
Signed Values in Verilog
and Analog/Signal 
Processing Things

6.205 Fall 2025

10/14/25 https://fpga.mit.edu/6205/F25 1



Administrative

• Week 06 due tomorrow.
• Week 07 Out on Thursday.
• Last lab. There is no week 08.
• After abstracts are due Friday October @5pm, staff 

will then meet to figure out who works with who 
and email you.
• Due date of the block diagram report is Tuesdaythe 

28th.
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Signed Numbers
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How to Represent Numbers
• Simplest approach is to just read the binary number in 

regular base 2 (just like in our friend base 10!)
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b10001001

1’s place:
1 

2’s place:
0 

4’s place:
0 

8’s place:
8 16’s place:

0 
32’s place:

0 

64’s place:
0 

128’s place:
128 

128+8+1 = 137
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Most arithmetic works out well 
too!
• Add/Subtract:

• Multiply/Divide:

10/14/25 https://fpga.mit.edu/6205/F25

b10001001     (137)   
+ b00000101       (5)   

b10001110     (142)   

b00000101      (5)   
* b00000110      (6)   

b0000011110      (30)   

b00000000      (0)   
b000001010      (10)   

+ b0000010100      (20)   
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Unsigned Values:

• 1 byte (8 bits): 28 values: 256 numbers to rep
• Express from 0 to 255
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• 2 bytes (16 bits): 216 values: 65,536 numbers
• Express from 0 to 65,535

• 4 bytes (32 bits): 232 values: 4,294,967,296 nums
• Express from 0 to 4,294,967,295

00000000 11111111

positive values
0 255

00000000_00000000 11111111_11111111

positive values
0 255

00000000_00000000_00000000_00000000 11111111_11111111_11111111_11111111

positive values
0 4,294,967,295
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Inherent Modularity
• If we use a fixed number of bits, addition and other operations 

may produce results outside the range that the output can 
represent (up to 1 extra bit for addition)
• This is known as an overflow

• Common approach: Ignore the extra bit
• Gives rise to modular arithmetic: With N-bit numbers, equivalent to 

following all operations with mod 2N

• Visually, numbers “wrap around”:
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Example: (7 + 3) mod 23 ? 
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Happens with more bits too (8 bits)

• What happens if you add 131 to 
155 with 8 bit?
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0100000011000000

10000000

00000000

00100000

0110000010100000

11100000
10011011      (155) 

10000011     (131)

+

100011110     (286)

00011110     (30)

overflow

131

+155

30
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The Modularity is Useful

• Polynomial division in finite fields arises naturally 
from the rollover/overflow/underflow nature of 
fixed precision

• Also angle!
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Other numerical representations 
...what about angles?

• If you need to 
represent angles, 
the natural 
overflow of fixed 
bits works 
beautifully.
• Each bit 

represents ~pi/128 
of precision
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01000000

11000000

10000000 00000000

0010000001100000

10100000
11100000

0	or 2𝜋

𝜋/4

𝜋/2

3𝜋/4

𝜋

5𝜋/4

3𝜋/2

7𝜋/4

Stuff does not have to map to 
rational numbers!



What About Negatives?

• Our Number Schemes so far only allow 
representation of positive numbers (and zero).
•What about negatives? How can we do this in 

an efficient manner?
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One Solution: “Sign Bit” (did this with Pong)
• If most-significant-bit (msb) is 0, interpret like a negative 

sign:
• If 0, lower bits are from a positive number
• If 1, lower bits are from a negative number

• To get the negative of the number, flip the msb:

L01-12
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‘b00010001 == +(16+1) == 17

‘b10010001 == -(16+1) == -17 

‘b10000000 == -0 
• Major problem(s)?
• Signed zero (you can have +0 and -0)…big problem
• Math tricky since a bit is no longer a number but a symbol

‘b00000000 == 0 



Another Solution: “One’s Complement”
• If most-significant-bit (msb) is 0, interpret like an unsigned value.
• If msb is 1, then number is negative, else positive.
• To get the negative of the number flip all the bits:

L01-13
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‘b00010001 == +(16+1) == 17

‘b11101110 == bitflip of 17== -17 

‘b11111111 == -0 
• Major problem(s)?
• Signed zero (you can have +0 and -0)…big problem
• Also addition and subtraction need this annoying wrap-

around carry.

−𝐴 = ~𝐴

‘b00000000 == 0 

bitflip



Inherent Modularity to the 
Rescue
• Return to our 3-bit* number system:

• If I want to add 1, I just add 1 and move 
clockwise by 1 unit
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*3 bits here since easy to think about and draw, but could do with any number of bits

§ If I want to subtract 1, is there a number I could 
add using our same regular adding rules to get 
the same result?  If so, that number could be 
called “-1”, right?
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A Negative Number

• If I start at ”3” aka ‘b011, what 
could I add to get to 1?
• To go back 2, I can add:
• 2! − 2 = 6

• (3+6)%8 = 1. 
• Or: “-010” = 110
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Negating a Number
• In a 3bit space, The negative of a number can be 

expressed as:

• Or written a different way:

• ‘b111 minus any 3 bit value will be the same as the 
bitflip of that value (~A)

• So the negative of any value must be:
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“ − 𝐴” = `b001 + `b111	 − 𝐴

−𝐴 = 	1	 +	~𝐴

“ − 𝐴” = 8	 − 𝐴

“ − 𝐴” = 	1 + (`b111	 − 𝐴)
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The Solution: 2’s Complement

• For 000 to 111 what numbers do we get in this scheme?
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000

100

001

010

011

111

110

101

0
1-1

2-2

3-3

??
4 or -4?
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Interesting…

• If we make 100 into -4, the system of numbers 
becomes consistent and easily extensible to more 
bits.
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000
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3-3

-4

§ With this model we can come 
up with some 
rules/observations…
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Two’s Complement (Signed) Ints
• For an 𝑛 bit signed int, we represent from: 
• Min: −2"#$
• Max: 2"#$ − 1
• Zero is always all zeros

• The negative of a number 𝐴 is always −𝐴 = 	1	 +	~𝐴
• A number is positive if the msb is 0:
• If so, just add up non-zero digits by weight as you do for 

unsigned

• A number is negative if msb is 1:
• If so add weight of msb, then for all bits below that subtract 

off the weight of any non-zero digits:
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Signed Values:

• 1 byte (8 bits): 28 values: 256 numbers to rep
• Express from -128 to 127
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• 2 bytes (16 bits): 216 values: 65,536 numbers
• Express from -32,768 to 32,767

• 4 bytes (32 bits): 232 values: 4,294,967,296 nums
• Express from -2,147,483,648 to 2,147,483,647

00000000 11111111

Increasing positive values à
0 -1

Increasing negative values à

10000000

-128

00000000_00000000 11111111_11111111

Increasing positive values à
0 -1

Increasing negative values à

10000000_00000000

-32768

00000000_00000000_00000000_00000000 11111111_11111111_11111111_11111111

Increasing positive values à
0 -1

Increasing negative values à

10000000_00000000_00000000_00000000

-2147483648
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Math Operations Still Work

• Two’s Complement is pretty nice because you can 
still do all your regular math operations pretty 
easily 

• Also No double-zero!

• Pretty much all modern digital systems use two’s 
complement math to represent signed integers

L01-21
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Signed Arithmetic in Verilog

Just add “signed” modifier to your variable declaration. \s
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logic [15:0] a; // Unsigned 
logic signed [16:0] signed_a; //signed 



ALL OF THE FOLLOWING ARE TREATED AS UNSIGNED 
IN VERILOG!!!

• Any operation on two operands, unless both 
operands are signed
• Based numbers (e.g. 12ʹd10), unless the explicit “s” 

modifier is used)
• Bit-select results a[5]
• Part-select results a[4:2]
• Concatenations
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Using Signed Arithmetic in Verilog

http://billauer.co.il/blog/2012/10/signed-arithmetics-verilog/

Example of multiplying signed by unsigned

logic [15:0] a; // Unsigned 
logic signed [15:0] b; 
logic signed [16:0] signed_a; 
logic signed [31:0] a_mult_b; 

assign signed_a = a;//Convert to signed 
assign a_mult_b = signed_a * b



For example, consider these two 
testbench examples:
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-2 3  42 -2 3  -6

Result: Result:

Not really synthesizable here ($finish, $display, etc)…but shows what Verilog is thinking

module test_one;
  logic signed [3:0] x;
  logic [3:0] y;
  logic signed [8:0] z;
  initial begin
    x = -2;
    y=3;
    z = x*y;
    $display(x, y, z);
    $finish;
  end
endmodule

module test_two;
  logic signed [3:0] x;
  logic signed [3:0] y;
  logic signed [8:0] z;
  initial begin
    x = -2;
    y=3;
    z = x*y;
    $display(x, y, z);
    $finish;
  end
endmodule
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Sign extension
Consider the 8-bit 2’s complement representation of:

-5 = ~00000101 + 1
   =  11111010 + 1
   =  11111011

42 = 00101010

What is their 16-bit 2’s complement representation?

42 = ________00101010

-5 = ________11111011

42 = 0000000000101010

-5 = ________11111011

42 = 0000000000101010

-5 = 1111111111111011

Extend the MSB (aka the “sign bit”) 
into the higher-order bit positions
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Using Signed Arithmetic in Verilog
Shifts in Verilog do not base themselves off of the type they are working on. >> is 
always binary shift.

“<<<“ and “>>>” tokens result in arithmetic (signed) left and right shifts if the 
operand is signed: multiple by 2 and divide by 2.

Right shifts will maintain the sign by filling in with sign bit values during shift

logic signed [3:0] x;
logic signed [3:0] value = 4'b1000; // -8
x = value >> 2 // results in 0010 or 2
x = value >>> 2 // results in 1110 or -2

logic [3:0] value = 4'b1000; // -8
x = value >> 2 // results in 0010 or 2
x = value >>> 2 // results in 0010 or -2 (is unsigned…extends with 0’s)



Few Other Things
• When specifying numbers/constants you cand put a s in 

front to specify it as signed.
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logic signed [7:0] x;
initial begin
  x = -'d5;
  $display("%d %8b", x,x); //prints: -5 11111011
  x = -'sd5;
  $display("%d %8b", x,x); //prints: -5 11111011
  x = 'd5;
  $display("%d %8b", x,x); //prints: 5 00000101
  x = 'sd5;
  $display("%d %8b", x,x); //prints: 5 00000101
  x = 'd234;
  $display("%d %8b", x,x); //prints: -22 11101010
  x = 'sd128;
  $display("%d %8b", x,x); //prints: -128 10000000
  #100;
  $finish;
end

logic [7:0] x;
initial begin
  x = -'d5;
  $display("%d %8b", x,x); //prints: 251 11111011
  x = -'sd5;
  $display("%d %8b", x,x); //prints: 251 11111011
  x = 'd5;
  $display("%d %8b", x,x); //prints: 5 00000101
  x = 'sd5;
  $display("%d %8b", x,x); //prints: 5 00000101
  x = 'd234;
  $display("%d %8b", x,x); //prints: 234 11101010
  x = 'sd128;
  $display("%d %8b", x,x); //prints: 128 10000000
  #100;
  $finish;
end



Need to make a thing signed?
• Either use $signed
• Or declared signed types to route through:
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logic signed [3:0] x = 4'b1110; // -2 also -4'
logic [3:0] y = 4'b1100; //12 unsigned, (-4 signed)
logic signed [4:0] z
assign z = x*$signed(y);//interpret y as signed
//results in z having 5’b11000 in it (-8)
//OR:
logic signed [3:0] y_signed;
assign y_signed = y;
assign z = x*y_signed; //multiplication of two signed things is signed
//results in z having 5’b11000 in it (-8)



Part-Select
• Be careful with part selects on 

dimensions...immediately becomes unsigned
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logic signed [7:0][15:0] x;
logic signed [15:0] y;
logic signed [31:0] z;
assign z = x[0]*y; //unsigned multiplication
assign z = $signed(x[0] * y); //unsigned multiplication
assign z = x[0] * $signed(y); //unsigned multiplication
assign z = $signed(x[0]) * y; //signed multiplication



Signed Numbers Guideline
• Once you start using signed Verilog in a module or a 

signal path, just make everything you’re using is 
signed.  If you do that, you should be ok.
• Make sure everything upstream of a calculation has 

been done in only a signed environment (held in 
signed logics and used with signed logics.
• Signed/Unsigned bugs are some of the hardest to find 

so be cautious
• When in doubt also use $signed
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A variable being signed does NOT change 
the bits the variable contains!
• The signedness of a variable only 

impacts how operators are 
interpreted. It does not impact the 
bits themselves. 
• Some operators are relatively robust 

and act kinda the same regardless if 
you are signed or unsigned! (+, -, 
bitwise operators, even *)
• But the setup and interpretation of 

these operations often needs 
slightly different framing based on 
the signedness

10/14/25 https://fpga.mit.edu/6205/F25 31



Consider Multiplication
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‘b101      (5)   
* ‘b110      (6)   
‘b000      (0)   
‘b1010      (10)   

+’b10100      (20)   
‘b011110      (30)   

• Consider two variables. One has ‘b101 in it another 
has ‘b110 in it.
• If you invoke unsigned multiplication on these 

bits…stuff just sort of works:

• In actuality because the multiplication of a 3 bit by 3 
bit number could result in 6 bits of result, you should 
“extend” but it can be just 0’s



Consider Multiplication

10/14/25 https://fpga.mit.edu/6205/F25 33

‘b000101      (5)   
* ‘b000110      (6)   
‘b000000      (0)   
‘b0001010      (10)   

+  ’b00010100      (20)   
‘b011110      (30)   

• So for unsigned you’re really doing this:



Consider Multiplication
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‘b111101      (-3)   
* ‘b111110      (-2)   
‘b000000      (0)   
‘b1111010      (-6)   

+’b11110100000      (-96)   
‘b110011000110       (6)   

• Consider two variables. One has ‘b101 in it another has ‘b110 in it
• If you invoke signed multiplication…stuff does not  “just work”. You 

*really* need to bit extend ahead of time to the worst case width:

‘b11110100      (-12)   
‘b111101000      (-24)   
‘b1111010000      (-48)   

Discard
overflow



Few Other Things
• When specifying numbers/constants you cand put a s in 

front to specify it as signed.

• In all comparative cases above we’ve put identical bits 
into variable. When we ask Verilog to perform an 
operation with those bits, its interpretation differs.
• This can bleed into sign extension and other peripheral 

tasks, for example…
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logic signed [7:0] x;
initial begin
  x = -'d5;
  $display("%d %8b", x,x); //prints: -5 11111011
  x = -'sd5;
  $display("%d %8b", x,x); //prints: -5 11111011
  x = 'd5;
  $display("%d %8b", x,x); //prints: 5 00000101
  x = 'sd5;
  $display("%d %8b", x,x); //prints: 5 00000101
  x = 'd234;
  $display("%d %8b", x,x); //prints: -22 11101010
  x = 'sd128;
  $display("%d %8b", x,x); //prints: -128 10000000
  #100;
  $finish;
end

logic [7:0] x;
initial begin
  x = -'d5;
  $display("%d %8b", x,x); //prints: 251 11111011
  x = -'sd5;
  $display("%d %8b", x,x); //prints: 251 11111011
  x = 'd5;
  $display("%d %8b", x,x); //prints: 5 00000101
  x = 'sd5;
  $display("%d %8b", x,x); //prints: 5 00000101
  x = 'd234;
  $display("%d %8b", x,x); //prints: 234 11101010
  x = 'sd128;
  $display("%d %8b", x,x); //prints: 128 10000000
  #100;
  $finish;
end



Other Operations…
• Things like equality/inequality 

checks as well as division, mod, etc…
• These obviously are dependent on 

whether we interpret the bits as 
signed or unsigned (no surprise 
there)
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>>> and <<< live here also



Operator Precedence
• There is and always has been 

a very clear order in which 
operators get analyzed
• However some of these 

operators are sign 
dependent in precedence
• Sign dependence may lead 

to differing sign extension. 
• And then weird things can 

happen.
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😂



Also using a “-” does not make a thing 
signed
• The unary operator “-” just does

• The result is not inherently signed so be careful.

• So don’t expect -(2’d2)  to be a signed thing (for the 
purposes of operator determination)

10/14/25 https://fpga.mit.edu/6205/F25 38

−𝐴 = 	1	 +	~𝐴



Conclusions
• It seems like Verilog is strongly inclined towards unsigned 

numbers. Any of the following yield an unsigned value:
• Any operation on two operands, unless both operands are signed.
• Numbers given with an explicit base (e.g. 12ʹd10), unless the explicit "s" 

modifier is used)
• Results of bit-select
• Results of part-select
• Concatenations

• Be careful of hidden sign extensions!
• Be careful of small one bit or two bit signed numbers…the patterns 

of two’s complement stuff gets fuzzy at one bit.
• Use $signed as needed…results in ugly code, but can make things 

safe.
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(https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/)
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Other ”Signed” formats?
• Sometimes it may be convenient to 

move a signed number into an unsigned 
space
• For example a signal that ranges from -

128 to 127 (8 bit signed)
• You can convert this to offset binary by 

just flipping the msb... 
• This will move the signal to an unsigned 

ranged of 0 to 255
• Can move back by reflipping the msb if 

needed
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Other numerical representations 
...what about angles?

• If you need to 
represent angles, 
the natural 
overflow of fixed 
bits works 
beautifully.
• Each bit 

represents pi/128 
of precision
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But What if I wanted negative angles? 
• Thinking about 

angles with binary 
and two’s 
complement is 
one of the best 
ways to “get” 
two’s 
complement.
• It works 

automatically and 
for free!
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DSP Concepts
Digital Signal Processing
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A Digital System in an Analog World
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• Many physical phenomena (sound, light, physics in 
general) are best-described as continuous entities

Analog 
phenomena

Digital
System

Analog 
phenomena

Reconstruction

Manipulation 

Sampling,
Quantization,
Digitization



Visualizing Sampling
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Continuous in Value and in Time
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Discretization in Time
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4 bit value encoding
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Discretization in Time and 
Quantization in Value



v[n] = [9,11,5,7,11,11,10,8,5,4,]

10/14/25 49

t

V(
t)

4 bit value encoding

Discretization in Time and 
Quantization in Value
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Store in memory

• v[n] = [9,11,5,7,11,11,10,8,5,4,]
• 10 4-bit values: need 40 bits to represent!
• Good stuff. That’s not a lot!
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Reconstruction of Signal
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4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]
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Reconstruction (with first-order hold 
interpolation)
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4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]
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Compare to original… not bad
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4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]
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Errors

• Discretization Error: How ”off” our readings are in 
time due to sampling at discrete intervals

• Quantization Error: How “off” our readings are in 
reproduced value…if our bin size is 50mV and our 
signal varies only by 20mV this is going to cause 
problems
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Continuous in Value and in Time
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Discretization in Time and 
Quantization in Value



v[n] = [9,11,5,7,5,12,10,7,5,4,]
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Reproduce
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Reproduce
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Compare to original… Did not 
Capture the high-frequency Wiggles!
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Potentially Bad Discretization Error
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Continuous in Value and in Time
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Discretization in Time and 
Quantization in Value



v[n] = [9,9,9,9,9,9,9,9,9,9]
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Discretization in Time and 
Quantization in Value



Store in memory

• v[n] = [9,9,9,9,9,9,9,9,9,9]
• 10 4-bit values: need 40 bits in memory!
• Great.  All is good.
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v[n] = [9,9,9,9,9,9,9,9,9,9]
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v[n] = [9,9,9,9,9,9,9,9,9,9]

10/14/25 66

t

V(
t)

4 bit value encoding

Reproduce

https://fpga.mit.edu/6205/F25



v[n] = [9,9,9,9,9,9,9,9,9,9]
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Compare… to original also meh

Those tiny wiggles might be 

really important in certain 

contexts!  

Rodent heartbeats!Potentially Really Problematic 
Quantization Error!
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Conclusions
• Care must be taken when choosing what rate you 

sample (discretize) your signal and at what bit-
depth you quantize your sample
• There’s no right answer, since it depends on 

context/use cases.
• Ideally want to sample at high rate and quantize 

with many bits…
• But taken to the extreme this uses a lot of 

resources (lots of memory and resources/lots of 
bits) so downward pressure on choices
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Is that all there is to it?
• No, it is wayyy more complicated
• Let’s just consider sample rate for right now (we’ll 

revisit quantization later)
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Sample Rate
• How frequently we sample our signal directly 

influences what we can effectively capture.
• A sample rate of 𝑓! is only capable of expressing 

signals with frequencies less than "%
#

frequency𝑓!0 𝑓!
2

“Nyquist Rate”

Signals with frequencies in 
this region of the spectrum 
can be fully captured

Nyquist, Shannon, few others 
showed this in the 1930s
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Let’s consider this situation though….
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Let’s digitize it…at this sample rate we 
shouldn’t be able to capture it



v[n] = [9,11,5,7,5,12,10,7,5,4,]
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Discretization in Time and 
Quantization in Value



Store in memory

• v[n] = [9,11,5,7,5,12,10,7,5,4,]
• 10 4-bit values: need 40 bits in memory!
• Easy-peasy one-two-threesy
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Reconstruct
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Reproduce
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Compare to original… Did not 
Capture the high-frequency Wiggles!
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Consider this…
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Sample it…
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Store it…
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Reconstruct it…
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We’ve created a a different signal from what was before! WTH?



Or Consider this…
 if we start with this data…
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And we Reconstruct the signal…is 
this ok?
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First-order hold (connect-the dots)



If it came from this, ok… but…
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It could have also come from 
this…Uh oh
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First-order hold (connect-the dots)



Which one Made the Signal? 
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There’s ambiguity in what those samples could represent…that 
means it really doesn’t convey much, if any, information



Aliasing
• While we can’t fully capture and reproduce signals 

with a frequency higher than the Nyquist sampling 
rate, it doesn’t mean they won’t have an impact!
• Energy from that high frequency will leak into the 

frame…a form of “spectral leakage”
• A sample rate of 𝑓! can fully capture all information 

in a signal if and only if, the highest frequency in 
that signal is at or below "%

#
  !

• If you don’t do this, aliasing will appear (higher 
frequencies appear as a different signal (an “alias”)) 
that can be expressed with the sample rate
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Aliasing can happen in time...

• Camera sample rate slow and spin rate of tires too 
high...spinning appears as lower frequency 
artifacts.
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Aliasing in Audio (also in time)

https://www.youtube.com/watch?v=UaKho805vCE&ab_channel=MarkAndersonAudio
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Aliasing Can Happen in Space too
• Just like there are temporal frequencies (in time), images 

have spatial frequencies (camera pixels spatially sample)
• Same issues arise!
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https://en.wikipedia.org/wiki/Aliasing

Anti-alias Filtered Not Anti-alias Filtered

This font has been 
processed with an 
anti-alias filter to 
prevent artifacts when 
displayed



Aliasing in your Camera 
• In lab 6 you get the full HD output of the camera 

functioning.  Comparing the two outputs is 
important.
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Aliasing in Student Photo Book
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6.205 student with 
properly anti-

aliased clothing

6.205 student with 
horribly aliasing 

clothing



Solution
• The ONLY way to guarantee that a set of discrete points can 

unambiguously represent a signal is to guarantee that prior 
to sampling, we remove all energy that it exists in 
frequencies higher than the Nyquist Sampling Rate*
• To do this we need a Low-Pass Filter!

frequency𝑓!0 𝑓!
2

“Nyquist Rate”

Signals with frequencies in 
this region of the spectrum 
can be fully captured

Nothing can exist in this 
region of the spectrum
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*lying to you, there are exceptions to this in more advanced DSP



Low Pass Filter
• Prior to Sampling or down-sampling, we must be 

sure that our signal has no significant energy above 
our Nyquist Rate

Signal In Downstream

“Anti-Aliasing Filter”

LPF
Filtered 
Signal Sampler

10/14/25 https://fpga.mit.edu/6205/F25 94



How Do You Actually Make a Filter?
• No time for math…gotta take 6.300, more so 6.341 

spend their time on this stuff*
• Several types of filters. Two big ones:
• IIR: Infinite Impulse Response:

• Uses past output history for filtering
• FIR: Finite Impulse Response:

• Uses input history for filtering
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*and it is cool stuff! You should take these classes 



Filters
• Stateful systems that analyze history signals to select 

for particular signal attributes:
• Low-pass Filter: Lets through low-frequency signals
• High-pass Filter: Lets through high-frequency signals
• Band-pass Filter: Lets through selective group of frequencies
• Band-stop Filter: Blocks selective group of frequencies
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Infinite Impulse Response Filter (IIR)

• The current output (𝑦 𝑛 )  of the filter is based on the 
weighted sum of the previous output (𝑦 𝑛 − 1 ) of 
the filter + the value of the input (𝑥[𝑛))*
• Sometimes called a recursive filter: “y is based off of y 

is based off of y…”
• Information enters the system through 𝑥 but its 

influence on the output is dependent on the values of 
𝛼 and 𝛽

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 	𝛽 , 𝑥[𝑛]
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*can also be based on multiple past values of y and x



Infinite Impulse Response (Modified)

• Fix the relationship of the new input and old output 
to one variable 𝛼	:
• As 𝛼 → 1 input has less weight (takes time for it to affect 

output…blocks more high frequency events)
• As 𝛼 → 0 input has more weight (output quickly follows 

input…allows through more high frequency events (and 
everything actually)

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛]

0 ≤ 𝛼 ≤ 1
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IIR Filter
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y(
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t

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛]



Infinite Impulse Response (Modified)
𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛] 0 ≤ 𝛼 ≤ 1

× +

𝛼

𝑥 𝑦

×

1 − 𝛼
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Infinite Impulse Response (Modified)
𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛] 0 ≤ 𝛼 ≤ 1

× +

𝛼

𝑥 𝑦

×

1 − 𝛼
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N

M

N+M

M
N

N+M

N+M+1 N
>>>M+1

Need to keep in mind bits!

𝛼 would be scaled up by 2M and 
Then the result is shifted back 
down later



Finite Impulse Response
• Have the output be based off of a sliding window of 

the past history of the input.
• Literally just convolution basically

• Very powerful!! Huge flexibility in choosing those 
coefficients and can get a ton of behaviors!
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𝑦 𝑛 = 𝑏$ , 𝑥 𝑛 + 𝑏% , 𝑥 𝑛 − 1 + 𝑏# , 𝑥 𝑛 − 2



FIR Filter

10/14/25 103

t

x(
t)

https://fpga.mit.edu/6205/F25

y(
t)

t
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FIR Filters
• Extremely flexible
• Often times many, many “taps” long (N in 100’s is 

not uncommon)

• The values you pick for these taps are arrived at 
using a number of DSP-oriented algorithms 
(beyond scope of course…but in 6.003/6.341, etc)
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𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]



FIR Filters
• Some online tools, Matlab, Python, Vivado all have 

tools that allow you to:
• specify how you want your filter to look
• Provide you the coefficients needed to generate that filter

• The 𝑏 coefficients are generally provided as real 
numbers between 0 and 1.  But since we don’t want to 
do floating point arithmetic, we usually scale them by 
some power of two and then round to integers.
• Since coefficients are scaled by 2M, we’ll have to re-scale the 

answer by dividing by 2M.  But this is easy – just get rid of the 
bottom M bits!

• More taps generally means you can get better 
response:
• Closer to ideal filter! 
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Finite Impulse Response

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏&

𝑥[𝑛]

×

+

𝑏$

𝑥[𝑛 − 1]

×

+

𝑏'

𝑥[𝑛 − 2]

×

+

𝑏!

𝑥[𝑛 − 3]

×

+

𝑏(#$

𝑥[𝑛 − 𝑁 + 1]⋯

⋯
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Disgustingly long combinational path…too much propagation delay



Finite Impulse Response (Modified)

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏&

𝑥[𝑛]

×

+

𝑏$ ×

+

𝑏' ×

+

𝑏! ×

+

𝑏(#$

⋯

⋯
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Much nicer critical path (worst propagation delay)



Bit Growth 𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏&

𝑥[𝑛]

×

+

𝑏$ ×

+

𝑏' ×

+

𝑏! ×

+

𝑏(#$

⋯

⋯
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N N
M M M M M

N+MN+M N+M N+M N+M

https://zipcpu.com/dsp/2017/07/21/bit-growth.html

Adding values that are N+M bits repeatedly grows the number of bits needed to 
not lose precision…will grow at between 1 bit per N and 1 bit per log2(N)!  But this 
can grow large so there’s ways to handle it



DSP Blocks?

• These IIR and especially FIR filters sure do have a 
lot of multiply-then-add operations going on…
• Remember those DSP blocks we’ve talked about 

previously? That’s why they’re designed the way 
they are
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DSP Blocks
• Mult-then-add is a common operation chain in 

many things, particularly Digital Signal Processing
• FPGA has dedicated hardware modules called 

DSP48 blocks on it
• 150 of them on Urbana FPGA board
• Capable of single-cycle multiplies

• Can get inferred from using * in your Verilog that 
isn’t a power of 2:
• x*y, for example, will likely will result in DSP getting used
• May take a full clock cycle so would need to budget tiing 

accordingly
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DSP48 Slice (High Level)
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https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf



FIR Filter (Iterative Design)

• 1000’s of taps will use way too much resources. 
Instead you can also build FSM-based FIR filters
• Be given new input sample
• Use one clock-cycle per multiply-add
• Accumulate the sum
• After N cycles, your output is calculated
• Update a circular buffer to keep track of past values of 𝑥

• For audio usually plenty of clock cycles between 
each audio cycle anyways (you have 2000 clock 
cycles of 100 MHz between each audio sample of 48 
ksps audio!)
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FIR Wizard
• FIRs are so 

common, Vivado 
actually has some 
IP infrastructure 
to aid in designing 
them
• Can tune how 

pipelined vs. 
Iterative/FSM you 
want your FIR!
• Or use 

Python/numpy to 
determine 
coefficients
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In 2D Space you can also make 
filters (week 7)

• The common way is a 2D FIR 
filter, except it exists in 2 
dimensions
• Shown here is a 3x3 filter
• The weights of the 

coefficients make up the 
“kernel”
• It gets dragged/convolved 

across the screen
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In 2D Space you can also make 
filters (week 7)
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Quantization
The Other way you can mess up your signals
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Discretization in Time and 
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Quantized Values
If we use N bits to encode the magnitude of one of the discrete-time samples, 
we can capture 2N possible values. 

So we’ll divide up the range of possible sample values into 2N intervals and 
choose the index of the enclosing interval as the encoding for the sample value.

sample voltage

quantized value 1
1-bit

3
2-bit

6
3-bit

13
4-bit

0

0
0

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1

2

3

4

5

6

7

1

2

3

1

VMAX

VMIN
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Quantization Error

53

54

55

56

57

Note that when we quantize the scaled sample 
values we may be off by up to ±½ bin from the 
true sampled values.

54 55 56 55 55

The red shaded region shows the error we’ve 
introduced
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Got lucky

Way off



During signal reconstruction, Quantization 
introduces a new signal: Quantization error!

http://digitalsoundandmusic.com/chapters/ch5/

𝒔 𝒕 = 	𝒔𝒐 𝒕 + 𝒆(𝒕)

What gets reconstructed is not just the original signal,
But the original signal plus the quantization error:
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Error Signal Drops with Higher Bit-depth

http://digitalsoundandmusic.com/chapters/ch5/

Amplitude of Error Signal Drops 
with higher bit depth
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Naturally, therefore 
we want higher bit 
depth to keep the 
amplitude of the 
quantization error 
small

Unfortunately 
memory bits is not 
cheap so we might 
not always have the 
ability to do high bit 
depth quantization



Structure of Quantization Noise

Pandey, Nitesh & Hennelly, Bryan. (2011). Quantization noise and its reduction in lensless Fourier digital holography. Applied optics. 50. 
B58-70. 10.1364/AO.50.000B58. 

• The more bits we’ve used 
for quantizing:
• The smaller our error gets 
• AND
• The more “random” our 

error signal gets 

• Fewer bits leads to error 
signal that actually looks 
like a signal :/  (NOT good)
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More Quantization Obfuscates Original Signal

Pandey, Nitesh & Hennelly, Bryan. (2011). Quantization noise and its reduction in lensless Fourier digital holography. Applied optics. 50. 
B58-70. 10.1364/AO.50.000B58. 
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Frequencies of Error Signal Become more uniform with higher bit depth
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Can’t Distinguish Signal From Error
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• Once you’ve lost information, you can never regain it. 
There is no “enhance” button in real-life

• Motivation to not skimp out on quantizing (pick 
enough bits)

• But if you have to go low in bits…what can you do?



Quantization Error in Audio

https://www.youtube.com/watch?v=UaKho805vCE&ab_channel=MarkAndersonAudio
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@50 sec



Quantization* 
A Graphical Example

How many bits are needed to represent 256 shades of 
gray (from white to black)?

126

* Acknowledgement:  Quantization slides and photos by Prof Denny Freemen 6.003
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Bits Range
1 2

2 4

3 8
4 16

5 32

6 64
7 128

8 256



Quantization: Images
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Converting an image from a continuous representation to a discrete 
representation involves the same sort of issues as with 1D signals (audio)

This image has 280 × 280 pixels, with brightness quantized to 8 bits.
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Quantizing Images
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8 bit image                                         7 bit image
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Quantizing Images
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8 bit image                                          6 bit image
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Quantizing Images
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8 bit image                                          5  bit image
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Quantizing Images
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8 bit image                                          4  bit image
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Quantizing Images

10/14/25 132

8 bit image                                          3  bit image
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Quantizing Images
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8 bit image                                          2  bit image
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Quantizing Images
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8 bit image                                          1  bit image
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https://en.wikipedia.org/wiki/Dither

Quantizing Colors

True color (24 bit) kitteh 

256 (8bit)  color kitteh 

16 color (4 bit) kitteh



Error Diffusion
• If you find yourself with an error signal that has 

structure* to it, there are ways to spread out the error.

• You’ll never get rid of the error (which would involve 
making information from nothing), but you can ”diffuse” 
it in the image in the frequency domain

• Humans are often less sensitive to random noise than 
structured noise (eyes/ears tend to filter that out better)
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*structure refers to non-uniform frequency composition…so like sharp frequency 
spikes



Dithering
• The solution is to add more noise when we quantize, but 

do it so it spreads the frequency composition out to be 
more uniform  
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𝒔 𝒕 = 	𝒔𝒐 𝒕 + 𝒆𝒒 𝒕, 𝒓

Total Signal Actual Signal
(never getting that back, sorry folks)

Quantization Error

Random variable
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n = ±½ quantum

When quantizing in the first place and random 
noise in:



3 Bits Quantization
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2 Bits Quantization + Noise



1 Bit Quantization + Noise
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Dithering: Lots of Options/Algos
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ORIGINAL
8bit Greyscale

Every other example on 
page…1 bit quantization

https://en.wikipedia.org/wiki/Dither



Color Dithering

10/14/25 https://fpga.mit.edu/6205/F25 143

16 color (4 bit) kitteh

True color (24 bit) kitteh 

16 color (4 bit) dithered kitteh (Floyd-Steinberg)https://en.wikipedia.org/wiki/Dither



Cool Student Project from 2023
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Dithering
• In early computer/video games, space was at a premium, 

so if you could store your graphics at low (i.e one bit), 
then great!
• Lucas Pope (of Papers Please! fame) more recently 

created game Return of the Obra Dinn recreates the 
graphics of early games

Fantastic Discussion on Dithering:

https://forums.tigsource.com/index.php?topic=40832.msg1363742#msg1363742
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Dithering in Audio

https://www.youtube.com/watch?v=h59LwyJbfzs&ab_channel=loopitstreamed
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