
Communication
Protocols etc…

6.205

https://fpga.mit.edu/6205/F25 110/15/25

Week 7: Convolution

• Only have to write two/three
modules
• Please start early

10/15/25 https://fpga.mit.edu/6205/F25 2

Phase 25 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.059 | TNS=-0.319 | WHS=0.050 | THS=0.000 |

Light travels 17 mm in the time
that my design initially failed by

Administrative

• Abstract due tomorrow
• Block Diagram report is due on Tue 10/28 at 5pm.
• You’ll also get feedback after

• Week/Lab 07 Due Wed 22nd
• Project presentation will take place after that. Details

will come in a couple days about sign ups.

10/15/25 https://fpga.mit.edu/6205/F25 3

This is not good in lab 7. You do not want yours to look like this.

2-Bit Command FIFO
• Clever use of only two bit-width for command_fifo

in lab 6.
• Just store the tlast signal rather than the whole

address. Very smart.

10/15/25 https://fpga.mit.edu/6205/F25 4
Eileen Zu @zuleen

Downside would be this
precludes random access
to memory, so for final
projects this may not be
a good idea depending
on needs.

Interfacing with Devices
A great way to add complexity to final projects

10/15/25 https://fpga.mit.edu/6205/F25 5

Interfacing with Things
• Sensors
• Actuators
• Memory
• Microcontrollers
• Etc…
• We need ability/fluency to extract info from and

work with them

https://fpga.mit.edu/6205/F25 610/15/25

How to get Access to the signals
in first place?
• Some devices are analog out (can therefore read

them with an A-to-D converter) (ADXL335
accelerometer…or the microphone we used in Lab
02, for example)
• These have limited functionality…and also it is

analog so there’s the whole noise issue....which is
not nice
• Most modern sensors by-far are interfaced to in a

digital form

https://fpga.mit.edu/6205/F25 710/15/25

The reason for this is signal integrity
and is the same argument for why we
do computation digitally
• It is true that most things we care about in terms of

sensing and transducing are analog phenomena

• But Analog is inherently noisy…

10/15/25 https://fpga.mit.edu/6205/F25 8

Analog
phenomena

Digital
System

Analog
phenomena

Manipulation

Sensing…
• Why not keep analog until digital compute?

10/15/25 https://fpga.mit.edu/6205/F25 9

Analog
phenomena

Digital
Compute

Converts analog energy
To electrical energy (voltage or current)
• Sound: microphone
• Light: camera/photosensor
• Temperature:
• Vibration
• Smell/air
• Etc…

Transducer

If this leg of the journey stays analog,
The likelihood of information getting
lost becomes much higher

So most of the time asap in your
signal chain you convert to digital

Microphones

10/15/25 https://fpga.mit.edu/6205/F25 10

Older analog-out microphone module:

https://www.researchgate.net/figure/The-design-of-a-MEMS-microphone_fig1_339839767

Modern MEMS microphone:
(digital out)

Cracked open sitting on a coin

https://www.electronicdesign.com/technologies/analog/article/21808368/vesper-
introduces-digital-mems-microphone-with-integrated-adc

Many sensors are so cheap now…

• …That multiple are used.

• The iPhone 15 has/had four microphones on it

• Airpods/most quasi-decent headphones now have
six microphones in them (three for each side). Also
have two accelerometers on each earbud for
orientation and speech detection

• This pattern is happening a lot

10/15/25 https://fpga.mit.edu/6205/F25 11

Also many “sensors”…

• …Have multiple sensors/transducers in them.

• So often “the microphone” is multiple microphones
• Or “the camera” is multiple cameras, etc…

• An example...

10/15/25 https://fpga.mit.edu/6205/F25 12

MPU-9250 “IMU”
• 3-axis Accelerometer (16-bit readings)
• 3-axis Gyroscope (16-bit readings)
• 3-axis Magnetic Hall Effect Sensor (Compass) (16 bit readings)
• SPI or I2C communication (!)…no analog out
• On-chip Filters (programmable)
• On-chip programmable offsets
• On-chip programmable scale!
• On-chip sensor fusion possible (with quaternion output)!
• Interrupt-out (for low-power applications!)
• On-chip sensor fusion and other calculations (can do orientation

math on-chip or pedometry even)
• So cheap they usually aren’t even counterfeited! J
• Communicates using either I2C or SPI

https://fpga.mit.edu/6205/F25 13

Board: $5.00 from Ebay
Chip: $1.00 in bulk

10/15/25

Accelerometers

• First MEMS accelerometer: 1979
• Position of a proof mass is capacitively sensed and

decoded to provide acceleration data

https://fpga.mit.edu/6205/F25 14

Proof Mass
SpringSpring

Measure
Capacitance via
Impedance
Divider𝑎! → Δ𝑑

SEM of two-axis accelerometer

𝑑

10/15/25

Uses of Acceleration Measurements:

• Acceleration can be used to detect motion
• (pedometer, free-fall/drop detection):

• Use gravity and trig to find orientation:

https://fpga.mit.edu/6205/F25 15

𝜃" = tan#$
𝑎!
𝑎%

−𝑎!

−𝑎"

𝑔

𝑎& = 𝑎%' + 𝑎"' + 𝑎!'
Accelerometer directions

+X, +Y, +Z

Chip

10/15/25

Problems
• Accelerometers have huge amounts of high-frequency

noise
• To fix, usually Low Pass Filter the raw signal (Infinite

Impulse Response* approach shown below)
• This cuts down on frequency response though L

https://fpga.mit.edu/6205/F25 16

𝜃"[𝑛] = 𝜃"[𝑛 − 1]𝛽 + 1 − 𝛽 tan#$
𝑎![𝑛 − 1]
𝑎%[𝑛 − 1]

0 < 𝛽 < 1

𝜃! Angle estimate around y axis

Filter Coefficient𝑎"
𝑎#

X acceleration

z acceleration

10/15/25 *from lecture 12

Bring in Gyroscopes
• Provide Direct Angular

Velocity which we can
integrate to get angle
• Very little high-frequency

noise, but lots of low
frequency noise (Gyros drift
like crazy)

https://fpga.mit.edu/6205/F25 17

Gyro readings are “around” the
axis they refer to (use right-

hand rule):

time (seconds)

an
gl

e
(a

rb
. u

ni
ts

)
An

gu
la

r v
el

oc
ity

 (a
rb

. u
ni

ts
)

10/15/25

Gyro Operation
• Resonating Proof Mass

• Electrostatic Drive
• Piezoelectric Drive

• Turning out-of-plane:
• Proof-mass fights the turn
• Detect deviation via

capacitance

• Do this for all three axes

https://fpga.mit.edu/6205/F25 18

Proof Mass
SpringSpring

Measure
Capacitance via
Impedance
Divider

Resonating

Measure
Capacitance via

Impedance
Divider

Proof Mass Spring

Spring

Measure
Capacitance via Impedance Divider

Resonating

Measure Capacitance via
Impedance

Divider

Rotation of Device

Changes in capacitance
measured at different
points

Scale not accurate/nor design details

10/15/25

How to use Gyro Readings:
• Because of Drift (low frequency noise/offset) you want to

avoid doing much long-term integration with a gyro reading
• Having beta less than unity ensures any angle that comes

from gyro reading will eventually disappear, but in short term
it will dominate
• Calculation per timestep:

https://fpga.mit.edu/6205/F25 19

𝜃(𝑛 = 𝛽𝜃(𝑛 − 1 + 𝑇𝑔"[𝑛 − 1]

0 < 𝛽 < 1 Filter Coefficient

𝑇 Time Step

𝑔! Gyro y reading

𝛽 ≈ 0.95 starting point

10/15/25

What to do?

• Using only accelerometer, leaves us blind to
motion/change in the short term but fine in the
long-term

• Using only gyroscope, leaves us blind in the long
term, but good in the short term

• What to do?

https://fpga.mit.edu/6205/F25 2010/15/25

Merge the signals

• Complementary Filter:

• Very simple form of sensor fusion (where you merge
data from more than one sensor to build up model of
what is going on)

https://fpga.mit.edu/6205/F25 21

𝜃! 𝑛 = 𝛽 𝜃! 𝑛 − 1 + 𝑇𝑔![𝑛 − 1] + 1 − 𝛽 tan$%
𝑎#[𝑛 − 1]
𝑎"[𝑛 − 1]

0 < 𝛽 < 1 Filter Coefficient

𝑇 Time Step

𝑔! Gyro y reading 𝑎"
𝑎#

X acceleration reading

z acceleration reading𝛽 ≈ 0.95	good starting point

10/15/25

Sensor Fusion
• Most modern sensors are used with other sensors:

• Can be incorporated open-loop (like complementary
filter on previous page)

• Or incorporate into “learning” algorithms:
• NLMS, Kalman, LQE, Baysean, Linear-Observer System
• Estimate, compare to new data, correct, repeat…
• These usually feature dynamic filters which learn how to

filter the signal they care about

10/15/25 https://fpga.mit.edu/6205/F25 22

So a plethora of sensors out there
• But they all need to be communicated with…

10/15/25 https://fpga.mit.edu/6205/F25 23

Speak my
language!

Parallel vs. Serial in Wires

• Parallel (not so much on individual small
devices)…mostly memory and things that need to send
data at very high rates such as a camera, high-speed
ADCs, etc…

• UART “Serial” very common

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very
common

https://fpga.mit.edu/6205/F25 2410/15/25

SERIAL PROTOCOLS

PARALLEL PROTOCOLS

Clock Line
(Optional)

Data Line 0

Data Line 1

Data Line 2

Data Line N

Data Transmission with Wires...

https://fpga.mit.edu/6205/F25 25

Parallel Link using Wires: Serial Link using Wires:

10/15/25

Device 1 Device 2…
Clock Line
(Optional)

Data Line 0
Device 1 Device 2

10101001100
10101010001
11110001100

10010011001

………

time

message 0

message 1
10101001100

message 0

message 1

time

Parallel vs. Serial in Wires

• Parallel (not so much on individual small
devices)…mostly memory and things that need to send
data at very high rates such as a camera, high-speed
ADCs, etc…

• UART “Serial” very common

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very
common

https://fpga.mit.edu/6205/F25 2610/15/25

SERIAL PROTOCOLS

PARALLEL PROTOCOLS

When Choose Parallel?
• When you need to transfer large amounts of data over

short distances, parallel is a better choice.
• Data Transfer Rate will scale ~linearly with number of

wires
• But Have to be careful of wiring length:
• Ensure bits arrive same time

• Uses lots of space!!!

10/15/25 https://fpga.mit.edu/6205/F25 27
https://docs.toradex.com/102492-layout-design-guide.pdf

Where Have We Seen Parallel
Data Transfer So Far?
• Camera in labs 5-7 (moving in 200 to 400 Mbits per

second across the 8 data pins which you then
reassemble (or try to reassemble) using
pixel_reconstruct

• DRAM (16 pins)

10/15/25 https://fpga.mit.edu/6205/F25 28

Communications Trends
• Serial: good for long distance (save on cable, pin and

connector cost, easy synchronization). Requires
“serializer” at sender, “deserializer” at receiver
• Parallel: issues with clock skew, crosstalk,

interconnect density, pin count. Used to dominate for
short-distances (eg, between chips).
• BUT for high data movement, modern preference is

for parallel, but independent serial links (eg, PCI-
Express x1,x2,x4,x8,x16) as a hedge against link
failures. Ethernet, USB, etc… these all follow that
same pattern

https://fpga.mit.edu/6205/F25 2910/15/25

Multiple Serial Links in Parallel

https://fpga.mit.edu/6205/F25 30

Serial Link:

10/15/25

Data Line 0

Device 1 Device 2

10101001100
message 0

message 2

time

Clock Line 1
(Optional)

Data Line 1

10101001100
message 1

message 3

etc...

• Multiple separate serial
channels coexist.
• Generally data sent on

each channel isn’t
intricately tied together
(maybe separate
packets/message)...n
splitting bits across
multiple wires

Where Have we Seen Multiple
Serial Links?
• TMDS in DVI/HDMI!

• You’ll also see LVDS and variants in a lot of higher-
speed things like cameras

10/15/25 https://fpga.mit.edu/6205/F25 31

Parallel vs. Serial in Wires

• Parallel (not so much on individual small
devices)…mostly memory and things that need to send
data at very high rates such as a camera, high-speed
ADCs, etc…

• UART “Serial” very common

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very
common

https://fpga.mit.edu/6205/F25 3210/15/25

SERIAL PROTOCOLS

PARALLEL PROTOCOLS

Serial Standards
• A zillion Serial standards
• Asynchronous (no explicit clock) vs. Synchronous (CLK

line in addition to DATA line).
• Recent trend to reduce signaling voltages: save power,

reduce transition times
• Control/low-bandwidth Interfaces: SPI, I2C, 1-Wire, PS/2,

AC97, CAN, I2S,
• Networking: RS232, Ethernet, T1, Sonet
• Computer Peripherals: USB, FireWire, Fiber Channel,

Infiniband, SATA, Serial Attached SCSI
• Graphics: DVI, HDMI, DisplayPort

10/15/25 https://fpga.mit.edu/6205/F25 33

Common Chip-to-Chip Communication
Protocols (not exhaustive)

• Parallel (not so much anymore)…mostly memory and things that
need to send data at very high rates such as a camera, high-speed
ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications

https://fpga.mit.edu/6205/F25 3410/15/25

Common Chip-to-Chip Communication
Protocols (not exhaustive)

• Parallel (not so much anymore)…mostly memory and things that
need to send data at very high rates such as a camera, high-speed
ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications

https://fpga.mit.edu/6205/F25 3510/15/25

UART aka “Serial”

• Stands for Universal Asynchronous Receiver Transmitter
• Requires agreement ahead-of-time between devices

regarding things like clock rate (BAUD), etc…
• Two wire communication for bi-directional (or one if you

only want to talk and not listen like a bad relationship
partner)
• Cannot really share

• (every pair of devices needs own pair of lines so wires scales as 2𝑛
where 𝑛 is the number of devices)

• Data rate generally < 1Mbps (though can maybe push a little
bit)
• Data sent least significant bit (lsb) first

https://fpga.mit.edu/6205/F25 36

TX/RX

RX/TX

Device 1 Device 2

10/15/25

TX RX

TXRX

The Naming on UART is Perpetually a
Mess with the TX/RX confusion
• When working with UART take care to pay attention

to the TX and RX pins.

• They are complementary...one device’s TX talks to
another devices RX.

• But boards and datasheets will sometimes label
things backwards

10/15/25 https://fpga.mit.edu/6205/F25 37

UART
• Line High at rest (“high” an “low” depend on system

specs...5V/0V...3.3V/0V, -12V/+12V...)
• Drops Low to indicate start
• 8 (or 9 bits follows) sent least significant bit first
• Goes high (stop bit)
• Can have optional parity bit for simple error correction

10/15/25 https://fpga.mit.edu/6205/F25 38

From
TX:

START 1 0 1 1 0 0 1 0

STO
P

To
RX:

0x8d of ’M’ in ASCII
sent lsb first!

In UART, messages must be short
(one byte)

• Both parties must agree ahead of time to a bit rate.
• A bit rate is bits per second
• Does everyone know what a second is?
• Does everyone actually know what a second is?
• What is a second?
• What are we even doing here?
• What are the implications of imperfect

synchronization?

10/15/25 https://fpga.mit.edu/6205/F25 39

Timing Differences
• Atomic Clocks can range from $1500 to $200,000

depending on how good you want them.
• If we want commodity electronics to be cheap,

$200,000 makes that hard to do.
• They must use “good-enough” local clocks and we

build up communication protocols to accommodate
for that.
• You must Synchronize your data transmission and

reception

10/15/25 https://fpga.mit.edu/6205/F25 40

Synchronization

10/15/25 https://fpga.mit.edu/6205/F25 41

From
TX:

START 1 0 1 1 0 0 1 0
STO

P

To
RX:

Receiver sees the high signal
and waits for it to fall.
From that edge it starts its
timing

TX timing:

RX timing:

• Even if the timing of the RX and TX sides
differ slightly, by keeping the messages
short, the chance of getting too far out of
sync is very, very low.

• Every new byte forces a resynchronization
so errors never get a chance to accumulate
too far!

UART and RX/TX and RTS/CTS
• UART will also sometimes come with
• “Ready to Send” signals (RTS)
• “Clear to Send” signals (CTS)

• These are Flow-Control Signals that allow the two parties
to tell each other if they have data to send if they are
ready to receive data

10/15/25 https://fpga.mit.edu/6205/F25 42

TX/RX

RX/TX

Device 1 Device 2

TX RX

TXRX

RTS
RTS/CTS

CTS

RTSCTS
CTS/RTS

UART Transmission

10/15/25 https://fpga.mit.edu/6205/F25 43

From TX:

START 1 0 1 1 0 0 1 0

STO
P

To RX:

• RTS and CTS sit high. Each device in charge of setting
the RTS and listening to the CTS
• Device pulls RTS low. Other device sees that and then

pulls its CTS low in response

RTS

CTS

Receiving Device

Transmitting Device

“I have data to give”

”Give me your data. I am ready.”

Data will not start until “handshake” has happened

UART Thoughts? Goods? Bads?

• Everything contained within one wire for the most
part?

• Not super fast

10/15/25 https://fpga.mit.edu/6205/F25 44

Data Synchronization

• In UART, small data bursts with periodic
resynchronizations are needed to make sure both
parties produce and read data at the same time.

• How else to do this?

10/15/25 https://fpga.mit.edu/6205/F25 45

Common Chip-to-Chip Communication
Protocols (not exhaustive)

• Parallel (not so much anymore)…mostly memory and things that
need to send data at very high rates such as a camera, high-speed
ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications

https://fpga.mit.edu/6205/F25 4610/15/25

Note on Terminology
• Master/Slave terminology is heavily used in SPI and

I2C...Master controls a bus, Slave listens.
• Acknowledge the issues with it, but also because many

datasheets/vendors still use it, it is hard for us to
separate from it completely.
• Changing slowly
• Maybe use ”Main”/”Secondary” to keep the letters the

same or ”Controller” and “Peripheral”
• Also seeing SDO/SDI for “Serial Data Out/In” with respect

to controlling device more recently
• Or Controller/Peripheral in some other vendors

https://fpga.mit.edu/6205/F25 4710/15/25

SPI

• Stands for Serial-Peripheral Interface
• Four Wires:
• COPI: Controller-Out-Peripheral-In…
• CIPO: Controller-In-Peripheral-Out…
• SCK: Serial Clock
• CE/CS (Chip Enable or Chip Select)

• SCK removes need to agree ahead of time on data rate
(from UART)…makes data interpretation much easier!
• High Data Rates: (1MHz up to ~70 MHz clock (bits))
• Data msb or lsb first…up to devices/spec

https://fpga.mit.edu/6205/F25 48

COPI
CIPOController

Device
Peripheral

DeviceSCK
CE/CS

10/15/25

MOSI also = SDO “serial data out”
MISO also SDI “serial data in”
Also seeing now:
COPI = Controller Out Peripheral In
CIPO = Controller In Peripheral Out

SPI Expansion

• Can share COPI/CIPO Bus so the wire
requirement scales as 3 + 𝑛 where 𝑛 is
the number of devices
• Addition of multiple secondaries

requires additional select wires
• Hardware/firmware for SPI is pretty

easy to implement:
• Wires are uni-directional
• Classic “duh” sort of approach to digital

communication, but very robust.

https://fpga.mit.edu/6205/F25 49

COPI
CIPOController

Device
Peripheral
Device 1SCK

CE0/CS0

CE1/CS1

10/15/25

Peripheral
Device 2

SPI Example

https://fpga.mit.edu/6205/F25 50

…

SCK

CS Here I am talking to a MCP3008 10 bit ADC

X X 1 1 0 0 1 X X X X X X X X X X X X X
COPI/MOSI

X X X X X X X X 0 0 0 0 1 0 1 1 0 1 1
CIPO/MISO

CMOD-A7-35T
MCP3008

From MCP3008 Datasheet

10/15/25

MCP3008 is a 8-channel 10 bit Analog to
Digital Converter from Microchip Semi
that communicates over SPI

Sends its data msb first

Not all devices do this
(must check datasheet)

SPI Example

https://fpga.mit.edu/6205/F25 51

…

SCK

CS

X X 1 1 0 0 1 X X X X X X X X X X X X X
COPI/MOSI

X X X X X X X X 0 0 0 0 1 0 1 1 0 1 1
CIPO/MISO

MCP3008 (Peripheral/Secondary Device) Dialog

(Controller/Main Device) Dialog

“Hey MCP3008”
“0001011011”

“Give me a
single-ended
reading…” “From your

channel 1”
”We’re done
here. ”

10/15/25

X means don’t care as in
could be 1 or 0

Come from datasheet

SPI In Real Life (You’ve Seen this before)
• Here I am talking to the

same chip I was
daydreaming about talking
to on the previous slide.

• Dreams do come true

• I’m saying, “give me your
measurement on Channel
1,” and it is responding with
“10’b0001011011” mapped
to 3.3V or 0.293 V

https://fpga.mit.edu/6205/F25 52

CS

SCK

COPI

CIPO

11001000001011011

10/15/25

REMINDER: Digital In Analog Life
vs Digital in Digital Life
• What noise? I don’t care about noise (within reason)

10/15/25 https://fpga.mit.edu/6205/F25 53

Logic Analyzer Capture of SPI
transaction

Oscilloscope Analog Capture of
different SPI transaction

D/C
RES

SPI Variations
• Six Wires:

• COPI: Controller-Out-Peripheral-In
• CIPO: Controller-In-Peripheral-Out
• SCK: Clock
• CE/CS (Chip Enable or Chip Select)
• RES: Reset Device
• D/C: Data/Command (often seen in devices

where you need to write tons of data (i.e. a
display)

• Three/Two Wires:
• If a device has nothing to say, drop CIPO:
• If you assume only one device on bus drop

CE/CS, so only have SCK and COPI, sometimes
just called “DO” (for data out) in this situation

https://fpga.mit.edu/6205/F25 54

COPI
CIPO

Controller
Device

Peripheral
Device

SCK
CE0/CS0

10/15/25

Twitch Streamer LEDs:

LCD Display:

Other SPI Variations

• QSPI: “Quad SPI”

• This is basically SPI...
• But there will be four data transfer pins instead of

one
• See in a lot of flash memory chips
• This really isn’t “Serial” in the way God meant it

though...the bits are usually sampled together so it
is a parallel data transfer just poorly named

10/15/25 https://fpga.mit.edu/6205/F25 55

COPI

CIPO[0]

Controller
Device

Peripheral
Device

SCK
CE0/CS0

CIPO[1]

CIPO[2]

CIPO[3]

Other SPI Variations
• 8SPI: “Octal SPI”

• This is basically SPI...

• ...

• But there will be eight data transfer pins instead of one
• See in a lot of weird hybrid RAM chips
• If this isn’t parallel data transmission, I don’t know

what is...but it is called SPI...sorta like that one relative
who just can’t admit they’re wrong so they keep
redefining things to keep their worldview going

10/15/25 https://fpga.mit.edu/6205/F25 56

COPI

CIPO[0]

Controller
Device

Peripheral
Device

SCK
CE0/CS0

CIPO[1]

CIPO[2]

CIPO[3]

CIPO[4]

CIPO[5]

CIPO[6]

CIPO[7]

SPI Conclusions

• It is a very simple and very robust ”idea” of a
protocol.

• The simplicity comes at the expense of any wires

• And often...some of the complexity is deferred to
the ones deploying...There are many variations and
dialects of it, so you should always always always
read the datasheet for these things.

10/15/25 https://fpga.mit.edu/6205/F25 57

Be careful! Read Datasheets

• A big screw-up point
is mixing up clock
polarity...sometimes
data is sampled on
rising edge...others
on falling edge

10/15/25 https://fpga.mit.edu/6205/F25 58

• Clock level at idle can also matter sometimes

SPI Upsides?

• Simple to Implement

• Capable of Very High Speeds (50 MHz is not rare for
some displays)

10/15/25 https://fpga.mit.edu/6205/F25 59

SPI Downsides?

• A lot of wires...which might seem like nbd, but in
reality pincount is a huge cost factor in chip
manufacture...tons of economic pressure to
minimize this.

• At very high speeds it actually gets really noisy
especially QSPI or OSPI

10/15/25 https://fpga.mit.edu/6205/F25 60

Common Chip-to-Chip Communication
Protocols (not exhaustive)

• Parallel (not so much anymore)…mostly memory and things that
need to send data at very high rates such as a camera, high-speed
ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications

https://fpga.mit.edu/6205/F25 6110/15/25

I2C
• Stands for Inter-Integrated Circuit communication
• Invented in 1980s
• Two Wire, One for Clock, one for data...Both wires

are technically bidirectional, meaning each side can
use them
• Usually 100kHz or 400 kHz clock (newer versions go

to 3.4 MHz)

https://fpga.mit.edu/6205/F25 62

SDA

SCL

Controller
Device

Peripheral
Device

10/15/25

On i2C Multiple Devices Require
Same # of Wires
• Devices come with their own ID

numbers (originally a 7 bit value
but more modern ones have 10
bits)…allows potentially up to 27

devices or 210 on a bus
(theoretically anyways)

• ID’s are specified at the factory*,
usually several to choose from
when you implement and you
select them by pulling external
pins HI or LOW

https://fpga.mit.edu/6205/F25 63

SDA

SCL

Controller
Device

Peripheral
Device 1

10/15/25

Peripheral
Device 2

*sometimes programmable

I2C
• Only two wires…one used for synchronizing data

and one used for conveying data in both directions:
• Controller à Peripheral
• Peripheral à Controller

https://fpga.mit.edu/6205/F25 6410/15/25

• And also you need to let
multiple devices possibly
speak and listen…
• There’s a lot here…
• It needs more complicated:
• Hardware
• Communication Protocols

SDA

SCL

Controller
Device

Peripheral
Device 1

Peripheral
Device 2

Bi-Directional Communication

• Hey you thought you brush past those arrows going
both ways...I caught that. I’m too quick for you. I go
to M.I.T. How does that work?

• We should address that.

10/15/25 https://fpga.mit.edu/6205/F25 65

SDA

SCL

Controller
Device

Peripheral
Device

How Do Digital Electronics Set Voltages on
a Line (Generally)?

10/15/25 https://fpga.mit.edu/6205/F25 66

VDD

VIN

NFET

PFET

VOUT

• We use CMOS Logic

• A pair of
complementary
transistors that can
alternately connect
and isolate from VDD
and Ground

Put 1 on output?

10/15/25 https://fpga.mit.edu/6205/F25 67

VDD

VIN

VOUT

• Low input

• PMOS conducts

• NMOS no conduct

1

0

𝑰

conducts

doesn’t
conduct

Put 0 on output?

10/15/25 https://fpga.mit.edu/6205/F25 68

VDD

VIN

VOUT

• High input

• PMOS no conducts

• NMOS conduct

1

0
𝑰

conducts

doesn’t
conduct

How Do Digital Electronics Listen
to Voltages on a Line?

10/15/25 https://fpga.mit.edu/6205/F25 69

• Some sort of buffer

• Its input takes very little
power/current from the
line

• A quiet, ideal observer

So in Unidirectional Communication
Schemes... UART, SPI wires, etc...

10/15/25 https://fpga.mit.edu/6205/F25 70

VDD

VIN

NFET

PFET

Vchannel

I Set the voltages

I read the voltage

What about if two or more devices want
to use one common wire to
communicate?

10/15/25 https://fpga.mit.edu/6205/F25 71

• Sounds like socialism...can’t have that...it’ll be a
mess and none of the transistors will ever want to
work...

• jkjk

• But seriously electrically you have a problem...

What about if two or more devices want
to use one common wire to
communicate?

10/15/25 https://fpga.mit.edu/6205/F25 72

• Electrically you have a problem...

VDD

VIN

NFET
OFF

PFET
ON

I Set the voltage to 1 VDD

VIN

NFET
ON

PFET
OFF

And I Set the
voltage to 0

SHORT CIRCUIT
CURRENT

NOT GOOD

What Do You Do in Times of Conflict?

10/15/25 https://fpga.mit.edu/6205/F25 73

• You dig your heels in and waste tons of energy.
Screw the other transistor. The correct answer is 1,
not 0...everyone on reddit r/1 agrees with me and
the 1News comment section backs me up.

• jkjk

• You come up with some compromises...everyone
gives a little bit...everyone gets a little bit

• Each side gives up a transistor

Before We Had This...

10/15/25 https://fpga.mit.edu/6205/F25 74

VDD

VIN

NFET

PFET

VOUT

Now We Have This...

10/15/25 https://fpga.mit.edu/6205/F25 75

VIN

NFET

VOUTCall th
is ”O

pen Drain” sin
ce the

drain terminal of th
e tra

nsist
or

connects n
owhere

Now We Have This...

10/15/25 https://fpga.mit.edu/6205/F25 76

VIN

NFET

VOUT

• Vout is either?????

• 0 (when transistor conducts)

• “HiZ”...basically electrically undefined (when transistor does not
conduct)

Now Connect up two of these circuits...

10/15/25 https://fpga.mit.edu/6205/F25 77

VIN

NFET

VOUT

VIN

NFET

• Yeah...what does this give us?
• Each side can make a 0 by activating its transistor
• Can each side make a 1? NO

Bring in an Ombuds Component

10/15/25 https://fpga.mit.edu/6205/F25 78

VIN

NFET

VOUT

VIN

NFET

• Each side can make a 0 by activating its transistor
• We use a neutral third-party component, trained in conflict

mediation to give us 1.

VDD

Common Pull-Up Resistor

10/15/25 https://fpga.mit.edu/6205/F25 79

VIN

NFET

VOUT

VIN

NFET

• Prevents the Possibility of Short Circuits Always must go
through this resistor (choose size to limit current)
• End up choosing several Kohms usually to keep current

below 1mA
VDD

RPU

Result each side has this:

https://fpga.mit.edu/6205/F25 80

Measure
Buffer

Vcontrol

RPU

Vdd

10/15/25

• If you want to say ”0”, you activate your transistor
• If you want to say ”1”, you inactivate your transistor and let

resistor pull you up
• If you also want to listen you inactivate your transistor and

monitor the line voltage

As a result:

https://fpga.mit.edu/6205/F25 81

Mode Controller Peripheral
Controller Transmit HiZ (HI) or LOW HiZ (listening)
Peripheral Transmit HiZ (listening) HiZ (HI) or LOW

Measure
Buffer

Vcontrol

RPU

Vdd

10/15/25

Measure
Buffer

Vcontrol

Controller Peripheral

So in Deployment...
• i2C uses an open drain
• Meaning both Controller and Peripheral Device are

either:
• LOW
• “High-Impedance”

• Need external pull-up resistors on both parts of I2C to
make it work

https://fpga.mit.edu/6205/F25 82

4.7kΩ

3.3V

SDA

SCL

3.3V

4.7kΩ

These resistors are large reason why data rate is so low!

10/15/25

Controller
Device

Peripheral
Device

Common Pull-Up Resistor

10/15/25 https://fpga.mit.edu/6205/F25 83

VIN

NFET

VOUT

VIN

NFET

• We choose the pull up resistors to be in the K range usually
to keep current/power down.
• This has the downside that parasitic capacitances lead to

relatively large time constants in charging/discharging the
line VDD

𝐶% represents the
parasitic capacitance

Cp

RPU approx few KOhms

So in Deployment...
• So with all this together...we can see that there needs to

be a lot more order in how to use the I2C wires...things
pull double-duty depending on context.

https://fpga.mit.edu/6205/F25 84

4.7kΩ

3.3V

SDA

SCL

3.3V

4.7kΩ

These resistors are large reason why data rate is so low!

10/15/25

Controller
Device

Peripheral
Device

Nobody ever seems to remember this or thinks I’m making this up.
You need to add these resistors.

So in Deployment...
• Because the data lines are “shared” it means devices

need more structure when it comes to deciding what to
say and whose turn it is to speak or listen.

https://fpga.mit.edu/6205/F25 85

4.7kΩ

3.3V

SDA

SCL

3.3V

4.7kΩ

10/16/25

Controller
Device

Peripheral
Device

i2C Operation
• Data is conveyed on SDA (Either from Main or

Secondary depending on point during
communication)
• SCL is a 50% duty cycle clock
• SDA generally changes on falling edge of SCL (isn’t

required, but is a convenient marker for targeting
transitions)
• SDA sampled at rising edge of SCL
• Main/Controller is in charge of setting SCL frequency

and driving it
• Data is sent msb first

https://fpga.mit.edu/6205/F25 8610/15/25

Notice how much more rigid this is

compared to SPI

Meanings I: (Start, Stop, Sampling)

https://fpga.mit.edu/6205/F25 87

SCL:

SDA:

Controller Claims Bus (START)
By pulling SDA LOW while SCL is HIIdle State

SDA and SCL sit HI

Data from SDA sampled @ posedge of SCL

Data/State on SDA transitions
@ falling edge of SCL

Controller Releases Bus (STOP)
By pulling SDA HI while SCL is HI

HI

LO

HI

LO

10/15/25

Meanings II Address
• First thing sent by Controller is 7 bit address (10 bit

in more modern i2C…don’t worry about that)

• If a device on the bus possesses that address, it
acknowledges (ACK=0/NACK=1) and it becomes the
secondary for the time being.

• All other devices (other than Controller/Peripheral
Devices) will ignore until STOP signal appears later
on.

https://fpga.mit.edu/6205/F25 8810/15/25

Meanings III (Read/Write Bit)
• After sending address, a Read/Write Bit is specified

by Controller on SDA:
• If Write (0) is specified, the next byte will be a register to

write to, and following bytes will be information to write
into that register
• If Read (1) is specified, the Peripheral Device will start

sending data out, with the Controller Device
acknowledging after every byte (until it wants data to not
be sent anymore)

https://fpga.mit.edu/6205/F25 8910/15/25

Meanings IV (ACK/NACK)
• After every 8 bits, it is the listener’s job to

acknowledge or not acknowledge the data just
sent (called an ACK/NACK)
• Transmitter pulls SDA HI and listens for next

reading the next time SCL transitions high:
• If LOW, then receiver acknowledges data
• If remains HI, no acknowledgement

• Transmitter/Receiver act accordingly

https://fpga.mit.edu/6205/F25 9010/15/25

Meanings V (keeps going...)
• For Controller Device to write to Peripheral Device:

• START
• Send Device Address (with Write bit)
• Send register you want to write to
• Send data…until you’re satisfied, doing ACK/NACKs along the way
• STOP

• For Controller Device to read from Peripheral Device a common (though not universal procedure) is:
• START
• Send Device Address (with Write bit)
• Send register you want to read from (think of this like setting a cursor in the register map)
• ReSTART communication
• Send Device Address (With Read bit)
• Read the bits (it’ll start from where the cursor was left pointing at)
• After every 8 bits, it is Controller’s job to ACK/NACK Peripheral…continued acknowledgement

leads to continued data out by Peripheral.
• Not-Acknowledge says “no more data from Peripheral”
• STOP leads to Controller ceasing all communication

https://fpga.mit.edu/6205/F25 9110/15/25

MPU-9250
• 3-axis Accelerometer (16-bit readings)
• 3-axis Gyroscope (16-bit readings)
• 3-axis Magnetic Hall Effect Sensor (Compass) (16 bit readings)
• SPI or I2C communication (!)…no analog out
• On-chip Filters (programmable)
• On-chip programmable offsets
• On-chip programmable scale!
• On-chip sensor fusion possible (with quaternion output)!
• Interrupt-out (for low-power applications!)
• On-chip sensor fusion and other calculations (can do orientation

math on-chip or pedometry even)
• So cheap they usually aren’t even counterfeited! J
• Communicates using either I2C or SPI

https://fpga.mit.edu/6205/F25 92

Board: $5.00 from Ebay
Chip: $1.00 in bulk

10/15/25

I2C in Verilog...Tri-State
• inout is an “input-output”…needs some special

handling...you can both write to them (only using
combinational logic) and read from them...the
usual way to work with them is the following:

https://fpga.mit.edu/6205/F25 93

In verilog…

10/15/25

inout sda;

logic sda_val;

assign sda = sda_val? 1’bz: 1’b0;

//if desired:
always_ff @(posedge clk)begin
 sda_val <= 1; //do a non-blocking assign to sda_val if desired
 //this indirectly affects sda then
end

Telling it to go to high-impedance (open Drain)

As a result:

https://fpga.mit.edu/6205/F25 94

Mode Main Secondary
Controller Transmit HiZ (HI) or LOW HiZ (listening)

Peripheral ACK/NACK HiZ (listening) HiZ (HI) or LOW
Peripheral Transmit HiZ (listening) HiZ (HI) or LOW

Controller ACK/NACK HiZ (HI) or LOW HiZ (listening)

SDA in

VGS

4.7kΩ

3.3V

SDA

inout sda;
logic sda_val;
assign sda = sda_val? 1’bz: 1’b0;

Wanna write to SDA?

sda_val <= 0; //or 1 if desired

Wanna read to SDA?

sda_val <= 1;
//wait clock cycle…
some_reg <= sda; //read from input

10/15/25

Implementing i2C on FPGA with
MPU9250:
• Made Controller i2C module in Verilog
• Used MPU9250 Data sheet: 42 pages (basic

functionality, timing requirements, etc…)
• MPU9250 Register Map: 55 pages

https://fpga.mit.edu/6205/F25 9510/15/25

State-Machine
Implementation of
i2C Main/Controller
• Continuously reads 2 bytes

starting at the 0x3B
register (X
accelerometer data)

• Print out value in hex in
LEDs

• 34 States
• Clocked at 200kHz, and

creates 100 kHz SCL
• Change SDA on falling edge

of SCL
• Sample SDA on rising edge

of SCL

https://fpga.mit.edu/6205/F25 9610/15/25

State-Machine
Implementation of i2C
Main/Controller
• Redundant states (repeated

READ/WRITE, ADDRESS,
ACK/NACK, etc…)

• ARM manual describes ~20 state
FSM for full I2C…this is just a
toy implementation of specific
I2C operation

• Included code on site for
reference/starting point

• Diagram: on next page for
reference

https://fpga.mit.edu/6205/F25 97

…200 more lines

10/15/25

IDLE START1
ADDRESS1

ADDRESS2

READWRITE1

REGISTER1

REGISTER2

ACKNACK1A

ACKNACK1C

IDLE

ACKNACK2AACKNACK2C

IDLE

STOP

READ2

READ1

START2

ADDRESS3

ADDRESS4

READWRITE2

ACKNACK3A

ACKNACK3C

IDLE

READ3

READ4
ACK4

NACK

NACK

ACK

NACK

ACK

NACK
ACK

7x

7x
8x

8x

8x

https://fpga.mit.edu/6205/F25 9810/15/25

https://fpga.mit.edu/6205/F25 99

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010 …
SCL

SDA

10/15/25

Communication Part

SDA

SCL

VCC

GND

Nexys4

MPU9250

Can also do this on our current board

https://fpga.mit.edu/6205/F25 100

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010 …
SCL

SDA

10/15/25

Communication Part

SDA

SCL

VCC

GND

Nexys4

MPU9250

Can also do this on our current board

Needs a dialogue

https://fpga.mit.edu/6205/F25 101

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010

Nexys4 MPU9250

Device Address (0x68)
Write=0

Acknowledge=0

Device Register (0x3B)

Acknowledge=0

Device Address (0x68)

Read=1

Data Read InStart

…
SCL

SDA

Controller ACK

ReStart

10/15/25

Communication Part

SDA

SCL

VCC

GND

Nexys4

MPU9250

Communication Part

https://fpga.mit.edu/6205/F25 102

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010

SDA

SCL

VCC

GND

Nexys4

MPU9250

…
SCL

SDA

“I claim this bus”

“Hey, 0x68…”

“I wanna tell
you something”

“ACK I’m here.
Sounds good”

“Look at your
0x6B register”

“ACK
OK”

“Different thought”

“Hey, 0x68…”

“Read to me
from where
 you’re looking”

“ACK For
sure”

“0x6D”

”ACK…
More, please”

MPU9250 (Peripheral Device) DialogNexys4 (Controller Device) Dialog

10/15/25

Communication in Real-Life:

https://fpga.mit.edu/6205/F25 103

Data being sent from MPU9250

Triggered on leaving IDLE state

SCL = Purple

SDA = Yellow

10/15/25

Data being sent to MPU9250

Running and reading X acceleration:

https://fpga.mit.edu/6205/F25 104

16’hFD88 = 16’b1111_1101_1000_1000 (2’s complement)
Flip bits to get magnitude: 16’b0000_0010_0111_0111
=-315
Full-scale (default +/- 2g)
-315/(2**15)*2g = -0.02g J makes sense

16’h4088 = 16’b0100_0000_1000_1000 (2’s complement)
Leave bits to get magnitude: 16’b0100_0000_1000_1000
=+16520
Full-scale (default +/- 2g)
-16520/(2**15)*2 = +1.01g J makes sense!

Horizontal: Vertical:

HOOKUP

10/15/25

Clock-Stretching (Cool part of i2C!!!)

• Normally Controller drives SCL, but since Controller
drives SCL high by going hiZ, it leaves the option open
for Peripheral to step in and prevent SCL from going
high by pulling SCL LOW

https://fpga.mit.edu/6205/F25 105

SCL:

Main wanted to pull SCL HI but
Secondary prevents by pull LOW

(red never happens)

Once Secondary goes HiZ again, Main
picks back up on SCL

• Allows Peripheral a way to buy time/slow down things (if it requires
multiple clock cycles to process incoming data and/or generate
output)

10/15/25

I2C Can Also Be a “Multi-Controller” Bus

• In SPI, there is a pre-determined device in charge
of the system. I2C is potentially much more
egalitarian

https://fpga.mit.edu/6205/F25 106

• Devices can be design to yield based on who claims a bus first…but
you have to be careful…what if two devices claim a bus at the same
time…potential problems? Can get bus contention so need to be
careful

10/15/25

SDA:

Controller Claims Bus (START)
By pulling SDA LOW while SCL is HIIdle State

SDA and SCL sit HI

Controller Releases Bus (STOP)
By pulling SDA HI while SCL is HI

HI

LO

Goods and Bads of I2C?

• Lower clock frequency
• Far more complicated communication protocol

• Only need two wires (very scalable)...this is a bigger
deal in modern systems than you may think at first.
Wiring and pinout is by far one of the most
expensive parts of making a chip. Compute is
relatively cheap at this point so the “complexity” of
I2C isn’t necessarily that much of a downside.

10/16/25 https://fpga.mit.edu/6205/F25 107

Have we used I2C so far in 6.205?

• Yes...the camera actually gets spoken to over I2C
first before transmitting data. That is how it gets
configured.

• HDMI actually uses I2C to do its original
handshakes and monitor resolution communication
(and copyright stuff) before the actual data starts
getting sent over TMDS/high rate

10/16/25 https://fpga.mit.edu/6205/F25 108

Common Chip-to-Chip Communication
Protocols (not exhaustive)

• Parallel (not so much anymore)…mostly memory and things that
need to send data at very high rates such as a camera, high-speed
ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications

https://fpga.mit.edu/6205/F25 10910/15/25

SCL

I2S (Inter-IC Sound Bus)

• Not related to i2C at all
• Intended for Digitized Stereo Data
• Three Wires:

• SDA: Serial Data (The actual music)
• WS: Word Select (Left/Right Channel)
• SCL: Serial Clock (For Synchronization)

• Push-Pull Driving (like SPI…no need for pull-up resistors)
• Data sent msb first
• Clock-rate dictated by sample rate (44.1kHz @16 bits per

channel /w 2 channels = ~1.4 MHz for example

https://fpga.mit.edu/6205/F25 110

SDA

WS
Controller Peripheral

10/15/25

Actually almost like a very
constrained form of SPI in
many senses

I2S

https://fpga.mit.edu/6205/F25 11110/15/25

Two identical microphones share all three lines

Microphone told to be
the “left” microphone by
hardwiring LR to ground

Microphone told to be
the “right” microphone
by hardwiring LR to VDD

i2S

https://fpga.mit.edu/6205/F25 11210/15/25

WS specifies whose
turn it is to speak
(left or right channel)

Compare and Contrast All of Them?

• Generally the fewer the wires the more rigid the
protocol (i2C and to a certain extent UART)
• SPI can be very flexible and high speed (have only

10 bits to send? No problem…send 10!...can’t do
that do that with i2C…need to zero-pad up to the
next full byte (16 bits)
• In terms of implementation, generally with

communication protocols, the more wires, the
easier the protocol/less overhead

https://fpga.mit.edu/6205/F25 11310/15/25

Other protocols!
If Time...else we’ll do in future class.

10/15/25 https://fpga.mit.edu/6205/F25 114

PS/2 Keyboard/Mouse Interface

• 2-wire interface (CLK, DATA), bidirectional
transmission of serial data at 10-16kHz
• Format

• Device generates CLK, but host can
request-to-send by holding CLK low
for 100us

• DATA and CLK idle at “1”, CLK starts when
there’s a transmission. DATA changes on
CLK, sampled on CLK

• 11-bit packets: one start bit of “0”, 8 data bits
(LSB first), odd parity bit, one stop bit of “1”.

• Keyboards send scan codes (not ASCII!) for each
press, 8’hF0 followed by scan code for each
release

• Mice send button status, Δx and Δy of
movement since last transmission

https://fpga.mit.edu/6205/F25 115

Figures from digilentinc.com

10/15/25

https://fpga.mit.edu/6205/F25 116

PS/2 Keyboard/Mouse Interface
• 2 signal wire interface (CLK, DATA),

bidirectional transmission of serial
data at 10-16kHz

Figures from digilentinc.com

10/15/25

Controller Area Network (CAN)
Bus
• Common bus protocol found in cars and other

systems

10/15/25 https://fpga.mit.edu/6205/F25 117

https://www.digikey.com/en/blog/how-to-simplify-the-test-of-can-bus-networks

CAN Bus

• Modules all share one common twisted wire
channel
• Signaling is differential rather than single-ended

(like HDMI)
• Allows cables to be run long distances with good noise

suppression

• Devices claim bus and listen with addressing
scheme kinda similar to I2C

10/15/25 https://fpga.mit.edu/6205/F25 118

https://www.digikey.com/en/blog/how-to-simplify-the-test-of-can-bus-networks

USB: Universal Serial Bus
• USB 1.0 (12 Mbit/s) introduced in 1996

• USB 2.0 (480 Mbit/s) in 2000

• USB 3.0 (5 Gbit/s) in 2012

• USB-C 2016.

• USB 3.2 (30 Gbit/s) in July 20, 2017

• USB 4.0 (40 Gbit/s) 2019

• USB 4.0 2.0 (120 Gbits/s) 2022

• Created by Compaq, Digital, IBM, Intel, Northern Telecom and Microsoft.

• Uses differential bi-direction serial communications

https://fpga.mit.edu/6205/F25 119

Type A USB 2.0 – 4 pins

Type A & B
Pinout Mini/Micro Pinout USB 3.0

Credit: Reddit

10/15/25

USB: Universal Serial Bus
• Far, far more defined layers than

your other things we’ve seen

• The 2000 version of USB spec was
570 pages long

• USB 3.2 (2017) Approximately
900 pages long at this point
+supplemental stuff

• USB 4.0 (2019)…similar and so on

https://fpga.mit.edu/6205/F25 12010/15/25

Complexity (logarithmic scale):

SPI

I2C

USB

UART

I2S

How is Data Transmitted in USB
(High Level):

https://fpga.mit.edu/6205/F25 121

• Communication uses handshakes to establish
capable/expected data rates
• Host device (computer for example), assigns

connected devices temporary IDs on shared bus.
• Packets of information, including headers,

payloads, and error checks (CRC5, CRC16, and
CRC32 are used) are sent between host and client
devices

10/15/25

How is Data Transmitted in USB (Bit
Level):

https://fpga.mit.edu/6205/F25 122

• USB uses twisted wire pairs and there is no CLOCK wire
• All data is transmitted using Non-Return-Zero-Inverted (NRZI)

encoding:
• A 0 is encoded as a value change
• A 1 is encoded by no change

• After initial synchronization byte, the receiver extracts the
clock from the on-average probability of 0’s in the data (which
give transitions) using local oscillator and Phase-Locked Loops
• Avoid long stretches of 1’s by bit-stuffing (shoving 0’s in to

avoid periods of time where no transitions happen)…similar to
ether protocols

10/15/25

USB - C

https://fpga.mit.edu/6205/F25 123

• New connector brought in with USB 3 standard
• Universal connector for power and data – first product MacBook Air – one and

only port!
• Symmetrical – no “correct” orientation (Good for 10,000

insert/withdrawals…10 kiloinserts)
• Supports DisplayPort, HDMI, power, USB, and VGA. Uses differential bi-

direction serial communications
• Supplies up to 100W power (5V @ up to 2A, 12V @ up to 5A, and 20V @ up to

5A)
• Voltage dictated by software handshake, etc..

10/15/25

USB 4

10/15/25 https://fpga.mit.edu/6205/F25 124

• 2019 saw introduction of USB4
• Partially motivated by Intel/Apples donation of

Thunderbolt spec to USB consortium in ~2017
• Requires use of USB-C-type cable
• Data rates up to 40 Gbps (1 full HD movie per second)

USB 4 2.0

10/15/25 https://fpga.mit.edu/6205/F25 125

• 2022 and 2023 saw introduction of USB4 2.0
• Requires use of USB-C-type cable
• Data rates up to 120 Gbps (3 full HD movie per second

because society needed that rather than UBI or
universal healthcare)

FTDI Chipsets

https://fpga.mit.edu/6205/F25 126

• Future Technology Devices International Ltd
(FTDI) is a Scottish Electronics firm that makes
USB interfaces
• They produce devices that convert between USB

and:
• UART
• SPI
• I2C
• Parallel Out
• Etc…

• Extremely common (we use a few on our FPGA)

10/15/25

Lies!

• The UART you wrote in Lab 3
wasn’t actually to the computer.
• It was to an FT2232 chip by

FTDI
• Takes UART and converts back

and forth to USB for you
automatically

10/15/25 https://fpga.mit.edu/6205/F25 127

FT2232 Chip

The Great FTDI Bricking of 2014

https://fpga.mit.edu/6205/F25 128

• From the beginning of USB to only recently, most USB devices
used FTDI-based chip sets to interface (source of those annoying
FTDXX.h library issues you’d always see in Windows)
• Your optical mouse would have some circuit and it would

communicate internally with UART…then the FTDI chip would
convert to USB

• Dozens of “clones” were built to work with that software, these
clones often times selling for a small fraction of the cost of the
original FTDI chips

• In 2014 FTDI they released a software update, included in most
Windows Service Packs that bricked all “non-genuine” devices

• Turned out a lot of ”legit” products were using
counterfeits/clones....lost them a lot of good will.

• Did it again later on too.

10/15/25

Conclusions
• Tons of protocols (just skimming the surface here)
• Great way to add complexity to a project!
• But! Plan ahead if talking to devices in final

projects.
• If interfacing to FPGA directly, interfacing anything

above the most simple devices can take time!
• That Virtual Reality headset team from 2019 probably spent

40% of their time writing a driver to control the screens over
SPI (at 70 MHz)

10/15/25 https://fpga.mit.edu/6205/F25 129

