Signed Values in Verilog
and Analog/Signal
Processing Things

6.205 Fall 2025

Administrative

e Week 06 due tomorrow.
* Week 07 Out on Thursday.
e Last lab. There is no week 08.

* After abstracts are due Friday October @5pm, staff
will then meet to figure out who works with who
and email you.

* Due date of the block diagram report is Tuesdaythe
28th,

Signed Numbers

How to Represent Numbers

e Simplest approach is to just read the binary number in
regular base 2 (just like in our friend base 10!)

1000100 1\
128’s place: 1’s place:
128 1
2’s place:
0
4’s place:
0
8’s place:
16's placer™ ¢ 128+8+1 =137
64’s place: 0
0 32’s place:
0

10/14/25 https://fpga.mit.edu/6205/F25

Most arithmetic works out well

too!
b10001001

* Add/Subtract: . LonPEO101

(137)
(5)

10001110

b00000101
* b00000110

(142)

(5)
(6)

e Multiply/Divide: bO0000000
000001010
+ b0000010100

(0)
(10)
(20)

0000011110

10/14/25 https://fpga.mit.edu/6205/F25

(30)

Unsigned Values:

* 1 byte (8 bits): 28 values: 256 numbers to rep
o, * ExpressfromOto 255 255

| positive values |

00000000

* 2 bytes (16 bits): 2®values: 65,536 numbers
e Express from O to 65,535

0 255

I positive values I

00000000_00000000

11111111

11111111_11111111

* 4 bytes (32 bits): 232 values: 4,294,967,296 nums
e Express from 0 to 4,294,967,295

0 4,294,967,295

| positive values |

00000000_00000000_00000000_00000000 11111111_11111111_11111111_11111111

10/14/25 https://fpga.mit.edu/6205/F25

Inherent Modularity

* If we use a fixed number of bits, addition and other operations
may produce results outside the range that the output can
represent (up to 1 extra bit for addition)

* This is known as an overflow

 Common approach: Ignore the extra bit

* Gives rise to modular arithmetic: With N-bit numbers, equivalent to
following all operations with mod 2N

* Visually, numbers “wrap around”:

Example: (7 + 3) mod 23 ?

0
0
7 000 1
7 000 1
001
11 111 001
6 2 . ,
110
010 110 010
5 3 : ;
101 4 011
101 4 011
100

10/14/25 https://fpga.mit.edu/6205/F25 100

Happens with more bits too (8 bits)

» What happens if you add 131 to
155 with 8 bit?

00000000
10000011 (131)
, 10011011 (155)
——— 11100000 00100000
//r100011110 (286)
11000000 01000000
overflow
10100000 01100000
10000000

10/14/25 https://fpga.mit.edu/6205/F25

The Modularity is Useful

* Polynomial division in finite fields arises naturally
from the rollover/overflow/underflow nature of
fixed precision

* Also angle!

Other numerical representations
...what about angles?

* If you need to 01000000 7/2
represent angles, 31/4
the natural 01100000
overflow of fixed
bits works
beautifully. 10000000

* Each bit '
represents ~pi/128
of precision

00100000
/4

00000000
Oor2m

5m/4

10100000 /4

11100000

Stuﬁ‘dOeS o

to 11000000
Umbers'/ Map lo 31 / 2

10/14/25 https://fpga.mit.edu/6205/F25 10

What About Negatives?

* Our Number Schemes so far only allow
representation of positive numbers (and zero).

* What about negatives? How can we do this in
an efficient manner?

10/14/25 https://fpga.mit.edu/6205/F25

One Solution: “Sign Bit” (did this with Pong)

* If most-significant-bit (msb) is O, interpret like a negative
sign:

* If O, lower bits are from a positive number
* If 1, lower bits are from a negative number

* To get the negative of the number, flip the msb:

‘b00010001 == +(16+1) == 17
‘b10010001 == -(16+1) == -17
‘b00000000 == 0
‘D10000000 == -0

* Major problem(s)?

10/14/25 https://fpga.mit.edu/6205/F25

Another Solution: “One’s Complement”

* If most-significant-bit (msb) is O, interpret like an unsigned value.
* If msb is 1, then number is negative, else positive.

* To get the negative of the number flip all the bits:

deg e o
‘b00010001 == +(16+1) == 17

‘D11101110 == bitflip of 17== -17

‘D00000000 ==
‘D11111111 == -0

e Major problem(s)?

10/14/25 https://fpga.mit.edu/6205/F25

nherent Modularity to the
Rescue

e Return to our 3-bit* number system: 0
7 000 1
111 001
 |f | want to add 1, | just add 1 and move 6 2
clockwise by 1 unit 1105 3010
101 4 011
= |f | want to subtract 1, is there a number | could 100
add using our same regular adding rules to get
the same result? If so, that number could be . 080 .
called “-17, right? 111 001
6 2
110 010
5 3
101 4 011
100

*3 bits here since easy to think about and draw, but could do with any number of bits

10/14/25 https://fpga.mit.edu/6205/F25

A Negative Number

e |If | start at ”3” aka ‘b011, what
could | add to getto 1?

* To go back 2, | can add:

«23-2=6
* (3+6)%8 = 1.
* Or: “-010” =110

10/14/25

https://fpga.mit.edu/6205/F25

0
y 000 1
111 001
6 2
110 010
5 3
101 011

100

15

Negating a Number

* In a 3bit space, The negative of a number can be
expressed as:

H_AH=8 _A

* Or written a different way:
“— A” =°b001 +b111 — A

* ‘b111 minus any 3 bit value will be the same as the
bitflip of that value (~A)

“—A”= 1+ (bl1ll — A4)

* So the negative of any value must be:

—A=1+ ~4

10/14/25 https://fpga.mit.edu/6205/F25

16

The Solution: 2’s Complement

* For 000 to 111 what numbers do we get in this scheme?

0

1

1 000
111 001

2110 010 2
101 011
3
3 100
2?
4 or -4?

10/14/25 https://fpga.mit.edu/6205/F25

Interesting...

* If we make 100 into -4, the system of numbers
becomes consistent and easily extensible to more

bits. 0

- 1
! 000

111 001

= With this model we can come
up with some -2 110 010
rules/observations...

101 011

10/14/25 https://fpga.mit.edu/6205/F25

Two’s Complement (Signed) Ints

* For an n bit signed int, we represent from:
e Min: —2n1
e« Max: 2" 1 —1
e Zero is always all zeros
* The negative of anumber Aisalways —A =1 + ~A

* A number is positive if the msb is O:
* If so, just add up non-zero digits by weight as you do for
unsigned
* A number is negative if msb is 1:

* If so add weight of msb, then for all bits below that subtract
off the weight of any non-zero digits:

*msb = most significant bit
10/14/25 https://fpga.mit.edu/6205/F25

Sighed Values:

* 1 byte (8 bits): 28 values: 256 numbers to rep
o * Expressfrom-128 to 127

-1
Increasing positive values 2> -128 Increasing negative values >
* 2 bytes (16 bits): 2®values: 65,536 numbers
e Express from -32,768 to 32,767)
0 -

I Increasing positive values = -32768 Increasing negative values = I

00000000_00000000 10000000_00000000 11111111_11111111

* 4 bytes (32 bits): 232 values: 4,294,967,296 nums
e Express from -2,147,483,648 to 2,147,483,647

0 -1

| Increasing positive values 2> -2147433648 Increasing negative values > |

00000000_00000000_00000000_00000000 10000000_00000000_00000000_00000000 11111111_11111111_11111111_11111111

10/14/25 https://fpga.mit.edu/6205/F25

Math Operations Still Work

 Two’'s Complement is pretty nice because you can
still do all your regular math operations pretty
easily

e Also No double-zero!

* Pretty much all modern digital systems use two’s
complement math to represent signed integers

10/14/25 https://fpga.mit.edu/6205/F25

Signed Arithmetic in Verilog

Just add “signed” modifier to your variable declaration. \s

logic [15:Q] a; // Unsigned
logic signed [16:0] signed_a; //signed

Using Signed Arithmetic in Verilog

ALL OF THE FOLLOWING ARE TREATED AS UNSIGNED
IN VERILOG!!!

* Any operation on two operands, unless both
operands are signed

e Based numbers (e.g. 12'd10), unless the explicit “s”

mOdIerr |S used) logic [15:0] a; // Unsigned
. logic signed E%g:g} b; .
- logi igned : signed_a;
* Bit select reSU|tS 0[5] 18312 iignid [31:0] a_r?mlt:b;
¢ Part'SEIeCt rESUItS 0[42] assign signed_a = a;//Convert to signed
. assign a_mult_b = signed_a x b
* Concatenations

Example of multiplying signed by unsigned

http://billauer.co.il/blog/2012/10/signed-arithmetics-verilog/

For example, co
testbench exam

module test one;
logic signed [3:0] x;
logic [3:0] vy;
logic signed [8:0] z;
initial begin
X = =23
y=3;
Z = XXy}
$display(x, y, z);
$finish;
end
endmodule

Result:

-23 42

Not really synthesizable here (Sfinish, Sdisplay, etc)...but shows what Verilog is thinking

nsider these two

nles:

module test two;
logic signed [3:0] x;
logic signed [3:0] y;
logic signed [8:0] z;
initial begin
X = =2;
y=3;
Z = XXY;
$display(x, y, z);
$finish;
end
endmodule

Result:

-23 -6

Sign extension

Consider the 8-bit 2’s complement representation of:

42 = 00101010 -5 = ~00000101 + 1
= 11111010 + 1
= 11111011

What is their 16-bit 2’s complement representation?

42 = 0000000000101010
-5 = 1111111111111011

_/
g
\VJ Extend the MSB (aka the “sign bit”)
into the higher-order bit positions

10/14/25 https://fpga.mit.edu/6205/F25 25

Using Signed Arithmetic in Verilog

Shifts in Verilog do not base themselves off of the type they are working on. >> is

always binary shift.

“<<<” and “>>>" tokens result in arithmetic (signed) left and right shifts if the
operand is signed: multiple by 2 and divide by 2.

Right shifts will maintain the sign by filling in with sign bit values during shift

logic signed [3:0] x;

logic signed [3:0] value = 4'b1000; // -8
X = value >> 2 // results in 0010 or 2

X = value >>> 2 // results in 1110 or -2

logic [3:0] value = 4'b1000; // -8
X = value >> 2 // results in 0010 or 2
X = value >>> 2 // results in 0010 or -2 (is unsigned..extends with 0's)

10/14/25 https://fpga.mit.edu/6205/F25

Few Other Things

* When specifying numbers/constants you cand put a s in

front to specify it as signed.

logic signed [7:0] x;

initial begin
x = ='d5;
$display(''%d
x = —='sd5;
$display(''%d
x = 'd5;
$display(''sd
x = 'sd5;
$display(''%d
x = 'd234;
$display(''%d
x = 'sd128;
$display(''%d
#100;

%8b",
%8b",
%8b",
%8b",
%8b",

%8b",

; //prints:
; //prints:
; //prints:
; //prints:
; //prints:

; //prints:

-5 11111011

-5 11111011

5 00000101

5 00000101

-22 11101010

-128 10000000

logic [7:0] x;
initial begin
x = ='d5;
$display("%d

x = ='sd5;
$display("%d
x = 'd5;
$display("%d
x = 'sd5;
$display("%d
x = 'd234;
$display("%d
x = 'sd128;
$display ("%
#100;

%8b",
%8b",
%8b",
%8b",
%8b",

%8b",

; //prints:
; //prints:
; //prints:
; //prints:
; //prints:

; //prints:

251 11111011

251 11111011

5 00000101

5 00000101

234 11101010

128 10000000

$finish; $finish;
end end
10/14/25 https://fpga.mit.edu/6205/F25 27

Need to make a thing signed?

* Either use Ssigned
* Or declared signed types to route through:

logic signed [3:0] x = 4'b1110; // -2 also -4'

logic [3:0] y = 4'b1100; //12 unsigned, (-4 signed)

logic signed [4:0] z

assign z = xx$signed(y);//interpret y as signed

//results in z having 5'b11000 in it (-8)

//0R:

logic signed [3:0] y_signed;

assign y_signed = y;

assign z = xxy_signed; //multiplication of two signed things is signed
//results in z having 5'b11000 in it (-8)

10/14/25 https://fpga.mit.edu/6205/F25

28

Part-Select

* Be careful with part selects on
dimensions...immediately becomes unsigned

logic signed [7:0][15:0] x;
logic signed [15:0] vy;
logic signed [31:0] z;

assign
assign
assign
assign

Z

Z
Z
Z

x[0]xy; //unsigned multiplication
$signed(x[0] * y); //unsigned multiplication
x[0] * $signed(y); //unsigned multiplication
$signed(x[0]) x y; //signed multiplication

10/14/25

https://fpga.mit.edu/6205/F25

29

Sighed Numbers Guideline

* Once you start using signed Verilog in a module or a
sighal path, just make everything you’re using is
signed. If you do that, you should be ok.

* Make sure everything upstream of a calculation has
been done in only a signed environment (held in
sighed logics and used with signed logics.

* Signed/Unsigned bugs are some of the hardest to find
so be cautious

* When in doubt also use Ssigned

A variable being sighed does NOT change

the bits the variable contains!
[Verilog Operator] ___ Name ___|[Functional Group

* The signedness of a variable only 0 st i

) parenthesis

impacts how operators are N e
interpreted. It does not impact the D e W
bits themselves. o [, | S
* Some operators are relatively robust 0 ™ e
and act kinda the same regardless if e
you are signed or unsigned! (+, -, = e
bitwise operators, even *)
* But the setup and interpretation of < “
these operations often needs = ey | o
slightly different framing based on
the sgneciness

Hconditional || conditional

10/14/25 https://fpga.mit.edu/6205/F25 - oL

Consider Multiplication

e Consider two variables. One has ‘b101 in it another
nas ‘b110in it.

* If you invoke unsigned multiplication on these
oits...stuff just sort of works:

‘D101 (5)

* ‘b110 (6)
‘D000 (0)
‘D1010 (10)
+'b10100 (20)
‘D011110 (30)

* In actuality because the multiplication of a 3 bit by 3
bit number could result in 6 bits of result, you should
“extend” but it can be just O’s

Consider Multiplication

* So for unsigned you’re really doing this:

‘000101 (5)

* ‘b000110 (6)

‘000000 (0)
‘0001010 (10)

+ 'b00010100 (20)
‘D011110 (30)

10/14/25 https://fpga.mit.edu/6205/F25

33

Consider Multiplication

* Consider two variables. One has ‘b101 in it another has ‘b110 in it

* If you invoke signed multiplication...stuff does not “just work”. You
really need to bit extend ahead of time to the worst case width:

‘D111101 (-3)
* ‘111110 (-2)
‘000000 (0)

‘D1111010 (—6)
‘011110100 (-12)
‘D111101000 (-24)
‘D1111010000 (-48)
+'b11110100000 (-96)
‘D110011000110 (6)

Discard J

overflow
10/14/25 https://fpga.mit.edu/6205/F25

34

Few Other Things

* When specifying numbers/constants you cand put a s in

front to specify it as signed.

logic signed [7:0] x;

initial begin
x = ='d5;

$display('sd %8b",

X = -'sd5;

$display('sd %8b",

x = 'd5;
$display("%sd %8b
x = 'sd5;
$display("%sd %8b
X = 'd234;
$display("%sd %8b
X = 'sd128;
$display("%sd %8b
#100;
$finish;

end

x
x

x
x

X,X); //prints:
; //prints:
; //prints:
; //prints:
; //prints:

; //prints:

-5 11111011

-5 11111011

5 00000101

5 00000101

-22 11101010

-128 10000000

logic [7:0] x;
initial begin
x = ='d5;

$display('sd %8b",

X = —'sd5;

$display('sd %8b",

x = 'd5;

$display(''sd %8b",

X = 'sd5;

$display('sd %8b",

x = 'd234;

$display('sd %8b",

X = 'sd128;

$display('sd %8b",

#100;
$finish;
end

; //prints:

; //prints:

x
x

; //prints:

x
x

; //prints:

x
x

; //prints:

~ N N

x
x

; //prints:

251 11111011

251 11111011

5 00000101

5 00000101

234 11101010

128 10000000

* In all comparative cases above we’ve put identical bits

into variable. When we ask Verilog to perform an

operation with those bits, its interpretation differs.

* This can bleed into sign extension and other peripheral
tasks, for example...

10/14/25

https://fpga.mit.edu/6205/F25

35

Other Operations...

. IVerilog Operator“ Name “Functional Group
* Things like equality/inequality [st orpr sl
. . . @) parenthesis
checks as well as division, mod, etc... I e
& reduction AND reduction
. | reduction OR reduct?on
* These obviously are dependent on W fliodaD | s
. . A reduction XOR reduction
~A or A~ reduction XNOR reduction
whether we interpret the bits as o peeloo XNOR____codioin
o N B - unary (sign) minus arithmetic
Slgned Or unSIgned (no Surprlse {} concatenation concatenation
{3} replication replication
there) R s
% modulus arithmetic
+ binary plus arithmetic
binary minus arithmetic
<< shift left shift
>> shift right shift
> greater than relational
>= greater than or equal to relat%onal
>>> and <<< live here also S lemtnorequite | relaiond
== logical equality equality
1= logical inequality equality
=== case equality equality
== case inequality equality
& bit-wise AND bit-wise
A bit-wise XOR bit-wise
A~ or ~A bit-wise XNOR bit-wise
| bit-wise OR bit-wise
&& logical AND logical
Il logical OR logical
2 Hconditional ” conditional

10/14/25 https://fpga.mit.edu/6205/F25 >0

Operator Precedence

* There is and always has been
a very clear order in which
operators get analyzed

 However some of these
operators are sign
dependent in precedence

* Sign dependence may lead
to differing sign extension.

* And then weird things can
happen.

10/14/25 https://fpga.mit.edu/6205/F25

|Verilog Operator” Name HFunctional Group|
| [1 ||bit-se1ect or part-select‘
| 0) ||parenthesis ‘
! logical negation logical
~ negation bit-wise
& reduction AND reduction
I reduction OR reduction
~& reduction NAND reduction
~ reduction NOR reduction
A reduction XOR reduction
~A or A~ reduction XNOR reduction
+ unary (sign) plus arithmetic
- unary (sign) minus arithmetic
| {} ||concatenation H concatenation |
| {3} ||repljcation H replication |
* multiply arithmetic
/ divide arithmetic
% modulus arithmetic
+ binary plus arithmetic
- binary minus arithmetic
<< shift left shift
>> shift right shift
> greater than relational
>= greater than or equal to relational
< less than relational
<= less than or equal to relational
== logical equality equality
I= logical inequality equality
=== case equality equality
== case inequality equality
| & |bit-wise AND | bit-wise |
A bit-wise XOR bit-wise
A~ or ~A bit-wise XNOR bit-wise
| | |bit-wise OR | bitwise |
| && logical AND | logical |
| I logical OR | logical |
| IS ||conditi0na1 H conditional |
37

Also using a “-” does not make a thing
sighed

o »”n

* The unary operator “-” justdoes -4=1+ ~4
* The result is not inherently signed so be careful.

* So don’t expect -(2°d2) to be a signed thing (for the
purposes of operator determination)

Conclusions

* |t seems like Verilog is strongly inclined towards unsigned
numbers. Any of the following yield an unsigned value:
* Any operation on two operands, unless both operands are signed.

Numbers given with an explicit base (e.g. 12'd10), unless the explicit "s"
modifier is used)

Results of bit-select
Results of part-select
Concatenations

e Be careful of hidden sign extensions!

* Be careful of small one bit or two bit signed numbers...the patterns
of two’s complement stuff gets fuzzy at one bit.

* Use Ssigned as needed...results in ugly code, but can make things

safe.
(https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/)

https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/
https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/
https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/
https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/
https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/
https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/
https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/

Other ”Signed” formats?

* Sometimes it may be convenient to
move a sighed number into an unsigned
space

* For example a signal that ranges from -
128 to 127 (8 bit signed)

* You can convert this to offset binary by
just flipping the msb...

* This will move the signal to an unsigned
ranged of O to 255

* Can move back by reflipping the msb if
needed

Decimal

oO| =N WO »» 0O | N

| | | | | | | |
0 N oo b~ N =

Offset binary,
K=8

1111

1110
1101
1100
1011

1010
1001
1000
0111

0110
0101
0100
0011

0010
0001
0000

Two's
complement

o111
0110
o101
0100
0011
0010
0001
0000
1111
1110
1101
1100
1011
1010
1001
1000

Other numerical representations
...what about angles?

* If you need to 01000000 7/2
represent angles, 31/4
the natural 01100000
overflow of fixed
bits works
beautifully. 10000000

* Each bit '
represents pi/128
of precision

00100000
/4

00000000
Oor2m

5m/4

10100000 /4

11100000

Stuﬁ‘ does o

to 11000000
Umbers'/ Map lo 31 / 2

10/14/25 https://fpga.mit.edu/6205/F25 41

But What if | wanted negative angles?

* Thinking about
angles with binary
and two’s
complement is
one of the best
ways to “get”
two’s
complement.

01000000 T0/2

3m/4

01100000 00100000

/4

10000000 00000000

|t works T 0or2m
automatically and
for free! 31/4
10100000 —m/4

11100000

11000000
-1t /2

DSP Concepts

Digital Signal Processing

A Digital System in an Ana

* Many physical phenomena (sound, lig

og World

nt, physics in

general) are best-described as continuous entities

Sampling,
Quantization,

Digitizatiof)

\

phenomena System
/

\
_

J

Manipulation

Reconstruction

Analog
phenomena

Visualizing Sampling

Continuous in Value and in Time

AV

V(t)

Discretization in Time

V(t)

/’\\

10/14/25 https://fpga.mit.edu/6205/F25

47

Discretization in Time and
Quantization in Value

A

V(t)

7\ /\\

\

r \
\
N

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25

Discretization in Time and
Quantization in Value

A

7=

V(t)

\
\
N\

t

v[n] =19,11,5,7,11,11,10,8,5,4,]

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25

Store In memory

*v[n] =[9,11,5,7,11,11,10,8,5,4,]
* 10 4-bit values: need 40 bits to represent!
e Good stuff. That’s not a lot!

Reconstruction of Signal

A
~ ® ® o
T @ 2
O
®
o 'k
>

t

v[n] =19,11,5,7,11,11,10,8,5,4,]

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25 51

Reconstruction (with first-order hold

interpolation)
A

¥\
\‘b/(’—\

t

v[n] =19,11,5,7,11,11,10,8,5,4,]

V(t)

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25 52

Compare to original... not bad

A

N

V(t)

t

v[n] =19,11,5,7,11,11,10,8,5,4,]

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25 53

Errors

* Discretization Error: How “off” our readings are in
time due to sampling at discrete intervals

* Quantization Error: How “off” our readings are in
reproduced value...if our bin size is 50mV and our
signal varies only by 20mV this is going to cause
problems

10/14/25 https://fpga.mit.edu/6205/F25 54

Continuous in Value and in Time

A

V(t)

10/14/25 https://fpga.mit.edu/6205/F25

55

A

Discretization in Time and
Quantization in Value

4 bit value encoding

https://fpga.mit.edu/6205/F25 56

10/14/25

Discretization in Time and
Quantization in Value

A

oo\

V(t)

\
\
\
N\

t

v(n] =1[9,11,5,7,5,12,10,7,5,4,]

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25

57

Reproduce

A
= @ s
T @ 2
® ®
@ o 'k
>

t

v[n] =19,11,5,7,5,12,10,7,5,4,]

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25 58

Reproduce

A

V(t)

V4
N\ y 4
AN V4
AN y 4
\‘b/\(l

t

v[n] =19,11,5,7,5,12,10,7,5,4,]

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25 59

Co
Ca

mpare to original... Dic

oture the high-frequer

NOt
cy Wiggles!

v[n] =19,11,5,7,5,12,10,7,5,4,]

Potentially Bad Discretization Error

10/14/25 https://fpga.mit.edu/6205/F25

60

Continuous in Value and in Time

A

V(t)

Discretization in Time and
Quantization in Value

A

V(t)

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25 62

Discretization in Time and
Quantization in Value

A

V(t)

t

V[n] = [919191919191919)919]

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25

63

Store In memory

° V[n] = [9191919191919)91919]
* 10 4-bit values: need 40 bits in memory!
* Great. Allis good.

Reproduce

A

V(t)

t

V[n] = [91919191919)919)919]

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25 65

Reproduce

A

V(t)

t

V[n] = [91919191919)919)919]

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25 66

Compare... to original also meh

A

V(t)

>
i ; ig™ >
v[n] =19,9,9,9,9,9,9,9,9,9] . W‘gg‘\:m ot
Potentially Really Problematic T“:;‘(’ ! -‘mp‘ofto y
Quantization Error! rcor;?::\:'heortbe
R 67

10/14/25 https://fpga.mit.edu/6205/F25

Conclusions

e Care must be taken when choosing what rate you
sample (discretize) your signal and at what bit-
depth you quantize your sample

* There’s no right answer, since it depends on
context/use cases.

* |deally want to sample at high rate and quantize
with many bits...

* But taken to the extreme this uses a lot of
resources (lots of memory and resources/lots of
bits) so downward pressure on choices

s that all there is to it?

* No, it is wayyy more complicated

e Let’s just consider sample rate for right now (we’ll
revisit quantization later)

Sample Rate

* How frequently we sample our signal directly
influences what we can effectively capture.

* A sample rate of f; is only capable of expressing

signals with frequencies less than%

A
Signals with frequencies in PY
this region of the spectrum 7
can be fully captured < =
0 >
Nyquist, Shannon, few others Js frequency
showed this in the 1930s

fs
2

“Nyquist Rate

Let’s consider this situation though....

A

V(t)

10/14/25 https://fpga.mit.edu/6205/F25 71

Let’s digitize it...at this sample rate we
shouldn’t be able to capture it

V(t)

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25 72

Discretization in Time and
Quantization in Value

A

oo\

V(t)

\
\
\
N\

t

v(n] =1[9,11,5,7,5,12,10,7,5,4,]

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25

73

Store In memory

*v[n] =[9,11,5,7,5,12,10,7,5,4,]
* 10 4-bit values: need 40 bits in memory!
* Easy-peasy one-two-threesy

Reconstruct

A
= @ s
T @ 2
® ®
@ o 'k
>

t

v[n] =19,11,5,7,5,12,10,7,5,4,]

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25 75

Reproduce

A

V(t)

V4
N\ y 4
AN V4
AN y 4
\‘b/\(l

t

v[n] =19,11,5,7,5,12,10,7,5,4,]

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25 76

Compare to original... Dic

Capture the high-frequer

NOt
cy Wiggles!

>

Great....but we still captured something! What is
that signal expressed by the red interpolation?

10/14/25 https://fpga.mit.edu/6205/F25

77

Consider this...

|
= |
>
|
i
t
10/14/25 https://fpga.mit.edu/6205/F25

78

Sample it...

A

V(t)

—

10/14/25

https://fpga.mit.edu/6205/F25

79

Store It...

V(t)
®

10/14/25

https://fpga.mit.edu/6205/F25

80

Reconstruct it...

A
A
7\
_ 7\
T | A K P \
) \\ 7\ » \F
\. /N1 /
AN / \/
N—orw ¥
>

We’ve created a a different signal from what was before! WTH?

10/14/25 https://fpga.mit.edu/6205/F25 81

Or Consider this...
if we start with this data...

A

V(t)

10/14/25 https://fpga.mit.edu/6205/F25 82

And we Reconstruct the signal...is
this ok?

A
y g
prd
= / \Q\ »
s |/ \ y

First-order hold (connect-the dots)

10/14/25 https://fpga.mit.edu/6205/F25 83

If it came from this, ok... but...

V(t)

10/14/25

N S

N~

https://fpga.mit.edu/6205/F25

84

It could have also come from
this...Uh oh

V(t)
]
N
N,
A
W
\.

N

First-order hold (connect-the dots)

10/14/25 https://fpga.mit.edu/6205/F25 85

Which one Made the Signal?

V(t)
N

>
t

There’s ambiguity in what those samples could represent...that
means it really doesn’t convey much, if any, information

10/14/25 https://fpga.mit.edu/6205/F25 86

Aliasing

* While we can’t fully capture and reproduce signals
with a frequency higher than the Nyquist sampling
rate, it doesn’t mean they won’t have an impact!

* Energy from that high frequency will leak into the
frame...a form of “spectral leakage”

* A sample rate of f; can fully capture all information

in a signal if and only if, the highest frequency in

that signal is at or below% !

* If you don’t do this, aliasing will appear (higher
frequencies appear as a different signal (an “alias”))
that can be expressed with the sample rate

Aliasing can happen in time...

* Camera sample rate slow and spin rate of tires too
high...spinning appears as lower frequency
artifacts.

10/14/25 https://fpga.mit.edu/6205/F25 88

Aliasing in Audio (also in time)

https.//www.youtube.com/watch ?v=UaKho805vCE&ab channel=MarkAndersonAudio

Aliasing Can Happen in Space too

* Just like there are temporal frequencies (in time), images
have spatial frequencies (camera pixels spatially sample)

e Same issues arise!

This font has been

processed with an
= ‘ anti-alias filter to
Anti-alias Filtered Not Anti-alias Filtered prevent artifacts when
displayed
https://en.wikipedia.org/wiki/Aliasing

10/14/25 https://fpga.mit.edu/6205/F25 90

Aliasing in your Camera

* In lab 6 you get the full HD output of the camera
functioning. Comparing the two outputs is
Important.

10/14/25 https://fpga.mit.edu/6205/F25

91

Aliasing in Student Photo Book

Solution

* The ONLY way to guarantee that a set of discrete points can
unambiguously represent a signal is to guarantee that prior
to sampling, we remove all energy that it exists in
frequencies higher than the Nyquist Sampling Rate*

 To do this we need a Low-Pass Filter!

Nothing can exist in this

Signals with frequencies in region of the spectrum

A this region of the spectrum
can be fully captured

< e >
0 Js >
S
> s frequency
/] *lying to you, there are exceptions to this in more advanced DSP
/4

“Nyquist Rate’

Low Pass Filter

* Prior to Sampling or down-sampling, we must be
sure that our signal has no significant energy above
our Nyquist Rate

4)

Filtered> Dovgnstream

_ J
K “Anti-Aliasing Filter”

10/14/25 https://fpga.mit.edu/6205/F25 94

Signal In

>

How Do You Actually Make a Filter?

* No time for math...gotta take 6.300, more so 6.341
spend their time on this stuff*

* Several types of filters. Two big ones:

* |IR: Infinite Impulse Response:

* Uses past output history for filtering
* FIR: Finite Impulse Response:

e Uses input history for filtering

*and it is cool stuff! You should take these classes

Filters

 Stateful systems that analyze history signals to select
for particular signal attributes:
* Low-pass Filter: Lets through low-frequency signals
* High-pass Filter: Lets through high-frequency signals
* Band-pass Filter: Lets through selective group of frequencies
* Band-stop Filter: Blocks selective group of frequencies

Infinite Impulse Response Filter (IIR)
yln] = a-y[ln-1]+ B x[n]

* The current output (y[n]) of the filter is based on the
weighted sum of the previous output (y[n — 1]) of
the filter + the value of the input (x[n))*

* Sometimes called a recursive filter: “y is based off of y
is based off of y...”

* Information enters the system through x but its
influence on the output is dependent on the values of

a and [

*can also be based on multiple past values of y and x

Infinite Impulse Response (Modified)

yinl=a-yln-1]+ (1 —-a) - x[n]
0<ac<l

* Fix the relationship of the new input and old output
to one variable « :

 As ¢ — 1 input has less weight (takes time for it to affect
output...blocks more high frequency events)

 As a — 0 input has more weight (output quickly follows
input...allows through more high frequency events (and
everything actually)

s

a-yln—1]+ (1 — a) - x[n]

i S SuR &

y[n]

..;biﬁ---i*’

IR Filter
A
=

99

https://fpga.mit.edu/6205/F25

10/14/25

Infinite Impulse Response (Modified)
yin] = a-yln—-1]+ (1 — a) - x[n] 0<a<l

Infinite Impulse Response (Modified)

yinl] = a-yln=-1]+ (1 —a) - x[n]

.

N N+M

0<a<l

Need to keep in mind bits!

(T
N+M+1

7@ >>>M+1

N

i

N+M

R4

a would be scaled up by 2M and

M Then the result is shifted back

1l—«

down later

Finite Impulse Response

* Have the output be based off of a sliding window of
the past history of the input.

* Literally just convolution basically

yln] = by - x|n] + by - x[n — 1] + by - x|n — 2]

* VVery powerful!! Huge flexibility in choosing those
coefficients and can get a ton of behaviors!

yln] = by - x[n] + by - x[n— 1] + b, - x[n — 2]

s

FIR Filter

https://fpga.mit.edu/6205/F25 103

10/14/25

FIR Filters

* Extremely flexible

e Often times many, many “taps” long (N in 100’s is
not uncommon)

ylnl = > by -x[n—k
k=0

* The values you pick for these taps are arrived at
using a number of DSP-oriented algorithms
(beyond scope of course...but in 6.003/6.341, etc)

FIR Filters y[n] = N_lb - x[n — k]

* Some online tools, Matlab, Python, Vivado all have
tools that allow you to:
 specify how you want your filter to look
* Provide you the coefficients needed to generate that filter

* The b coefficients are generally provided as real
numbers between 0 and 1. But since we don’t want to
do floating point arithmetic, we usually scale them by
some power of two and then round to integers.

* Since coefficients are scaled by 2M, we’ll have to re-scale the
answer by dividing by 2M. But this is easy — just get rid of the
bottom M bits!

* More taps generally means you can get better
response:

* Closer to ideal filter!

Finite Impulse Response

ylnl =) by -x[n—k
k=0

x[n—1] x[n — 2] x[n — 3] x[n—N + 1]

Disgustingly long combinational path...too much propagation delay

10/14/25 https://fpga.mit.edu/6205/F25 106

Finite Impulse Response (Modified)

ylnl =) by -x[n—k
k=0

/

Much nicer critical path (worst propagation delay)

10/14/25 https://fpga.mit.edu/6205/F25

k=0
x[n] e
SO U
M M M M M
19074 b17z' b, bs bNZf'
N+M N+M N+M N+M N+M
“ AH@FA{:%AH@...HA%@

Adding values that are N+M blts repeated/y grows the number of bits needed to
not lose precision...will grow at between 1 bit per N and 1 bit per log,(N)! But this
can grow large so there’s ways to handle it

https://zipcpu.com/dsp/2017/07/21/bit-growth.html

10/14/25 https://fpga.mit.edu/6205/F25 108

DSP Blocks?

* These IIR and especially FIR filters sure do have a
lot of multiply-then-add operations going on...

e Remember those DSP blocks we’ve talked about
previously? That’s why they’re designed the way
they are

DSP Blocks

* Mult-then-add is a common operation chain in
many things, particularly Digital Signal Processing

* FPGA has dedicated hardware modules called
DSP48 blocks on it
e 150 of them on Urbana FPGA board
» Capable of single-cycle multiplies

e Can get inferred from using * in your Verilog that
isn’t a power of 2:
* x*y, for example, will likely will result in DSP getting used

* May take a full clock cycle so would need to budget tiing
accordingly

DSP48 Slice (High Level)

10/14/25

48-Bit Accumulator/Logic Unit

— - P
) > ﬂ/
25x18
A Multiplier

Pre-adder -

T Pattern Detector

UG479_c1_21_032111

Figure 1-1: Basic DSP48E1 Slice Functionality

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

https://fpga.mit.edu/6205/F25 111

FIR Filter (Iterative De5|gn)

Ebk x|n — k|

* 1000’s of taps will use way too much resources
Instead you can also build FSM-based FIR filters
e Be given new input sample
» Use one clock-cycle per multiply-add
* Accumulate the sum
» After N cycles, your output is calculated
* Update a circular buffer to keep track of past values of x

* For audio usually plenty of clock cycles between
each audio cycle anyways (you have 2000 clock
cycles of 100 MHz between each audio sample of 48
ksps audio!)

FIR Compiler (7.2)

@ Documentation = IP Location C Switch to Defaults

[]
p Symbol | Freq. Response Implementation Defails | Component Name fir_compiler_0
A Filter Op Channel cation |Implementation Detailed Implementation | Interface | Summary
Freq. Response

Coefficient Options

I

Frequency Response (Magnitude) Coefficient Type Signed

Quantization Integer Coefficients v

* FIRs are so “EEH &

. 30.0
o Coefficient Fractional Bits |0) -
g 200
v ﬂ\ \/ Coefficient Structure Inferred N~
’ % 200 N i
£
E’ 0.0 ‘ Data Path Options

actually has some I v

-20.0 Input Data Width 16 2-47

L]
I P I n fra St r Ct re -30.0 Input Data Fractional Bits |0 16
l J u _40 Output Rounding Mode | Full Precision v

.0
0.0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized Frequency (x Pl rad/sample) Output Width 24 1-24

to aid in designing ..o

Filter Analysis

Pass Band
Range: 0.0 - Jos

Min 18.061800 dB
Max 43.525674 dB
Ripple 25.463874 dB v

Ca I l t u n e | l OW FIR Compiler (7.2)
[} []
I e I n e VS @ Documentation IP Location C' Switch to Defaults
[)
e P Symbo Freq. Response | Implementation Details Cc 5 Component Name fir_compiler_0
Ite ratlve FS |V| yOl l Filter Options | Channel Specification Implementation | Detailed Implementat
Resource Estimates

DSP slice count: 1 Interleaved Channel Specification
BRAM count: 0
L]
Information Number of Channels |1 [1-1024]
Start-up Latency: 19 Select Sequence All

Calculated Coefficients: 21

. r Coefficient front padding: 0 Sequence ID List P4-0,P4-1,P4-2,P4-3,P4-4
Processing cycles per output: 11

Parallel Channel Specification
AXI4 Stream Port Structure
I l n I I I Number of Paths |1 [1-16]
S_AXIS_DATA - TDATA

Transaction Field Type. Hardware Oversampling Specification

[]
0 REAL(15:0) fix16_0
Select Format Frequency Specification ~

M_AXIS_DATA - TDATA Sample Period (Clock Cycles) 1

. []
Lol 2= Lpe Input Sampling Frequency (MHz) '0.001
0 REAL(23:0) fix24 0

Clock Frequency (MHz) 300.0

Interleaved Channel Sequences
Clock cycles per input: 300000
Clock cycles per output: 300000

10/14/25 https Number of parallel inputs 1

Number of parallel outputs 1

filters (week 7)

hhhhhh

Input Image

e The common way is a 2D FIR °
filter, except it exists in 2
dimensions

e Shown here is a 3x3 filter

i
S~

[
~
o

-
S~

hhhhhh

1/9

1/9

1/9

1/9

1/9

1/9

* The weights of the
coefficients make up the
“kernel”

* |t gets dragged/convolved
across the screen

1/9

1/9

1/9

1/9

1/9

1/9

[
~
©

[
~
©

hhhhhh

[
~
©

=
3
o
2

1/9

1/9

1/9

1/9

1/9

1/9

HEEEN

2 =2 =2
r fro ro

n 2D Space you can also make

Output Image

=
3
o
3
@
o veount
z
+
N

HEREN

EEEEN
L]

n 2D Space you can also make
iters (week 7)

NOTESTBENCHES? J§ NO TESTBENCHES? NO TESTBENCHES?

Original Image Gaussian Blur Sharpen

0 TESTBENBHES? IR e e [l ST

Ridge Detect X Sobel Edge Detect Y Sobel Edge Detect X Sobel + Y Sobel

10/14/25 https://fpga.mit.edu/6205/F25 115

Quantization

The Other way you can mess up your signals

Discretization in Time and
Quantization in Value

A

/7\ //\\

\
\
\\ / A
N \%

V(t)

t

4 bit value encoding

10/14/25 https://fpga.mit.edu/6205/F25 117

Quantized Values

If we use N bits to encode the magnitude of one of the discrete-time samples,
we can capture 2N possible values.

So we’ll divide up the range of possible sample values into 2N intervals and
choose the index of the enclosing interval as the encoding for the sample value.

VIAX o
7
Sa m p I e VO Ita ge 3 6
1 e e—
5
2
4
e
1 —
2
N —
1
O
0
R —
qguantized value 1 3 6 13

Quantization Error

Note that when we quantize the scaled sample

values we may be off by up to =% bin from the
true sampled values.

The red shaded region shows the error we’ve
introduced

54 55 56 55 55

During signal reconstruction, Quantization
introduces a new signal: Quantization error!

5r 5.
+ Sample value Sample value
4+ JRRSIIE . + Quantization value 4r Quantization value
o K Error value Error value
3t 3r
ot ote 2r
% 1 [esees cenee % 1r
2 2 [\
3 5 0
IS €
© (]
1k

0
1t . epee -
ot .:.:. o}
-3t .::.:.. .:,.Z. 3t
4+ et 4}
-5 1 1 1 1 5

0 0.5 1 1.5 2 1.
time in seconds x107° tlme in seconds
What gets reconstructed is not just the original signal,

But the original signal plus the quantization error:
s(t) = s,(t) + e(t)

http://digitalsoundandmusic.com/chapters/ch5/
10/14/25 https://fpga.mit.edu/6205/F25 120

Error Signal Drops with Higher Bit-depth

3 5
Sample value Sample val
Quantization val lue 4 Quantization value
P! Error value Error vall
3 E—
> \
1} . \
| 1
© \ o
3 i 3 |
£ of : £ oft
E | E
© ! <
1
| J
1 - “1 |
| -2 N 7
f \ }
| -3 LI V. v
]
o o S
-3 " -5 " R .
0 0.5 1.5 2 0 0.5 1 1.5 2
time in seconds x107° time in seconds x10™
(a) bit depth of 2 (b) bit depth of 3
x10*
'3 Samp! 3
\ Quantization value
¥ Error value
10 7 \ 2
of /
@ / o
2 y 8
3 3 |
20 320
e E
&]
: /
\ /
10t \ /’ -2
\\, /
_15! \.
0 0.5 1.5 2 0 0.5 1 1.5 2
time in seconds x107° time in seconds x10°
(c) bit depth of 5 (d) bit depth of 16

http://digitalsoundandmusic.com/chapters/ch5/

10/14/25

https://fpga.mit.edu/6205/F25

Amplitude of Error Signal Drops

with higher bit depth

Naturally, therefore
we want higher bit
depth to keep the
amplitude of the
quantization error
small

Unfortunately
memory bits is not
cheap so we might
not always have the
ability to do high bit
depth quantization

121

Structure of Quantization Noise

 The more bits we’ve used auaniztion o
for quantizing:

* The smaller our error gets i I H i “

a ol b

¢ AND (| I |)quantizationenor
— OrIgINa

* The more “random” our

error signal gets \I\/VVL/\J\N\

(©) ‘ (@

e Original
quantized

fee OFiginal
quantized

e Quantized

 Fewer bits leads to error

signal that actually looks \M

like a signal :/ (NOT good) o 0

(Color online) Quantization of a sinusoidal signal and the corresponding quantization noise for three different
cases. (a) and (b) 5 bits (b) and (c) 2 bits and (d) and (e) 1 bit. It can be seen that for 5 bits the quantization
noise is almost randomly varying as in (b), and for the 1 bit case in (e), it has the particular characteristic
frequency of the original signal.

Pandey, Nitesh & Hennelly, Bryan. (2011). Quantization noise and its reduction in lensless Fourier digital holography. Applied optics. 50.
BS58-70, 40, 1364/A0.50.000B58. https://fpga.mit.edu/6205/F25 122

More Quantization Obfuscates Original Signal

Frequencies of Error Signal Become more uniform with higher bit depth

Orig. signal

' ‘ quantization error
E original %
quantized S
Ry)
=
Q)
E Error. signal
S
(a) (b) frequency
@- quantization error A Orig. signal
i 5
quantized S
S
=
= Error. signal
3 1,
S l | I | | | >
(c) (d)
frequency
e OFiIN A quantization error
—quantized
A Orig. signal
3
Error. signal
: g
=
i~
(e) (3
(Color online) Quantization of a sinusoidal signal and the corresponding quantization noise for three different (@} ' | 1
cases. (a) and (b) 5 bits (b) and (c) 2 bits and (d) and (e) 1 bit. It can be seen that for 5 bits the quantization v >
noise is almost randomly varying as in (b), and for the 1 bit case in (e), it has the particular characteristic
frequency of the original signal. frequen Cy

Pandey, Nitesh & Hennelly, Bryan. (2011). Quantization noise and its reduction in lensless Fourier digital holography. Applied optics. 50.
B58-70. 10.1364/A0.50.000B58.
10/14/25 https://fpga.mit.edu/6205/F25 123

Can’t Distinguish Signal From Error

* Once you’ve lost information, you can never regain it.
There is no “enhance” button in real-life

* Motivation to not skimp out on quantizing (pick
enough bits)

e But if you have to go low in bits...what can you do?

Quantization Error in Audio

@50 sec

https.//www.youtube.com/watch ?v=UaKho805vCE&ab channel=MarkAndersonAudio

Quantization®
A Graphical Example

How many bits are needed to represent 256 shades of
gray (from white to black)?
| Bits | Ramge

2

4

8

16

32

64

128
256

0O N O U1l A W N B

* Acknowledgement: Quantization slides and photos by Prof Denny Freemen 6.003

10/14/25 https://fpga.mit.edu/6205/F25 126

Quantization: Images

Converting an image from a continuous representation to a discrete
representation involves the same sort of issues as with 1D signals (audio)

This image has 280 x 280 pixels, with brightness quantized to 8 bits.

10/14/25 https://fpga.mit.edu/6205/F25

127

Quantizing Images

8 bit image 7 bit image

10/14/25 https://fpga.mit.edu/6205/F25 128

Quantizing Images

8 bit image 6 bit image

10/14/25 https://fpga.mit.edu/6205/F25 129

Quantizing Images

8 bit image 5 bit image

10/14/25 https://fpga.mit.edu/6205/F25 130

Quantizing Images

8 bit image 4 bit image

10/14/25 https://fpga.mit.edu/6205/F25 131

Quantizing Images

8 bit image 3 bit image

10/14/25 https://fpga.mit.edu/6205/F25 132

Quantizing Images

8 bit image 2 bitimage

10/14/25 https://fpga.mit.edu/6205/F25 133

Quantizing Images

8 bit image 1 bit image

10/14/25 https://fpga.mit.edu/6205/F25 134

antizing Colo

Py

\
\ v
\\
\\
\ B
\

True cblor (24 bit) kitteh

https://en.wikipedia.org/wiki/Dither

10/14/25

S

https://fpga.mit.edu/6205/F25

256 (8bit) color kitteh

I

i

-.‘\\
\\

| |
N 1
.

16 color (4 bit) kitteh

135

Error Diffusion

* If you find yourself with an error signal that has
structure™ to it, there are ways to spread out the error.

* You’ll never get rid of the error (which would involve
making information from nothing), but you can “diffuse”
it in the image in the frequency domain

e Humans are often less sensitive to random noise than
structured noise (eyes/ears tend to filter that out better)

*structure refers to non-uniform frequency composition...so like sharp frequency
spikes

Dithering

* The solution is to add more noise when we quantize, but
do it so it spreads the frequency composition out to be
more uniform

s(t) = s,(t) + eq4(t, r)

K Random variable
Quantization Error

Total Signal Actual Signal
(never getting that back, sorry folks)

When quantizing in the first place and random

NOISE IN: Quantization: y = Q(z)

10/14/25 https://fpga.mit.edu/6205/F25 138

3 Bits Quantization

8 bits 3 bits

dither Robert’s

10/14/25 https://fpga.mit.edu/6205/F25 139

2 Bits Quantization + Noise

2 bits

Robert’s

10/14/25 https://fpga.mit.edu/6205/F25 140

1 Bit Quantization + Noise

dither Robert’s

10/14/25 https://fpga.mit.edu/6205/F25 141

Dithering: Lots of Options/Algos

Random

Halftone Ordered (Bayer) Ordered (void-and-cluster)

ORIGINAL
8bit Greyscale

Floyd-Steinberg Jarvis, Judice & Ninke Stucki Burkes

j T e

Every other example on
page...1 bit quantization

Sierra Two-row Sierra Sierra Lite Atkinson Gradient-based
¥ i \;s})-‘v»

https://en.wikipedia.org/wiki/Dither

10/14/25 https://fpga.mit.edu/6205/F25 142

Color Dithering
[Vl .

e

-.1

True color (24 bit) kitteh

https://en.wikipedia.org/wiki/Dither 16 color (4 bit) dithered kitteh (Floyd-Steinberg)

10/14/25 https://fpga.mit.edu/6205/F25 143

Cool Student Project from 2023

Dithering

* |In early computer/video games, space was at a premium,
so if you could store your graphics at low (i.e one bit),
then great!

* Lucas Pope (of Papers Please! fame) more recently
created game Return of the Obra Dinn recreates the
graphics of early games

Fantastic Discussion on Dithering:

https://forums.tigsource.com/index.php?topic=40832.msg1363742#msg1363742

10/14/25 https://fpga.mit.edu/6205/F25 145

Dithering in Audio

https://www.youtube.com/watch?v=h59Lwylbfzs&ab_channel=loopitstreamed

