modules that were given to us earlier in the semester. These two modules 

interface with the AC97 codec onboard the labkit. Linear interpolation was achieved by using 

two consecutive samples as our endpoints and then finding the equation of the line between the 

two points. Since the two samples are four time units apart, we can easily draw a line at even 

intervals such that we step up or step down to the desired value.  

 

When the module was independently tested and the sounds were triggered by the switches, all 

worked fine. However, when this system was integrated, the sounds would never play. I feel as if 

I know the cause of this bug, but I have lacked the time to fix and test it. The soundboard.v 

module accepts the 27 MHz system clock, the reset signal, the ready signal (which corresponds 

to when the AC97 codec is ready for a new sample) and all the individual signals that correspond 

to playing each .wav file. The module outputs a signal corresponding to when it finishes playing 

a particular sound. In my implementation, I set those signals to be asserted when the address was 

zero instead of when it was equal to the high address for that sound (which I stored in a 

parameter because I knew them beforehand). This would definitely explain why the Pac-Man 

game FSM would never play the sound and transition out of the state where it should; the done 

signal for that sound file in the soundboard is asserted before the sound is even played.  

 

3.7 Title Screen 

 

The title screen was the absolute last thing that I worked on. The title screen was made in a 

graphics program (Photoshop). I saved it as a bmp file. I had initially intended to use Matlab to 

attain the 8-bit, RGB data from the image and write that to a .coe file, but I learned that Professor 

Ike Chuang wrote a neat python script that would convert a .pgm file to a .coe file. While there 

would be color loss, it proved to be infinitely easier (and quicker) to sacrifice the color loss to get 

a title screen into our game. The title screen image was 256x192 (each dimension of the screen 

was divided by 4). We converted this image to a .pgm file and used the python script to convert 

it to a .coe file. I then made a ROM with this image in the top level labkit module. There was one 

slight problem: all of our colors from the game were 3 bit and the title screen has 8 bit color. I 

remedied this problem by hacking the VGA outputs directly. If we were in the title screen, then 

the VGA output would be solely the title screen pixels and it would be the Pac-Man game pixels 

otherwise. This resulted in a nice final touch to our project. We had a better looking title screen, 

with our names, our project’s name and the controls for the game. We had created for a nice way 

for the user to know how to play the game without having to ask us how the system works. This 

is ideal from a user’s point of view.  

 

 



4. Testing and Debugging 
 

4.1 Cassie’s Testing and Debugging 

 

Testing the display modules required synthesizing  the project, and then viewing the project on 

the screen to find any glitchy video outputs.  When testing to see if a signal was generated 

properly, that signal was hooked up to the LED output on the labkit.  This method was mainly 

used to test the signals generated by Pac Man eating a power pill. 

 

4.1.1 MAP DISPLAY 

 

The first iteration of the map display was a collection of 38 blobs connected to the output by an 

or gate.  This worked as long as no further modules were connected to the pixel output, and the 

screen started showing glitches as soon as the dots were displayed.  The glitches were caused by 

the propagation delay of the large or gate, and to cut down on the amount of logic, the map was 

read from ROM. 

 

The second problem that arose with the map display was that the display was off by one line.  

The first row of the map was displayed on the second row on screen.  This was caused by the one 

cycle delay between when data was read from ROM and when it was displayed.  Originally, the 

address to the map ROM was set to 0 when hcount and vcount were both equal to 0.  Changing 

the reset values of hcount and vcount to 1343 and 805 respectively fixed this problem. 

 

The last problem with the map display was that there was a line of glitchy output every 32 lines.  

This was caused by the address changing every clock cycle that vcount was a multiple of 32 

instead of only once.  When the line was displayed, the address changed for every pixel as the 

module tried to display the entire rom during that one line.  This bug was fixed by telling the 

ROM address to only change once when vcount was a multiple of 32.  Instead of the address 

increasing by one if vcount was a multiple of 32, it now only increased by 1 at the end of a row 

of pixels where vcount was a multiple of 32. 

 

4.1.2 DOTS DISPLAY 

  

The initial dots display module had each dot as a separate blob.  To populate the map required a 

total of 308 blobs, and a corresponding large or gate connecting those blobs to the pixel output.  

The propagation delay caused by an or gate of that size caused all the dots to be very glitchy.  

Changing the display from XVGA to VGA fixed the glitchy dots temporarily, but did not get rid 

of the very large or gate.  To reduce the amount of logic needed to display the dots, the dots were 

read from memory and displayed in a manner similar to that of the map. 

 

Several more bugs appeared when the dots display was modified to handle Pac Man eating dots, 

and dots being refreshed from ROM.  The first error to appear was that Pac Man would eat an 



entire row of dots at once.  This particular error was caused by the write enable signal to the 

RAM being high before there was valid data in the write port.  The write port didn’t have time to 

load the last set of data read before the write enable went high.  The data written to that address 

was a line of zeros.  This error was fixed by not setting write enable to high until the write port 

had valid data loaded. 

 

Another bug occurred when the data from the ROM was being written to RAM and then 

displayed.  The new data written to RAM was off by one line.  This was most likely caused by 

the address to the ROM and the RAM being the same.  There is cycle delay between the time the 

data is read from ROM and when the data is written to RAM.  The data from row 1 of the ROM 

would be written to RAM when the address pointed to row 2, so the new dots display was off by 

one line.  This was fixed by having the ROM address be one higher than the RAM address. 

 

4.1.3 PAC MAN SPRITE 

 

It took several iterations of manipulating the ROM address to display the Pac Man sprite.  

Generally, a row was being read too many times, or the wrong bit of a row was selected as the 

output.  More bugs appeared when the Pac Man sprite was configured to change which direction 

it faces.  A shift of three had to be added to the x offset when selecting the row to read from 

when the sprite is facing up or down.  This is caused by delay between when the address is 

updated, and when it is received by the ROM.  This delay was not noticed when the sprite faced 

left or right since the address did not need to change every clock cycle.  The delay became 

evident when the address had to change every clock cycle. 

 

4.1.4 GHOST SPRITE 

  

The ghosts sprites experienced no glitchiness when they were first implemented, but as more 

modules were added to the project, ghosts would randomly become glitchy.  This is most likely 

caused by signal paths with long propagation delays.  This was fixed somewhat by pipelining the 

pixel output.  However, glitchy ghosts still appear occasionally.  The current version of the 

project is fine tuned so the ghosts do not glitch.  These could probably be permanently fixed by 

not displaying the video in real time, but instead storing the whole screen to a RAM, and reading 

from that. 

 

4.1.5 LIVES DISPLAY 

  

This module was simple enough that no errors were found during testing. 

 

4.1.6 POWER PILLS 

 

The first module written and tested was the power pills display module.  At first, Pac Man would 

either not eat the pill as he entered that tile, or he would eat the pill when he was still a tile away 



from the power pill.  This was caused by having incorrect tile coordinates for the power pills, 

and was easily fixed by changing the tile coordinates of the pills. 

 

The second major bug was the collisions were not detecting correctly.  First, ghosts in powerup 

mode would still eat Pac Man.  On the second trial, Pac Man continued to eat the ghosts when 

the powerup mode had expired.  The last case involved Pac Man and the ghost mutually killing 

each other when they collided.  Since all these errors involved collisions, I suspected the fault lay 

in the logic of the collision detector.  After I cleared up the mismatched begin and end 

statements, and added correct logic to handle the powerup mode, the collisions were detected 

correctly.  The ghosts ate Pac Man when they collided when powerup was off, but Pac Man ate 

the ghosts when powerup was on. 

 

Another bug that occurred was that the ghosts would be eaten, and would never reappear on the 

screen.  This was caused by the timer for the dead ghost module to be set to expire at 8 seconds 

while the output was told to reset to 0 when the counter reached 16 seconds.  The ghosts 

reappeared after the given time after the timer was set to expire after the correct length of time. 

 

One rather perplexing bug was that the ghosts would respawn in random locations on the screen, 

zip around, and finally end up inside the walls of the ghost pen.  This was caused by the 

movement and ghost AI modules sending the ghost movement information when the ghost was 

dead.  Rewriting the modules to include ghost_dead as an additional case where the module was 

set to reset mode fixed this problem. 

 

The last bug with the power pills came when the player cleared the board.  In the prior 

implementation, the power up counter and the dead ghost counters only reset when the reset 

button was pressed instead of every time the screen refreshed.  This caused the effects of power 

pills to carry to over after the board was cleared.  Dead ghosts were still dead, and power up 

mode continued even when the screen reset.  This was fixed by wiring the reset input of the 

counters to the dots_reset signal from the game controller FSM instead of to the reset button. 

 

4.1.7 SCORING 

 

For several weeks, every time the project was synthesized, a warning popped up saying that there 

were three gated clocks in the scoring module.  A closer look at the module revealed that there 

were three case statements that did not have enough entries to cover all the cases, and no default 

statements, thus causing Xilinx to think that they were clocks.  Adding default statements to the 

case statements fixed this problem, and decreased the amount of logic used.  No other bugs were 

found in the scoring module during testing. 

 

4.1.8 VICTORY ANIMATION 

 

The first bug in the animation came when the sprites would chase each other from left to right 

across the screen, but get stuck trying to chase each other from right to left.  This was caused by 

the contents if statement that was true if the x coordinate of Pac Man was a certain number.  



However, the contents of that if statement never changed the Pac Man’s x coordinate, so that 

every clock cycle thereafter, the if statement was true, and the logic would never move to the 

else statement.  This was fixed by changing Pac Man’s x coordinate in the if statement. 

 

The second bug came at the end of the animation.  When the animation ended, the screen would 

refresh, and Pac Man would move in the last direction he was traveling and get stuck inside a 

wall.  This bug was bypassed by having the game controller go to the title screen after the 

animation finished instead of refreshing the screen immediately.  This bug can probably be fixed 

by adding a new input to the movement modules that tells the character to stop moving during an 

animation. 

 

 

4.2 Mike’s Testing and Debugging 

 

Since our project revolved primarily on VGA display, the general form of testing was to 

synthesize the project and run it and watch the VGA screen. If things did what they were 

supposed to, then it would be clearly evident from the display. In order to help the process of 

debugging, various signals would be brought out and displayed on the labkit’s 16 digit hex 

display and the 8 LEDs.  

 

4.2.1 Char_move.v 

 

This was the first module that I wrote. It was also the most painful one to write. This is evident 

as I spent approximately three pages explaining how moving works. It took me nearly a week to 

figure out the exact rules for moving a character. Part of the problem stemmed because, even 

though we had a block diagram, one would not expect it to be perfect. Our project had no real 

substance in the beginning. Therefore, a lot of our ideas were very abstract so it was difficult to 

conceptualize what would happen once everything was working. It took a long time for me to 

come up with a scheme that would smoothly animate the character. There were also many 

synchronization issues wherein the character’s x and y coordinates wouldn’t be updated properly 

nor would they be displayed in the proper position. This was remedied by spending lots of time 

analyzing my output signals via the hex display and LED display and thinking about my desired 

behavior. It also helped to jot down many notes on scrap pieces of paper and draw the little FSM 

that was the moving module. By doing things this way, I was able to get the base module that 

worked. As the project became more complex, I constantly had to modify this module because 

there were various other checks that were performed (such as the AI being finished computing its 

value before allowing the character to move).  

 

Another problem that occurred consistently throughout designing this module was that the 

characters wouldn’t move smoothly. It really wasn’t that difficult to get the character to move the 

whole tile every time a button was pressed and it wasn’t too difficult to get the constraint ROM 

working. The real challenge was to get the animations to be smooth. With some tinkering, I was 

able to come up with a scheme for counting vertical syncs. This was actually done by having a 6 

bit counter that would increment by the char_speed value every vertical retrace. The frame count 



would simply be the higher order three bits of this counter. Initially, I tried using two counters, 

but I ran into synchronization issues because the frame of animation was being assigned 

synchronously so there was a delay associated with assigning the frame of animation and 

actually displaying the frame of animation. This caused for an ugly display. After finally 

realizing that the frame of animation should be assigned through combinational logic, then the 

move module animated as it should.  

 

4.2.2 Cdetect.v 

 

The collision detection module was fairly straightforward. However, I did some amount of 

testing to allow for the best behavior possible. Initially, I had it set such that it would check to 

see if Pac-Man’s x coordinate lined up with the ghost’s x coordinate and then used the opposite 

pixel coordinate to determine overlap. Note that the final version uses purely pixel coordinates. 

When I used tile coordinates as described above, the ghosts would be able to easily catch Pac-

Man while turning corners. It is true that if Pac-Man is turning a corner while being chased by a 

ghost, he will overlap the ghost at some point. However, we don’t want our game to be overly 

cruel and say that this is a collision. Therefore, I changed it to check for pixel coordinates. As a 

result, I ensured that the coordinates would have to be stable for some time before a collision is 

detected. For example, assume that Pac-Man is at a corner such that he can only go up or left and 

a ghost is to his immediate left. If the ghost goes right to eat Pac-Man and Pac-Man goes up at 

the same time, there will be some overlap. However, no collision will be detected because Pac-

Man will be in the process of leaving the tile. This implies that collisions only occur at corners if 

Pac-Man is caught completely in the tile when the ghost overlaps him. This scheme works nicely 

because Pac-Man can still be caught if the ghost fully enters the tile before Pac-Man fully leaves 

the tile (in this case, the x coordinates of Pac-Man and the ghost would be equal and their y 

coordinates would overlap instead of the opposite situation occurring).  

 

4.2.3 Pac_game.v 

 

This was also a fairly straightforward module. Since it is the Major FSM of the system, I simply 

outputted the state to the 16 digit hex display and wired the inputs that I didn’t have 

automatically generated (dots_reset_done, sfx_done, and all other inputs that triggered state 

changes) to the labkit buttons. This allowed for me to test this system independently from the 

project. Once I was satisfied that it worked as it should, then I hooked in the signals that I 

already had generated via the Pac-Man game. In this case, it was just the collision detection 

signal because we had not yet made dots work. I then made sure that the game would cause you 

to lose a life by colliding with a ghost. Once this worked, I was happy and moved on. 

 

4.2.4 Ghost AI 

 

When I made the ghost AI, I initially thought that the random strategy (the wander strategy) 

would be the easier of the two to make so I made that one first. There were actually a lot of 

synchronization issues between the ghost AI and the moving module. Even though I wrote logic 



that appeared as if it would allow for the ghost to move as described above in the wander 

strategy, the ghost wouldn’t do that. He would double back and generally just alternate between 

the same two squares. He would move a little, but not get very far because he would be moving 

back and forth between the same two squares most of the time. In essence, he was doing a 

random walk. A random walk was too random for our game so we had to tone it down a bit. 

From the module description given above, it should be apparent that there is a two way line of 

communication between the char_move module and each ghost AI module. Initially, there was 

only a one way line of communication; namely, the char_move would only tell the ghost AI 

when it wants a new directional value. Since the move module didn’t wait for the output to be 

generated, it would use the old value to move the ghost. For example, let’s assume that the ghost 

is moving up and he reaches a three-way intersection where he can go up, down or right. He 

decides to move right, but because of the logic error, the ghost will continue to move up. He now 

reaches the next square and wants to move right. However, let’s assume that he can only go up or 

down in this situation. The rules say that if the ghost is in a two way section and isn’t going in 

either direction, he will just pick a random direction. Therefore, the ghost would sometimes 

double back and encounter the same problem again. It took a while to realize that we needed that 

second line of communication between the two modules. However, once the bug was realized, it 

was easily remedied. I discovered the bug by wiring the up, down, left and right signals for that 

ghost to the LED buttons and pausing the game as the ghost reached a three way intersection. I 

witnessed that the ghost AI was sending out a signal to move to the right, but the ghost was, in 

fact, moving up. This helped me to converge on the error in my logic.  

 

After changing my design to allow for this bi-directional pathway of communication, it was 

fairly simple to write the rest of the ghost modules. The prioritized move required no fussing 

with shift registers so it was fairly easy to generate the lookup table to give the desired behavior. 

I was convinced that the other ghosts’ AI systems were good when I was able to place myself in 

a situation where the ghosts would, indeed, corner me and win. The same holds true for Inky’s 

AI module. I was convinced that his module worked when he ran away from Pac-Man. Once 

again, we used actual game situations to determine if a system worked as intended.  

 

4.2.5 Keyboard Interface 

 

Luckily, most of the keyboard interface was already written for me so testing was fairly minimal. 

Testing was done by simply playing the game. If Pac-Man didn’t move as intended, then I had to 

track down the source of the bug and fix it. The predominant problem was that after dying, one 

would immediately run through a wall near the starting position (if the player’s last move was up 

or down). This was fixed by forcing the values for up, down, left and right to zero upon a 

collision. A similar fix was employed in the char_move module. For that module, the player’s 

frame count was forced to zero if a collision was detected and the state was forced to the wait 

state (this is the only time a move can be interrupted).  

 



 

4.2.6 Soundboard 

 

The soundboard was first generated as a separate project. It was debugged by using the switches 

on the labkit to play each sound.  While this did work, integration with the Pac-Man game did 

not. A copy of the working soundboard has been included with the project file to be perused at 

one’s leisure. The code is slightly redundant, because it has been included in the Pac-Man 

project. However, the difference is that the separate soundboard project actually works. As stated 

previously, part of the reason why integration failed was because of faulty logic related to when 

the sound was finished playing and the lack of enough block ROMs on the labkit to actually 

generate the sound ROMs necessary for playing the sound files. The soundboard was made and 

tested by listening to the sounds. When I had aural verification that the sounds were playing 

properly (or somewhat close to properly), then the module was declared to work (or at least 

somewhat work).  

 

4.2.7 Title Screen 

 

The title screen actually was quite straightforward once I had the .coe file generated. The only 

issue was generating the address. I had to remember that I needed to repeat each pixel four times 

so I had to throw away the bottom two bits of hcount and vcount in the XGA display. I initially 

forgot to do this so I ended up with 12 copies of the image on the screen. A simple smack to the 

forehead and a small change to the code caused this problem to vanish into thin air.  

 

 

5.  Conclusion 

5.1 Cassie’s Conclusion 

 

I learned several important concepts from this project.  The first concept is that there’s always a 

simpler way to do something than brute forcing it with lots of logic gates.  A 300 input logic gate 

means that I’m probably doing something wrong, and I should change my approach.  I also 

learned that when integrating code, I should integrate in small portions, testing as I go along 

instead of integrating all at once, having the newly integrated code crash, and no knowing which 

portion failed to integrate properly. 

 

If I had more time for this project, I would first change the video display to be read from RAM 

instead of having a real time video display.  Reading from RAM would likely cut down on the 

number of glitches caused by propagation delay.   Also, I would add in additional levels to the 

game 

 



5.2 Mike’s Conclusion 

 

Our final project enabled us to create a fully functional Pac-Man game. While our design may 

not be the most efficient one, it is one that most definitely works and works within the resource 

constraints that we have been given.  

 

There are a few things that I have learned and would do differently if I had the chance to re-

implement this project. For example, the collision detection module appears to be more complex 

than it needs to be. The logic can definitely be condensed into something slightly more efficient. 

However, I never got around to doing that due to the time constraints that haunted us all.  

 

I would have also liked to develop more ghost AI systems. I did learn that sometimes the 

simplest system works the best, but I would have liked to make more simple systems. I had 

initially intended to make some complex ghost AI that would run set pathways given the state of 

the game and the positions of the characters on the screen, but I never actually did that. This idea 

was forgotten about once I realized the effectiveness of the simple strategy of closing in on Pac-

Man from two different directions. I definitely learned that it is much more desirable to have 

something simple that works really well as opposed to something complex that doesn’t.  

 

I also learned the vast importance of communication. Most other groups performed projects that 

were really two separate projects that ended up being integrated together at the very end. Cassie 

and I worked on similar aspects of the same project. Therefore, it was very important that we 

constantly communicated with each other. We were constantly integrating our code and then 

diverging again to work on parallel tasks. When we met to integrate, we would have to 

communicate our changes to each other, how they behaved and how to use the modules that we 

had written. We probably should have used some form of version control, such as CVS, but we 

ended up doing things completely verbally. This worked because we only had a team of two 

people. Had we had more people, then we would have probably used version control. A big part 

of the success of our project is attributed to our ability to communicate effectively to each other.  

 

Overall, I am quite happy with the modules that I had written. They are all fairly modular so it 

wouldn’t be too difficult to do things like add more ghosts, add another map and add a second 

player for simultaneous Pac-Man play.  

 

It took eight people fifteen months to build Pac-Man from scratch in 1980. A team of two sought 

to recreate this classic in five weeks. They were successful.  

 


