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Week 7: Convolution

• Only have to write two/three 
modules
• Please start early

10/15/25 https://fpga.mit.edu/6205/F25 2

Phase 25 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.059 | TNS=-0.319 | WHS=0.050  | THS=0.000  |

Light travels 17 mm in the time 
that my design initially failed by



Administrative

• Abstract due tomorrow
• Block Diagram report is due on Tue 10/28 at 5pm. 
• You’ll also get feedback after

• Week/Lab 07 Due Wed 22nd
• Project presentation will take place after that. Details 

will come in a couple days about sign ups.
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This is not good in lab 7. You do not want yours to look like this.



2-Bit Command FIFO 
• Clever use of only two bit-width for command_fifo 

in lab 6.
• Just store the tlast signal rather than the whole 

address. Very smart.
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Eileen Zu @zuleen

Downside would be this 
precludes random access 
to memory, so for final 
projects this may not be 
a good idea depending 
on needs.



Interfacing with Devices
A great way to add complexity to final projects
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Interfacing with Things
• Sensors 
• Actuators
• Memory
• Microcontrollers
• Etc…
• We need ability/fluency to extract info from and 

work with them
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How to get Access to the signals 
in first place?
• Some devices are analog out (can therefore read 

them with an A-to-D converter) (ADXL335 
accelerometer…or the microphone we used in Lab 
02, for example)
• These have limited functionality…and also it is 

analog so there’s the whole noise issue....which is 
not nice
• Most modern sensors by-far are interfaced to in a 

digital form
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The reason for this is signal integrity 
and is the same argument for why we 
do computation digitally
• It is true that most things we care about in terms of 

sensing and transducing are analog phenomena

• But Analog is inherently noisy…
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Analog 
phenomena

Digital
System

Analog 
phenomena

Manipulation 



Sensing…
• Why not keep analog until digital compute?
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Analog 
phenomena

Digital
Compute

Converts analog energy
To electrical energy (voltage or current)
• Sound: microphone
• Light: camera/photosensor
• Temperature: 
• Vibration
• Smell/air
• Etc…

Transducer

If this leg of the journey stays analog,
The likelihood of information getting 
lost becomes much higher

So most of the time asap in your 
signal chain you convert to digital



Microphones
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Older analog-out microphone module: 

https://www.researchgate.net/figure/The-design-of-a-MEMS-microphone_fig1_339839767

Modern MEMS microphone:
(digital out)

Cracked open sitting on a coin

https://www.electronicdesign.com/technologies/analog/article/21808368/vesper-
introduces-digital-mems-microphone-with-integrated-adc



Many sensors are so cheap now…

• …That multiple are used.

• The iPhone 15 has/had four microphones on it

• Airpods/most quasi-decent headphones now have 
six microphones in them (three for each side). Also 
have two accelerometers on each earbud for 
orientation and speech detection

• This pattern is happening a lot
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Also many “sensors”…

• …Have multiple sensors/transducers in them.

• So often “the microphone” is multiple microphones
• Or “the camera” is multiple cameras, etc…

• An example... 
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MPU-9250 “IMU”
• 3-axis Accelerometer (16-bit readings)
• 3-axis Gyroscope (16-bit readings)
• 3-axis Magnetic Hall Effect Sensor (Compass) (16 bit readings)
• SPI or I2C communication (!)…no analog out
• On-chip Filters (programmable)
• On-chip programmable offsets
• On-chip programmable scale!
• On-chip sensor fusion possible (with quaternion output)!
• Interrupt-out (for low-power applications!)
• On-chip sensor fusion and other calculations (can do orientation 

math on-chip or pedometry even)
• So cheap they usually aren’t even counterfeited! J
• Communicates using either I2C or SPI

https://fpga.mit.edu/6205/F25 13

Board: $5.00 from Ebay
Chip: $1.00 in bulk

10/15/25



Accelerometers

• First MEMS accelerometer: 1979
• Position of a proof mass is capacitively sensed and 

decoded to provide acceleration data
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Proof Mass
SpringSpring

Measure 
Capacitance via 
Impedance 
Divider𝑎! → Δ𝑑

SEM of two-axis accelerometer

𝑑

10/15/25



Uses of Acceleration Measurements:

• Acceleration can be used to detect motion 
• (pedometer, free-fall/drop detection):

• Use gravity and trig to find orientation:
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𝜃" = tan#$
𝑎!
𝑎%

−𝑎!

−𝑎"

𝑔

𝑎& = 𝑎%' + 𝑎"' + 𝑎!'
Accelerometer directions 

+X, +Y, +Z

Chip

10/15/25



Problems
• Accelerometers have huge amounts of high-frequency 

noise
• To fix, usually Low Pass Filter the raw signal (Infinite 

Impulse Response* approach shown below)
• This cuts down on frequency response though L

https://fpga.mit.edu/6205/F25 16

𝜃"[𝑛] = 𝜃"[𝑛 − 1]𝛽 + 1 − 𝛽 tan#$
𝑎![𝑛 − 1]
𝑎%[𝑛 − 1]

0 < 𝛽 < 1

𝜃! Angle estimate around y axis

Filter Coefficient𝑎"
𝑎#

X acceleration

z acceleration

10/15/25 *from lecture 12



Bring in Gyroscopes
• Provide Direct Angular 

Velocity which we can 
integrate to get angle 
• Very little high-frequency 

noise, but lots of low 
frequency noise (Gyros drift 
like crazy)
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Gyro readings are “around” the 
axis they refer to (use right-

hand rule):
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Gyro Operation
• Resonating Proof Mass

• Electrostatic Drive
• Piezoelectric Drive

• Turning out-of-plane:
• Proof-mass fights the turn
• Detect deviation via 

capacitance

• Do this for all three axes

https://fpga.mit.edu/6205/F25 18

Proof Mass
SpringSpring

Measure 
Capacitance via 
Impedance 
Divider

Resonating

Measure 
Capacitance via 

Impedance 
Divider

Proof Mass Spring

Spring

Measure 
Capacitance via Impedance Divider

Resonating

Measure Capacitance via 
Impedance 

Divider

Rotation of Device

Changes in capacitance 
measured at different 
points

Scale not accurate/nor design details

10/15/25



How to use Gyro Readings:
• Because of Drift (low frequency noise/offset) you want to 

avoid doing much long-term integration with a gyro reading
• Having beta less than unity ensures any angle that comes 

from gyro reading will eventually disappear, but in short term 
it will dominate 
• Calculation per timestep:
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𝜃( 𝑛 = 𝛽𝜃( 𝑛 − 1 + 𝑇𝑔"[𝑛 − 1]

0 < 𝛽 < 1 Filter Coefficient

𝑇 Time Step

𝑔! Gyro y reading

𝛽 ≈ 0.95 starting point
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What to do?

• Using only accelerometer, leaves us blind to 
motion/change in the short term but fine in the 
long-term

• Using only gyroscope, leaves us blind in the long 
term, but good in the short term

• What to do?

https://fpga.mit.edu/6205/F25 2010/15/25



Merge the signals

• Complementary Filter:

• Very simple form of sensor fusion (where you merge 
data from more than one sensor to build up model of 
what is going on)
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𝜃! 𝑛 = 𝛽 𝜃! 𝑛 − 1 + 𝑇𝑔![𝑛 − 1] + 1 − 𝛽 tan$%
𝑎#[𝑛 − 1]
𝑎"[𝑛 − 1]

0 < 𝛽 < 1 Filter Coefficient

𝑇 Time Step

𝑔! Gyro y reading 𝑎"
𝑎#

X acceleration reading

z acceleration reading𝛽 ≈ 0.95	good starting point
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Sensor Fusion
• Most modern sensors are used with other sensors:

• Can be incorporated open-loop (like complementary 
filter on previous page)

• Or incorporate into “learning” algorithms:
• NLMS, Kalman, LQE, Baysean, Linear-Observer System
• Estimate, compare to new data, correct, repeat…
• These usually feature dynamic filters which learn how to 

filter the signal they care about
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So a plethora of sensors out there
• But they all need to be communicated with…

10/15/25 https://fpga.mit.edu/6205/F25 23

Speak my 
language!



Parallel vs. Serial in Wires

• Parallel (not so much on individual small 
devices)…mostly memory and things that need to send 
data at very high rates such as a camera, high-speed 
ADCs, etc…

• UART “Serial” very common

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very 
common

https://fpga.mit.edu/6205/F25 2410/15/25

SERIAL PROTOCOLS

PARALLEL PROTOCOLS



Clock Line
(Optional)

Data Line 0

Data Line 1

Data Line 2

Data Line N

Data Transmission with Wires...

https://fpga.mit.edu/6205/F25 25

Parallel Link using Wires: Serial Link using Wires:

10/15/25

Device 1 Device 2…
Clock Line
(Optional)

Data Line 0
Device 1 Device 2

10101001100
10101010001
11110001100

10010011001

………

time

message 0

message 1
10101001100

message 0

message 1

time



Parallel vs. Serial in Wires

• Parallel (not so much on individual small 
devices)…mostly memory and things that need to send 
data at very high rates such as a camera, high-speed 
ADCs, etc…

• UART “Serial” very common

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very 
common

https://fpga.mit.edu/6205/F25 2610/15/25

SERIAL PROTOCOLS

PARALLEL PROTOCOLS



When Choose Parallel?
• When you need to transfer large amounts of data over 

short distances, parallel is a better choice. 
• Data Transfer Rate will scale ~linearly with number of 

wires
• But Have to be careful of wiring length:
• Ensure bits arrive same time

• Uses lots of space!!!

10/15/25 https://fpga.mit.edu/6205/F25 27
https://docs.toradex.com/102492-layout-design-guide.pdf



Where Have We Seen Parallel 
Data Transfer So Far?
• Camera in labs 5-7 (moving in 200 to 400 Mbits per 

second across the 8 data pins which you then 
reassemble (or try to reassemble) using 
pixel_reconstruct

• DRAM (16 pins)
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Communications Trends
• Serial: good for long distance (save on cable, pin and 

connector cost, easy synchronization).  Requires 
“serializer” at sender, “deserializer” at receiver
• Parallel: issues with clock skew, crosstalk, 

interconnect density, pin count.  Used to dominate for 
short-distances (eg, between chips).
• BUT for high data movement,  modern preference is 

for parallel, but independent serial links (eg, PCI-
Express x1,x2,x4,x8,x16) as a hedge against link 
failures. Ethernet, USB, etc… these all follow that 
same pattern

https://fpga.mit.edu/6205/F25 2910/15/25



Multiple Serial Links in Parallel

https://fpga.mit.edu/6205/F25 30

Serial Link:

10/15/25

Data Line 0

Device 1 Device 2

10101001100
message 0

message 2

time

Clock Line 1
(Optional)

Data Line 1

10101001100
message 1

message 3

etc...

• Multiple separate serial 
channels coexist. 
• Generally data sent  on 

each channel isn’t 
intricately tied together 
(maybe separate 
packets/message)...n 
splitting bits across 
multiple wires



Where Have we Seen Multiple 
Serial Links?
• TMDS in DVI/HDMI!

• You’ll also see LVDS and variants in a lot of higher-
speed things like cameras
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Parallel vs. Serial in Wires

• Parallel (not so much on individual small 
devices)…mostly memory and things that need to send 
data at very high rates such as a camera, high-speed 
ADCs, etc…

• UART “Serial” very common

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very 
common

https://fpga.mit.edu/6205/F25 3210/15/25

SERIAL PROTOCOLS

PARALLEL PROTOCOLS



Serial Standards
• A zillion Serial standards
• Asynchronous (no explicit clock) vs. Synchronous (CLK 

line in addition to DATA line).
• Recent trend to reduce signaling voltages: save power, 

reduce transition times
• Control/low-bandwidth Interfaces: SPI, I2C, 1-Wire, PS/2, 

AC97, CAN, I2S, 
• Networking: RS232, Ethernet, T1, Sonet
• Computer Peripherals: USB, FireWire, Fiber Channel, 

Infiniband, SATA, Serial Attached SCSI
• Graphics: DVI, HDMI, DisplayPort

10/15/25 https://fpga.mit.edu/6205/F25 33



Common Chip-to-Chip Communication 
Protocols (not exhaustive)

• Parallel (not so much anymore)…mostly memory and things that 
need to send data at very high rates such as a camera, high-speed 
ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy 
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications
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Common Chip-to-Chip Communication 
Protocols (not exhaustive)

• Parallel (not so much anymore)…mostly memory and things that 
need to send data at very high rates such as a camera, high-speed 
ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy 
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications
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UART aka “Serial”

• Stands for Universal Asynchronous Receiver Transmitter
• Requires agreement ahead-of-time between devices 

regarding things like clock rate (BAUD), etc…
• Two wire communication for bi-directional (or one if you 

only want to talk and not listen like a bad relationship 
partner)
• Cannot really share

• (every pair of devices needs own pair of lines so wires scales as 2𝑛
where 𝑛 is the number of devices)

• Data rate generally < 1Mbps (though can maybe push a little 
bit)
• Data sent least significant bit (lsb) first

https://fpga.mit.edu/6205/F25 36

TX/RX

RX/TX

Device 1 Device 2

10/15/25

TX RX

TXRX



The Naming on UART is Perpetually a 
Mess with the TX/RX confusion
• When working with UART take care to pay attention 

to the TX and RX pins.  

• They are complementary...one device’s TX talks to 
another devices RX.

• But boards and datasheets will sometimes label 
things backwards
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UART
• Line High at rest (“high” an “low” depend on system 

specs...5V/0V...3.3V/0V, -12V/+12V...)
• Drops Low to indicate start
• 8 (or 9 bits follows) sent least significant bit first
• Goes high (stop bit)
• Can have optional parity bit for simple error correction

10/15/25 https://fpga.mit.edu/6205/F25 38

From
TX:

START 1 0 1 1 0 0 1 0

STO
P

To
RX:

0x8d of ’M’ in ASCII
sent lsb first!



In UART, messages must be short 
(one byte)

• Both parties must agree ahead of time to a bit rate.
• A bit rate is bits per second 
• Does everyone know what a second is?
• Does everyone actually know what a second is?
• What is a second?  
• What are we even doing here?
• What are the implications of imperfect 

synchronization?
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Timing Differences
• Atomic Clocks can range from $1500 to $200,000 

depending on how good you want them.
• If we want commodity electronics to be cheap, 

$200,000 makes that hard to do.
• They must use “good-enough” local clocks and we 

build up communication protocols to accommodate 
for that.
• You must Synchronize your data transmission and 

reception
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Synchronization

10/15/25 https://fpga.mit.edu/6205/F25 41

From
TX:

START 1 0 1 1 0 0 1 0
STO

P

To
RX:

Receiver sees the high signal 
and waits for it to fall.
From that edge it starts its 
timing  

TX timing:

RX timing:

• Even if the timing of the RX and TX sides 
differ slightly, by keeping the messages 
short, the chance of getting too far out of 
sync is very, very low.

• Every new byte forces a resynchronization 
so errors never get a chance to accumulate 
too far!



UART and RX/TX and RTS/CTS
• UART will also sometimes come with 
• “Ready to Send” signals (RTS)
• “Clear to Send” signals (CTS)

• These are Flow-Control Signals that allow the two parties 
to tell each other if they have data to send if they are 
ready to receive data

10/15/25 https://fpga.mit.edu/6205/F25 42

TX/RX

RX/TX

Device 1 Device 2

TX RX

TXRX

RTS
RTS/CTS

CTS

RTSCTS
CTS/RTS



UART Transmission
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From TX:

START 1 0 1 1 0 0 1 0

STO
P

To RX:

• RTS and CTS sit high. Each device in charge of setting 
the RTS and listening to the CTS
• Device pulls RTS low.  Other device sees that and then 

pulls its CTS low in response

RTS

CTS

Receiving Device

Transmitting Device

“I have data to give”

”Give me your data. I am ready.”

Data will not start until “handshake” has happened



UART Thoughts? Goods? Bads?

• Everything contained within one wire for the most 
part?

• Not super fast
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Data Synchronization

• In UART, small data bursts with periodic 
resynchronizations are needed to make sure both 
parties produce and read data at the same time.

• How else to do this? 
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Common Chip-to-Chip Communication 
Protocols (not exhaustive)

• Parallel (not so much anymore)…mostly memory and things that 
need to send data at very high rates such as a camera, high-speed 
ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy 
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications
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Note on Terminology
• Master/Slave terminology is heavily used in SPI and 

I2C...Master controls a bus, Slave listens.
• Acknowledge the issues with it, but also because many 

datasheets/vendors still use it, it is hard for us to 
separate from it completely.
• Changing slowly
• Maybe use ”Main”/”Secondary” to keep the letters the 

same or ”Controller” and “Peripheral”
• Also seeing SDO/SDI for “Serial Data Out/In” with respect 

to controlling device more recently
• Or Controller/Peripheral in some other vendors

https://fpga.mit.edu/6205/F25 4710/15/25



SPI

• Stands for Serial-Peripheral Interface
• Four Wires:
• COPI: Controller-Out-Peripheral-In…
• CIPO: Controller-In-Peripheral-Out…
• SCK: Serial Clock
• CE/CS (Chip Enable or Chip Select)

• SCK removes need to agree ahead of time on data rate 
(from UART)…makes data interpretation much easier!
• High Data Rates: (1MHz up to ~70 MHz clock (bits))
• Data msb or lsb first…up to devices/spec
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COPI
CIPOController

Device
Peripheral

DeviceSCK
CE/CS

10/15/25

MOSI also = SDO “serial data out”
MISO also SDI “serial data in”
Also seeing now:
COPI = Controller Out Peripheral In
CIPO = Controller In Peripheral Out



SPI Expansion

• Can share COPI/CIPO Bus so the wire 
requirement scales as 3 + 𝑛 where 𝑛 is 
the number of devices
• Addition of multiple secondaries 

requires additional select wires
• Hardware/firmware for SPI is pretty 

easy to implement:
• Wires are uni-directional
• Classic “duh” sort of approach to digital 

communication, but very robust.
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COPI
CIPOController

Device
Peripheral
Device 1SCK

CE0/CS0

CE1/CS1

10/15/25

Peripheral
Device 2



SPI Example
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…

SCK

CS Here I am talking to a MCP3008 10 bit ADC

X X 1 1 0 0 1 X X X X X X X X X X X X X
COPI/MOSI

X X X X X X X X 0 0 0 0 1 0 1 1 0 1 1
CIPO/MISO

CMOD-A7-35T
MCP3008

From MCP3008 Datasheet

10/15/25

MCP3008 is a 8-channel 10 bit Analog to 
Digital Converter from Microchip Semi 
that communicates over SPI

Sends its data msb first

Not all devices do this 
(must check datasheet)



SPI Example
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…

SCK

CS

X X 1 1 0 0 1 X X X X X X X X X X X X X
COPI/MOSI

X X X X X X X X 0 0 0 0 1 0 1 1 0 1 1
CIPO/MISO

MCP3008 (Peripheral/Secondary Device) Dialog

(Controller/Main Device) Dialog

“Hey MCP3008”
“0001011011”

“Give me a 
single-ended 
reading…” “From your 

channel 1”
”We’re done 
here. ”

10/15/25

X means don’t care as in 
could be 1 or 0

Come from datasheet



SPI In Real Life (You’ve Seen this before) 
• Here I am talking to the 

same chip I was 
daydreaming about talking 
to on the previous slide. 

• Dreams do come true

• I’m saying, “give me your 
measurement on Channel 
1,” and it is responding with 
“10’b0001011011” mapped 
to 3.3V or 0.293 V
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CS

SCK

COPI

CIPO

11001000001011011

10/15/25



REMINDER: Digital In Analog Life 
vs Digital in Digital Life
• What noise? I don’t care about noise (within reason)
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Logic Analyzer Capture of SPI 
transaction

Oscilloscope Analog Capture of 
different SPI transaction



D/C
RES

SPI Variations
• Six Wires:

• COPI: Controller-Out-Peripheral-In
• CIPO: Controller-In-Peripheral-Out
• SCK: Clock
• CE/CS (Chip Enable or Chip Select)
• RES: Reset Device
• D/C: Data/Command (often seen in devices 

where you need to write tons of data (i.e. a 
display)

• Three/Two Wires:
• If a device has nothing to say, drop CIPO:
• If you assume only one device on bus drop 

CE/CS, so only have SCK and COPI, sometimes 
just called “DO” (for data out) in this situation
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COPI
CIPO

Controller
Device

Peripheral
Device

SCK
CE0/CS0

10/15/25

Twitch Streamer LEDs:

LCD Display:



Other SPI Variations

• QSPI: “Quad SPI”

• This is basically SPI...
• But there will be four data transfer pins instead of 

one
• See in a lot of flash memory chips
• This really isn’t “Serial” in the way God meant it 

though...the bits are usually sampled together so it 
is a parallel data transfer just poorly named
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COPI

CIPO[0]

Controller
Device

Peripheral
Device

SCK
CE0/CS0

CIPO[1]

CIPO[2]

CIPO[3]



Other SPI Variations
• 8SPI: “Octal SPI”

• This is basically SPI...

• ...

• But there will be eight data transfer pins instead of one
• See in a lot of weird hybrid RAM chips
• If this isn’t parallel data transmission, I don’t know 

what is...but it is called SPI...sorta like that one relative 
who just can’t admit they’re wrong so they keep 
redefining things to keep their worldview going
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COPI

CIPO[0]

Controller
Device

Peripheral
Device

SCK
CE0/CS0

CIPO[1]

CIPO[2]

CIPO[3]

CIPO[4]

CIPO[5]

CIPO[6]

CIPO[7]



SPI Conclusions

• It is a very simple and very robust ”idea” of a 
protocol.  

• The simplicity comes at the expense of any wires

• And often...some of the complexity is deferred to 
the ones deploying...There are many variations and 
dialects of it, so you should always always always 
read the datasheet for these things.
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Be careful! Read Datasheets

• A big screw-up point 
is mixing up clock 
polarity...sometimes 
data is sampled on 
rising edge...others 
on falling edge
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• Clock level at idle can also matter sometimes



SPI Upsides?

• Simple to Implement

• Capable of Very High Speeds (50 MHz is not rare for 
some displays)
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SPI Downsides?

• A lot of wires...which might seem like nbd, but in 
reality pincount is a huge cost factor in chip 
manufacture...tons of economic pressure to 
minimize this.

• At very high speeds it actually gets really noisy 
especially QSPI or OSPI
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Common Chip-to-Chip Communication 
Protocols (not exhaustive)

• Parallel (not so much anymore)…mostly memory and things that 
need to send data at very high rates such as a camera, high-speed 
ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy 
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications
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I2C
• Stands for Inter-Integrated Circuit communication
• Invented in 1980s
• Two Wire, One for Clock, one for data...Both wires 

are technically bidirectional, meaning each side can 
use them
• Usually 100kHz or 400 kHz clock (newer versions go 

to 3.4 MHz)
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SDA

SCL

Controller
Device

Peripheral
Device

10/15/25



On i2C Multiple Devices Require 
Same # of Wires
• Devices come with their own ID 

numbers (originally a 7 bit value 
but more modern ones have 10 
bits)…allows potentially up to 27

devices or 210 on a bus 
(theoretically anyways)

• ID’s are specified at the factory*, 
usually several to choose from 
when you implement and you 
select them by pulling external 
pins HI or LOW
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SDA

SCL

Controller
Device

Peripheral
Device 1

10/15/25

Peripheral
Device 2

*sometimes programmable



I2C
• Only two wires…one used for synchronizing data 

and one used for conveying data in both directions:
• Controller à Peripheral
• Peripheral à Controller

https://fpga.mit.edu/6205/F25 6410/15/25

• And also you need to let 
multiple devices possibly 
speak and listen…
• There’s a lot here…
• It needs more complicated:
• Hardware 
• Communication Protocols

SDA

SCL

Controller
Device

Peripheral
Device 1

Peripheral
Device 2



Bi-Directional Communication

• Hey you thought you brush past those arrows going 
both ways...I caught that. I’m too quick for you. I go 
to M.I.T. How does that work?

• We should address that.
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SDA

SCL

Controller
Device

Peripheral
Device



How Do Digital Electronics Set Voltages on 
a Line (Generally)?
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VDD

VIN

NFET

PFET

VOUT

• We use CMOS Logic

• A pair of 
complementary 
transistors that can 
alternately connect 
and isolate from VDD 
and Ground



Put 1 on output?
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VDD

VIN

VOUT

• Low input

• PMOS conducts

• NMOS no conduct

1

0

𝑰

conducts

doesn’t 
conduct



Put 0 on output?
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VDD

VIN

VOUT

• High input

• PMOS no conducts

• NMOS conduct

1

0
𝑰

conducts

doesn’t 
conduct



How Do Digital Electronics Listen 
to Voltages on a Line?
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• Some sort of buffer

• Its input takes very little 
power/current from the 
line

• A quiet, ideal observer



So in Unidirectional Communication 
Schemes... UART, SPI wires, etc...
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VDD

VIN

NFET

PFET

Vchannel

I Set the voltages

I read the voltage



What about if two or more devices want 
to use one common wire to 
communicate?
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• Sounds like socialism...can’t have that...it’ll be a 
mess and none of the transistors will ever want to 
work...

• jkjk

• But seriously electrically you have a problem...



What about if two or more devices want 
to use one common wire to 
communicate?
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• Electrically you have a problem...

VDD

VIN

NFET
OFF

PFET
ON

I Set the voltage to 1 VDD

VIN

NFET
ON

PFET
OFF

And I Set the 
voltage to 0

SHORT CIRCUIT 
CURRENT

NOT GOOD



What Do You Do in Times of Conflict?
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• You dig your heels in and waste tons of energy. 
Screw the other transistor. The correct answer is 1, 
not 0...everyone on reddit r/1 agrees with me and 
the 1News comment section backs me up.

• jkjk

• You come up with some compromises...everyone 
gives a little bit...everyone gets a little bit

• Each side gives up a transistor



Before We Had This...
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VDD

VIN

NFET

PFET

VOUT



Now We Have This...
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VIN

NFET

VOUTCall th
is ”O

pen Drain” sin
ce the 

drain terminal of th
e tra

nsist
or 

connects n
owhere



Now We Have This...
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VIN

NFET

VOUT

• Vout is either?????

• 0 (when transistor conducts)

• “HiZ”...basically electrically undefined (when transistor does not 
conduct)



Now Connect up two of these circuits...
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VIN

NFET

VOUT

VIN

NFET

• Yeah...what does this give us?
• Each side can make a 0 by activating its transistor
• Can each side make a 1? NO



Bring in an Ombuds Component
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VIN

NFET

VOUT

VIN

NFET

• Each side can make a 0 by activating its transistor
• We use a neutral third-party component, trained in conflict 

mediation to give us 1.

VDD



Common Pull-Up Resistor
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VIN

NFET

VOUT

VIN

NFET

• Prevents the Possibility of Short Circuits Always must go 
through this resistor (choose size to limit current)
• End up choosing several Kohms usually to keep current 

below 1mA
VDD

RPU



Result each side has this:
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Measure
Buffer

Vcontrol

RPU

Vdd

10/15/25

• If you want to say ”0”, you activate your transistor
• If you want to say ”1”, you inactivate your transistor and let 

resistor pull you up
• If you also want to listen you inactivate your transistor and 

monitor the line voltage



As a result:
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Mode Controller Peripheral
Controller Transmit HiZ (HI) or LOW HiZ (listening)
Peripheral Transmit HiZ (listening) HiZ (HI) or LOW

Measure
Buffer

Vcontrol

RPU

Vdd

10/15/25

Measure
Buffer

Vcontrol

Controller Peripheral



So in Deployment...
• i2C uses an open drain
• Meaning both Controller and Peripheral Device are 

either:
• LOW
• “High-Impedance”

• Need external pull-up resistors on both parts of I2C to 
make it work
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4.7kΩ

3.3V

SDA

SCL

3.3V

4.7kΩ

These resistors are large reason why data rate is so low!

10/15/25

Controller
Device

Peripheral
Device



Common Pull-Up Resistor
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VIN

NFET

VOUT

VIN

NFET

• We choose the pull up resistors to be in the K range usually 
to keep current/power down.
• This has the downside that parasitic capacitances lead to 

relatively large time constants in charging/discharging the 
line VDD

𝐶% represents the 
parasitic capacitance

Cp

RPU approx few KOhms



So in Deployment...
• So with all this together...we can see that there needs to 

be a lot more order in how to use the I2C wires...things 
pull double-duty depending on context.
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4.7kΩ

3.3V

SDA

SCL

3.3V

4.7kΩ

These resistors are large reason why data rate is so low!

10/15/25

Controller
Device

Peripheral
Device

Nobody ever seems to remember this or thinks I’m making this up. 
You need to add these resistors. 



So in Deployment...
• Because the data lines are “shared” it means devices 

need more structure when it comes to deciding what to 
say and whose turn it is to speak or listen.
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4.7kΩ

3.3V

SDA

SCL

3.3V

4.7kΩ

10/16/25

Controller
Device

Peripheral
Device



i2C Operation
• Data is conveyed on SDA (Either from Main or 

Secondary depending on point during 
communication)
• SCL is a 50% duty cycle clock
• SDA generally changes on falling edge of SCL (isn’t 

required, but is a convenient marker for targeting 
transitions) 
• SDA sampled at rising edge of SCL
• Main/Controller is in charge of setting SCL frequency 

and driving it
• Data is sent msb first
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Notice how much more rigid this is 

compared to SPI 



Meanings I: (Start, Stop, Sampling)
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SCL:

SDA:

Controller Claims Bus (START)
By pulling SDA LOW while SCL is HIIdle State

SDA and SCL sit HI

Data from SDA sampled @ posedge of SCL

Data/State on SDA transitions
@ falling edge of SCL

Controller Releases Bus (STOP)
By pulling SDA HI while SCL is HI

HI

LO

HI

LO

10/15/25



Meanings II  Address
• First thing sent by Controller is 7 bit address (10 bit 

in more modern i2C…don’t worry about that)

• If a device on the bus possesses that address, it 
acknowledges (ACK=0/NACK=1) and it becomes the 
secondary for the time being.

• All other devices (other than Controller/Peripheral 
Devices) will ignore until STOP signal appears later 
on.
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Meanings III (Read/Write Bit)
• After sending address, a Read/Write Bit is specified 

by Controller on SDA: 
• If Write (0) is specified, the next byte will be a register to 

write to, and following bytes will be information to write 
into that register
• If Read (1) is specified, the Peripheral Device will start 

sending data out, with the Controller Device 
acknowledging after every byte (until it wants data to not 
be sent anymore)
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Meanings IV (ACK/NACK)
• After every 8 bits, it is the listener’s job to 

acknowledge or not acknowledge the data just 
sent (called an ACK/NACK)
• Transmitter pulls SDA HI and listens for next 

reading the next time SCL transitions high:
• If LOW, then receiver acknowledges data
• If remains HI, no acknowledgement

• Transmitter/Receiver act accordingly
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Meanings V (keeps going...)
• For Controller Device to write to Peripheral Device:

• START
• Send Device Address (with Write bit)
• Send register you want to write to 
• Send data…until you’re satisfied, doing ACK/NACKs along the way
• STOP

• For Controller Device to read from Peripheral Device a common (though not universal procedure) is:
• START
• Send Device Address (with Write bit)
• Send register you want to read from  (think of this like setting a cursor in the register map)
• ReSTART communication
• Send Device Address (With Read bit)
• Read the bits  (it’ll start from where the cursor was left pointing at)
• After every 8 bits, it is Controller’s job to ACK/NACK Peripheral…continued acknowledgement 

leads to continued data out by Peripheral.  
• Not-Acknowledge says “no more data from Peripheral”
• STOP leads to Controller ceasing all communication
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MPU-9250
• 3-axis Accelerometer (16-bit readings)
• 3-axis Gyroscope (16-bit readings)
• 3-axis Magnetic Hall Effect Sensor (Compass) (16 bit readings)
• SPI or I2C communication (!)…no analog out
• On-chip Filters (programmable)
• On-chip programmable offsets
• On-chip programmable scale!
• On-chip sensor fusion possible (with quaternion output)!
• Interrupt-out (for low-power applications!)
• On-chip sensor fusion and other calculations (can do orientation 

math on-chip or pedometry even)
• So cheap they usually aren’t even counterfeited! J
• Communicates using either I2C or SPI
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Board: $5.00 from Ebay
Chip: $1.00 in bulk
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I2C in Verilog...Tri-State
• inout is an “input-output”…needs some special 

handling...you can both write to them (only using 
combinational logic) and read from them...the 
usual way to work with them is the following:
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In verilog…

10/15/25

inout sda;

logic sda_val;

assign sda = sda_val? 1’bz: 1’b0;

//if desired:
always_ff @(posedge clk)begin
  sda_val <= 1; //do a non-blocking assign to sda_val if desired
  //this indirectly affects sda then
end

Telling it to go to high-impedance (open Drain)



As a result:
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Mode Main Secondary
Controller Transmit HiZ (HI) or LOW HiZ (listening)

Peripheral ACK/NACK HiZ (listening) HiZ (HI) or LOW
Peripheral Transmit HiZ (listening) HiZ (HI) or LOW

Controller ACK/NACK HiZ (HI) or LOW HiZ (listening)

SDA in

VGS

4.7kΩ

3.3V

SDA

inout sda;
logic sda_val;
assign sda = sda_val? 1’bz: 1’b0;

Wanna write to SDA?

sda_val <= 0; //or 1 if desired

Wanna read to SDA?

sda_val <= 1;
//wait clock cycle…
some_reg <= sda; //read from input 
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Implementing i2C on FPGA with 
MPU9250:
• Made Controller i2C module in Verilog
• Used MPU9250 Data sheet: 42 pages (basic 

functionality, timing requirements, etc…)
• MPU9250 Register Map: 55 pages
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State-Machine 
Implementation of 
i2C Main/Controller
• Continuously reads 2 bytes 

starting at the 0x3B 
register      (X 
accelerometer data)

• Print out value in hex in 
LEDs

• 34 States
• Clocked at 200kHz, and 

creates 100 kHz SCL
• Change SDA on falling edge 

of SCL
• Sample SDA on rising edge 

of SCL
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State-Machine 
Implementation of i2C 
Main/Controller
• Redundant states (repeated 

READ/WRITE, ADDRESS, 
ACK/NACK, etc…)

• ARM manual describes ~20 state 
FSM for full I2C…this is just a 
toy implementation of specific 
I2C operation

• Included code on site for 
reference/starting point

• Diagram: on next page for 
reference

https://fpga.mit.edu/6205/F25 97

…200 more lines

10/15/25



IDLE START1
ADDRESS1

ADDRESS2

READWRITE1

REGISTER1

REGISTER2

ACKNACK1A

ACKNACK1C

IDLE

ACKNACK2AACKNACK2C

IDLE

STOP

READ2

READ1

START2

ADDRESS3

ADDRESS4

READWRITE2

ACKNACK3A

ACKNACK3C

IDLE

READ3

READ4
ACK4

NACK

NACK

ACK

NACK

ACK

NACK
ACK

7x

7x
8x

8x

8x
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01010101010101010101010101010101010101110101010101010101010101010101010101010 …
SCL

SDA

10/15/25

Communication Part 

SDA

SCL

VCC

GND

Nexys4

MPU9250

Can also do this on our current board
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01010101010101010101010101010101010101110101010101010101010101010101010101010 …
SCL

SDA

10/15/25

Communication Part 

SDA

SCL

VCC

GND

Nexys4

MPU9250

Can also do this on our current board

Needs a dialogue
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1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0  

01010101010101010101010101010101010101110101010101010101010101010101010101010

Nexys4 MPU9250

Device Address (0x68)
Write=0

Acknowledge=0

Device Register (0x3B)

Acknowledge=0

Device Address (0x68)

Read=1

Data Read InStart

…
SCL

SDA

Controller ACK

ReStart

10/15/25

Communication Part 

SDA

SCL

VCC

GND

Nexys4

MPU9250



Communication Part 
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1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0  

01010101010101010101010101010101010101110101010101010101010101010101010101010

SDA

SCL

VCC

GND

Nexys4

MPU9250

…
SCL

SDA

“I claim this bus”

“Hey, 0x68…”

“I wanna tell 
you something”

“ACK I’m here. 
Sounds good”

“Look at your 
0x6B register”

“ACK 
OK”

“Different thought”

“Hey, 0x68…”

“Read to me 
from where
 you’re looking”

“ACK For 
sure”

“0x6D”

”ACK…
More, please”

MPU9250 (Peripheral Device) DialogNexys4 (Controller Device) Dialog
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Communication in Real-Life:
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Data being sent from MPU9250

Triggered on leaving IDLE state 

SCL = Purple

SDA = Yellow

10/15/25

Data being sent to MPU9250



Running and reading X acceleration:
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16’hFD88 = 16’b1111_1101_1000_1000  (2’s complement)
Flip bits to get magnitude: 16’b0000_0010_0111_0111
=-315
Full-scale (default +/- 2g)  
-315/(2**15)*2g = -0.02g J makes sense

16’h4088 = 16’b0100_0000_1000_1000  (2’s complement)
Leave bits to get magnitude: 16’b0100_0000_1000_1000
=+16520
Full-scale (default +/- 2g)
-16520/(2**15)*2 = +1.01g   J makes sense!

Horizontal: Vertical:

HOOKUP

10/15/25



Clock-Stretching (Cool part of i2C!!!)

• Normally Controller drives SCL, but since Controller 
drives SCL high by going hiZ, it leaves the option open 
for Peripheral to step in and prevent SCL from going 
high by pulling SCL LOW
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SCL:

Main wanted to pull SCL HI but 
Secondary prevents by pull LOW 

(red never happens)

Once Secondary goes HiZ again, Main 
picks back up on SCL

• Allows Peripheral a way to buy time/slow down things (if it requires 
multiple clock cycles to process incoming data and/or generate 
output)
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I2C Can Also Be a “Multi-Controller” Bus

• In SPI, there is a pre-determined  device in charge 
of the system. I2C is potentially much more 
egalitarian
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• Devices can be design to yield based on who claims a bus first…but 
you have to be careful…what if two devices claim a bus at the same 
time…potential problems?  Can get bus contention so need to be 
careful

10/15/25

SDA:

Controller Claims Bus (START)
By pulling SDA LOW while SCL is HIIdle State

SDA and SCL sit HI

Controller Releases Bus (STOP)
By pulling SDA HI while SCL is HI

HI

LO



Goods and Bads of I2C?

• Lower clock frequency
• Far more complicated communication protocol

• Only need two wires (very scalable)...this is a bigger 
deal in modern systems than you may think at first.  
Wiring and pinout is by far one of the most 
expensive parts of making a chip. Compute is 
relatively cheap at this point so the “complexity” of 
I2C isn’t necessarily that much of a downside.
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Have we used I2C so far in 6.205?

• Yes...the camera actually gets spoken to over I2C 
first before transmitting data. That is how it gets 
configured.

• HDMI actually uses I2C to do its original 
handshakes and monitor resolution communication 
(and copyright stuff) before the actual data starts 
getting sent over TMDS/high rate
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Common Chip-to-Chip Communication 
Protocols (not exhaustive)

• Parallel (not so much anymore)…mostly memory and things that 
need to send data at very high rates such as a camera, high-speed 
ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy 
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications
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SCL

I2S (Inter-IC Sound Bus)

• Not related to i2C at all
• Intended for Digitized Stereo Data
• Three Wires:

• SDA: Serial Data (The actual music)
• WS: Word Select (Left/Right Channel)
• SCL: Serial Clock (For Synchronization)

• Push-Pull Driving (like SPI…no need for pull-up resistors)
• Data sent msb first
• Clock-rate dictated by sample rate (44.1kHz @16 bits per 

channel /w 2 channels = ~1.4 MHz for example
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SDA

WS
Controller Peripheral

10/15/25

Actually almost like a very 
constrained form of SPI in 
many senses



I2S 

https://fpga.mit.edu/6205/F25 11110/15/25

Two identical microphones share all three lines

Microphone told to be 
the “left” microphone by 
hardwiring LR to ground

Microphone told to be 
the “right” microphone 
by hardwiring LR to VDD



i2S 
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WS specifies whose 
turn it is to speak 
(left or right channel)



Compare and Contrast All of Them?

• Generally the fewer the wires the more rigid the 
protocol (i2C and to a certain extent UART)
• SPI can be very flexible and high speed (have only 

10 bits to send?  No problem…send 10!...can’t do 
that do that with i2C…need to zero-pad up to the 
next full byte (16 bits)
• In terms of implementation, generally with 

communication protocols, the more wires, the 
easier the protocol/less overhead
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Other protocols!
If Time...else we’ll do in future class.
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PS/2 Keyboard/Mouse Interface

• 2-wire interface (CLK, DATA), bidirectional 
transmission of serial data at 10-16kHz
• Format

• Device generates CLK, but host can
request-to-send by holding CLK low
for 100us

• DATA and CLK idle at “1”, CLK starts when
there’s a transmission.  DATA changes on
CLK, sampled on CLK

• 11-bit packets: one start bit of “0”, 8 data bits 
(LSB first), odd parity bit, one stop bit of “1”.

• Keyboards send scan codes (not ASCII!) for each 
press, 8’hF0 followed by scan code for each 
release

• Mice send button status, Δx and Δy of 
movement since last transmission
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Figures from digilentinc.com

10/15/25



https://fpga.mit.edu/6205/F25 116

PS/2 Keyboard/Mouse Interface
• 2 signal wire interface (CLK, DATA), 

bidirectional transmission of serial 
data at 10-16kHz

Figures from digilentinc.com

10/15/25



Controller Area Network (CAN) 
Bus
• Common bus protocol found in cars and other 

systems
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https://www.digikey.com/en/blog/how-to-simplify-the-test-of-can-bus-networks



CAN Bus

• Modules all share one common twisted wire 
channel
• Signaling is differential rather than single-ended 

(like HDMI)
• Allows cables to be run long distances with good noise 

suppression

• Devices claim bus and listen with addressing 
scheme kinda similar to I2C
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USB: Universal Serial Bus
• USB 1.0 (12 Mbit/s)  introduced in 1996

• USB 2.0 (480 Mbit/s) in 2000

• USB 3.0 (5 Gbit/s) in 2012

• USB-C 2016.

• USB 3.2 (30 Gbit/s) in July 20, 2017

• USB 4.0 (40 Gbit/s) 2019

• USB 4.0 2.0 (120 Gbits/s) 2022

• Created by Compaq, Digital, IBM, Intel, Northern Telecom and Microsoft.

• Uses differential bi-direction serial communications 
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Type A USB 2.0 – 4 pins

Type A & B 
Pinout Mini/Micro Pinout USB 3.0

Credit: Reddit
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USB: Universal Serial Bus 
• Far, far more defined layers than 

your other things we’ve seen

• The 2000 version of USB spec was 
570 pages long

• USB 3.2 (2017) Approximately 
900 pages long at this point 
+supplemental stuff

• USB 4.0 (2019)…similar and so on

https://fpga.mit.edu/6205/F25 12010/15/25

Complexity (logarithmic scale):

SPI

I2C

USB

UART

I2S



How is Data Transmitted in USB 
(High Level):
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• Communication uses handshakes to establish 
capable/expected data rates
• Host device (computer for example), assigns 

connected devices temporary IDs on shared bus.
• Packets of information, including headers, 

payloads, and error checks (CRC5, CRC16, and 
CRC32 are used) are sent between host and client 
devices
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How is Data Transmitted in USB (Bit 
Level):
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• USB uses twisted wire pairs and there is no CLOCK wire
• All data is transmitted using Non-Return-Zero-Inverted (NRZI) 

encoding:
• A 0 is encoded as a value change
• A 1 is encoded by no change

• After initial synchronization byte, the receiver extracts the 
clock from the on-average probability of 0’s in the data (which 
give transitions) using local oscillator and Phase-Locked Loops
• Avoid long stretches of 1’s by bit-stuffing (shoving 0’s in to 

avoid periods of time where no transitions happen)…similar to 
ether protocols
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USB - C

https://fpga.mit.edu/6205/F25 123

• New connector brought in with USB 3 standard
• Universal connector for power and data – first product MacBook Air – one and 

only port!
• Symmetrical – no “correct” orientation (Good for 10,000 

insert/withdrawals…10 kiloinserts)
• Supports DisplayPort, HDMI, power, USB, and VGA. Uses differential bi-

direction serial communications 
• Supplies up to 100W power (5V @ up to 2A, 12V @ up to 5A, and 20V @ up to 

5A)
• Voltage dictated by software handshake, etc..
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USB 4
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• 2019 saw introduction of USB4
• Partially motivated by Intel/Apples donation of 

Thunderbolt spec to USB consortium in ~2017
• Requires use of USB-C-type cable
• Data rates up to 40 Gbps (1 full HD movie per second)



USB 4 2.0
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• 2022 and 2023 saw introduction of USB4 2.0
• Requires use of USB-C-type cable
• Data rates up to 120 Gbps (3 full HD movie per second 

because society needed that rather than UBI or 
universal healthcare)



FTDI Chipsets
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• Future Technology Devices International Ltd 
(FTDI) is a Scottish Electronics firm that makes 
USB interfaces
• They produce devices that convert between USB 

and:
• UART
• SPI
• I2C
• Parallel Out
• Etc…

• Extremely common (we use a few on our FPGA)
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Lies!

• The UART you wrote in Lab 3 
wasn’t actually to the computer.
• It was to an FT2232 chip by 

FTDI
• Takes UART and converts back 

and forth to USB for you 
automatically
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FT2232 Chip



The Great FTDI Bricking of 2014
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• From the beginning of USB to only recently, most USB devices 
used FTDI-based chip sets to interface (source of those annoying 
FTDXX.h library issues you’d always see in Windows)
• Your optical mouse would have some circuit and it would 

communicate internally with UART…then the FTDI chip would 
convert to USB

• Dozens of “clones” were built to work with that software, these 
clones often times selling for a small fraction of the cost of the 
original FTDI chips

• In 2014 FTDI they released a software update, included in most 
Windows Service Packs that bricked all “non-genuine” devices

• Turned out a lot of ”legit” products were using 
counterfeits/clones....lost them a lot of good will.

• Did it again later on too.
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Conclusions
• Tons of protocols (just skimming the surface here)
• Great way to add complexity to a project!
• But! Plan ahead if talking to devices in final 

projects. 
• If interfacing to FPGA directly, interfacing anything 

above the most simple devices can take time!
• That Virtual Reality headset team from 2019 probably spent 

40% of their time writing a driver to control the screens over 
SPI (at 70 MHz)
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