
Signed Values in Verilog
and Analog/Signal
Processing Things

6.205 Fall 2025

10/14/25 https://fpga.mit.edu/6205/F25 1

Administrative

• Week 06 due tomorrow.
• Week 07 Out on Thursday.
• Last lab. There is no week 08.
• After abstracts are due Friday October @5pm, staff

will then meet to figure out who works with who
and email you.
• Due date of the block diagram report is Tuesdaythe

28th.

10/14/25 https://fpga.mit.edu/6205/F25 2

Signed Numbers

10/14/25 https://fpga.mit.edu/6205/F25 3

How to Represent Numbers
• Simplest approach is to just read the binary number in

regular base 2 (just like in our friend base 10!)

10/14/25 https://fpga.mit.edu/6205/F25

b10001001

1’s place:
1

2’s place:
0

4’s place:
0

8’s place:
8 16’s place:

0
32’s place:

0

64’s place:
0

128’s place:
128

128+8+1 = 137

4

Most arithmetic works out well
too!
• Add/Subtract:

• Multiply/Divide:

10/14/25 https://fpga.mit.edu/6205/F25

b10001001 (137)
+ b00000101 (5)

b10001110 (142)

b00000101 (5)
* b00000110 (6)

b0000011110 (30)

b00000000 (0)
b000001010 (10)

+ b0000010100 (20)

5

Unsigned Values:

• 1 byte (8 bits): 28 values: 256 numbers to rep
• Express from 0 to 255

10/14/25 https://fpga.mit.edu/6205/F25

• 2 bytes (16 bits): 216 values: 65,536 numbers
• Express from 0 to 65,535

• 4 bytes (32 bits): 232 values: 4,294,967,296 nums
• Express from 0 to 4,294,967,295

00000000 11111111

positive values
0 255

00000000_00000000 11111111_11111111

positive values
0 255

00000000_00000000_00000000_00000000 11111111_11111111_11111111_11111111

positive values
0 4,294,967,295

6

Inherent Modularity
• If we use a fixed number of bits, addition and other operations

may produce results outside the range that the output can
represent (up to 1 extra bit for addition)
• This is known as an overflow

• Common approach: Ignore the extra bit
• Gives rise to modular arithmetic: With N-bit numbers, equivalent to

following all operations with mod 2N

• Visually, numbers “wrap around”:

10/14/25 https://fpga.mit.edu/6205/F25

0
000

4
100

1
001

2
010

3
011

7
111

6
110

5
101

0
000

4
100

1
001

2
010

3
011

7
111

6
110

5
101

+
–

Example: (7 + 3) mod 23 ?

7

Happens with more bits too (8 bits)

• What happens if you add 131 to
155 with 8 bit?

10/14/25 https://fpga.mit.edu/6205/F25

0100000011000000

10000000

00000000

00100000

0110000010100000

11100000
10011011 (155)

10000011 (131)

+

100011110 (286)

00011110 (30)

overflow

131

+155

30

8

The Modularity is Useful

• Polynomial division in finite fields arises naturally
from the rollover/overflow/underflow nature of
fixed precision

• Also angle!

10/14/25 https://fpga.mit.edu/6205/F25 9

Other numerical representations
...what about angles?

• If you need to
represent angles,
the natural
overflow of fixed
bits works
beautifully.
• Each bit

represents ~pi/128
of precision

10/14/25 https://fpga.mit.edu/6205/F25 10

01000000

11000000

10000000 00000000

0010000001100000

10100000
11100000

0	or 2𝜋

𝜋/4

𝜋/2

3𝜋/4

𝜋

5𝜋/4

3𝜋/2

7𝜋/4

Stuff does not have to map to
rational numbers!

What About Negatives?

• Our Number Schemes so far only allow
representation of positive numbers (and zero).
•What about negatives? How can we do this in

an efficient manner?

10/14/25 https://fpga.mit.edu/6205/F25
11

One Solution: “Sign Bit” (did this with Pong)
• If most-significant-bit (msb) is 0, interpret like a negative

sign:
• If 0, lower bits are from a positive number
• If 1, lower bits are from a negative number

• To get the negative of the number, flip the msb:

L01-12

10/14/25 https://fpga.mit.edu/6205/F25

‘b00010001 == +(16+1) == 17

‘b10010001 == -(16+1) == -17

‘b10000000 == -0
• Major problem(s)?
• Signed zero (you can have +0 and -0)…big problem
• Math tricky since a bit is no longer a number but a symbol

‘b00000000 == 0

Another Solution: “One’s Complement”
• If most-significant-bit (msb) is 0, interpret like an unsigned value.
• If msb is 1, then number is negative, else positive.
• To get the negative of the number flip all the bits:

L01-13

10/14/25 https://fpga.mit.edu/6205/F25

‘b00010001 == +(16+1) == 17

‘b11101110 == bitflip of 17== -17

‘b11111111 == -0
• Major problem(s)?
• Signed zero (you can have +0 and -0)…big problem
• Also addition and subtraction need this annoying wrap-

around carry.

−𝐴 = ~𝐴

‘b00000000 == 0

bitflip

Inherent Modularity to the
Rescue
• Return to our 3-bit* number system:

• If I want to add 1, I just add 1 and move
clockwise by 1 unit

10/14/25 https://fpga.mit.edu/6205/F25

0
000

4
100

1
001

2
010

3
011

7
111

6
110

5
101

0
000

4
100

1
001

2
010

3
011

7
111

6
110

5
101

*3 bits here since easy to think about and draw, but could do with any number of bits

§ If I want to subtract 1, is there a number I could
add using our same regular adding rules to get
the same result? If so, that number could be
called “-1”, right?

14

A Negative Number

• If I start at ”3” aka ‘b011, what
could I add to get to 1?
• To go back 2, I can add:
• 2! − 2 = 6

• (3+6)%8 = 1.
• Or: “-010” = 110

10/14/25 https://fpga.mit.edu/6205/F25

0
000

4
100

1
001

2
010

3
011

7
111

6
110

5
101

15

Negating a Number
• In a 3bit space, The negative of a number can be

expressed as:

• Or written a different way:

• ‘b111 minus any 3 bit value will be the same as the
bitflip of that value (~A)

• So the negative of any value must be:

10/14/25 https://fpga.mit.edu/6205/F25

“ − 𝐴” = `b001 + `b111	 − 𝐴

−𝐴 = 	1	 +	~𝐴

“ − 𝐴” = 8	 − 𝐴

“ − 𝐴” = 	1 + (`b111	 − 𝐴)

16

The Solution: 2’s Complement

• For 000 to 111 what numbers do we get in this scheme?

10/14/25 https://fpga.mit.edu/6205/F25

000

100

001

010

011

111

110

101

0
1-1

2-2

3-3

??
4 or -4?

17

Interesting…

• If we make 100 into -4, the system of numbers
becomes consistent and easily extensible to more
bits.

10/14/25 https://fpga.mit.edu/6205/F25

000

100

001

010

011

111

110

101

0
1-1

2-2

3-3

-4

§ With this model we can come
up with some
rules/observations…

18

Two’s Complement (Signed) Ints
• For an 𝑛 bit signed int, we represent from:
• Min: −2"#$
• Max: 2"#$ − 1
• Zero is always all zeros

• The negative of a number 𝐴 is always −𝐴 = 	1	 +	~𝐴
• A number is positive if the msb is 0:
• If so, just add up non-zero digits by weight as you do for

unsigned

• A number is negative if msb is 1:
• If so add weight of msb, then for all bits below that subtract

off the weight of any non-zero digits:

10/14/25 https://fpga.mit.edu/6205/F25
*msb = most significant bit 19

Signed Values:

• 1 byte (8 bits): 28 values: 256 numbers to rep
• Express from -128 to 127

10/14/25 https://fpga.mit.edu/6205/F25

• 2 bytes (16 bits): 216 values: 65,536 numbers
• Express from -32,768 to 32,767

• 4 bytes (32 bits): 232 values: 4,294,967,296 nums
• Express from -2,147,483,648 to 2,147,483,647

00000000 11111111

Increasing positive values à
0 -1

Increasing negative values à

10000000

-128

00000000_00000000 11111111_11111111

Increasing positive values à
0 -1

Increasing negative values à

10000000_00000000

-32768

00000000_00000000_00000000_00000000 11111111_11111111_11111111_11111111

Increasing positive values à
0 -1

Increasing negative values à

10000000_00000000_00000000_00000000

-2147483648

20

Math Operations Still Work

• Two’s Complement is pretty nice because you can
still do all your regular math operations pretty
easily

• Also No double-zero!

• Pretty much all modern digital systems use two’s
complement math to represent signed integers

L01-21

10/14/25 https://fpga.mit.edu/6205/F25

Signed Arithmetic in Verilog

Just add “signed” modifier to your variable declaration. \s

10/14/25 https://fpga.mit.edu/6205/F25 22

logic [15:0] a; // Unsigned
logic signed [16:0] signed_a; //signed

ALL OF THE FOLLOWING ARE TREATED AS UNSIGNED
IN VERILOG!!!

• Any operation on two operands, unless both
operands are signed
• Based numbers (e.g. 12ʹd10), unless the explicit “s”

modifier is used)
• Bit-select results a[5]
• Part-select results a[4:2]
• Concatenations

10/14/25 https://fpga.mit.edu/6205/F25 23

Using Signed Arithmetic in Verilog

http://billauer.co.il/blog/2012/10/signed-arithmetics-verilog/

Example of multiplying signed by unsigned

logic [15:0] a; // Unsigned
logic signed [15:0] b;
logic signed [16:0] signed_a;
logic signed [31:0] a_mult_b;

assign signed_a = a;//Convert to signed
assign a_mult_b = signed_a * b

For example, consider these two
testbench examples:

10/14/25 https://fpga.mit.edu/6205/F25 24

-2 3 42 -2 3 -6

Result: Result:

Not really synthesizable here ($finish, $display, etc)…but shows what Verilog is thinking

module test_one;
 logic signed [3:0] x;
 logic [3:0] y;
 logic signed [8:0] z;
 initial begin
 x = -2;
 y=3;
 z = x*y;
 $display(x, y, z);
 $finish;
 end
endmodule

module test_two;
 logic signed [3:0] x;
 logic signed [3:0] y;
 logic signed [8:0] z;
 initial begin
 x = -2;
 y=3;
 z = x*y;
 $display(x, y, z);
 $finish;
 end
endmodule

10/14/25 https://fpga.mit.edu/6205/F25 25

Sign extension
Consider the 8-bit 2’s complement representation of:

-5 = ~00000101 + 1
 = 11111010 + 1
 = 11111011

42 = 00101010

What is their 16-bit 2’s complement representation?

42 = ________00101010

-5 = ________11111011

42 = 0000000000101010

-5 = ________11111011

42 = 0000000000101010

-5 = 1111111111111011

Extend the MSB (aka the “sign bit”)
into the higher-order bit positions

10/14/25 https://fpga.mit.edu/6205/F25 26

Using Signed Arithmetic in Verilog
Shifts in Verilog do not base themselves off of the type they are working on. >> is
always binary shift.

“<<<“ and “>>>” tokens result in arithmetic (signed) left and right shifts if the
operand is signed: multiple by 2 and divide by 2.

Right shifts will maintain the sign by filling in with sign bit values during shift

logic signed [3:0] x;
logic signed [3:0] value = 4'b1000; // -8
x = value >> 2 // results in 0010 or 2
x = value >>> 2 // results in 1110 or -2

logic [3:0] value = 4'b1000; // -8
x = value >> 2 // results in 0010 or 2
x = value >>> 2 // results in 0010 or -2 (is unsigned…extends with 0’s)

Few Other Things
• When specifying numbers/constants you cand put a s in

front to specify it as signed.

10/14/25 https://fpga.mit.edu/6205/F25 27

logic signed [7:0] x;
initial begin
 x = -'d5;
 $display("%d %8b", x,x); //prints: -5 11111011
 x = -'sd5;
 $display("%d %8b", x,x); //prints: -5 11111011
 x = 'd5;
 $display("%d %8b", x,x); //prints: 5 00000101
 x = 'sd5;
 $display("%d %8b", x,x); //prints: 5 00000101
 x = 'd234;
 $display("%d %8b", x,x); //prints: -22 11101010
 x = 'sd128;
 $display("%d %8b", x,x); //prints: -128 10000000
 #100;
 $finish;
end

logic [7:0] x;
initial begin
 x = -'d5;
 $display("%d %8b", x,x); //prints: 251 11111011
 x = -'sd5;
 $display("%d %8b", x,x); //prints: 251 11111011
 x = 'd5;
 $display("%d %8b", x,x); //prints: 5 00000101
 x = 'sd5;
 $display("%d %8b", x,x); //prints: 5 00000101
 x = 'd234;
 $display("%d %8b", x,x); //prints: 234 11101010
 x = 'sd128;
 $display("%d %8b", x,x); //prints: 128 10000000
 #100;
 $finish;
end

Need to make a thing signed?
• Either use $signed
• Or declared signed types to route through:

10/14/25 https://fpga.mit.edu/6205/F25 28

logic signed [3:0] x = 4'b1110; // -2 also -4'
logic [3:0] y = 4'b1100; //12 unsigned, (-4 signed)
logic signed [4:0] z
assign z = x*$signed(y);//interpret y as signed
//results in z having 5’b11000 in it (-8)
//OR:
logic signed [3:0] y_signed;
assign y_signed = y;
assign z = x*y_signed; //multiplication of two signed things is signed
//results in z having 5’b11000 in it (-8)

Part-Select
• Be careful with part selects on

dimensions...immediately becomes unsigned

10/14/25 https://fpga.mit.edu/6205/F25 29

logic signed [7:0][15:0] x;
logic signed [15:0] y;
logic signed [31:0] z;
assign z = x[0]*y; //unsigned multiplication
assign z = $signed(x[0] * y); //unsigned multiplication
assign z = x[0] * $signed(y); //unsigned multiplication
assign z = $signed(x[0]) * y; //signed multiplication

Signed Numbers Guideline
• Once you start using signed Verilog in a module or a

signal path, just make everything you’re using is
signed. If you do that, you should be ok.
• Make sure everything upstream of a calculation has

been done in only a signed environment (held in
signed logics and used with signed logics.
• Signed/Unsigned bugs are some of the hardest to find

so be cautious
• When in doubt also use $signed

10/14/25 https://fpga.mit.edu/6205/F25 30

A variable being signed does NOT change
the bits the variable contains!
• The signedness of a variable only

impacts how operators are
interpreted. It does not impact the
bits themselves.
• Some operators are relatively robust

and act kinda the same regardless if
you are signed or unsigned! (+, -,
bitwise operators, even *)
• But the setup and interpretation of

these operations often needs
slightly different framing based on
the signedness

10/14/25 https://fpga.mit.edu/6205/F25 31

Consider Multiplication

10/14/25 https://fpga.mit.edu/6205/F25 32

‘b101 (5)
* ‘b110 (6)
‘b000 (0)
‘b1010 (10)

+’b10100 (20)
‘b011110 (30)

• Consider two variables. One has ‘b101 in it another
has ‘b110 in it.
• If you invoke unsigned multiplication on these

bits…stuff just sort of works:

• In actuality because the multiplication of a 3 bit by 3
bit number could result in 6 bits of result, you should
“extend” but it can be just 0’s

Consider Multiplication

10/14/25 https://fpga.mit.edu/6205/F25 33

‘b000101 (5)
* ‘b000110 (6)
‘b000000 (0)
‘b0001010 (10)

+ ’b00010100 (20)
‘b011110 (30)

• So for unsigned you’re really doing this:

Consider Multiplication

10/14/25 https://fpga.mit.edu/6205/F25 34

‘b111101 (-3)
* ‘b111110 (-2)
‘b000000 (0)
‘b1111010 (-6)

+’b11110100000 (-96)
‘b110011000110 (6)

• Consider two variables. One has ‘b101 in it another has ‘b110 in it
• If you invoke signed multiplication…stuff does not “just work”. You

really need to bit extend ahead of time to the worst case width:

‘b11110100 (-12)
‘b111101000 (-24)
‘b1111010000 (-48)

Discard
overflow

Few Other Things
• When specifying numbers/constants you cand put a s in

front to specify it as signed.

• In all comparative cases above we’ve put identical bits
into variable. When we ask Verilog to perform an
operation with those bits, its interpretation differs.
• This can bleed into sign extension and other peripheral

tasks, for example…
10/14/25 https://fpga.mit.edu/6205/F25 35

logic signed [7:0] x;
initial begin
 x = -'d5;
 $display("%d %8b", x,x); //prints: -5 11111011
 x = -'sd5;
 $display("%d %8b", x,x); //prints: -5 11111011
 x = 'd5;
 $display("%d %8b", x,x); //prints: 5 00000101
 x = 'sd5;
 $display("%d %8b", x,x); //prints: 5 00000101
 x = 'd234;
 $display("%d %8b", x,x); //prints: -22 11101010
 x = 'sd128;
 $display("%d %8b", x,x); //prints: -128 10000000
 #100;
 $finish;
end

logic [7:0] x;
initial begin
 x = -'d5;
 $display("%d %8b", x,x); //prints: 251 11111011
 x = -'sd5;
 $display("%d %8b", x,x); //prints: 251 11111011
 x = 'd5;
 $display("%d %8b", x,x); //prints: 5 00000101
 x = 'sd5;
 $display("%d %8b", x,x); //prints: 5 00000101
 x = 'd234;
 $display("%d %8b", x,x); //prints: 234 11101010
 x = 'sd128;
 $display("%d %8b", x,x); //prints: 128 10000000
 #100;
 $finish;
end

Other Operations…
• Things like equality/inequality

checks as well as division, mod, etc…
• These obviously are dependent on

whether we interpret the bits as
signed or unsigned (no surprise
there)

10/14/25 https://fpga.mit.edu/6205/F25 36

>>> and <<< live here also

Operator Precedence
• There is and always has been

a very clear order in which
operators get analyzed
• However some of these

operators are sign
dependent in precedence
• Sign dependence may lead

to differing sign extension.
• And then weird things can

happen.

10/14/25 https://fpga.mit.edu/6205/F25 37

😂

Also using a “-” does not make a thing
signed
• The unary operator “-” just does

• The result is not inherently signed so be careful.

• So don’t expect -(2’d2) to be a signed thing (for the
purposes of operator determination)

10/14/25 https://fpga.mit.edu/6205/F25 38

−𝐴 = 	1	 +	~𝐴

Conclusions
• It seems like Verilog is strongly inclined towards unsigned

numbers. Any of the following yield an unsigned value:
• Any operation on two operands, unless both operands are signed.
• Numbers given with an explicit base (e.g. 12ʹd10), unless the explicit "s"

modifier is used)
• Results of bit-select
• Results of part-select
• Concatenations

• Be careful of hidden sign extensions!
• Be careful of small one bit or two bit signed numbers…the patterns

of two’s complement stuff gets fuzzy at one bit.
• Use $signed as needed…results in ugly code, but can make things

safe.

10/14/25 https://fpga.mit.edu/6205/F25 39

(https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/)

https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/
https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/
https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/
https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/
https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/
https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/
https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/

Other ”Signed” formats?
• Sometimes it may be convenient to

move a signed number into an unsigned
space
• For example a signal that ranges from -

128 to 127 (8 bit signed)
• You can convert this to offset binary by

just flipping the msb...
• This will move the signal to an unsigned

ranged of 0 to 255
• Can move back by reflipping the msb if

needed

10/14/25 https://fpga.mit.edu/6205/F25 40

Other numerical representations
...what about angles?

• If you need to
represent angles,
the natural
overflow of fixed
bits works
beautifully.
• Each bit

represents pi/128
of precision

10/14/25 https://fpga.mit.edu/6205/F25 41

01000000

11000000

10000000 00000000

0010000001100000

10100000
11100000

0	or 2𝜋

𝜋/4

𝜋/2

3𝜋/4

𝜋

5𝜋/4

3𝜋/2

7𝜋/4

Stuff does not have to map to
rational numbers!

But What if I wanted negative angles?
• Thinking about

angles with binary
and two’s
complement is
one of the best
ways to “get”
two’s
complement.
• It works

automatically and
for free!

10/14/25 https://fpga.mit.edu/6205/F25 42

01000000

11000000

10000000 00000000

0010000001100000

10100000
11100000

0	or 2𝜋

𝜋/4

𝜋/2

3𝜋/4

−𝜋

-3𝜋/4

-𝜋/2

−𝜋/4

DSP Concepts
Digital Signal Processing

10/14/25 https://fpga.mit.edu/6205/F25 43

A Digital System in an Analog World

10/14/25 https://fpga.mit.edu/6205/F25 44

• Many physical phenomena (sound, light, physics in
general) are best-described as continuous entities

Analog
phenomena

Digital
System

Analog
phenomena

Reconstruction

Manipulation

Sampling,
Quantization,
Digitization

Visualizing Sampling

10/14/25 https://fpga.mit.edu/6205/F25 45

Continuous in Value and in Time

10/14/25 46

t

V(
t)

https://fpga.mit.edu/6205/F25

Discretization in Time

10/14/25 47

t

V(
t)

https://fpga.mit.edu/6205/F25

10/14/25 48

t

V(
t)

4 bit value encoding

https://fpga.mit.edu/6205/F25

Discretization in Time and
Quantization in Value

v[n] = [9,11,5,7,11,11,10,8,5,4,]

10/14/25 49

t

V(
t)

4 bit value encoding

Discretization in Time and
Quantization in Value

https://fpga.mit.edu/6205/F25

Store in memory

• v[n] = [9,11,5,7,11,11,10,8,5,4,]
• 10 4-bit values: need 40 bits to represent!
• Good stuff. That’s not a lot!

10/14/25 50https://fpga.mit.edu/6205/F25

Reconstruction of Signal

10/14/25 51

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]

https://fpga.mit.edu/6205/F25

Reconstruction (with first-order hold
interpolation)

10/14/25 52

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]

https://fpga.mit.edu/6205/F25

Compare to original… not bad

10/14/25 53

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]

https://fpga.mit.edu/6205/F25

Errors

• Discretization Error: How ”off” our readings are in
time due to sampling at discrete intervals

• Quantization Error: How “off” our readings are in
reproduced value…if our bin size is 50mV and our
signal varies only by 20mV this is going to cause
problems

10/14/25 54https://fpga.mit.edu/6205/F25

Continuous in Value and in Time

10/14/25 55

t

V(
t)

https://fpga.mit.edu/6205/F25

10/14/25 56

t

V(
t)

4 bit value encoding

https://fpga.mit.edu/6205/F25

Discretization in Time and
Quantization in Value

v[n] = [9,11,5,7,5,12,10,7,5,4,]

10/14/25 57

t

V(
t)

4 bit value encoding
https://fpga.mit.edu/6205/F25

Discretization in Time and
Quantization in Value

Reproduce

10/14/25 58

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

https://fpga.mit.edu/6205/F25

Reproduce

10/14/25 59

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

https://fpga.mit.edu/6205/F25

Compare to original… Did not
Capture the high-frequency Wiggles!

10/14/25 60

t

V(
t)

v[n] = [9,11,5,7,5,12,10,7,5,4,]

Potentially Bad Discretization Error

https://fpga.mit.edu/6205/F25

Continuous in Value and in Time

10/14/25 61

t

V(
t)

https://fpga.mit.edu/6205/F25

10/14/25 62

t

V(
t)

4 bit value encoding

https://fpga.mit.edu/6205/F25

Discretization in Time and
Quantization in Value

v[n] = [9,9,9,9,9,9,9,9,9,9]

10/14/25 63

t

V(
t)

4 bit value encoding
https://fpga.mit.edu/6205/F25

Discretization in Time and
Quantization in Value

Store in memory

• v[n] = [9,9,9,9,9,9,9,9,9,9]
• 10 4-bit values: need 40 bits in memory!
• Great. All is good.

10/14/25 64https://fpga.mit.edu/6205/F25

v[n] = [9,9,9,9,9,9,9,9,9,9]

10/14/25 65

t

V(
t)

4 bit value encoding

Reproduce

https://fpga.mit.edu/6205/F25

v[n] = [9,9,9,9,9,9,9,9,9,9]

10/14/25 66

t

V(
t)

4 bit value encoding

Reproduce

https://fpga.mit.edu/6205/F25

v[n] = [9,9,9,9,9,9,9,9,9,9]

10/14/25 67

t

V(
t)

Compare… to original also meh

Those tiny wiggles might be

really important in certain

contexts!

Rodent heartbeats!Potentially Really Problematic
Quantization Error!

https://fpga.mit.edu/6205/F25

Conclusions
• Care must be taken when choosing what rate you

sample (discretize) your signal and at what bit-
depth you quantize your sample
• There’s no right answer, since it depends on

context/use cases.
• Ideally want to sample at high rate and quantize

with many bits…
• But taken to the extreme this uses a lot of

resources (lots of memory and resources/lots of
bits) so downward pressure on choices

10/14/25 https://fpga.mit.edu/6205/F25 68

Is that all there is to it?
• No, it is wayyy more complicated
• Let’s just consider sample rate for right now (we’ll

revisit quantization later)

10/14/25 69https://fpga.mit.edu/6205/F25

Sample Rate
• How frequently we sample our signal directly

influences what we can effectively capture.
• A sample rate of 𝑓! is only capable of expressing

signals with frequencies less than "%
#

frequency𝑓!0 𝑓!
2

“Nyquist Rate”

Signals with frequencies in
this region of the spectrum
can be fully captured

Nyquist, Shannon, few others
showed this in the 1930s

10/14/25 https://fpga.mit.edu/6205/F25 70

Let’s consider this situation though….

10/14/25 71

t

V(
t)

https://fpga.mit.edu/6205/F25

10/14/25 72

t

V(
t)

4 bit value encoding

https://fpga.mit.edu/6205/F25

Let’s digitize it…at this sample rate we
shouldn’t be able to capture it

v[n] = [9,11,5,7,5,12,10,7,5,4,]

10/14/25 73

t

V(
t)

4 bit value encoding
https://fpga.mit.edu/6205/F25

Discretization in Time and
Quantization in Value

Store in memory

• v[n] = [9,11,5,7,5,12,10,7,5,4,]
• 10 4-bit values: need 40 bits in memory!
• Easy-peasy one-two-threesy

10/14/25 74https://fpga.mit.edu/6205/F25

Reconstruct

10/14/25 75

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

https://fpga.mit.edu/6205/F25

Reproduce

10/14/25 76

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

https://fpga.mit.edu/6205/F25

Compare to original… Did not
Capture the high-frequency Wiggles!

10/14/25 77

t

V(
t)

Great….but we still captured something! What is
that signal expressed by the red interpolation?

https://fpga.mit.edu/6205/F25

Consider this…

10/14/25 78

t

V(
t)

https://fpga.mit.edu/6205/F25

Sample it…

10/14/25 79

t

V(
t)

https://fpga.mit.edu/6205/F25

Store it…

10/14/25 80

t

V(
t)

https://fpga.mit.edu/6205/F25

Reconstruct it…

10/14/25 81

t

V(
t)

https://fpga.mit.edu/6205/F25

We’ve created a a different signal from what was before! WTH?

Or Consider this…
 if we start with this data…

10/14/25 82

t

V(
t)

https://fpga.mit.edu/6205/F25

And we Reconstruct the signal…is
this ok?

10/14/25 83

t

V(
t)

https://fpga.mit.edu/6205/F25

First-order hold (connect-the dots)

If it came from this, ok… but…

10/14/25 84

t

V(
t)

https://fpga.mit.edu/6205/F25

It could have also come from
this…Uh oh

10/14/25 85

t

V(
t)

https://fpga.mit.edu/6205/F25

First-order hold (connect-the dots)

Which one Made the Signal?

10/14/25 86

t

V(
t)

https://fpga.mit.edu/6205/F25

There’s ambiguity in what those samples could represent…that
means it really doesn’t convey much, if any, information

Aliasing
• While we can’t fully capture and reproduce signals

with a frequency higher than the Nyquist sampling
rate, it doesn’t mean they won’t have an impact!
• Energy from that high frequency will leak into the

frame…a form of “spectral leakage”
• A sample rate of 𝑓! can fully capture all information

in a signal if and only if, the highest frequency in
that signal is at or below "%

#
 !

• If you don’t do this, aliasing will appear (higher
frequencies appear as a different signal (an “alias”))
that can be expressed with the sample rate

10/14/25 https://fpga.mit.edu/6205/F25 87

Aliasing can happen in time...

• Camera sample rate slow and spin rate of tires too
high...spinning appears as lower frequency
artifacts.

10/14/25 https://fpga.mit.edu/6205/F25 88

Aliasing in Audio (also in time)

https://www.youtube.com/watch?v=UaKho805vCE&ab_channel=MarkAndersonAudio

10/14/25 https://fpga.mit.edu/6205/F25 89

Aliasing Can Happen in Space too
• Just like there are temporal frequencies (in time), images

have spatial frequencies (camera pixels spatially sample)
• Same issues arise!

10/14/25 https://fpga.mit.edu/6205/F25 90

https://en.wikipedia.org/wiki/Aliasing

Anti-alias Filtered Not Anti-alias Filtered

This font has been
processed with an
anti-alias filter to
prevent artifacts when
displayed

Aliasing in your Camera
• In lab 6 you get the full HD output of the camera

functioning. Comparing the two outputs is
important.

10/14/25 https://fpga.mit.edu/6205/F25 91

Aliasing in Student Photo Book

10/14/25 https://fpga.mit.edu/6205/F25 92

6.205 student with
properly anti-

aliased clothing

6.205 student with
horribly aliasing

clothing

Solution
• The ONLY way to guarantee that a set of discrete points can

unambiguously represent a signal is to guarantee that prior
to sampling, we remove all energy that it exists in
frequencies higher than the Nyquist Sampling Rate*
• To do this we need a Low-Pass Filter!

frequency𝑓!0 𝑓!
2

“Nyquist Rate”

Signals with frequencies in
this region of the spectrum
can be fully captured

Nothing can exist in this
region of the spectrum

10/14/25 https://fpga.mit.edu/6205/F25 93

*lying to you, there are exceptions to this in more advanced DSP

Low Pass Filter
• Prior to Sampling or down-sampling, we must be

sure that our signal has no significant energy above
our Nyquist Rate

Signal In Downstream

“Anti-Aliasing Filter”

LPF
Filtered
Signal Sampler

10/14/25 https://fpga.mit.edu/6205/F25 94

How Do You Actually Make a Filter?
• No time for math…gotta take 6.300, more so 6.341

spend their time on this stuff*
• Several types of filters. Two big ones:
• IIR: Infinite Impulse Response:

• Uses past output history for filtering
• FIR: Finite Impulse Response:

• Uses input history for filtering

10/14/25 https://fpga.mit.edu/6205/F25 95

*and it is cool stuff! You should take these classes

Filters
• Stateful systems that analyze history signals to select

for particular signal attributes:
• Low-pass Filter: Lets through low-frequency signals
• High-pass Filter: Lets through high-frequency signals
• Band-pass Filter: Lets through selective group of frequencies
• Band-stop Filter: Blocks selective group of frequencies

10/14/25 https://fpga.mit.edu/6205/F25 96

Infinite Impulse Response Filter (IIR)

• The current output (𝑦 𝑛) of the filter is based on the
weighted sum of the previous output (𝑦 𝑛 − 1) of
the filter + the value of the input (𝑥[𝑛))*
• Sometimes called a recursive filter: “y is based off of y

is based off of y…”
• Information enters the system through 𝑥 but its

influence on the output is dependent on the values of
𝛼 and 𝛽

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 	𝛽 , 𝑥[𝑛]

10/14/25 https://fpga.mit.edu/6205/F25 97

*can also be based on multiple past values of y and x

Infinite Impulse Response (Modified)

• Fix the relationship of the new input and old output
to one variable 𝛼	:
• As 𝛼 → 1 input has less weight (takes time for it to affect

output…blocks more high frequency events)
• As 𝛼 → 0 input has more weight (output quickly follows

input…allows through more high frequency events (and
everything actually)

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛]

0 ≤ 𝛼 ≤ 1

10/14/25 https://fpga.mit.edu/6205/F25 98

IIR Filter

10/14/25 99

t

x(
t)

https://fpga.mit.edu/6205/F25

y(
t)

t

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛]

Infinite Impulse Response (Modified)
𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛] 0 ≤ 𝛼 ≤ 1

× +

𝛼

𝑥 𝑦

×

1 − 𝛼
10/14/25 https://fpga.mit.edu/6205/F25 100

Infinite Impulse Response (Modified)
𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛] 0 ≤ 𝛼 ≤ 1

× +

𝛼

𝑥 𝑦

×

1 − 𝛼
10/14/25 https://fpga.mit.edu/6205/F25 101

N

M

N+M

M
N

N+M

N+M+1 N
>>>M+1

Need to keep in mind bits!

𝛼 would be scaled up by 2M and
Then the result is shifted back
down later

Finite Impulse Response
• Have the output be based off of a sliding window of

the past history of the input.
• Literally just convolution basically

• Very powerful!! Huge flexibility in choosing those
coefficients and can get a ton of behaviors!

10/14/25 https://fpga.mit.edu/6205/F25 102

𝑦 𝑛 = 𝑏$, 𝑥 𝑛 + 𝑏% , 𝑥 𝑛 − 1 + 𝑏# , 𝑥 𝑛 − 2

FIR Filter

10/14/25 103

t

x(
t)

https://fpga.mit.edu/6205/F25

y(
t)

t

𝑦 𝑛 = 𝑏! * 𝑥 𝑛 + 𝑏" * 𝑥 𝑛 − 1 + 𝑏# * 𝑥 𝑛 − 2

FIR Filters
• Extremely flexible
• Often times many, many “taps” long (N in 100’s is

not uncommon)

• The values you pick for these taps are arrived at
using a number of DSP-oriented algorithms
(beyond scope of course…but in 6.003/6.341, etc)

10/14/25 https://fpga.mit.edu/6205/F25 104

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

FIR Filters
• Some online tools, Matlab, Python, Vivado all have

tools that allow you to:
• specify how you want your filter to look
• Provide you the coefficients needed to generate that filter

• The 𝑏 coefficients are generally provided as real
numbers between 0 and 1. But since we don’t want to
do floating point arithmetic, we usually scale them by
some power of two and then round to integers.
• Since coefficients are scaled by 2M, we’ll have to re-scale the

answer by dividing by 2M. But this is easy – just get rid of the
bottom M bits!

• More taps generally means you can get better
response:
• Closer to ideal filter!

10/14/25 https://fpga.mit.edu/6205/F25 105

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

Finite Impulse Response

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏&

𝑥[𝑛]

×

+

𝑏$

𝑥[𝑛 − 1]

×

+

𝑏'

𝑥[𝑛 − 2]

×

+

𝑏!

𝑥[𝑛 − 3]

×

+

𝑏(#$

𝑥[𝑛 − 𝑁 + 1]⋯

⋯

10/14/25 https://fpga.mit.edu/6205/F25 106

Disgustingly long combinational path…too much propagation delay

Finite Impulse Response (Modified)

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏&

𝑥[𝑛]

×

+

𝑏$ ×

+

𝑏' ×

+

𝑏! ×

+

𝑏(#$

⋯

⋯

10/14/25 https://fpga.mit.edu/6205/F25 107

Much nicer critical path (worst propagation delay)

Bit Growth 𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏&

𝑥[𝑛]

×

+

𝑏$ ×

+

𝑏' ×

+

𝑏! ×

+

𝑏(#$

⋯

⋯

10/14/25 https://fpga.mit.edu/6205/F25 108

N N
M M M M M

N+MN+M N+M N+M N+M

https://zipcpu.com/dsp/2017/07/21/bit-growth.html

Adding values that are N+M bits repeatedly grows the number of bits needed to
not lose precision…will grow at between 1 bit per N and 1 bit per log2(N)! But this
can grow large so there’s ways to handle it

DSP Blocks?

• These IIR and especially FIR filters sure do have a
lot of multiply-then-add operations going on…
• Remember those DSP blocks we’ve talked about

previously? That’s why they’re designed the way
they are

10/14/25 https://fpga.mit.edu/6205/F25 109

DSP Blocks
• Mult-then-add is a common operation chain in

many things, particularly Digital Signal Processing
• FPGA has dedicated hardware modules called

DSP48 blocks on it
• 150 of them on Urbana FPGA board
• Capable of single-cycle multiplies

• Can get inferred from using * in your Verilog that
isn’t a power of 2:
• x*y, for example, will likely will result in DSP getting used
• May take a full clock cycle so would need to budget tiing

accordingly

10/14/25 https://fpga.mit.edu/6205/F25 110

DSP48 Slice (High Level)

10/14/25 https://fpga.mit.edu/6205/F25 111

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

FIR Filter (Iterative Design)

• 1000’s of taps will use way too much resources.
Instead you can also build FSM-based FIR filters
• Be given new input sample
• Use one clock-cycle per multiply-add
• Accumulate the sum
• After N cycles, your output is calculated
• Update a circular buffer to keep track of past values of 𝑥

• For audio usually plenty of clock cycles between
each audio cycle anyways (you have 2000 clock
cycles of 100 MHz between each audio sample of 48
ksps audio!)

10/14/25 https://fpga.mit.edu/6205/F25 112

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

FIR Wizard
• FIRs are so

common, Vivado
actually has some
IP infrastructure
to aid in designing
them
• Can tune how

pipelined vs.
Iterative/FSM you
want your FIR!
• Or use

Python/numpy to
determine
coefficients

10/14/25 https://fpga.mit.edu/6205/F25 113

In 2D Space you can also make
filters (week 7)

• The common way is a 2D FIR
filter, except it exists in 2
dimensions
• Shown here is a 3x3 filter
• The weights of the

coefficients make up the
“kernel”
• It gets dragged/convolved

across the screen

10/14/25 https://fpga.mit.edu/6205/F25 114

In 2D Space you can also make
filters (week 7)

10/14/25 https://fpga.mit.edu/6205/F25 115

Quantization
The Other way you can mess up your signals

10/14/25 https://fpga.mit.edu/6205/F25 116

10/14/25 117

t

V(
t)

4 bit value encoding

https://fpga.mit.edu/6205/F25

Discretization in Time and
Quantization in Value

Quantized Values
If we use N bits to encode the magnitude of one of the discrete-time samples,
we can capture 2N possible values.

So we’ll divide up the range of possible sample values into 2N intervals and
choose the index of the enclosing interval as the encoding for the sample value.

sample voltage

quantized value 1
1-bit

3
2-bit

6
3-bit

13
4-bit

0

0
0

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1

2

3

4

5

6

7

1

2

3

1

VMAX

VMIN

10/14/25 118https://fpga.mit.edu/6205/F25

Quantization Error

53

54

55

56

57

Note that when we quantize the scaled sample
values we may be off by up to ±½ bin from the
true sampled values.

54 55 56 55 55

The red shaded region shows the error we’ve
introduced

10/14/25 119https://fpga.mit.edu/6205/F25

Got lucky

Way off

During signal reconstruction, Quantization
introduces a new signal: Quantization error!

http://digitalsoundandmusic.com/chapters/ch5/

𝒔 𝒕 = 	𝒔𝒐 𝒕 + 𝒆(𝒕)

What gets reconstructed is not just the original signal,
But the original signal plus the quantization error:

10/14/25 https://fpga.mit.edu/6205/F25 120

Error Signal Drops with Higher Bit-depth

http://digitalsoundandmusic.com/chapters/ch5/

Amplitude of Error Signal Drops
with higher bit depth

10/14/25 https://fpga.mit.edu/6205/F25 121

Naturally, therefore
we want higher bit
depth to keep the
amplitude of the
quantization error
small

Unfortunately
memory bits is not
cheap so we might
not always have the
ability to do high bit
depth quantization

Structure of Quantization Noise

Pandey, Nitesh & Hennelly, Bryan. (2011). Quantization noise and its reduction in lensless Fourier digital holography. Applied optics. 50.
B58-70. 10.1364/AO.50.000B58.

• The more bits we’ve used
for quantizing:
• The smaller our error gets
• AND
• The more “random” our

error signal gets

• Fewer bits leads to error
signal that actually looks
like a signal :/ (NOT good)

10/14/25 https://fpga.mit.edu/6205/F25 122

More Quantization Obfuscates Original Signal

Pandey, Nitesh & Hennelly, Bryan. (2011). Quantization noise and its reduction in lensless Fourier digital holography. Applied optics. 50.
B58-70. 10.1364/AO.50.000B58.

frequency

am
pl

itu
de

Orig. signal

Error. signal

frequency

am
pl

itu
de

Orig. signal

Error. signal

frequency

am
pl

itu
de

Orig. signal

Error. signal

Frequencies of Error Signal Become more uniform with higher bit depth

10/14/25 https://fpga.mit.edu/6205/F25 123

Can’t Distinguish Signal From Error

10/14/25 https://fpga.mit.edu/6205/F25 124

• Once you’ve lost information, you can never regain it.
There is no “enhance” button in real-life

• Motivation to not skimp out on quantizing (pick
enough bits)

• But if you have to go low in bits…what can you do?

Quantization Error in Audio

https://www.youtube.com/watch?v=UaKho805vCE&ab_channel=MarkAndersonAudio

10/14/25 https://fpga.mit.edu/6205/F25 125

@50 sec

Quantization*
A Graphical Example

How many bits are needed to represent 256 shades of
gray (from white to black)?

126

* Acknowledgement: Quantization slides and photos by Prof Denny Freemen 6.003

10/14/25 https://fpga.mit.edu/6205/F25

Bits Range
1 2

2 4

3 8
4 16

5 32

6 64
7 128

8 256

Quantization: Images

10/14/25 127

Converting an image from a continuous representation to a discrete
representation involves the same sort of issues as with 1D signals (audio)

This image has 280 × 280 pixels, with brightness quantized to 8 bits.

https://fpga.mit.edu/6205/F25

Quantizing Images

10/14/25 128

8 bit image 7 bit image

https://fpga.mit.edu/6205/F25

Quantizing Images

10/14/25 129

8 bit image 6 bit image

https://fpga.mit.edu/6205/F25

Quantizing Images

10/14/25 130

8 bit image 5 bit image

https://fpga.mit.edu/6205/F25

Quantizing Images

10/14/25 131

8 bit image 4 bit image

https://fpga.mit.edu/6205/F25

Quantizing Images

10/14/25 132

8 bit image 3 bit image

https://fpga.mit.edu/6205/F25

Quantizing Images

10/14/25 133

8 bit image 2 bit image

https://fpga.mit.edu/6205/F25

Quantizing Images

10/14/25 134

8 bit image 1 bit image

https://fpga.mit.edu/6205/F25

10/14/25 135https://fpga.mit.edu/6205/F25

https://en.wikipedia.org/wiki/Dither

Quantizing Colors

True color (24 bit) kitteh

256 (8bit) color kitteh

16 color (4 bit) kitteh

Error Diffusion
• If you find yourself with an error signal that has

structure* to it, there are ways to spread out the error.

• You’ll never get rid of the error (which would involve
making information from nothing), but you can ”diffuse”
it in the image in the frequency domain

• Humans are often less sensitive to random noise than
structured noise (eyes/ears tend to filter that out better)

10/14/25 https://fpga.mit.edu/6205/F25 136

*structure refers to non-uniform frequency composition…so like sharp frequency
spikes

Dithering
• The solution is to add more noise when we quantize, but

do it so it spreads the frequency composition out to be
more uniform

10/14/25 https://fpga.mit.edu/6205/F25 137

𝒔 𝒕 = 	𝒔𝒐 𝒕 + 𝒆𝒒 𝒕, 𝒓

Total Signal Actual Signal
(never getting that back, sorry folks)

Quantization Error

Random variable

10/14/25 https://fpga.mit.edu/6205/F25 138

n = ±½ quantum

When quantizing in the first place and random
noise in:

3 Bits Quantization

13910/14/25 https://fpga.mit.edu/6205/F25

14010/14/25 https://fpga.mit.edu/6205/F25

2 Bits Quantization + Noise

1 Bit Quantization + Noise

14110/14/25 https://fpga.mit.edu/6205/F25

Dithering: Lots of Options/Algos

10/14/25 https://fpga.mit.edu/6205/F25 142

ORIGINAL
8bit Greyscale

Every other example on
page…1 bit quantization

https://en.wikipedia.org/wiki/Dither

Color Dithering

10/14/25 https://fpga.mit.edu/6205/F25 143

16 color (4 bit) kitteh

True color (24 bit) kitteh

16 color (4 bit) dithered kitteh (Floyd-Steinberg)https://en.wikipedia.org/wiki/Dither

Cool Student Project from 2023

10/14/25 https://fpga.mit.edu/6205/F25 144

Dithering
• In early computer/video games, space was at a premium,

so if you could store your graphics at low (i.e one bit),
then great!
• Lucas Pope (of Papers Please! fame) more recently

created game Return of the Obra Dinn recreates the
graphics of early games

Fantastic Discussion on Dithering:

https://forums.tigsource.com/index.php?topic=40832.msg1363742#msg1363742
10/14/25 https://fpga.mit.edu/6205/F25 145

Dithering in Audio

https://www.youtube.com/watch?v=h59LwyJbfzs&ab_channel=loopitstreamed

10/14/25 https://fpga.mit.edu/6205/F25 146

