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Abstract 
 

Recent technology has taken advantage of motion sensors to accomplish basic commands 

usually implemented through switches or remote controls.  The hand motion controlled audio 

player created in this project will carry out basic commands, such as volume control, track 

selection, audio playback and record, stop, and pause, using hand gestures.  The audio player will 

also include a visual component, displaying which functions the user is carrying out, via the 

VGA.  The user will wear a three-axis digital accelerometer on his/her hand through which hand 

motions will be detected.  Upon starting the audio player, the user will be asked to calibrate 

his/her motion for each command—the motion then being written to an SRAM.  After 

calibration the audio player will be launched, and once the motion is tracked, the controller will 

map the motion to its corresponding command, and the audio player responds with the correct 

control of an audio file stored in one of the labkit’s ZBT memories.  The process of testing and 

debugging the audio player involved first testing the accelerometer and the audio player 

individually.  The two major components were then interfaced and further analyzed.  The end 

result is an audio player which responds to the user’s motion, whether it is turning up the volume 

or skipping to a new track.   
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1   Overview 
 

1.1   Functionality 

 

 The hand motion controlled audio player simulates a typical audio system with the usual 

functions like play, pause, stop, record, track selection, volume control, and playback mode 

options.  The unique aspect of this audio player is that it can be controlled through the user’s 

hand gestures rather than a button press.  The hand gestures are detected using an accelerometer 

that will transmit data to the FPGA depending on what motion was done.  There will be an initial 

calibration stage in which the user is instructed to calibrate a gesture for a specific command.  

After calibrating, the user can then use the audio player by first recording audio.  The audio can 

then be played back with various manipulations, including volume control and track selection.  

In addition, the different playback options of the audio player include normal playback, echo 

mode, Alvin the Chipmunk, and Barry White modes. 

 

1.2 User Interface 

 

 The user interacts with the audio player via a three-axis digital accelerometer.  The 

accelerometer sits atop a Velcro brace that is worn around the user’s hand.  The accelerometer is 

linked to the FPGA labkit with five wires.  These wires provide a voltage source and ground to 

the accelerometer along with lines to transmit and receive data to and from the FPGA.  Using 

this accelerometer, the user can communicate with the audio player. 

 The audio player then communicates back by implementing the motioned audio 

command and also via the VGA display on a computer monitor.  The VGA display gives the user 

instructions on how to calibrate the accelerometer and then changes the display to show an audio 

player visualization after calibration is over.  The audio player display allows the user to see 

which functions are being carried out with simulated button pushes and messages shown on the 

screen.  A block diagram of how the accelerometer, VGA, and audio component interact with 

one another can be viewed below. 
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Figure 1: Block diagram 
The block diagram shows how the accelerometer, VGA, and audio interact with one another and how the user can affect the audio player through its inputs—

iPOD and accelerometer—and see and hear the results via the outputs—speakers and VGA monitor. 
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2   Accelerometer (Diana Cheng) 

 

2.1 Accelerometer Specifications 

 The accelerometer used in this project was to provide a means for interpreting and 

detecting hand gestures from the user. This was then to be passed onto the audio portion where 

each gesture/motion would correspond to an audio command. The accelerometer used in this lab 

was the ST Microelectronics 3 axis ±2g digital output MEMS accelerometer, part number 

LIS3L02DQ. This part came on an evaluation board EK3L02DQ which had already converted 

the i2c interface from the accelerometer to a standard RS232. It took an external power supply 

from 3 volts up to 18 and could be immediately tested and hooked up onto the Hyper Terminal. 

There are two connections between the FPGA and the data chip, a transmission line and a 

receiver line.  

 
Figure 2:  Accelerometer chip LIS3L02DQ 3axis digital output  
The evaluation board came with power regulations and standard output pins 

 

2.2 Accelerometer interfacing 

 To get the FPGA chip to be able to interface with the chip, a RS232 module had to be 

created. The specifications to talk to the accelerometer included using a standard RS232 interface 

at an 115200 baud rate, with a data word of a byte, 1 stop bit and no parity. Transmission should 

occur with least significant bit first. First, a baud clock needed to be generated from the 

Clock_27mhz signal. This was done using the www.fpga4fun.com website that gave a formula in 

how to convert standard clock signals into baud rates. Using the  

 

BaudGeneratorInc =  

((Baud<<(BaudGeneratorAccWidth-4))+(ClkFrequency>>5))/(ClkFrequency>>4);  

 

formula provided, a serial clock was generated. The serial clock would serve as a data ready to 

the RS232 FSM signaling every 10
th

 baud clock that a byte was received.  

 This module was split up into two sections since transmission and receiving could not 

occur at the same time. Thus ready and enable signals are passed within the module to safeguard 

against trying to do both at the same time. The FPGA will default to being in receiving mode 

constantly until a transmission signal interrupts. 

 

2.3 RS232 FSM to read in the data into a bus  
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 Once the basic interface was built, then came to controlling signals that went into and 

came out of the chip. This consisted of an FSM with 12 states each transitioning on the serial 

clock. States 1-3 are dedicated to transmitting the single acquisition commands to the chip to 

query for data. 4F 6F 6E in hex, this will cause the chip to display a 2’s compliment string of 8 

bytes in the order of S T Xhigh Xlow Yhigh Ylow Zhigh Zlow. Single data acquisition was 

chosen instead of continual data acquisition because this way, the FSM  can completely control 

and manage the timing issues that would otherwise occur. By allowing the FSM to control the 

transit and receive, the FSM would be able to sync with the data receive lines more accurately. 

However, to mimic continual data acquisition, the FSM continually looped around constantly 

sending it the acquisition commands.  

Once the FSM passes the three transmission states, it will loop in a wait state waiting for 

the chip to respond. However due to the long lag time between transmission and receive, as there 

was a huge lag time between transmissions and receiving, it was often the case that the chip 

would miss the beginning bits. Checking for the S byte and the T byte, received signals for the 

FSM to expect the x y and z data by the next serial clocks. A wait expired signal was created in 

the event that the S or T byte was missed and never received. This state would wait for roughly 

.37 seconds before it would reset and retransmit an acquisition signal. 

Once S and T received, the rest of the states push the byte into a variable. When all 8 

bytes have been received, the variables are concatenated and sent as a 48’bit bus as well as a 

fulldata_ready signal. 

 

 
     Figure 3:  RS232 FSM   

The states in how to receive data from the accelerometer 

 

2.4 Implementation of the tilting recognition 

Initially, the project handled taking in the tilting gestures of the user. This system 

required a 2 second timer. During calibration, the user was given a button to start to hold their 

position for 2 seconds. Once the tilt was recorded, they go back to waiting for the next button 

push. In this system, the user had to hold their tilt for at least 2 seconds during calibration phase 

at which time the calidecode module will write the Xhigh, Y high and Zhigh bytes into a 9x24 

Sram. Then during decode state, if at any point the user tilted to that position, the command was 

given. This allowed for the user to customize their own positions that corresponded to the 

commands. Also in this case left handed users would be compensated for as well. To implement 

this, the next stage was to go directly to the calidecode module  

2.4.1 Calibration state 

 This module consisted of 3 states. Upon resetting, the FSM started out in the first 

state where it waited for the user to push the calistart button. Once the button is pushed, a 

calibrate signal is sent to the audio player as well as a 2 second enable signal to a 2second 

clock divider. Once the 2second disable is received from the clock divider, the calibrate 

memory will record the full data position at that instant. If more commands needed to be 

calibrated, they will return to the Caliwait stage waiting for the next button press.    
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 Once all 9 are written, there is no way to return back to calibration without 

resetting the system. 

   

2.4.2 Decode state 

 In decoding stage, it continually parses through the calibrate memory constantly 

matching the full data xyz information to the memory. No data will be lost in this method 

because each full data comes at a .0007 seconds however comparing with all 9 address in 

the calibrate memory occurs every .0000003 seconds so there is plenty of time between 

each full data received. Thus all positions will be checked and thus won’t miss a 

command.  

 Once a match is found the module will send out which address the user matched 

to and that will be distributed to the audio processing.  

 
 

Figure 4:  Tilt Calibrate FSM   
The states in how to decode and calibrate tilt recognition from the accelerometer 

 

2.5 Motion processing 

 To further create a more robust system, movement was attempted to be processed. Digital 

signal processing methods were used. First off, from the RS232 FSM comes in the full data at a 

1429 Hz rate. This along with a fulldata_ready signal will first get filtered to eliminate noise and 

smooth curves. Once filtered, the data will get sampled at a certain rate and then threshold to 

create very basic shapes with minimal key features such as maxs, mins and x intercepts. Then 

written to the calibration memory, this will be patterned matched based on a point comparison 

algorithm.  

 

 2.5.1 Using Matlab to pre-processing 

 In order to realize what shapes the data points correspond to hand movements it 

was first recorded in secureCRT and written to a text file. In matlab, this was then 

decoded as 2’s compliment numbers and filtered, sampled and threshold.  Then in 

plotting the graphs, thresholds could be determined. Simple matlab codes to process these 

signals were run through an optimization code that found the threshold values that 

returned the highest percent of true positives that occurred from the database of hand 

gestures recorded.  
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Figure 5: Original matlab plots unprocessed   

For one hand gesture x y and z are plotted here 

 

2.5.2 Filter/sampling Implementation in Verilog 

 Taking only the top 8 bits of each axis, allows for more leniency in the motions. 

The bottom bits of each axis were too sensitive to be used as valid data. First off the full 

data ready was sent to the low pass filter module (lpf) that reads in every fulldata and will 

integrate over a window of 64 every 5
th

 fulldata point. This in effect samples and filters at 

the same time to avoid unnecessary computation. By saving computation, this will ensure 

the program enough time to calculate the average of 64
 
points before the next fulldata 

signal. The window size and the fulldata number were thresholds found in matlab that 

served to optimize the smoothest curve that still retained enough key features for a 

distinct motion. Once completed the sdata and an sdata_ready signal is sent to the 

thresholding module  

   
Figure 6: down sampled at 16 and filtered with a 64 window size 

For one hand gesture x y and z are plotted here 
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2.5.3 Thresholding 

 The theory of the thresholding module is to zero out any noise that could occur 

from the user’s unstable hand. This module will set a high and a low threshold in which if 

the data point fell within those margins, it will be pushed towards the dc value. For the x 

and y axis the dc value was zero as it felt no gravity at rest. The z axis dc value was set to 

-1g since at initial rest (being placed flat on the table) it felt a force of gravity.  

 
Figure 7: Thresholded 

X margins ±20, Y margins ±20, Z margins +15, -20 

 

 2.5.4 Edge detection 

Once thresholded, the edge detector will send a signal showing non_dc values 

have been read. This too also thresholds as sometimes noise will be created in the 

thresholding process. However by making sure that each max and min is larger then 3 

non_dc values, it will disregard random spikes in the graph. This will then send a signal 

to the calibrate state which indicates to start calibrating/decoding 

 

 2.5.5 Calibration 

Similar to the tilt method this module has a few more states including caliwait, 

cali trigger, calimemory, decodetrigger, decodemem, and decode. During calibration  the 

signal will wait for the button push from the user, but instead of waiting for 2 seconds, 

the user has to move their hand in order for the edge detector to see the beginning of the 

movements. Once edge detected, the next 32 sampled data points will be written to the 

24x320calimemory. XYZ bus will be written in each address. The top four bits of the 

calimemeory address correspond to which motion is being calibrated at that moment.  

 

2.5.6 Decode 

 Once all 9 motions are calibrated, the FSM is forever in the decode state unless 

reset. This will act rather like the calibration state in that it will search for an edge and 
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then once found, write the next 32 xyz data points into the 24x32decode memory. Once 

written, the decode stage includes sending it into a comparer module that will take each x 

y and z point and compare it with the calibrated x y and z point. Then setting a point 

threshold, it will keep a running x y and z score value. For each x point with in the 

calibration point ±threshold, the x score will add 1 point. Similar for y and z, the max 

score will be 32. Then setting a total score threshold if the xscore is within 32 minus the 

totalscore threshold, then it will return a 1 for the xgood variable. Similar for y and z, the 

decode state will assign a command to the motion only if all xgood, ygood and zgood are 

all 1’s. If none of them matched, it will disregard the values. The timing of this system is 

sufficient because each sdata_ready comes at a 90hz cycle. The comparing runs off of the 

27mhz clock cycle comparing xyz in one cycle. Thus it will take 84375 Hz to complete 

comparisons for all 9 motions. Thus leaving plenty of time before the next motion occurs. 

  

 
   Figure 8: Motion Calidecode FSM 

    Slightly modified from tilt calidecode FSM  
 

3   VGA Display   (Doris Lin) 

 

3.1   VGA Video Format 

 

 The visual component of the project was provided using VGA video format displayed on 

a computer monitor.  This format consists of non-interlaced frames composed of horizontal lines 

of pixels.  The frame data are transmitted starting from the top line to the bottom, and the pixels 

are sent from left to right.  The VGA display we created had frame dimensions of 1024x768 

pixels.  Each pixel of the video includes an R,G, and B component, each 8-bit values.  In 

addition to the pixel values, which compose the active regions of the frame, each frame also 

includes blanking regions.  The blanking intervals occur at the end of every line and at the end of 

every frame.  These blanking regions are controlled by the horizontal sync, vertical sync, and 

blank signals, all of which can override the pixel value.  The timing of these pulse signals can be 

seen in the diagram below. 

 



 13 

 
Figure 9:  VGA Horizontal and Vertical Sync Signals 

The horizontal sync signal pulses at each line end and the vertical sync signal pulses at each frame end (Taken from 

http://www.tkk.fi/) 

 

During the blanking interval, black pixels are transmitted until the horizontal or vertical sync 

pulse, when pixels below the normal black level are transmitted.  These signals and the pixel 

values are processed by the ADV7125 video DAC on the Xilinx labkit. 

 

3.2 VGA Timing 

 

The VGA display used for our audio display is a 1024x768 pixel frame with a 60 Hz 

refresh.  According to VGA standards of Xilinx, Inc., this requires a pixel clock of 65 MHz.  The 

Xilinx labkit has a built-in 27 MHz clock.  In addition, the labkit includes digital clock managers 

(DCM) and one can be used with the built-in oscillator to create the 65 MHz pixel clock. 

  
3.3   Calibration Display Module 

 

 The calibration display follows a sequence of nineteen screens to relay instructions to the 

user to calibrate the accelerometer.  The first screen displays three strings giving the user an 

initial message to begin calibration. Each screen thereafter displays two strings.  These screens 

alternate between a calibration countdown screen and a wait screen before the next calibration.  

The module determines which string to write to the monitor based on several signals.  The initial 

screen of the calibration display can be seen in the following figure. 
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Figure 10: Initial Screen Display 
The initial screen upon starting or resetting the system, tells the user to how to begin calibrating. 

 

 One of the important signals received by the calibration display module is next, sent by 

one of the accelerometer modules.  The accelerometer responds to a button push that will trigger 

the calibration of the next function.  The accelerometer in turn sends a signal to this VGA 

module to indicate that calibration of the next command has begun.  When this signal is received, 

a nextcal pulse is created out of it and a calibration screen is shown.  The screen displays a 

message notifying the user that he/she is calibrating a motion along with a five second 

countdown.  When the five seconds is up, another screen is presented to the user.  This screen 

informs the user to press the calibration button and informs him/her which motion will be 

calibrated next.  There are nine calibrated motions in total.  The figure below shows the display 

module counting down at two seconds. 
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Figure 11: Calibration Display in Countdown 
The calibration display counts down during calibration from five seconds to zero. 

 

 This module also contains a four-bit counter register.  After each calibration, the counter 

is incremented.    The counter is used to keep track of which motion is being calibrated and is 

used to determine which string to display.  For instance, when the counter equals zero, its initial 

value, the string displaying the next function to calibrate is chosen to be “PLAY/PAUSE.”  Then 

when the counter reaches seven, the module knows only one calibration is left and the chosen 

string to display is “MODE.” 

 The strings to be displayed are stored in the cstring registers, whose values are sent to 

instantiations of the char_string_display module provided by the 6.111 staff.  Each instantiation 

of the char_string_display returns a three-bit pixel value, which are then latched and or-ed 

together to get one final three-bit value to return and transmit to the ADV7125 chip. 

 

3.3.1 Divider Module 

 

 As mentioned previously, some of the screens in the calibration sequence display a five-

second countdown.  This countdown depends upon a one hertz enable signal created by the 

divider module.  The divider takes the 65MHz clock, and using a 26-bit counter, counts up to 65 

million.  When it reaches this value, it assigns a high value to the enable signal for one clock 

cycle.  Each time the enable pulses is thus one second and signals the calibration display module 

to count down by one on the monitor. 

 While the divider transmits a signal to the calibration display, the display module also 

transmits a signal to the divider.  This input to the divider module is a start signal and tells the 

divider to reset the counter to zero and continue counting to 65 million.  The start_time signal in 

the display module goes high when ever the nextcal pulse goes high and the time_ct equals five, 
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the initial countdown value.  When these conditions are true, it means the motion calibration has 

just begun and the countdown should also begin. 

 

3.3.2 Character String Display and the Font ROM 

 

 The other module called by the calibration display is char_string_display, which accesses 

a font ROM.  The character string display module takes a string as an input and returns a 3-bit 

RGB pixel value.  The module takes each character from the string and looks up the character in 

the font ROM that has an initial file loaded into it.  This file includes 8x12 bit characters which 

are doubled in size on the VGA display, so each character is actually 16x24 pixels.   

 The delay in getting these characters from the font ROM and displaying them on the 

screen is rather large, nearly 20 ns, which creates glitches in the display since each pixel clock 

cycle is only about 15 ns long.  To allay this large delay, the assigned strings in the display_cal 

module were split up and sent to the character string display in parts.  In addition, the returned 

pixels from the character string display module were latched and pipelined. 

 

3.4   Audio Player Display Module 

 

 Once the calibration stage is over, the accelerometer transmits a signal indicating that it is 

beginning to decode the user’s motions.  This signal switches the monitor to displaying the audio 

player screen.  The display simulates what a typical audio player would look like with the 

function buttons in a toolbar at the bottom of the screen.  Included buttons are play, pause, stop, 

record, skip forward, volume up, and volume down.  In the top left corner is a message 

informing the user as to which function is currently being carried out, and in the top right corner 

are four bars for each of the four playback modes—normal, echo, Alvin, and Barry.  All the 

buttons begin as blue and are highlighted lime green when they are “pushed.”  The mode bars 

work similarly.  The current playback mode is highlighted in lime green while all the other bars 

remain blue.  The buttons and bars are created using sprites, and the messages are displayed once 

again by calling the character string display module.  A picture of the audio player display can be 

seen in the figure below. 
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Figure 12: Audio Player Display 

The audio player display initially displays the message “Ready to record” in the top left but later displays whatever 

function is being carried out.  The button bar is at the bottom of the screen and the mode bars at the top right of the 

screen. 

 

 

 The sprites and messages are created by instantiating other modules that all return a 3-bit 

pixel value.  These pixel values are latched and then or-ed together to form one RGB value.  The 

final 3-bit RGB value is returned to the higher level and transmitted to the ADV7125 chip. 

 The display includes FSMs that serve to determine the color of the sprites on the screen 

or to create signals to pass to the button modules.  The display module takes as a 3-bit mode 

input, which is used to set color values for the mode bars.  For instance, when mode equals zero, 

this means the audio player is in normal playback mode, so the first mode bar—the block sprite 

for the normal mode message—is set to be a color of lime green while all the others are set to 

blue.  The display module also takes another 3-bit input called func.  This input indicates which 

state the audio player is in, such as play, pause, stop, or record state, and is used to create push 

signals to be sent to the button modules.  These signals simulate a button being pushed and held 

down, as will be seen on the display when the “pushed” button turns bright green.  For instance, 

when func is zero, this signifies that the audio player is in play state.  The display module sets 

the signal pplay to one and all other signals—pstop, ppause, and prec—to zero.  These signals 

are each sent to their respective button instantiation.  When they are high, this tells the button 

module to set the button color to green instead of blue. 
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3.4.1 Button Modules 

 

 There are three different shapes for the audio player’s buttons.  Play, pause, stop, skip 

forward, and skip backward are all circular while record is square and volume up and down are 

triangular.  There are thus three different button modules—one for each shape.  The buttons are 

instantiated in the audio player display module, display_dec, and within each button module, 

other modules are called to create the button shape and symbol to be placed on the button. 

 

3.4.1.1 Circle Buttons 

  

 The module that draws circular buttons takes as input a 3-bit command and a pushed 

signal and outputs a pixel value.  The 3-bit command is sent by the audio player display module 

and tells the c_button module which symbol pixel—play, pause, stop, skip forward, or skip 

back—to use.  The push signal tells the module if the instantiated button has been pushed and is 

used to set the color of the button and the symbol.   

 Within this module, the circle module is called to create the overall shape of the button.  

This module takes a 3-bit color input to specify the circle’s color.  It also takes the x- and y-

coordinates of the circle’s center.  The radius of the drawn circle is a parameter and can be 

changed to the programmer’s liking.  Using mathematical comparisons to check if the pixel and 

line count are within the circle’s radius, the pixel value of the circle is set and returned to the 

c_button module.   

 In addition, the block and tri_RL modules are instantiated to create the button symbols.  

The block module takes in a 3-bit color input as well that determines the rectangle’s color.  The 

width and height of the rectangle are parameters that can be adjusted using defparam.  Other 

inputs to the module are the x- and y-coordinate of the top left corner of the block.  The block 

module uses conditional statements to determine if the current pixel and line count are within the 

block’s area and assigns a pixel value accordingly, returning this 3-bit value to the c_button 

module. 

 The tri_RL module works similarly to the circle and block modules.  It too takes a 3-bit 

color input and x- and y-coordinates to specify the triangle’s location.  The module is designed to 

be able to draw isosceles triangles pointing left or right, so another input is given—a direction 

signal.  The dir signal tells the module to draw a triangle pointing to the right when it is low and 

to draw one pointing left when it is high.  The x- and y- coordinates are the pixel locations of the 

center of the base and of the base, respectively.  The base and height of the triangle are 

parameters within the tri_RL module and can be altered using defparam.  Once again, 

mathematical conditions are used to check if the pixel and line count are within the triangle’s 

area.  If so, the appropriate pixel color value is returned to c_button.  Otherwise, a three-bit zero 

is returned as the pixel value. 

 At the end of the c_button module, the appropriate symbol pixel is chosen based on the 3-

bit command input and the button and symbol pixels.  The pixel values are conditioned so that 

the symbol pixel takes precedence over the button pixel.  Using this condition, one 3-bit RGB 

value is created to return to the audio display module. 
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3.4.1.2 Square Buttons 

 

 There is only one square button displayed on the monitor, and this is the record button.  

The square button module is then tailored toward the record button and called rec_button.  

Rec_button takes a push signal that, like the c_button module, indicates whether the button has 

been pushed.  If so, the button’s color is set to lime green, and otherwise is left blue.  The button 

shape is created by instantiating the block module and drawing a rectangle with equal height and 

width.  The record symbol is created by instantiating the circle module with the radius adjusted 

to be smaller.  The block and circle modules both return pixel values to the rec_button module 

which ors the two values together for one 3-bit pixel value to send back to the audio display 

module. 

   

3.4.1.3 Triangle Buttons 

 

 The triangle button module is used for the volume up and down buttons.  Like the other 

buttons, this module takes a push signal that determines the color of the button and returns a 3-bit 

pixel value to the audio player display module.  However, these buttons are unique from the rest 

in that they have no symbol component but have a shadow.  The offset of the shadow is 

determined by whether the push signal is high or low.  If high, the shadow is to the upper left, 

and if low, the shadow is to the lower right.  The t_button module also takes an additional 

symbol called up_down, which determines whether it should draw a triangular button pointing 

up for volume up or one pointing down for volume down.  This signal is passed into the 

instantiations of the tri_UD module, which draws isosceles triangles either pointing up or down.  

When up_down is high, the downward pointing triangle is drawn and when low, the upward 

pointing triangle is drawn.  This module has width and height parameters that can be altered with 

defparam and uses mathematical comparisons to check if the pixel and line count are within the 

triangle’s area.  If so, the pixel is assigned the input color value.  Otherwise, a black pixel, 3-bit 

zero, is returned to the t_button module.  The t_button module then gives precedence to the 

actual button pixel over the shadow pixel to create one RGB value to transmit back to the audio 

player display.   

 

3.4.2 Message Module 

 

 In addition to the buttons, strings are displayed on the screen to give information to the 

user.  As in the calibration display, the character string display module and font ROM are used to 

show these strings.  The message module determines which strings to pass to the 

char_string_display module using an FSM.  It takes a 3-bit input called func passed from the 

audio player to the player display module and then to the message module.  This 3-bit input 

specifies whether the audio player is in play, pause, stop, or record state, and depending on the 

state, the appropriate string is assigned to the cstring1 register.  For instance, when func is zero, 

the message to display is “Play.”  For func equals one or two, the string register is assigned to 

“Paused,” and so forth.     

 The message module also constantly prints four strings to display the choices for 

playback mode.  These strings are parameters within the module and are passed as inputs into 

four separate instantiations of the character string display.  In total, the character string display 
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module is instantiated five times, returning five different 3-bit pixel values.  These pixels are or-

ed together and passed back to the main display module.   

 

4   Audio Playback (Doris Lin) 

 

4.1 Audio Interface 

 

 Our audio system both records tracks and plays back the recorded data using the Intel 

AC97 audio codec chip.  The chip transmits one bit on each of its clock cycles on its SDATA_IN 

wire and it receives one bit each clock cycle from the FPGA on its SDATA_OUT wire.  The 

transmitted bits are divided into frames of 256 bits each.  This frame begins with a 16 bit tag 

followed by twelve 20-bit samples.  From codec to FPGA, there is one 20-bit sample from each 

ADC of the codec, and in the opposite direction, there is one 20-bit sample sent to each of the 

DACs in the codec.  The AC97 bit clock runs at 12.288 MHz, so each new frame is ready to be 

sent at a rate of 48 kHz.  The structure of the frame can be seen more clearly in the given figure 

below. 

 

 
 

Figure 13: AC97 Audio Frame 
Frames in the SDATA lines begin with a 16 bit header tag and are followed by twelve slots of 20-bit samples.  The 

sync signal is high when a new frame is ready (Taken from the 6.111 Labkit Documentation) 

 

 

The audio module that interfaces the AC97 chip receives the SDATA_IN information 

and outputs the SDATA_OUT bits.  In addition it also outputs a ready signal whenever each new 

frame is ready to be sent.  It also passes through a 20-bit audio sample to the audio player 

module, which is recorded in record state, and in turn receives a 20-bit audio sample from the 

audio player when in playback state along with a 5-bit volume value.  These inputs are processed 

and the outputs created with two modules—the ac97 and ac97command modules. 

 

4.1.1 AC97 Module 

 

 As previously mentioned, the AC97 chip and FPGA communicate using 256-bit frames 

headed with a tag.  The ac97 module assembles the frame together when transmitting audio from 

FPGA to AC97 chip and disassembles the frames when transmitting the other direction.   

 The ready signal that indicates a new frame is set to be sent is generated within this 

module.  It goes high whenever the bit count equals 128 and low again when the bit count equals 

two.  This signal is synchronized with the rising edge of the FPGA’s 27 MHz clock, which is the 

clock that the audio modules run off of.   

 In addition, the module takes the audio-in data from the AC97 and outputs a 20-bit audio 

sample, the from_ac97_data signal, to the audio player.  In turn, it takes the audio-out data, 

to_ac97_data, from the audio player and sends 20-bit slots to the AC97 chip. 
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4.1.2 AC97 Command Module 

 

 In order to assemble and disassemble the audio frames, the ac97 module needs command 

data, which is provided by the ac97command module.  This module takes as input the ready 

signal provided by the ac97 module, the volume sent by the audio interface, and the source signal 

sent by the audio interface as well.  In this case, source is always one to signify that the audio 

from the microphone port of the FPGA is the sound source.  The returned command data and 

address are dependent on the state of the ac97command module.  The state register is four bits, 

incrementing by one each 27MHz clock cycle.  In state three, the volume value is used in 

determining the 16-bit command data which will control the headphone volume.  This command 

is important for volume control of the audio player.  The command address and data are then 

used in the ac97 module to create the first and second slots of the audio frame. 

 

4.2 Audio Player Module 

 

From the audio interface, a 20-bit from_ac97_data signal is sent to the audio player module, 

which also sends a to_ac97_data 20-bit audio sample to the audio interface.  The audio player 

module is essentially a large finite state machine that carries out specific functions depending on 

its current state.   

 

4.2.1 Audio FSM 

 

The states and actions of the audio player module are dependent on its input play/pause, 

stop, record, skip forward, skip backward, volume up/down, and change mode signals that are 

generated by the accelerometer/audio player interface.  All these signals behave like button 

presses.  The play/pause, stop, and record signals determine the functional state of the audio 

player.  The different states of the system and how they transition to and from one another can be 

seen in the figures below. 
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Figure 14: Audio Player Finite State Machine 
The audio FSM determines which functional state the audio player is in. 

 

 

Upon starting the audio player after the calibration stage, the audio memory is blank, so the 

only valid function to be implemented is record.  The audio player thus remains in a reset stop 

state until rec is high.  When the record button is “pushed,” the audio player begins recording 

one track to the labkit’s ZBT RAM and is in record state, S_REC.  In record state, the audio fed 

into the FPGA is directly fed back out, so the user can hear what he/she is recording.  From 

record state, the audio player can transition into S_PAUSE_R or S_STOP state.  If the 

play/pause command is issued, the audio player pauses the recording and is in S_PAUSE_R 

state.  From this state, the player can transition back to S_REC or to S_STOP.  If play/pause is 

“pressed” again, the audio player begins recording in record state again without writing a new 

track.  The audio player will remain in S_REC state if no signals are high until the audio memory 

is full.  The player will then transition to the S_STOP state and be unable to record again.  

Otherwise, if the stop signal goes high in any state, the state also transitions to the S_STOP state.  

From here, the module can enter S_PLAY or S_REC state.  If it enters record state again, the 

audio player begins recording after the last address to be written to and records a new track.  If it 

enters the playback state, the audio player begins from the beginning of the recorded audio and 

plays back the stored audio data. 



 23 

In playback state, there are several functions that can be carried out.  The state transitions 

from S_PLAY are either to S_PAUSE_P, S_REC, or S_STOP.  It enters S_PAUSE_P state 

when the play/pause signal is high and then goes back to S_PLAY from S_PAUSE_P when the 

play/pause signal goes high again.  From S_PAUSE_P or S_PLAY, the audio player can 

transition to the S_REC or S_STOP states as well if the rec or stop signals, respectively, go high.  

However, record state can only be entered if the memory is not full yet.  If the record state is 

entered, the audio player begins recording again from the last address recorded to and writes a 

new track.  If the user issues no command, the audio player will remain in S_PLAY state until it 

reaches the memory’s end, in which case, it will automatically transition to stop state. 

The skip forward and back and volume up/down signals are actions that can be carried out 

when the audio player is in playback state.  When in S_PAUSE_P or S_PLAY, whenever the 

skip forward or back signals are high, the track memory’s address is incremented or decremented 

to the appropriate track.  From this address of the track memory, a 19-bit value is read out, which 

corresponds to an address to read from the ZBT RAM, where the audio data is stored.   

When volume up is signaled, the playvolume register is incremented so the volume is 

approximately 1.25 times as loud as it was before until it reaches a max volume represented by a 

5-bit value of 31.  If the volume down instead is signaled, the playvolume register decrements by 

about 0.75 until it reaches a minimum value of one.  This register value is assigned to a volume 

output that is sent to the audio interface.  When not in playback mode, the volume output is 

either not changed, as in S_STOP or S_PAUSE state, or returned to a default value of 16 in 

S_REC state. 

Another function of that can be implemented in play state is the playback mode.  The audio 

player module takes a two-bit mode value that is the lower two bits of the mode output from the 

mode FSM.  This input tells the audio player module which playback mode the user has chosen, 

which then affects playback factors.  For instance, when Alvin mode has been chosen, the 

sampling rate doubles by halving the value of pb_sample, and in Barry mode, the sampling rate 

decreases by 1.5 times by increasing pb_sample by 1.5 times.  In addition, a shift register is 

assigned accordingly to allow for appropriate audio data interpolation as the sampling rate 

changes.  In normal and echo modes, the sampling rate is one-fourth the ready signal rate, so data 

is sampled at 12 kHz.  The mode value not only affects sampling rate but also affects what to 

output to the audio interface.  When mode equals one, this means the audio player should be in 

echo mode, so the to_ac97_data is the superposition of the original interpolated signal added to 

two echo signals.  Otherwise, in playback, the audio player feeds back only the one original 

interpolated audio signal.  

 

4.2.2 Mode FSM 

 

 The mode finite state machine is a simple one.  It takes the change mode signal, md, from 

the accelerometer/audio player interface module and uses this input to change state.  The state 

machine has five states—a reset, normal, echo, Alvin, and Barry state—and so a 3-bit output 

signifying which mode has been chosen is given to the higher level to distribute to other 

modules, such as the audio player and its display module.   

 The FSM begins in reset state but once the change mode signal is high, the FSM 

transitions to the normal state.  It then cycles through the states—normal to echo to Alvin to 

Barry and then back to normal—transitioning at every high change mode signal.  The state 

transitions can be seen in the figure below. 
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Figure 15: Mode Finite State Machine 

The mode FSM transitions states every time the change_md input goes high. 

 

 

4.2.3 ZBT RAM 

 

 To store the recorded audio data, the FPGA’s ZBT RAM was used.  This memory is 

512Kx32, but only 20-bits were stored at each of the addresses.  The 20-bit audio data was 

sampled at a rate of 12 kHz, so the memory filled up after around 48 seconds of recording.   

During recording state, each time a counter counted from zero to SAMPLE-1, which is at 

a default of three, the address of the ZBT as well as the sigaddress register keeping track of the 

highest written address were both incremented by one.  The counter was then reset to zero and 

the process was repeated again.  The write enable goes high before the address is incremented to 

write the last sampled from_ac97_data.  Since the from_ac97_data is 20-bits, but each address is 

36-bits wide, the actual data written to the memory is the 20-bit sample with 16 zeros 

concatenated to the front. 

During playback, the stored data is read at the set sampling rate.  Whenever the counter 

reaches pb_sample, the address is incremented until it reaches the high address.  The counter is 

then reset to zero and the count up begins again.  The lower 20-bits of the data out from the 

RAM is stored as the outputdata, and the data stored at the last sampling is transferred to the 

oldoutputdata register.  This allows for linear interpolation between the two samples, which rids 

of a lot of high frequency noise. 

The ZBT RAM has a two-clock cycle delay when it reads and writes.  However, since we 

feed it the 27 MHz clock and only write to the ZBT at 12 kHz and read from the ZBT at fastest, 

24 kHz, a two 27 MHz clock-cycle delay is not an issue. 

 

4.2.4 Track Memory 

 

 Along with the ZBT RAM, the audio player module interacts with several other smaller 

memory elements.  One of these is a small 128x19 RAM.  This RAM is used to store the 

beginning address of each recorded track to allow for the skip forward and skip back functions.   
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The RAM allows for 128 tracks to be recorded as it is 128 deep, and with only 48 

seconds recording time, this track RAM should be sufficient.  At each of these addresses, a 19-

bit value can be stored.  This 19-bit value is the address from the ZBT RAM which is written 

whenever a new track is written.  Hence, the start address of each track is stored in this memory. 

On each transition to record, the audio player checks if the value in the newtrack register 

is one or zero.  If it is one, the track address, labeled track, and the highest track, labeled 

lasttrack, are incremented by one.  In addition, the write enable signal wr is goes high to signal to 

the RAM to start writing the current ZBT address.  The newtrack register only holds a high value 

if the audio player is transitioning from S_PLAY, S_PAUSE_P, or S_STOP state.  The register 

is zero when transitioning from S_PAUSE_R so no new track is recorded when you stop pausing 

while recording. 

When transitioning into play state from S_STOP or S_REC, the resettrack register holds 

a high value of one.  This resets the track to track one, ensuring the audio player to start playing 

from the beginning of the recorded audio data.  If the user pauses the system in during playback 

and enters S_PAUSE_P, though, the track is not reset when entering play state again. 

In playback state, the current address being read from the ZBT RAM is compared to the 

data out from the track memory, stored in register track_out.  Each time the address is greater 

than track_out + 18000, the track is incremented until it is past the last track.  By incrementing in 

this manner, it allows for a more complex skip back system.  If the current track is more than 

18,000 addresses into the song, the skip back command brings the audio player back to the 

beginning of the track.  Otherwise, it takes the user to the previous track.  In normal playback 

mode, since the audio player samples at 12 kHz, 18000 addresses into the track is equivalent to 

1.5 seconds into the current song. 

 

4.2.5 Echo Memories 

 

 There are two other memories that also interact with the audio player.  These are the two 

echo RAMs—echo RAM A and echo RAM B.  Each RAM is 4096x20.  The depth of the RAM 

determines how delayed the echo will be and the width of the RAM is the same as the bit-size of 

the audio data.  The echo RAMs are both dual port RAMs so they one address can be written to 

while the next is read. 

 Both echo RAMs are written to and read from during playback state at every new audio 

frame.  The data input to the first echo RAM is the interpolated signal of the original audio data 

halved in magnitude.  Since the from_ac97_data is a PCM signal, the 20-bit represents the 

magnitude of the sample, so to create the echo, the interpolated input to the memory was divided 

by two.  The second echo RAM took as its input the output from the first echo RAM.  When the 

playback mode was chosen to be echo, the original interpolated signal, first echo signal, and 

second echo were superimposed by adding them together and sending the sum to the audio 

interface.   

 The echoaddr was incremented at every new frame during audio playback so the address 

given by the value of echoaddr was read from each echo RAM while the previous address was 

written to.  By writing the current audio data to the previous address, a delay is created for the 

echo since that data will not be read until the 4096 counts later when the address counter wraps 

around.  Since the address was incremented at a 48 kHz rate, each echo has a delay of 4096/48 

kHz, which is about 100 ms.  Hence, the first echo is about 0.1 ms after the original signal and 
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the second echo is about 0.1 ms after the first one.  Using a small delay, the echo mode gives the 

sense of being in a large hall with the audio reverberating. 

 

5   Interfacing the Accelerometer and Audio Player 
 

5.1 Interface Module  (Doris Lin) 

 

 Once the modules for the accelerometer and audio player have been created individually, 

the two parts must be interfaced so that the accelerometer controls the audio player.  The 

interface module takes a 4-bit value from the accelerometer interface and transforms it into eight 

different one-bit signals to output to the audio player modules. 

 The interface was implemented using a case statement that looks at the 4-bit command 

input and then appropriately assigns one or zero to each of the eight outputs.  The 4-bit command 

is the address of a RAM that stores the hand motion pattern during the calibration stage.  When 

no longer calibrating, the accelerometer’s transmissions are decoded and matched to the data 

stored in this RAM.  Since there are nine positions calibrated, there are nine positions stored in 

the RAM.  The command is the address of this RAM, and since the functions are calibrated in a 

fixed order, the address tells the interface which function should be implemented.  The 4-bit 

command value and its corresponding function can be seen in Table. 

 

Table 1: Command Values and Corresponding Function 

 

Command Value Function 

4’b0000 Initial State 

4’b0001 Play/Pause 

4’b0010 Stop 

4’b0011 Record 

4’b0100 Skip Forward 

4’b0101 Skip Back 

4’b0110 Volume Up 

4’b0111 Volume Down 

4’b1000 Change Mode 

Default case Not Valid Command 

 

 

 The eight outputs of the interface are the signals play, stop, record, fwd, back, up, down, 

and md.  The case statement assigns the command’s corresponding function signal to a high one 

and all the other output signals to zero.  For instance, if the command value is one, the play 

signal is assigned to one.  If the command value is zero, all signals are set to zero, and if the 

command value is not in the range of 0-9, the signals are kept at their previous values.  The 

interface assigns these signals to simulate a button being pushed, since most audio players 

respond to buttons being pressed to implement a function.  A command value of 1-9 simulates a 

button being pushed while a command value of zero signifies a button being released.  All other 

values of command lead the interface module and audio player to act as if no button has been 

either pushed or released. 



 27 

 The interface outputs play, stop, record, fwd, back, up, and down to the audio player 

module, which these signals to determine its state and which functions to carry out.  The md 

signal is transmitted to the mode FSM and tells the module when to change states. 

 

6   Testing and Debugging 
 

6.1 Accelerometer Testing and Debugging  (Diana Cheng) 

 

 In testing the accelerometer, it was rather difficult in it was hard to view since most 

enable signals were a pulse and also I  didn’t have an expected return value and so it was hard to 

see if it was correctly reading accelerations. Mostly the logic analyzer was used and only a few 

times were the test benches in Xilinx used  because often it would work in the test bench but 

errors would occur in real life and so much of the debugging occurred in the real interaction with 

the chip. The first task was to get the accelerometer to respond to the transmitted commands. 

This was tested using the logic analyzer looking at transmission and receive lines and seeing 

what hex values were being transmitted. Also other ways to tests the communication was using 

HyperTerminal and secureCRT to compare values for things such as chip name acquisitions. 

These could then be compared to see if indeed the right data was being sent back. To test the 

FSM the states were displayed on the logic analyzer with the full data for one axis to see if the 

right values were being pushed into the right variables.  

 Testing the tilt calibrations required extensive use of the led lights as well as the hex 

display. Using the led’s in the tilt, one light would blink every 2 seconds, one would show which 

state the FSM was in, and one would show which address they were writing. Then in decode 

state, the values read from the chip were displayed in the hex as well as the command that was 

being sent to the audio modules. This would let me know accurately if the module was working. 

When it wasn’t working, extensive use of the logic analyzer allowed me to trace which signals 

were going wrong. At one point the memory would write one address off and thus decode the 

wrong command back to the audio player. This was a simple fix as looking at ramout and 

inputdata variables were very helpful in seeing what information was actually being read and 

written into memory. 

 To test the motion calibration, this was much more difficult as many of the ready signals 

were pulses and since many of the stages ran off of different divisions of the 27 MHz clock, it 

was hard to view over the logic analyzer. To debug this, the hex display was a huge help as it 

was able to expose 64 bits of information. Similar setup to the tilting debugging was used, 

focusing mostly on the led and hex display. Debugging in matlab was helpful as well for it would 

allow me to visualize the graphs and thresholding mistakes. The biggest problem was discovered 

just a few minutes before the presentation in that there was a large unexpected delay between the 

fulldata readies. This meant that the matlab values that were meant to optimize the signal 

processing were not valid in real life as the chip seemed to take longer then expected. It is 

hypothesized that this extra lag time comes from the long connection wires as well as the 

variable noise from the environment. Thus all the testing that occurred using the actual chip was 

down sampling too much and thus would never be able to decode due to lack of key features.  

 The logic analyzer was a big help in finding this error because I was able to toggle 

between different clocks using all 4 probe groups. Once this error was found, the led and hex 

lights were used to see if trial and error could find a combination of thresholds that would show 

something being decoded. I was able to show some motions being decoded in the end however 
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the amount of false positives and false negatives were horrendous. In matlab the optimal 

thresholds showed a 98.6% positive rate with 0 false positives however this was not the same for 

the actual system. Unfortunately, modeling the noise in matlab was not within my time limit and 

further testing was difficult beyond this point.  

 The overall biggest debugging error came from the timing of each signal as the hardware 

specifications were not accurately representing the entire system. I had introduced more delays 

using long wires and cables as well as using a 3.3 voltage instead of a higher voltage. Ways to 

fix this were to put more constraints on the user in how fast and slow they were allowed to make 

motions as well as how frequently they tried to send audio commands. Also the user was 

required to best mimic the time and motion they performed during calibration. However even 

with best efforts, decoding motion proved to be rather difficult.    

 

6.2 VGA Testing and Debugging  (Doris Lin) 

 

 The VGA display was straightforward in testing.  Merely viewing the display on the 

screen, it was simple to tell if the VGA was displaying what it was supposed to.  When creating 

the audio player display, I knew which shapes needed to be displayed, so testing began by 

generating smaller modules that drew those desired shapes, such as rectangles, circles, and 

triangles of various sizes.  Each module was then synthesized and a bit file generated to display 

the shape on the VGA.  Most of the modules worked as hoped, except the triangle modules at 

first drew pixels on unexpected lines of the frame.  These discrepancies were all due to 

mathematical errors used in finding the boundaries of the triangle.  By viewing the VGA display, 

it was easy to see which edge was incorrectly found, and after the math was double-checked for 

that edge, the triangle modules worked as desired. 

 Once the smaller modules were working, I instantiated them in larger modules to create 

the different buttons, which were then displayed onto the screen.  I started by displaying one 

button, and when one button worked, I would instantiate another button to display to the screen.  

However, as more and more buttons were added to the display, more glitches appeared on the 

screen.  I then took away some buttons to display only one button at a time to test if it was one 

particular sprite causing random pixels to be displayed across the screen.  However, each 

individual button displayed clearly without glitches. 

 The problem with the sprites was that some of the calculations within the sprite modules 

created a long delay.  For instance, the circle module multiplies several values together to ensure 

that the hcount and vcount values are within the area of the circle to assign that pixel a color 

value.  This means checking hcount
2
 + vcount

2
 <= RADIUS

2
 for each pixel in the frame for each 

circular sprite.  In addition, there were many sprites instantiated in the audio display module so 

or-ing together all the pixels of the sprites just added to the combinational delay.   

 The button sprites were not the only elements adding to a large combinational delay.  For 

both the calibration and audio player displays, the strings shown on the screen were especially 

prone to glitches.  These glitches were likely caused by the delay of looking up characters in the 

font ROM and also due to multiple instantiations of the char_string_disp module, thereby 

instantiating several font ROMs.   

 Viewing the synthesis results, the combination delays for these modules were in the range 

of 18 to 20 ns, but the 65 MHz clock period is only around 15-16 ns.  The long combinational 

delays were alleviated by latching the returned pixel values in the display modules and by 

splitting up the strings into smaller parts so fewer characters had to be looked up in the font 
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ROM in each char_string_disp instantiation.  By latching the returned pixel values on the rising 

edge of the pixel clock and or-ing them together in groups, I was able to pipeline these values so 

they would be valid at the next rising clock.  By doing so, the glitches in the displays were 

significantly reduced. 

 

6.3 Audio Testing and Debugging (Doris Lin) 

 

 The audio portion was also rather straightforward to test, by listening, but less 

straightforward to debug.  One of the major bugs when implementing the audio player was, 

although the audio player seemed to be reading and writing to the ZBT memory correctly, the 

audio quality in playback was terrible and filled with loud static.  At first, the audio player was 

sampling at 6,000 kHz and was only storing the higher 8-bits of the from_ac97_data.  I 

experimented by storing the full 20-bit from_ac97_data, thinking the lower eight bits mattered 

with the audio I was sending into the player.  However, the audio quality improved little if at all.  

Next, sampling rates were increased so that I was writing and playing back data at 12,000 kHz, 

then 24,000 kHz, and even 48,000 kHz.  At 48,000 kHz, though, the audio playback should have 

sounded just as it did in record state since this sampling rate equaled the rate of the ready signal 

generated by the AC97 chip, and I was essentially just feeding back exact audio input data as in 

record state.  This was not the case; the audio was still filled with noise.   

The next step was then to check to make sure the ZBT RAM was being written to 

properly.  In order to test this, a ZBT test module was created in which during record state, the 

address currently being written to was writing the 19-bit address as its memory input data.  In 

playback state then, the logic analyzer should have shown the address incrementing regularly and 

the output data from the RAM matching the address that was just read from.  The logic analyzer, 

instead, showed the address incrementing at irregular intervals.  Using the ready signal as the 

clock and a sampling rate of 12 kHz, the address should have incremented one every four ready 

signals.  However, the address would increment sometimes every four and sometimes every five 

or six.  The data out from the RAM was even more sporadic and would sometimes change even 

when the address had not.  This irregular pattern suggested that the audio player was 

occasionally missing the ready signal on a rising clock edge.   

Upon closer examination, it was spotted that the ready signal generated by the ac97 

module was not synchronized with the 27 MHz clock.  It was instead synchronized with the ac97 

bit clock which runs at 12.288 MHz.  By editing the ac97 module, the ready signal goes high at 

the rising edge of the 27 MHz clock instead of at the positive edge of the ac97 bit clock, thus 

synchronizing ready with the 27 MHz clock.  By making this simple change, running the ZBT 

test module again, the addresses and data out all change at correct regular intervals and the data 

out corresponds to the address just read from.  Testing the real audio player then, the sound out 

during playback was incredibly cleaner. 

The basic functions of the audio player like play, pause, stop, record, and volume control 

were fairly simple to implement, but the echo mode and the track selection were more difficult to 

program because both of these involved memory elements.  Once again, when these functions 

did not work, the logic analyzer was useful in debugging the audio player module, especially 

with the track selection.  Using the logic analyzer, it was possible to see what addresses were 

being written to or read from, what the highest track was, etc.  By viewing the behavior of the 

memories on the logic analyzer, I was able to appropriately adjust the address incrementing or 

decrementing. 
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As for the echo mode, the first implementation of the echo returned a very loud noisy 

audio signal.  When I played back the echo alone without decreasing the magnitude, it sounded 

like the original audio except with a small delay.  However, when the echo was halved in 

magnitude, either by dividing the ZBT output data by two or shifting right by one, loud static 

was heard.  Several things were attempted to resolve this issue, but the solution was to use the 

interpolated audio rather than the audio outputted straight from the ZBT.  The interpolated audio 

is essentially the output data from the ZBT without the high frequency noise, and using the 

cleaner audio signal cleaned up the echo sound as well.    

 

 

7   Conclusion (Doris Lin and Diana Cheng) 
 

 The basic goals of our audio system were met.  The accelerometer tilts are successfully 

recorded during calibration state and appropriately matched to a command after calibration. The 

audio player and accelerometers are then effectively integrated so that the audio and visual 

components respond correctly to the accelerometer’s tilt.  The audio player then successfully 

carries out the desired functions.  It records, stops, pauses, and plays, and during playback, the 

volume can be increased or decreased and tracks skipped by using the appropriate hand gesture.  

However, there are several extensions that could be added to our audio player to improve the 

system and make it more robust. 

 

8 Further Directions   (Doris Lin and Diana Cheng) 
 

 On the accelerometer side, matching tilts were very successful, but the number of 

commands was limited by the number of different possible tilts.  Pattern matching the 

waveforms of motions proved to be a hefty challenge in handling the tradeoff between 

robustness and accuracy. Using the accelerometer had a large learning curve because getting the 

chip to interface took half of the time allotted. It was difficult when the company didn’t give 

accurate data sheets that would provide not enough, or sometimes false information. Given the 

time frame, this challenge of interfacing with hardware was a large part of the problem.  

 Beyond that, given the remaining timeframe, implementing the tilt was a more feasible 

plan as it had less variability. Once the data came from the chip, it was a matter of manipulating 

write enable signals and ramouts that could be matched later on. It was more a stretch to create 

the motion detection within the remaining timeframe however given maybe another week I 

believe optimal thresholds could have been set. As much of the signal processing back work 

required a lot of optimization and trial and error in motion calibrating.   

Given the timeframe, I believe a more realistic project to mimic motion would have been to 

implement a lock tilt mechanism where a series of tilts that can almost be seen as movement, 

would correspond to a command. This lock-mechanism model is often times used in DSP in 

signal and pattern recognition and due to the inconsistent timing issues found with the lag time 

from the wires, this would be less dependent on the time and ability of the user to mimic their 

motions. 

 On the audio and visual components of the audio player, there are complexities that could 

be added to increase the attractiveness of the audio system.  For one, altering the number of calls 

to the font ROM could decrease the amount of glitches in the display.  As for future extensions, 

the visual display of the audio player could be more interactive and include a visualizer that 
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responded to the music being played.  Another suggestion could be to display a visualizer in the 

middle of the display showing the motion of the user based on the x, y, and z data transmitted 

from the accelerometer. 

 For the audio, the second ZBT RAM could be added to work with the system to double 

the memory of the audio player and double the amount of audio that could be stored.  The 

implementation of the track memory will have to be adjusted as well if this is carried out to also 

know which ZBT’s address is being stored, the first ZBT RAM or second.  Other further ideas 

could be to add more playback modes with more complex filtering such as phase shift, which 

would involve using the Fast Fourier Transform. 

 Our created audio system was a good starting point that lays down the ground work that 

can lead to many interesting future paths. 

 


