Communication
Protocols etc...

6.205



Week 7: Convolution

* Only have to write two/three
modules

* Please start early

Phase 25 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.059 | TNS=-0.319 | WHS=0.050 | THS=0.000 |

—

Light travels 17 mm in the time
that my design initially failed by

10/15/25 https://fpga.mit.edu/6205/F25 2



Administrative

o AbSt ract d ue tomorrow This is not good in lab 7. You do not want yours to look like this.

* Block Diagram report is due on Tue 10/28 at 5pm.
* You'll also get feedback after

* Week/Lab 07 Due Wed 22nd

* Project presentation will take place after that. Details
will come in a couple days about sign ups.

10/15/25 https://fpga.mit.edu/6205/F25 3



2-Bit Command FIFO

* Clever use of only two bit-width for command_fifo
in lab 6.

* Just store the tlast signal rather than the whole
address. Very smart.

logic [1:0] cf_out2; // {read_response_addr, queued_command_write_enable} —--> 24 bits + 1 bit
logic [1:0] cf_in2; // {addr[24:0], write_enable[0]} —-—> 1 bits last flag + 1 bit write_enable
logic last_flag;

logic read_response_address_2;

assign last_flag = (memrequest_addr == MAX_ADDR);

Downside would be this assign cf_in2 = {last_flag, memrequest_write enable};
pFECIUdGS random access command_fifo #(.DEPTH(64),.WIDTH(2)) mcf(

to memory, so for final Cetew, o Seprpriate

projects this may not be ritelet write),

on needs. read(cf_read),

.empty(cf_empty)

Eileen Zu @zuleen



Interfacing with Devices

A great way to add complexity to final projects




Interfacing with Things

* Sensors

* Actuators

* Memory

* Microcontrollers
* Etc...

* We need ability/fluency to extract info from and
work with them



How to get Access to the sighals
in first place?

* Some devices are analog out (can therefore read
them with an A-to-D converter) (ADXL335
accelerometer...or the microphone we used in Lab
02, for example)

* These have limited functionality...and also it is

analog so there’s the whole noise issue....which is
not nice

* Most modern sensors by-far are interfaced to in a
digital form



The reason for this is signal integrity
and is the same argument for why we
do computation digitally

* [tis true that most things we care about in terms of
sensing and transducing are analog phenomena

(" )

Analog Digital _ Analog
phenomena System phenomena
\_ / y,

I

Manipulation

* But Analog is inherently noisy...



Sensing...

* Why not keep analog until digital compute?

s ™ f — \
Igita
Analog ___| 1Transducer . &
phenomena ] Compute
\ Y 9 Y

Converts analog energy/

To electrical energy (voltage or current)
* Sound: microphone

Light: camera/photosensor
Temperature:

Vibration

Smell/air

* Etc...

If this leg of the journey stays analog,
The likelihood of information getting
lost becomes much higher

So most of the time asap in your
signal chain you convert to digital



. Modern MEMS microphone:
Microphones

(digital out)

Older analog-out microphone module:

Gain float->60dB
6=6nd -> 5@dB
G=Udd -> 4@dB
Output 2Upp~max
OC Offset: 1.25V
£ SsQ

D

.o [w)
~ 5 o~
Nt N

4 Cracked open sitting on a coin

Under-membrane volume
MEMS-CE
\

Pre-amplifying
Super-membrane . hi
volume microchip
Acoustic
aperture
//_-—\\

_—

https://www.researchgate.net/figure/The-design-of-a-MEMS-microphone_figl 339839767
https://www.electronicdesign.com/technologies/analog/article/21808368/vesper-

introduces-digital-mems-microphone-with-integrated-adc
10/15/25 https://fpga.mit.edu/6205/F25 10



Many sensors are so cheap now...

e ...That multiple are used.
* The iPhone 15 has/had four microphones on it

* Airpods/most quasi-decent headphones now have
six microphones in them (three for each side). Also
have two accelerometers on each earbud for
orientation and speech detection

* This pattern is happening a lot



Also many “sensors”...

* ...Have multiple sensors/transducers in them.

* So often “the microphone” is multiple microphones
* Or “the camera” is multiple cameras, etc...

* An example...



Board: $5.00 from Ebay

MPU_925® (44 IMU 9 Chip: $1.00 in bulk

 3-axis Accelerometer (16-bit readings) ‘
 3-axis Gyroscope (16-bit readings) "
 3-axis Magnetic Hall Effect Sensor (Compass) (16 bit readings)
SPI or I12C communication (!)...no analog out

On-chip Filters (programmable)

On-chip programmable offsets

On-chip programmable scale!

On-chip sensor fusion possible (with quaternion output)!
Interrupt-out (for low-power applications!)

On-chip sensor fusion and other calculations (can do orientation
math on-chip or pedometry even)

So cheap they usually aren’t even counterfeited! ©
« Communicates using either 12C or SPI




Accelerometers

* First MEMS accelerometer: 1979

 Position of a proof mass is capacitively sensed and
decoded to provide acceleration data

Proof Mass

H Spr‘ing l Sprin H

- I -
d

Measure
Capacitance via
a -_ A d Impedance
VA

Divider

SEM of two-axis accelerometer

10/15/25 https://fpga.mit.edu/6205/F25 14



Uses of Acceleration Measurements:

e Acceleration can be used to detect motion
* (pedometer, free-fall/drop detection):

Accelerometer directions

ar = \/afc +a; + aZ X+, 42

e Use gravity and trig to find orientation:

a
6, = tan~?! (—Z)
ax

10/15/25 https://fpga.mit.edu/6205/F25 15



Problems

* Accelerometers have huge amounts of high-frequency
noise

* To fix, usually Low Pass Filter the raw signal (Infinite
Impulse Response* approach shown below)

* This cuts down on frequency response though ®

_1 {4z [Tl - 1]
6y[n] = 6,[n—1]p +(1 —B)tan™’ (ax[n — 1])
ax X acceleration 0< IB < 1 Filter Coefficient
az z acceleration H

y Angle estimate around y axis

*from lecture 12



Gyro_z Readings

Bring in Gyroscopes -

00000

* Provide Direct Angular
Velocity which we can

integrate to get angle

Angular velocity (arb. units)

000000

Integrated Readings

300000

* Very little high-frequency s
noise, but lots of low
frequency noise (Gyros drift
like crazy)

150000
100000
00000

000000

0000000

*Z 7 s

0000000

angle (arb. units)

time (seconds)

Gyro readings are “around” the
axis they refer to (use right-
hand rule):

10/15/25 https://fpga.mit.edu/6205/F25 17



Gyro Operation

* Resonating Proof Mass Resonating
e Electrostatic Drive [ _ sering <4+—> spring

. _ _ Proof Mass
* Piezoelectric Drive

e
Capacit ance via
Impedance mpedance

Divider Divider
e Turning out-of-plane:
) PrOOf_maSS f|ghtS the t—%n Rotation of Device
* Detect deviation via ripe Resonating
capacitance 5ro0f Mass

Changes in capacitance

* Do this for all three axes measured at different

points

Scale not accurate/nor design details

10/15/25 https://fpga.mit.edu/6205/F25 18



ow to use Gyro Readings:

* Because of Drift (low frequency noise/offset) you want to
avoid doing much long-term integration with a gyro reading

* Having beta less than unity ensures any angle that comes
from gyro reading will eventually disappear, but in short term
it will dominate

» Calculation per timestep: 8,4[n] = p6,[n — 1]+ Tg,[n — 1]

0 < IB < 1 Filter Coefficient gy Gyro y reading

B =~ 0.95 starting point T Time Step



What to do?

* Using only accelerometer, leaves us blind to
motion/change in the short term but fine in the
long-term

* Using only gyroscope, leaves us blind in the long
term, but good in the short term

e What to do?



Merge the signals

 Complementary Filter:

L (az|n—1]
6y[n] = B(6,[n — 1] +Tg,[n—1]) + 1 — B) tan™* ( 22— )
a,|n — 1]
0< ﬂ < 1 Filter Coefficient gy Gyro y reading (1, Xacceleration reading

az z acceleration reading

T Time Step ﬁ ~ 0.95 gOOd Starting point

* Very simple form of sensor fusion (where you merge
data from more than one sensor to build up model of
what is going on)




Sensor Fusion

* Most modern sensors are used with other sensors:

e Can be incorporated open-loop (like complementary
filter on previous page)

* Or incorporate into “learning” algorithms:
 NLMS, Kalman, LQE, Baysean, Linear-Observer System
* Estimate, compare to new data, correct, repeat...

* These usually feature dynamic filters which learn how to
filter the signal they care about



So a plethora of sensors out there

e But they all need to be communicated with...

4 )

sensors

Productsv Manufacturersv Resourcesv Request a Quote

Articles / Blogs

Projects

Help & Support

Showing 231,870 Results for "sensors”

Filters

Search Within

D In Stock D RoHS Compliant

+ More Filters

Categories

Anti-Static, ESD, Clean Room Products
Audio Products

Battery Products

Boxes, Enclosures, Racks

Cable Assemblies

Cables, Wires

Cables, Wires - Management

Circuit Protection

Computer Equipment

Connectors, Interconnects

Development Boards, Kits, Programmers

Top Results

) » ¢ 4

'

¢ @~

Specialized Sensors
Sensors, Transducers
1,837 Items

Pressure Sensors, Transducers

Sensors, Transducers
10,1517 Items

Photoelectric, Industrial
Industrial Sensors
17,202 Items

Proximity Sensors - Industrial
Industrial Sensors
14,966 Items

Angle, Linear Position Measuring
Position Sensors
12,635 Items

Distance Measuring

Optical Sensors
893 Items

A XA LA

Gas Sensors

Sensors, Transducers
1,266 Items

Sensor Evaluation Boards

Evaluation Boards
4,074 Items

Accelerometers

Motion Sensors
1,492 Items

Ambient Light, IR, UV Sensors
Optical Sensors
1,071 Items

Analog and Digital Output

Temperature Sensors
3,783 Items

Particle, Dust Sensors
Sensors, Transducers
51 Items

Speak my
language!

10/15/25

https://fpga.mit.edu/6205/F25

23



Parallel vs. Serial in Wires

PARALLEL PROTOCOLS

 Parallel (not so much on individual small
devices)...mostly memory and things that need to send

data at very high rates such as a camera, high-speed
ADCs, etc...

SERIAL PROTOCOLS

* UART “Serial” very common

 SPI (Serial Peripheral Interface) very common

* |2C (Inter-Integrated Circuit Communication) very
common



Data Transmission with Wires...

Parallel Link using Wires:

Device 1

Data Line 0

Data Line 1

Data Line 2

Data Line N

message 1

|
MK

1

101001100
101010001
110001100

Device 2

9}&1@@11@@1

time

Serial Link using Wires:

Data Line @
Device 1 Device 2

message 1
messageO/—\A ./
10101001100

»

time



Parallel vs. Serial in Wires

PARALLEL PROTOCOLS

 Parallel (not so much on individual small
devices)...mostly memory and things that need to send

data at very high rates such as a camera, high-speed
ADCs, etc...

SERIAL PROTOCOLS

* UART “Serial” very common

 SPI (Serial Peripheral Interface) very common

* |2C (Inter-Integrated Circuit Communication) very
common



When Choose Parallel?

* When you need to transfer large amounts of data over
short distances, parallel is a better choice.

e Data Transfer Rate will scale ~linearly with number of
wires

* But Have to be careful of wiring length:
 Ensure bits arrive same time

* Uses lots of space!!!

0000000000 00000000

[e]
o
o
o
o
o
o
o
(o)
o
o
o
o
o
o
o
o
a

https://docs.toradex.com/102492-layout-design-guide.pdf
205/F25 27



Where Have We Seen Parallel
Data Transfer So Far?

* Camera in labs 5-7 (moving in 200 to 400 Mbits per
second across the 8 data pins which you then
reassemble (or try to reassemble) using
pixel reconstruct

* DRAM (16 pins)



Communications Trends

e Serial: good for long distance (save on cable, pin and
connector cost, easy synchronization). Requires
“serializer” at sender, “deserializer” at receiver

 Parallel: issues with clock skew, crosstalk,
interconnect density, pin count. Used to dominate for
short-distances (eg, between chips).

* BUT for high data movement, modern preference is
for parallel, but independent serial links (eg, PCI-
Express x1,x2,x4,x8,x16) as a hedge against link
failures. Ethernet, USB, etc... these all follow that
same pattern




Multiple Serial Links in Parallel

Serial Link: * Multiple separate serial

channels coexist.
Data Line 0

* Generally data sent on
Device 1 - Device 2 each channel isn’t
Data Line 1 intricately tied together

(maybe separate

etc. .. packets/message)...n

/messagez splitting bits across
multiple wires

messageo/\ ,

101010011Q@— message 3

messagel/\ /
101011001100

time



Where Have we Seen Multiple
Serial Links?

* TMDS in DVI/HDMI!

BLANKING >
COLOR BURST :

(4 HSYNC

R (CHANNEL 2) JEREVERTER AN TOR AR R EADEA PRI DR AR RO RAHDER RIS RHR RV RN
AUDIO PACKETS
G (CHANNEL 1) DR ORTRRD TR AT ER MR AR VSRR RO RO RO RO
AUDIO HEADER & H SYNC
B (CHANNEL 0) HUEIREHIHI AR TR
H SYNC H SYNC

S S 1 APY BV RO RN SRR DA MR ISR O

* You'll also see LVDS and variants in a lot of higher-
speed things like cameras

10/15/25 https://fpga.mit.edu/6205/F25



Parallel vs. Serial in Wires

PARALLEL PROTOCOLS

 Parallel (not so much on individual small
devices)...mostly memory and things that need to send

data at very high rates such as a camera, high-speed
ADCs, etc...

SERIAL PROTOCOLS

* UART “Serial” very common

 SPI (Serial Peripheral Interface) very common

* |2C (Inter-Integrated Circuit Communication) very
common



Serial Standards

e A zillion Serial standards

* Asynchronous (no explicit clock) vs. Synchronous (CLK
line in addition to DATA line).

e Recent trend to reduce signaling voltages: save power,
reduce transition times

* Control/low-bandwidth Interfaces: SPI, 12C, 1-Wire, PS/2,
AC97, CAN, 125,

* Networking: RS232, Ethernet, T1, Sonet

 Computer Peripherals: USB, FireWire, Fiber Channel,
Infiniband, SATA, Serial Attached SCSI

* Graphics: DVI, HDMI, DisplayPort



Common Chip-to-Chip Communication
Protocols (not exhaustive)

Parallel (not so much anymore)...mostly memory and things that
R([e)ecd to send data at very high rates such as a camera, high-speed
s, etc...

UART “Serial” (still common in random devices, reliable and easy
to implement)

SPI (Serial Peripheral Interface) very common
12C (Inter-Integrated Circuit Communication) very common

12S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications



Common Chip-to-Chip Communication
Protocols (not exhaustive)

Parallel (not so much anymore)...mostly memory and things that
R([e)ecd to send data at very high rates such as a camera, high-speed
s, etc...

UART “Serial” (still common in random devices, reliable and easy
to implement)

SPI (Serial Peripheral Interface) very common
12C (Inter-Integrated Circuit Communication) very common

12S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications



UART aka “Serial” |7, e
RX X

 Stands for Universal Asynchronous Receiver Transmitter

* Requires agreement ahead-of-time between devices
regarding things Tike clock rate (BAUD), etc...

e Two wire communication for bi-directional (or one if you
only want to talk and not listen like a bad relationship
partner)

* Cannot really share

* (every pair of devices needs own pair of lines so wires scales as 2n
where n is the number of devices

. E@c’)ca rate generally < 1Mbps (though can maybe push a little
|

* Data sent least significant bit (Isb) first



The Naming on UART is Perpetually a
Mess with the TX/RX confusion

* When working with UART take care to pay attention
to the TX and RX pins.

* They are complementary...one device’s TX talks to
another devices RX.

e But boards and datasheets will sometimes label
things backwards



UART

* Line High at rest (“high” an “low” depend on system
specs...5V/0V...3.3V/0V, -12V/+12V...)

* Drops Low to indicate start

* 8 (or 9 bits follows) sent least significant bit first

* Goes high (stop bit)

* Can have optional parity bit for simple error correction

From To
TX: RX:

dOl1S

>
Zf1Yof1 1 oof1}o

\ J

0x8d of "M’ in ASCII
sent Isb first!




In UART, messages must be short
(one byte)

* Both parties must agree ahead of time to a bit rate.
* A bit rate is bits per second

* Does everyone know what a second is?

* Does everyone actually know what a second is?
* What is a second?

* What are we even doing here?

* What are the implications of imperfect
synchronization?



Timing Differences

e Atomic Clocks can range from $1500 to $200,000
depending on how good you want them.

* If we want commodity electronics to be cheap,
S200,000 makes that hard to do.

* They must use “good-enough” local clocks and we
build up communication protocols to accommodate
for that.

* You must Synchronize your data transmission and
reception



Synchronization

TX timing:

v

From
TX:

P Ry———
Pi———
P ———
P ——— -
PR ——— -
Piy———
D I —— -
Plp—— -
P R—— -

1YVIS < =====d-
[N

o

[N

[N

o

o

—_

o

dOLS

PN ——

\ 4

e )
e
—
— e
———————p
———————)p
- ——————)p
—

A
|
1
1
1
1
1
[ ]
1

e e e e e

RX timing:

, — * Even if the timing of the RX and TX sides
Receiver sees the high signal differ slightly, by keeping the messages

and waits for it ttofa//. , short, the chance of getting too far out of
From that edge it starts its .
sync is very, very low.

timing o
* Every new byte forces a resynchronization
so errors never get a chance to accumulate
too far!

10/15/25 https://fpga.mit.edu/6205/F25 41

~ —
> O



UART and RX/TX and RTS/CTS

* UART will also sometimes come with
* “Ready to Send” signals (RTS)
e “Clear to Send” signals (CTS)

* These are Flow-Control Signals that allow the two parties
to tell each other if they have data to send if they are
ready to receive data

Device 1 Device 2
RTS/CTS
RTS CTS

X RX

RX X

CTS/RTS

10/15/25 https://fpga.mit.edu/6205/F25 42



UART Transmission

* RTS and CTS sit high. Each device in charge of setting
the RTS and listening to the CTS

* Device pulls RTS low. Other device sees that and then
pulls its CTS low in response

“l have data to give”

RTS

= =" —

From TX: To RX:

Transmitting Device

- Receiving Device

Data will not start until “handshake” has happened

10/15/25 https://fpga.mit.edu/6205/F25 43



UART Thoughts? Goods? Bads?

* Everything contained within one wire for the most
part?

* Not super fast



Data Synchronization

* In UART, small data bursts with periodic
resynchronizations are needed to make sure both
parties produce and read data at the same time.

* How else to do this?



Common Chip-to-Chip Communication
Protocols (not exhaustive)

Parallel (not so much anymore)...mostly memory and things that
R([e)ecd to send data at very high rates such as a camera, high-speed
s, etc...

UART “Serial” (still common in random devices, reliable and easy
to implement)

SPI (Serial Peripheral Interface) very common

12C (Inter-Integrated Circuit Communication) very common

12S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications



Note on Terminology

* Master/Slave terminology is heavily used in SPl and
12C...Master controls a bus, Slave listens.

* Acknowledge the issues with it, but also because many
datasheets/vendors still use it, it is hard for us to
separate from it completely.

* Changing slowly

* Maybe use “Main”/”Secondary” to keep the letters the
same or “Controller” and “Peripheral”

* Also seeing SDO/SDI for “Serial Data Out/In” with respect
to controlling device more recently

* Or Controller/Peripheral in some other vendors



MOSI also = SDO “serial data out”
S P | ontroller Peripheral] MISO also SDI “serial data in”

Device Device

Also seeing now:
COPI = Controller Out Peripheral In
CIPO = Controller In Peripheral Out

 Stands for Serial-Peripheral Interface

* Four Wires:
* COPI: Controller-Out-Peripheral-In...
* CIPO: Controller-In-Peripheral-Out...
* SCK: Serial Clock
* CE/CS (Chip Enable or Chip Select)

* SCK removes need to agree ahead of time on data rate
(from UART)...makes data interpretation much easier!

e High Data Rates: (1MHz up to ~70 MHz clock (bits))
* Data msb or Isb first...up to devices/spec



Periphera

: PG N
SPI Expansion vevice |+ cc L0 Bevice 1

* Can share COPI/CIPO Bus so the wire
requirement scales as 3 + n wheren s periphera
the number of devices e

* Addition of multiple secondaries
requires additional select wires

* Hardware/firmware for SPI is pretty
easy to implement:
* Wires are uni-directional

* Classic “duh” sort of approach to digital
communication, but very robust.

10/15/25 https://fpga.mit.edu/6205/F25 49



SPl Example

From MCP3008 Datasheet

teve . fere

MCP3008 is a 8-channel 10 bit Analog to v ixiaipipipipipipipipigigigipigigigigipiph

Digital Converter from Microchip Semi
that communicates over SPI

MCP3008
CMOD-A7-35T

4

CS
N

ow =] 020100 NN IR oo I (07
SGL/ SGL/
DIFF DIFF
sl (25) o) o7)( 28 ) 24 B3 2 B[m0}—— 2
L |
tconv II“
tsavpPLE toaTA

* After completing the data transfer, if further clocks are applied with CS low, the A/D converter will output LSB
first data, then followed with zeros indefinitely. See Figure 5-2 below.

**tpaTa: during this time, the bias current and the comparator powers down while the reference input becomes
a high-impedance node.

Here | am talking to a MCP3008 10 bit ADC
/

COPI/MOSI

XX1T10O0IXXXXXXXXXXXXX

\ [\

CIPO/MISO

Sends its data msb first

XXXXXXXX00001011011

| A W A W

SCK

Not all devices do this
(must check datasheet)

YAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAEE.

10/15/25

https://fpga.mit.edu/6205/F25 50



S P | Exa m p | e Come from datasheet

7

CS

COPI/MOSI

XX11001XXXXXXX
\ [\

CIPO/MISO

XXXXXXXX00001011011
Y A /S

SCK
AYAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAE.

- (Controller/Main Device) Dialog
- MCP3008 (Peripheral/Secondary Device) Dialog

10/15/25 https://fpga.mit.edu/6205/F25

/.

XX XX

X means don’t care as in
could be 1 or 0

51



SPI In Real Life (You’ve Seen this before)

* Here | am talking to the N ERea WMPGSITIA0S | CURSOR
same chip | was ' g
daydreaming about talking ! z x
to on the previous slide. Flf‘l,,l 1|W|1|QIUUTIWLTU ;;;,.; """ WY soue

" ..sc....:....: ...................................

e I||l| " A

;J.m.]

oy - JM : ‘
lnmwdmmlwmlwlni T l'ﬂlulll'll|Il||sllnlullllh1ﬂ|h||I il

COPI 11001000001011011
* Dreams do come true . .

* I’'m saying, “give me your EATYSMLSUOUS SOUSERVUUSIOVDE S0 VL1 VCOSDOVUR SONOE N I
measurement on Channel 2S00 R
1,” and it is responding with
“10’b0001011011” mapped
to3.3Vor0.293V

10/15/25 https://fpga.mit.edu/6205/F25 52



REMINDER: Digital In Analog Life
vs Digital in Digital Life

 What noise? | don’t care about noise (within reason)

WIMPGEINIE0S CURSOR

o [LLAANIL LA

|
|

o i

||||||u 1l| ! {
lllulllrmllhnmllwlmww ‘l»wlw \MNMHHI] ﬂmmnu nduﬂwwummm il

PeE8EEEROE

Logic Analyzer Capture of SPI

transaction CHE B T bR
 S00VRy CHA BN |

Oscilloscope Analog Capture of
different SPI transaction

10/15/25 https://fpga.mit.edu/6205/F25 53



SPI Variations 'm_
BT

evice Device
* Six Wires: : -_‘CEWCS@
* COPI: Controller-Out-Peripheral-In T
* CIPO: Controller-In-Peripheral-Out
e SCK: Clock
* CE/CS (Chip Enable or Chip Select) LCD Display:
* RES: Reset Device - e

* D/C: Data/Command (often seen in devices
where you need to write tons of data (i.e. a
displayy

* Three/Two Wires:

* If a device has nothing to say, drop CIPO:

* If you assume only one device on bus drop
CE/CS, so only have SCK and COPI, sometimes Twitch Streamer LEDs:

just called “DO” (for data out) in this situation

10/15/25 https://fpga.mit.edu/6205/F25




Other SPI Variations

Controller
Device

* QSPI: “Quad SPI”

* This is basically SPI...

e But there will be four data transfer pins instead of
one

* See in a lot of flash memory chips

IH

* This really isn’t “Serial” in the way God meant it
though...the bits are usually sampled together so it
is a parallel data transfer just poorly named

10/15/25 https://fpga.mit.edu/6205/F25 55



Other SPI Variations

Controller Per‘ipher‘a
Device Device

e 8SPI: “Octal SPI”

* This is basically SPI...

* But there will be eight data transter pins instead of one
* See in a lot of weird hybrid RAM chips

* If this isn’t parallel data transmission, | don’t know
what is...but it is called SPI...sorta like that one relative
who just can’t admit they’re wrong so they keep
redefining things to keep their worldview going

10/15/25 https://TEga.mit.edu/6205/F25 56



SP| Conclusions

* It is a very simple and very robust “idea” of a
protocol.

* The simplicity comes at the expense of any wires

* And often...some of the complexity is deferred to
the ones deploying...There are many variations and
dialects of it, so you should always always always
read the datasheet for these things.



Be careful! Read Datasheets

Table 1. SPI Modes with CPOL and CPHA

* A big screw-up point

iS miXing up ClOCk 0 0 0 Logic low Data sampled on

rising edge and

polarity...sometimes

falling edge

data is sampled on 1 : 1

the falling edge and

rising edge...others

: 2 1 0 Logic high Data sampled on
O n fa I | I n g e d ge the falling edge and
shifted out on the
rising edge

3 1 1 Logic high Data sampled on
the rising edge and
shifted out on the
falling edge

e Clock level at idle can also matter sometimes

10/15/25 https://fpga.mit.edu/6205/F25 58




SP| Upsides?

* Simple to Implement

» Capable of Very High Speeds (50 MHz is not rare for
some displays)



SPI Downsides?

* A lot of wires...which might seem like nbd, but in
reality pincount is a huge cost factor in chip
manufacture...tons of economic pressure to
minimize this.

* At very high speeds it actually gets really noisy
especially QSPI or OSPI



Common Chip-to-Chip Communication
Protocols (not exhaustive)

Parallel (not so much anymore)...mostly memory and things that
R([e)ecd to send data at very high rates such as a camera, high-speed
s, etc...

UART “Serial” (still common in random devices, reliable and easy
to implement)

SPI (Serial Peripheral Interface) very common

12C (Inter-Integrated Circuit Communication) very common

12S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications



12C

 Stands for Inter-Integrated Circuit communication
* Invented in 1980s

* Two Wire, One for Clock, one for data...Both wires
are technically bidirectional, meaning each side can
use them

e Usually 100kHz or 400 kHz clock (newer versions go
to 3.4 MHz)

Peripheral

ontroller ]
Device

Device




On i2C Multiple Devices Require
Same # of Wires

* Devices come with their own ID
numbers (originally a 7 bit value
but more modern ones have 10
bits)...allows potentially up to 2’
devices or 2% on a bus
(theoretically anyways) Peripheral

Device 2

SDA
Peripheral
DI N
SCL

* |D’s are specified at the factory*,
usually several to choose from
when you implement and you
select them by pulling external
pins Hl or LOW

*sometimes programmable



12C

* Only two wires...one used for synchronizing data
and one used for conveying data in both directions:

* Controller = Peripheral
* Peripheral = Controller

* And also you need to let
multiple devices possibly

SDA
. 11 eriphera
speak and listen... Pevice | L | seieherdt
SCL
* There’s a lot here...

* It needs more complicated:
* Hardware

Peripheral

e Communication Protocols Device 2



Bi-Directional Communication

Peripheral

ontroller ]
Device

Device

* Hey you thought you brush past those arrows going
both ways...I caught that. I’'m too quick for you. | go
to M.L.T. How does that work?

 We should address that.



How Do Digital Electronics Set Voltages on
a Line (Generally)?

* We use CMOS Logic PEET

* A pair of
complementary
transistors that can
alternately connect
and isolate from VDD
and Ground

VOUT



Put 1 on output?

* Low input
conducts

e PMOS conducts

e NMOS no conduct 0

10/15/25 https://fpga.mit.edu/6205/F25

67



Put O on output?

* High input

doesn’t .
conduct e

* PMOS no conducts

* NMOS conduct

conducts

10/15/25 https://fpga.mit.edu/6205/F25

68



How Do Digital Electronics Listen
to Voltages on a Line?

* Some sort of buffer

* Its input takes very little
power/current from the
line

* A quiet, ideal observer



So in Unidirectional Communication
Schemes... UART, SPI wires, etc...

| Set the voltages
Vb g

10/15/25 https://fpga.mit.edu/6205/F25 70



What about if two or more devices want
to use one common wire to
communicate?

e Sounds like socialism...can’t have that...it'll be a
mess and none of the transistors will ever want to
work...

* jkjk

e But seriously electrically you have a problem...



What about if two or more devices want
to use one common wire to

communicate?
: And | Set the
* Electrically you have a problem... voltage 0 0
Vpp | Set the voltage to 1 Vb
PFET-. 4 7 PEET
on R P OFF
Vin Vin
SHORT CIRCUIT
CURRENT
NOT GOOD
............ — - NFET

F
10/15/25 https://fpga.mit.edu/6205/F25 72



What Do You Do in Times of Conflict?

* You dig your heels in and waste tons of energy.
Screw the other transistor. The correct answer is 1,
not O...everyone on reddit r/1 agrees with me and
the 1News comment section backs me up.

* jkjk

* You come up with some compromises...everyone
gives a little bit...everyone gets a little bit

e Each side gives up a transistor



Before We Had This...



Now We Have This...

\\ e(}g Vour



Now We Have This...

VOUT

* 0 (when transistor conducts)

e “HiZ”...basically electrically undefined (when transistor does not
conduct)



Now Connect up two of these circuits...

* Yeah...what does this give us?
* Each side can make a O by activating its transistor
° | P

Can each side make a 1: NO

VO uT



Bring in an Ombuds Component

* Each side can make a O by activating its transistor

* We use a neutral third-party component, trained in conflict
mediation to give us 1.

VOUT



Common Pull-Up Resistor

* Prevents the Possibility of Short Circuits Always must go
through this resistor (choose size to limit current)

* End up choosing several Kohms usually to keep current
below ImA

VDD

Rpy

VOUT



Result each side has this: vaa

Measure
Buffer

* If you want to say “0”, you activate your transistor

* If you want to say "1”, you inactivate your transistor and let
resistor pull you up

* If you also want to listen you inactivate your transistor and
monitor the line voltage



As a result:

vdd

Controller Peripheral

m Controller Peripheral

Controller Transmit HiZ (HI) or LOW HiZ (listening)
Peripheral Transmit HiZ (listening) HiZ (HI) or LOW

10/15/25 https://fpga.mit.edu/6205/F25 81



So in Deployment...

* i2C uses an open drain

* Meaning both Controller and Peripheral Device are
either:
* LOW
* “High-Impedance”

* Need external pull-up resistors on both parts of 12C to
make it work

T .
hese resistors are large reason
\deMammksohw'

Controller
Device

10/15/25 https://fpga.mit.edu/6205/F25 82



Common Pull-Up Resistor

* We choose the pull up resistors to be in the K range usually
to keep current/power down.

* This has the downside that parasitic capacitances lead to
relatively large time constants in charging/discharging the

line Vs

Rpy approx few KOhms

Co

C, represents the
parasitic capacitance




So in Deployment...

* So with all this together...we can see that there needs to
be a lot more order in how to use the 12C wires...things
pull double-duty depending on context.

T .
hesereswtorsarelangereason
why data rate is so low!

Controller
Device Device

Nobody ever seems to remember this or thinks I’'m making this up.
You need to add these resistors.

10/15/25 https://fpga.mit.edu/6205/F25 84



So in Deployment...

* Because the data lines are “shared” it means devices
need more structure when it comes to deciding what to
say and whose turn it is to speak or listen.

Controller
Device

10/16/25 https://fpga.mit.edu/6205/F25 85



1I2C Operation

e Data is conveyed on SDA (Either from Main or
Secondary depending on point during
communication)

* SCL is a 50% duty cycle clock

* SDA generally changes on falling edge of SCL (isn’t
required, but is a convenient marker for targeting
transitions)

* SDA sampled at rising edge of SCL

* Main/Controller is in charge of setting SCL frequency
and driving it Ligid ™
* Data is sent msb first i ouch ™

e p\
NOtr‘rfgared 10
cO



Meanings |: (Start, Stop, Sampling)

Controller Releases Bus (STOP)

Controller Claims Bus (START) By pulling SDA HI while SCL is HI

Idle State By pulling SDA LOW while SCL is HI

SDA and SCL sit HI

o0 000

SDA: .

[ ]

: 00 000 0000OCGOCEOGEOGOEOGOEONOEONONOSOIOPO

.

[ ]

[ ]

" Data/State on SDA transitions co oo
SCL: HI @ falling edge of SCL

LO

Data from SDA sampled @ posedge of SCL

10/15/25 https://fpga.mit.edu/6205/F25 87



Meanings || Address

* First thing sent by Controller is 7 bit address (10 bit
in more modern i2C...don"t worry about that)

* If a device on the bus possesses that address, it
acknowledges (ACK=0/NACK=1) and it becomes the
secondary for the time being.

* All other devices (other than Controller/Peripheral
Devices) will ignore until STOP signal appears later
on.



Meanings Ill (Read/Write Bit)

» After sending address, a Read/Write Bit is specified
by Controller on SDA:

* If Write (0) is specified, the next byte will be a register to
write to, and following bytes will be information to write
into that register

* If Read (1) is specified, the Peripheral Device will start
sending data out, with the Controller Device
acknowledging after every byte (until it wants data to not
be sent anymore)



Meanings IV (ACK/NACK)

 After every 8 bits, it is the listener’s job to
acknowledge or not acknowledge the data just
sent (called an ACK/NACK)

* Transmitter pulls SDA HI and listens for next
reading the next time SCL transitions high:

* If LOW, then receiver acknowledges data
* If remains HI, no acknowledgement

* Transmitter/Receiver act accordingly




Meanings V (keeps going...)

* For Controller Device to write to Peripheral Device:
e START
* Send Device Address (with Write bit)
* Send register you want to write to
* Send data...until you're satisfied, doing ACK/NACKs along the way
 STOP

* For Controller Device to read from Peripheral Device a common (though not universal procedure) is:
e START
* Send Device Address (with Write bit)
* Send register you want to read from (think of this like setting a cursor in the register map)
* ReSTART communication
* Send Device Address (With Read bit)
* Read the bits (it’ll start from where the cursor was left pointing at)

» After every 8 bits, it is Controller’s job to ACK/NACK Peripheral...continued acknowledgement
leads to continued data out by Peripheral.

* Not-Acknowledge says “no more data from Peripheral”
* STOP leads to Controller ceasing all communication



Board: $5.00 from Ebay

MPU-925Q

 3-axis Accelerometer (16-bit readings) f
 3-axis Gyroscope (16-bit readings) "
 3-axis Magnetic Hall Effect Sensor (Compass) (16 bit readings)
SPI or I12C communication (!)...no analog out

On-chip Filters (programmable)

On-chip programmable offsets

On-chip programmable scale!

On-chip sensor fusion possible (with quaternion output)!
Interrupt-out (for low-power applications!)

On-chip sensor fusion and other calculations (can do orientation
math on-chip or pedometry even)

So cheap they usually aren’t even counterfeited! ©
« Communicates using either or SPI




12C in Verilog...Tri-State

* inout is an “input-output”...needs some special
handling...you can both write to them (only using
combinational logic) and read from them...the
usual way to work with them is the following:

In verilog...

inout sda;
Telling it to go to high-impedance (open Drain)

logic sda_val;
assign sda = sda_val? 1’'bz: 1'b0;

//1f desired:

always_ff @(posedge clk)begin
sda_val <= 1; //do a non-blocking assign to sda_val if desired
//this indirectly affects sda then

end

10/15/25 https://fpga.mit.edu/6205/F25



As a result:

3.3V

4.7kQ

inout sda;
logic sda_val;
assign sda = sda_val? 1’bz: 1’b0;

SDA

Wanna write to SDA? SDA in

sda_val <= 0; //or 1 if desired

Wanna read to SDA?

sda_val <= 1;
//wait clock cycle..
some_reg <= sda; //read from input

<
8
S EEEEEEEEEEEEEEEEEETR

_____Mode | Main____| _ Secondary __

Controller Transmit HiZ (HI) or LOW HiZ (listening)
Peripheral ACK/NACK HiZ (listening) HiZ (HI) or LOW

Peripheral Transmit HiZ (listening) HiZ (HI) or LOW
Controller ACK/NACK HiZ (HI) or LOW HiZ (listening)

10/15/25 https://fpga.mit.edu/6205/F25 94



mplementing i2C on FPGA with
MPU9250:

* Made Controller i2C module in Verilog

e Used MPU9250 Data sheet: 42 pages (basic
functionality, timing requirements, etc...)

SSSSS

|||||||||||

* MPU9250 Register Map: 55 pages | & ree

54 12C_MST_STATUS

NNNNNNNNNNNN

000000000000

eeeeeeeeeeee

10/15/25 https://fpga.mit.edu/6205/F25

95



State-Machine

Implementation of
i2C Main/Controller

Continuously reads 2 bytes
starting at the Ox3B
register (X
accelerometer data)

output reg
inout sda
inout scl,

output

localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam
localparam

Print out value in hex in
LEDs

34 States

Clocked at 200kHz, and
creates 100 kHz SCL

Change SDA on falling edge
of SCL

Sample SDA on rising edge
of SCL

module i2¢_master (input clock
input reset,

[15:0] reading

output [4:0] state_out,
sys_clock) ;

IDLE = 6’d0; //lIdle/initial state (SDA= 1, SCL=1)

START1 = é6'd1; //FPGA claims bus by pulling SDA LOW while SCL is HI

ADDRESS1A = 6'd2; //send 7 bits of device address (7'hé8)

ADDRESS1B = 6'd3; //send 7 bits of device address

READWRITEIA = 6'd4; //set read/write bit (write here) (a 0)

READWRITEIB = 6'd5; //set read/write bit (write here)

ACKNACK1A = 6'd6; //pull SDA HI while SCL ->LOW

ACKNACK1B = 6'd7; //pull SCL back HI

ACKNACK1C = 6'd8; //Is SDA LOW (slave Acknowledge)? if so, move on, else go back to |DLE
REGISTER1IA = 6'd9; //write MPU9250 register we want to read from (8’ h3b)

REGISTERIB = 6'd10; //write MPU9250 register we want to read from

ACKNACK2A = 6'd11; //pull SDA HI while SCL —> LOW

ACKNACK2B = 6'd12; //pull SCL back HI

ACKNACK2C = 6'd13; //1s SDA LOW (slave Ack?)
START2A = 6'd14; //SCL -> HI

START2B = 6'd15; //SDA -> HI

START2C = 6'd16; //SDA -> LOW (restarts)
ADDRESS2A = 6'd17; //Address again (7'hé8)
ADDRESS2B = 6'd18; //Address again
READWRITE2A = 6'd19; //readwrite bit...this time read (1)

READWRITE2B = 6'd20; //readwrite bit...this time read (1)

ACKNACK3A = 6'd21; //like other acknacks...wait for MPU to respond

ACKNACK3B = 6'd22; //else go back to IDLE

ACKNACK3C = 6'd23; //"""""

READ1A = 6'd24; //start reading in data from device

READ1B = 6'd25; //this data is 8MSB of x accelerometer reading

ACKNACK4A = 6'd26; //Master (FPGA) assets acknowledgement to Slave

ACKNACK4B = 6'd27; //Effectively asking for more data

READ2A = 6'd28; //start reading next 8 bits (8LSB)

READ2B = 6'd29; //assign to lower half of 16 bit register

NACK = 6'd30; //Fail to acknowledge Slave this time (way to say "I'm done so slave doesn't
STOP1A = 6'd31; //Stop/Release |ine

STOP1B = 6'd32; //FPGA master does this by pulling SCL HI while SDA LOW

STOP1C = 6'd33; //Then pulling SDA HI while SCL remains Hf]

If so move one, else go to idle




State-Machine
. . always @(Dosedze(clock_fgr_sy;%tegin //update only on ri
Implementation of i2C G e

count <=0;
end else begin

Main/Controller b G

if (reset) state <= IDLE;

else if (count == 6Q)begin

* Redundant states (repeated state <= START1,
READ/WRITE, ADDRESS, end

count <= count +1;

ACK/NACK, etc...) sda_val <=1

scl_val <=1;

count <=0;

end
START1: begin
sda_val <= 0; //pull SDA low

e ARM manual describes ~20 state sol _val <=1:

state <=ADDRESS1A;

FSM for full 12C...this is just a st 6

end
toy implementation of specific ADBRESSIA: begin
12C operation L e

end
ADDRESS1B: begin
scl_val <=1;
if (count >= 1) begin

* Included code on site for rate <= RDORESSIA,
reference/starting point et enommireh

end

end

READWRITE1A: begin
scl_val <=0;

* Diagram: on next page for o
reference

...200 more lines



@ ADDRESS IDLE

NACK
7X

@ ADDRESS
ADDRESS3
8x
7X
8x

ACK

READ4
ADDRESS4

@ READWRITE
ACK

IDLE

NACK



Communication Part

....... g MPU9250

Nexys4

Can also do this on our current board

10110100000001110110100110100010 @ 11011100
/T / |\ U A VY A W A /\ \__/ -

>DA 01010101010101010101010101010101010101110101010101010101010101010101010101010  °°°*

Y AYAVAVAVAVAVAYAYAYAVAVAVAVAYAYAVAV AV ARV AVAYAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN
SCL

10/15/25 https://fpga.mit.edu/6205/F25 99



Nexys4
Can also do

T\ L\

1011010000000 1

SDA [ i

0101010101010101010101010

EERVAYAVAVAVAVAVAVAVAVAVAVAV;
SCL

10/15/25

LG

@ccL 5.0 =D

@ oo =y
R

@ INT AR

» NCS X

g rd

) FSYNC

ACTI1
A lab late at night, right before @ final project is due.

FPGA: 10. 1101000. 0.

MPU9250: 0.

FPGA: 0111011.

MPU9250: 0.

FPGA: 1.

(MPU925 0 looks taken aback by the sudden change in

conversation. FPGA appears not to notice.)

FPGA: 10. 1101000.....1.

MPU9250: 0.

(MPU925 0’s concemn transforms into a knowing smile).

MPU9250: 01 101110.

FPGA: 0.

(The two talk deep into the night as the curtain falls)
End of Act1

pga.mit.edu/6205/F25

100



Communication Part

Nexys4
S
E!
>
Nexys4 Acknowledge=0 MPU9250 %
Write=0 Read=1 Acknowledge=0 ?71\
Device Address (0x68) J evice Register (0x3B Device Address (Ox68)¢ J Data Readln\
110100000001110110100110100010011011100

SDA™T s | Y Y A WV A [ S e S
01010101010101010101010101010101010101110101010101010101010101010101010101010 .,

SCL

10/15/25 https://fpga.mit.edu/6205/F25 101



Communication Part
4.4

MPU9250
Nexys4

“Hey, 0x68...”

”Hey, 0x68...” ”ACK...

“Di 2 “ More, please”
. “Look at your Different thought fRead t: me p
- - I wanna tel OX6B register” rom w ere.
“l claim this bus” you somet you’re looking”

110100000001110110100110100010011011100
SDA™T s | Y Y A WV A [ S e S

01010101010101010101010101010101010101110101010101010101010101010101010101010 ,,

SCL

Nexys4 (Controller Device) Dialog - MPU9250 (Peripheral Device) Dialog

10/15/25 https://fpga.mit.edu/6205/F25 102



Communication in Real-Life:

Data being sent to MPU9250 Data being sent from MPU9250

I ‘ﬁinll m-m ‘ MPos 1054ms CURSOR ‘
B Tarpe I
SOUICP ’

-—_—L——_\——l——hl—_—_‘.——__l_—..

M 50,0 us

Triggered on leaving IDLE state

10/15/25 https://fpga.mit.edu/6205/F25 103



Running and reading X acceleration:

e
HOOKUP

Horizontal: Vertical:
16’hFD88 = 16’b1111_1101_1000_1000 (2’s complement) 16’h4088 = 16’b0100_0000_1000_1000 (2’s complement)
Flip bits to get magnitude: 16’b0000_0010_0111 0111 Leave bits to get magnitude: 16’b0100_0000 1000 _1000
=-315 =+16520
Full-scale (default +/- 2g) Full-scale (default +/- 2g)
-315/(2**15)*2g = -0.02g © makes sense -16520/(2**15)*2 = +1.01g © makes sense!

10/15/25 https://fpga.mit.edu/6205/F25 104



Clock-Stretching (Cool part of i2C!!1)

* Normally Controller drives SCL, but since Controller
drives SCL hi%h by going hiZ, it leaves the option open
for Peripheral to step in and prevent SCL from going
high by pulling SCL LOW

Main wanted to pull SCL HI but
Secondary prevents by pull LOW

‘ (red never happens)

SCL: ' \ ’ \ ' \ l ' \ ’ \
[ N [ N
‘ Once Secondary goes HiZ again, Main

picks back up on SCL

* Allows Peripheral a way to buy time/slow down things (if it requires
multiple clock cycles to process incoming data and/or generate
output)



|12C Can Also Be a “Multi-Controller” Bus

* In SPI, there is a pre-determined device in charge
of the system. 12C is potentially much more

ega | |ta rl a n Controller Releases Bus (STOP)
Controller Claims Bus (START) By pulling SDA Hlwhile CL is HI

By pulling SDA LOW while SCL is HI

Idle State
SDA and SCL sit HI
o0 000
SDA: HI

LO 00 00 0000000000000 0000

* Devices can be design to yield based on who claims a bus first...but
you have to be careful...what if two devices claim a bus at the same
time...potential problems? Can get bus contention so need to be

careful



Goods and Bads of 12C?

* Lower clock frequency
* Far more complicated communication protocol

* Only need two wires (very scalable)...this is a bigger
deal in modern systems than you may think at first.
Wiring and pinout is by far one of the most
expensive parts of making a chip. Compute is
relatively cheap at this point so the “complexity” of
12C isn’t necessarily that much of a downside.



Have we used 12C so far in 6.2057

* Yes...the camera actually gets spoken to over 12C
first before transmitting data. That is how it gets
configured.

 HDMI actually uses 12C to do its original
handshakes and monitor resolution communication
(and copyright stuff) before the actual data starts
getting sent over TMDS/high rate



Common Chip-to-Chip Communication
Protocols (not exhaustive)

Parallel (not so much anymore)...mostly memory and things that
R([e)ecd to send data at very high rates such as a camera, high-speed
s, etc...

UART “Serial” (still common in random devices, reliable and easy
to implement)

SPI (Serial Peripheral Interface) very common
12C (Inter-Integrated Circuit Communication) very common

12S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications




12S (Inter-IC Sound Bus)

Controller “ Peripheral

* Not related to i2C at all
* Intended for Digitized Stereo Data ,
Actually almost like a very

* Three Wires: constrained form of SPI in
e SDA: Serial Data (The actual music) many senses
* WS: Word Select (Left/Right Channel)
* SCL: Serial Clock (For Synchronization)

* Push-Pull Driving (like SPI...no need for pull-up resistors)

e Data sent msb first

* Clock-rate dictated by sample rate (44.1kHz @16 bits per
channel /w 2 channels = ~1.4 MHz for example



| ZS Two identical microphones share all three lines

FROM VOLTAGE
REGUL ATOR
(1.8VTO 3.3V)

SYSTEM MASTER
(DSP, MICROCONTROLLER,
CODEC)

323

0.1pF - 0.1pFI
\ % \, VpD
vDD VDD
) LR D SCK SCK Q LR ()—T
ws ws ?
) CONFIG  LEFT SD SD RIGHT CONFIG O— 1
= 1CS-43432 E 1CS-43432 ==

—OQ2
—O2

Figure 10. System Block Diagram

Microphone told to be Microphone told to be
the “left” microphone by the “right” microphone
hardwiring LR to ground by hardwiring LR to VDD

10/15/25 https://fpga.mit.edu/6205/F25 111



2 S FROM VOLTAGE SYSTEM MASTER
I (I}.FSGJJ%OI.\;.(;?I) (DSP, Mlcggsgcn)mousk,
$¢g
0.1|.1F3_: \ O.IuF;
O ‘ 1\ Vbp
VDD VDD
) LR D SCK Q= L =) SCK O LR ()_T
WS specifies whose ws = s
T ) CONFIG  LEFT sD O Qsb RIGHT CONFIG O__l_
turnitis to spe ak ICS-43432 100k 3 ICS-43432 L
(left or right channel) GND GND

—0
I—0

Figure 10. System Block Diagram

wsT O\ 1 2 3 4 24 26 2 32 4 33 34 35 B % 57 B & \
scK (64 fs) _\J_\_/_\J_\_/*'\J_\_/_\_/**\JTJ_\J_\J_\J*‘\_/_\J_\JW
SD (24-BIT) _< MsB X X :):1 X LsB ) s ( MsB X X :):) X LsB ) (s
HIGH-Z LEFT CHANNEL HIGH-Z RIGHT CHANNEL HIGH-Z
Figure 11. Stereo Output I*S Format
J)
ws. N\ 1 2 3 26 2 32 4 33 34 35 % 5% 57 58 64\

scK (64 15 WMWWMMW

SD (24-BIT) —————( MsB_ X X :,:, (s o

HIGH-Z LEFT CHANNEL

X LsB ) 2%

HIGH-Z

Figure 12. Mono Output I>S Format Left Channel (LR = 0)

10/15/25 https://fpga.mit.edu/6205/F25 112



Compare and Contrast All of Them?

* Generally the fewer the wires the more rigid the
protocol (i2C and to a certain extent UART)

* SPI can be very flexible and high speed (have only
10 bits to send? No problem...send 10!...can’t do
that do that with i2C...need to zero-pad up to the
next full byte (16 bits)

* In terms of implementation, generally with
communication protocols, the more wires, the
easier the protocol/less overhead



Other protocols!

If Time...else we’ll do in future class.



PS/2 Keyboard/Mouse Interface

e 2-wire interface (CLK, DATA), bidirectional

transmission of serial data at 10-16kHz fage0y  JEIE kg0
‘0’ start bit _\_/—\<->_T{1Id_\_/_1 stop bit
* Format i e e e
* Device generates CLK, but host can Sy Paramatar [ [
request-to-send by holding CLK low L (<3 T — YT
for 100us Tro | Clock-to-data hold time | 5us | 25us
* DATA and CLK idle at “1”, CLK starts when
there’s a transmission. DATA changes on Figures from digilentinc.com

CLK, sampled on CLK
* 11-bit packets: one start bit of “0”, 8 data bits
(LSB first), odd parity bit, one stop bit of “1”.

* Keyboards send scan codes (not ASCII!) for each
prless, 8’hFO followed by scan code for each s
release

* Mice send button status, Ax and Ay of
movement since last transmission

10/15/25 https://fpga.mit.edu/6205/F25 115



PS/2 Keyboard/Mouse Interface

2 signal wire interface (CLK, DATA), 0
bidirectional transmission of serial
data at 10-16kHz

Data | Out
e |
.Ground.
=
‘Clock :Out
: N/C

(a2 S R R R N

— Mouse status byte——l — X direction byte—, — Y direction byte.—]
1TJOJL|IR|O |1 |XS|YSIXY|YY| P | 1|0 |[XOPX1|X2|X3|X&[XS[XGIXTYP | 1[0 [YO[YI Y2|YI|[Y4|YS|YG|YT|P 1/
"

\ b, Start bit Stop bit ¢  %start bit Stopbit  “Start bit Stop bt/
Idle state Idle state

Figures from digilentinc.com

10/15/25 https://fpga.mit.edu/6205/F25 116



Controller Area Network (CAN)
Bus

 Common bus protocol found in cars and other
systems

— Twisted-pair cabling

Transceliver ——

Up to 1 Mbps
for classical CAN

and up to 5 Mbps
for CAN FD.

https://www.digikey.com/en/blog/how-to-simplify-the-test-of-can-bus-networks

10/15/25 https://fpga.mit.edu/6205/F25 117



_J”;r g | T
CAN Bus =L
.

Recessive when Vp <0.5V Dominant when Vp 2 0.9 V

Vp = CANH — CANL

A CAN compliant driver must produce at least 1.5 V across a typical 60 Q load.

* Modules all share one common twisted wire
channel

* Signaling is differential rather than single-ended
(like HDMI)

* Allows cables to be run long distances with good noise
suppression

* Devices claim bus and listen with addressing
scheme kinda similar to 12C

https://www.digikey.com/en/blog/how-to-simplify-the-test-of-can-bus-networks



USB: Universal Serial Bus Insert correctly

e USB 1.0 (12 Mbit/s) introduced in 1996
« USB 2.0 (480 Mbit/s) in 2000

* USB 3.0 (5 Gbit/s) in 2012

» USB-C 2016.

* USB 3.2 (30 Gbit/s) in July 20, 2017 On third try
* USB 4.0 (40 Gbit/s) 2019 Credit: Reddit
e USB 4.0 2.0 (120 Gbits/s) 2022

* Created by Compagq, Digital, IBM, Intel, Northern Telecom and Microsoft.

 Uses differential bi-direction serial communications Sroundig DAt " Puwsr (EIDE)

Type A USB 2.0 — 4 pins

Pin/Name Color Description
2
= = — 1 |VCC Red |[+5V
E’ Pin/Name Cable color Description -
T 2 |\D- White Data-
Type A Type B 1 |VCC |Red +5Y 3 |D+ |Green Data+
3! E’ E ! %;1 2 |D= White Data - permits distinction of
3 D+ Green Data + Micro-A- and Micro-B-Plug
Mini-A Mini-B 4 |ID none - A - g
ype A: connected to Groun . g
4 GND | Black Ground ] Receive - Tl'ansmlt +
54321 54321 Type B: not connected p )
) Chterel) Receive + Transmit -
Micro-AB Micro-B Type A& B 5 |GND Black |Signal Ground Ground
Pinout Mini/Micro Pinout USB 3.0

10/15/25 https://fpga.mit.edu/6205/F25 119



USB: Universal Serial Bus ®mee eermesset

UART
® SPI
®

* Far, far more defined layers than IZ.C 125

your other things we’ve seen

* The 2000 version of USB spec was
570 pages long

e USB 3.2 (2017) Approximately
900 pages long at this point
+supplemental stuff

* USB 4.0 (2019)...similar and so on

10/15/25 https://fpga.mit.edu/6205/F25



How is Data Transmitted in USB
(High Level):

e Communication uses handshakes to establish
capable/expected data rates

* Host device (computer for example), assigns
connected devices temporary IDs on shared bus.

* Packets of information, including headers,
payloads, and error checks (CRC5, CRC16, and
CRC32 are used) are sent between host and client
devices



How is Data Transmitted in USB (Bit
evel):

* USB uses twisted wire pairs and there is no CLOCK wire

 All data is transmitted using Non-Return-Zero-Inverted (NRZI)
encoding:
* AOis encoded as a value change
* A1lisencoded by no change

* After initial synchronization byte, the receiver extracts the
clock from the on-average probability of 0’s in the data (which
give transitions) using local oscillator and Phase-Locked Loops

* Avoid long stretches of 1’s by bit-stuffing (shoving 0’s in to
avoid periods of time where no transitions happen)...similar to

ether protocols



USB - C

New connector brought in with USB 3 standard
Universal connector for power and data — first product MacBook Air — one and
only port!

Symmetrical — no “correct” orientation (Good for 10,000
insert/withdrawals...10 kiloinserts)

Supports DisplayPort, HDMI, power, USB, and VGA. Uses differential bi-
direction serial communications

Supplies up to 100W power (5V @ up to 2A, 12V @ up to 5A, and 20V @ up to
5A)
Voltage dictated by software handshake, etc..

Figure 2-1 USB Type-C Receptacle Interface (Front View)
Al A2 A3 A4 AS A6 A7 A8 A9 A10 A11 A12

GND l TX1+ [ TX1- I VBUS [ 1 ] D+ l D- [SBUI l VBUs I RX2- ] RX2+ l GND Type_C

GND [ RX1+ I RX1- I VBus ISBUZ ] D- | D+ [ cc2 l VBUS ] ™>2- I TX2+ ] GND

B12 B11 B10 B9 B8 B7 B6 BS B4 B3 B2 B1

Copyright © 2014 USB 3.0 Promoter Group. All rights reserved.

10/15/25 https://fpga.mit.edu/6205/F25 123



U S B 4 CERTIFIED

UsB40™

Gbps

e 2019 saw introduction of USB4

e Partially motivated by Intel/Apples donation of
Thunderbolt spec to USB consortium in ~2017

* Requires use of USB-C-type cable
e Data rates up to 40 Gbps (1 full HD movie per second)

10/15/25 https://fpga.mit.edu/6205/F25 124



U S B 4 2 . O CERTIFIED

UsB40™

Gbps
e 2022 and 2023 saw introduction of USB4 2.0
* Requires use of USB-C-type cable

* Data rates up to 120 Gbps (3 full HD movie per second
because society needed that rather than UBI or
universal healthcare)

10/15/25 https://fpga.mit.edu/6205/F25 125



FTDI Chipsets

* Future Technology Devices International Ltd
(FTDI) is a Scottish Electronics firm that makes
USB interfaces

* They produce devices that convert between USB
and:

 UART

e SPI

e |12C

e Parallel Out
* Etc...

* Extremely common (we use a few on our FPGA)



FT2232 Chip

Lies!

* The UART you wrote in Lab 3
wasn’t actually to the computer.

° i i AMDH UFbana :
::tTv[\;?s to an FT2232 chip by . SoaslEan

» Takes UART and converts back
and forth to USB for you
automatically



The Great FTDI Bricking of 2014

From the beginning of USB to only recently, most USB devices
used FTDI-based chip sets to interface (source of those annoying
FTDXX.h library issues you’d always see in Windows)

* Your optical mouse would have some circuit and it would
communicate internally with UART...then the FTDI chip would

convert to USB

Dozens of “clones” were built to work with that software, these
clones often times selling for a small fraction of the cost of the
original FTDI chips

In 2014 FTDI they released a software update, included in most
Windows Service Packs that bricked all “non-genuine” devices

Turned out a lot of “legit” products were using
counterfeits/clones....lost them a lot of good will.

Did it again later on too.



Conclusions

* Tons of protocols (just skimming the surface here)
e Great way to add complexity to a project!

e But! Plan ahead if talking to devices in final
projects.
* If interfacing to FPGA directly, interfacing anything

above the most simple devices can take time!

* That Virtual Reality headset team from 2019 probably spent
40% of their time writing a driver to control the screens over
SPI (at 70 MHz)



