
Administrative
• Week 04 Due tomorrow
• Week 05 Comes out on

Thursday:
• Using BRAMs to make

image sprites
• Video/Camera pipeline
• Working with Camera to

track objects

9/30/25 https://fpga.mit.edu/6205/F25 1

• Final Project Dates and Schedule Will be Released
Tomorrow/Thursday. Archive on site now
• Start Teaming! We will want to have teams by next

week so we can either form teams or have you
start formulating projects.

Memory
•Overview of Memories
•Memories on the FPGA
•Memories in Verilog
•External Memories

•Flash
•DRAM

9/30/25 https://fpga.mit.edu/6205/F25 2

It’s about cats…singing cats

Memories: The general state…
• The good news: huge selection of technologies
• Small & faster vs. large & slower
• Every year capacities go up and prices go down

• The bad news: perennial system bottleneck
• Latencies (access time) haven’t kept pace with cycle times
• Often a separate technology from logic, so must communicate

between silicon, so physical limitations (# of pins, R’s and C’s and
L’s) limit bandwidths
• Likely one of the limiting factor in cost & performance of many

digital systems (including your designs): designers spend a lot of
time figuring out how to keep memories running at peak
bandwidth

9/30/25 https://fpga.mit.edu/6205/F25 3

Memory in Hardware vs.
Memory “in” Software

• There is a huge disconnect in software, particularly
in higher level languages, to memory...in fact one of
the reasons high-level languages exist is to facilitate
that disconnect
• Python at first glance makes it seem like you can

instantaneously access

• This is absolutely 100% not the case!

9/30/25 https://fpga.mit.edu/6205/F25 4

for i in range(1000):
 print(y[i])

In reality…
• Memory is often stored in very tightly packed, difficult

to access arrays.
• Doing things with the data in that memory

(reads/writes) inherently takes time (maybe many
clock cycles)…”instant” access is often not easy
• In HW, “instant” access is actually instant. There’s no

Python interpreter there to lie to you and add cushy
pillows around you. If you want something instantly,
Verilog/Vivado will try to give it to you and it may be
impossible…or very expensive to do.
• You need to be aware of that.

9/30/25 https://fpga.mit.edu/6205/F25 5

How do we Electrically Remember Things?

• We can convey/transfer information with voltages
that change over time

• How can we store information in an electrically
accessible manner?

• Store in either:
• Electric Field
• Magnetic Field

9/30/25 https://fpga.mit.edu/6205/F25 6

Early attempts:
• Punched Cards have

existed as
electromechanical
program storage since
~1800s
• Switches would sense

holes in card and
interpret as 1’s and 0’s
• We’re mostly concerned

with rewritable storage
mechanisms today (cards
were true ROMs)

9/30/25 https://fpga.mit.edu/6205/F25 7
https://en.wikipedia.org/wiki/Computer_programming_in_the_punched_card_era

Computer program in punched card format

Electronic Memories in History

• Drum Memory:
• Information stored magnetically on large rotating metallic

cylinder
• Could read/write to it

• Did not require periodic refresh

• Non-volatile (lasted after power cycles off)

9/30/25 https://fpga.mit.edu/6205/F25 8

http://www.computerhistory.org/timeline/memory-storage/

9/30/25 https://fpga.mit.edu/6205/F25 9

• Early form of FIFO memory
• Generate a wave pattern

which exists for a few
milliseconds in mercury
• Recover on the other end

and either modify/reload
or use
• Requires “refresh” circuitry
• Volatile (info lost soon

after power cut)

https://matsuuratomoya.com/en/works/post-past_sotsuten/

Delay Line Memory

William’s Tube

9/30/25 https://fpga.mit.edu/6205/F25 10

• Take advantage of non-negligible decay
time of phosphors on CRT to store data
discussed in lecture 7
• Project data image
• Little bit later (milliseconds) recover it .

Using a camera
• Either use it or re-project it for later use
• Again requires periodic refresh

Mechanical Delay
Line Memory
• Store about 8,000 bits

in the form of
clockwise or counter-
clockwise rotations
applied to a very long
piece of wire

9/30/25 https://fpga.mit.edu/6205/F25 11

Soviet Delay Line Memory

• Required repeatedly reading them out and writing
them back in like the Mercury delay line
• Turn off power twists get lost.

Core Memory
• Store 1’s and 0’s in the

magnetic field of small
toroids (magnetic cores)
• Where the term “core

dump” comes from.
• Used up until mid 70’s
• Non volatile!

https://en.wikipedia.org/wiki/Magnetic-core_memory#/media/File:KL_Kernspeicher_Makro_1.jpg

9/30/25 https://fpga.mit.edu/6205/F25 12

More Modern Memory

• Most modern memory uses some form of
transistor-based structure to maintain data in
either a long or short term

• How is it done?

• How does how it is done constrain how we can use
and how much of it we have to use?

9/30/25 https://fpga.mit.edu/6205/F25 13

Modern Memory Classification

9/30/25 https://fpga.mit.edu/6205/F25 14

Volatile

Random
Access

Sequential
Access

Non-Volatile
Read-Write Memory

SRAM,
DRAM

NAND Flash (SSD),
NOR Flash

Memory

FIFO

Modern Memory Classification

9/30/25 https://fpga.mit.edu/6205/F25 15

Volatile

Random
Access

Sequential
Access

Non-Volatile
Read-Write Memory

SRAM,
DRAM

NAND Flash (SSD),
NOR Flash

Memory

FIFO

• Random Access: Give any address, get corresponding
data. Access to memory need not be in a certain order
• Sequential Access: Put in values in an order, get them

out in same order. Can’t get or modify values at your
desire…must wait for appropriate value to appear at
ordered output (FIFO or shift buffer is an example)

Modern Memory Classification

9/30/25 https://fpga.mit.edu/6205/F25 16

Volatile

Random
Access

Sequential
Access

Non-Volatile
Read-Write Memory

SRAM,
DRAM

NAND Flash (SSD),
NOR Flash

Memory

FIFO

• Volatile: Maintains data only as long as power is
applied

• Non-Volatile: Maintains data after power is applied!

Memory Density Tradeoff
• High-density memory technologies rarely

enable “direct” access to anything inside of
them.
• There’s just too many wires that would be

needed and you wouldn’t be able to be very
dense.
• Instead the memory-storage technology

(transistors or whatever) are usually built into
large grids which are accessed in a row-column
format.
• This has implications for reading and writing!!!

9/30/25 https://fpga.mit.edu/6205/F25 17

Memory Array Architecture
(SRAM, Flash, DRAM)

Input-Output
(M bits)

2L-K Bit Line

Word Line

Storage Cell

M*2K

Amplify swing to
rail-to-rail amplitude

Selects appropriate word
(i.e., multiplexer)

Sense Amps/Driver

Column DecodeA0

AK-1

Row
 Decode

AK

AK+1

AL-1

2L-K row
by

Mx2K column
cell array

Small cells ® small mosfets ® small dV on bit line2LxM memory

9/30/25 https://fpga.mit.edu/6205/F25 18

Memory Array’s (Inspiration in Switches)

9/30/25 https://fpga.mit.edu/6205/F25 19

• If you have 16 switches,
you can convey that
using 16 independent
wires (one-hot encoding)
• Alternatively if you

assemble in an
array/matrix, you can do
with 8 wires (if you add
some interfacing
circuitry)
• Same situation in most memory architectures

With correct interfacing you can still
think of this as a 16X1 array of
switches!!! Even though it isn’t

As a result…
• Can’t simultaneously

access multiple locations.
• In most technologies you

can access one (or maybe
two) entries at any point
in time!
• In some layouts reading

out two nearby addresses
is easier/faster than
reading out two addresses
in different spots.

9/30/25 https://fpga.mit.edu/6205/F25 20

Input-Output
(M bits)

2L-K Bit Line

Word Line

Storage Cell

M*2K

Sense Amps/Driver

Column DecodeA0

AK-1

Row
 Decode

AK

AK+1

AL-1

3D Memory
• Last decade has seen

proliferation of 3D memory
architectures.
• Same rough technology idea,

but instead of planes, go to
cubes of memory.
•Much higher densities.
• Still can only access a few

spots at one time

9/30/25 https://fpga.mit.edu/6205/F25 21

https://sst.semiconductor-digest.com/2017/07/overcoming-challenges-in-3d-nand-volume-manufacturing/

LARGE

Memory Limitations

• No memory does
everything we want.
• Different types excel

in different ways.
• Part of Digital

Engineering is dealing
with that.

9/30/25 https://fpga.mit.edu/6205/F25 22

On our FPGA Board!
• Regular registers in logic blocks

• Operates at system clock speed, expensive (CLB utilization)
• Configuration set by Verilog design (eg FIFO, single/dual port, etc)

• FPGA Distributed memory (small SRAM)
• Operates at system clock speed
• Uses LUTs (64 bits) for implementation, expensive (CLB utilization)
• Requires significant routing for implementation
• Configured using IP
• Theoretical maximum: ~1Mbit

• FPGA Block RAM (larger SRAM):
• 2,760K bits total (in 76/150 chunks)

• DDR3 SDRAM
• 1 GiB
• Requires MIG (Memory Interface Generator)

• Flash memory NAND storage
• 16MiB
• Slow read access, even slower write access time!

• microSD port larger NAND storage
• Different SD Card sizes (multi GB)

9/30/25 https://fpga.mit.edu/6205/F25 23

Inside
the
FPGA

Outside
the
FPGANotice the larger memory

devices are outside the

FPGA

Same Issue with 6.191 Processor Design

• The more accessible
and quick-to-access,
the more expensive
and physically large
a memory will be

9/30/25 https://fpga.mit.edu/6205/F25 24

Good Coverage of Modern Types

• The memory types on our FPGA board provide a
good coverage of most modern forms of digital
memory, so we’ll go through them now.

9/30/25 https://fpga.mit.edu/6205/F25 25

Memory IN the FPGA

9/30/25 https://fpga.mit.edu/6205/F25 26

FPGA Memory: Two Types

• The FPGA has two dedicated sets of resources
(other than Flipflops) for storing information.

• All are comprised of SRAM (Static Random-Access
Memory)

9/30/25 https://fpga.mit.edu/6205/F25 27

Hold on…Aren’t FlipFloppies Memory?
• Yes, they are memory and you can use them like

this:

9/30/25 https://fpga.mit.edu/6205/F25 28

clk

doutD Q
din

logic [7:0] storage;
logic [7:0] din;
logic enable;
logic [7:0] dout;
assign dout = storage;
always_ff @(posedge clk_in)begin
 if (enable)begin
 storage <= din;
 end
end

enable

8 8

This *might* synthesize using flip flops

Flip Flops
• Flip flops are distributed all

over the board in the logic
cells
• Nearby for convenience
• Are meant for holding

smaller temporary chunks of
data
• Flip flops are not meant for

bulk storage… (an image, for
example)

9/30/25 https://fpga.mit.edu/6205/F25 29

LUTs
Used to synthesize all
combinational stuff

Fast carry chain
For mult-slice logic

(addition, etc)
Route through these for

registers. Else bypass
for purely

combinational

FF/Latches

Flip Flops
• Think of nearby flipflops as

the registers you see in a
processor
• Quick and relatively small

memory access units
• Nearby so easy to route to
• Immediately accessible (not

living in dense piles in which
only one entry can be read
at a time)
• But what about more

memory?

9/30/25 https://fpga.mit.edu/6205/F25 30

LUTs
Used to synthesize all
combinational stuff

Fast carry chain
For mult-slice logic

(addition, etc)
Route through these for

registers. Else bypass
for purely

combinational

FF/Latches

FPGA Internal Memory: Two Types

• The FPGA has two dedicated sets of resources for
storing information in larger quantities
• Block RAM
• Distributed RAM

• Both are comprised of SRAM (Static Random-
Access Memory)

9/30/25 https://fpga.mit.edu/6205/F25 31

Static RAM (SRAM) Cell (The 6-T Cell)

9/30/25 https://fpga.mit.edu/6205/F25 32

Write: Set BL, BL to (0,VDD) or (VDD,0)
 then enable WL (= VDD)

Read: Disconnect drivers from BL and BL, then
enable WL (=VDD). Sense a small change in BL or
BL

§ State held by cross-coupled inverters (M1-M4)
§ Retains state as long as power supply turned on
§ Feedback must be overdriven to write into the memory

𝑩𝑳 𝑩𝑳

FPGA Memory: Two Types
• The SRAM in our FPGA (Xilinx 7S50T) is organized

into two types (meant for using as memory
explicitly):
• Block RAM (BRAM):
• Large continuous chunks of SRAM
• 36 kbits a piece
• 75 of these on our particular FPGA

• Distributed RAM:
• Of the ~32,000 LUTs on the FPGA, about 9,600 have 64

bits of SRAM in them that is usable
• Can use this spread-out RAM as well (to squeeze

another ~614.4 Kbits out of chip…but this takes away
resources from your logic so you should use as last
resort!

9/30/25 https://fpga.mit.edu/6205/F25 33

Block Memories (BRAMs)

9/30/25 https://fpga.mit.edu/6205/F25 34

There’s 75 of these 36Kx1 bit
SRAM arrays

• Our FPGA has 75 dual-
port SRAM modules
• Can write-to and

lookup values using
these two ports as
needed
• Used these as audio

storage in week 3, will
use for video frame
buffer in week 4 and
beyond.

The BRAM is a dense array

Input-Output
(M bits)

2L-K Bit Line

Word Line

Storage Cell

M*2K

Amplify swing to
rail-to-rail amplitude

Selects appropriate word
(i.e., multiplexer)

Sense Amps/Driver

Column DecodeA0

AK-1

Row
 Decode

AK

AK+1

AL-1

2L-K row
by

Mx2K column
cell array

Small cells ® small mosfets ® small dV on bit line2LxM memory

9/30/25 https://fpga.mit.edu/6205/F25 35

BRAM Timing

9/30/25 https://fpga.mit.edu/6205/F25 36

At best, a Block RAM will
never provide asynchronous
reads. You can get
synchronous reads with a
one-clock cycle delay

It is strongly
recommended
to use them
with a two-
cycle delay
though!

BRAM Operation
BRAM

Single-port
Config.

CLK
WE

ADDR
DI DO

9/30/25 https://fpga.mit.edu/6205/F25 37

FPGA Memory: Two Types
• The SRAM in our FPGA (Xilinx 7S50T) is organized

into two types (meant for using as memory
explicitly):
• Block RAM (BRAM):
• Large continuous chunks of SRAM
• 36 kbits a piece
• 75 of these on our particular FPGA

• Distributed RAM:
• Of the ~32,000 LUTs on the FPGA, about 9,600 have 64

bits of SRAM in them that is usable for general memory.
• Can use this spread-out RAM as well (to squeeze

another ~614.4 Kbits out of chip…but this takes away
resources from your logic so you should use as last
resort!

9/30/25 https://fpga.mit.edu/6205/F25 38

Distributed RAM: Each Logic Cell is
made of Four Six-Input Lookup Tables
with inputs that can be set

9/30/25 https://fpga.mit.edu/6205/F25 39

Out

I0
I1
I2
I3
I4
I5

0SRAM

1SRAM

63SRAM
…

• These LUTs are programmed to
give us our logic functions and
that program is set in
SRAM...they can therefore
synthesize any six-input lookup-
table/function/Karnaugh Map

• In some logic cells, you can
alternatively use this SRAM for
regular generic memory!

SliceL vs. Slice M

9/30/25 https://fpga.mit.edu/6205/F25 40

SliceL
LUTs programmed when bitfile written

SliceM
Memory used in LUT programming

broken out and available

Distributed RAM is Distributed
• Each 64 bits of LUT specification is broken out…so

each Slice (with Four LUT6’s) has 256 bits of RAM

9/30/25 https://fpga.mit.edu/6205/F25 41

Four of these per slice

FPGA

SliceM’s are distributed all over the FPGA:

Distributed RAM vs. Block RAM
• Distributed RAM:
• More flexible:

• Smaller unit size (256 bits)
• read multiple (>2) values at once
• Single-cycle reads/writes

• Block RAM:
• Less flexible:

• Bigger unit size (18kbits or 36 kbits)
• Dual-port ONLY (<=2)…can avoid using one if you want
• Risky single-cycle reads/writes
• No single-cycle bulk reset

9/30/25 https://fpga.mit.edu/6205/F25 42

Small Memory in Verilog
• 8X256 memory:
• Synchronous write
• Asynchronous aka combinational read

9/30/25 https://fpga.mit.edu/6205/F25 43

module mem_one(input wire clk,
 input wire [7:0] w_idx, //write address
 input wire [7:0] din, //write value
 input wire we, //write enable
 input wire [7:0] r_idx, //read address
 output logic [7:0] dout); //read value

 logic [7:0] memory [0:255];
 always_ff @(posedge clk)begin
 if (we)begin
 memory[w_idx] <= din;
 end
 end
 assign dout = memory[r_idx];
endmodule

Result of Design:
• Because of what was asked, Vivado “inferred” the

usage of Distributed RAM
• Why is this using 32 LUTs?

9/30/25 https://fpga.mit.edu/6205/F25 44

2. Slice Logic Distribution

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	8	0	0	8150	0.10
SLICEL	0	0			
SLICEM	8	0			
LUT as Logic	0	0	0	32600	0.00
LUT as Memory	32	0	0	9600	0.33
LUT as Distributed RAM	32	0			
using O5 output only	0				
using O6 output only	32				
using O5 and O6	0				
LUT as Shift Register	0	0			
Slice Registers	0	0	0	65200	0.00
Register driven from within the Slice	0				
Register driven from outside the Slice	0				
Unique Control Sets	1		0	8150	0.01
+--+------+-------+------------+-----------+-------+

From post_place_util.rpt

Small Memory
• 8X256 memory:
• Synchronous write
• Synchronous read

9/30/25 https://fpga.mit.edu/6205/F25 45

module mem_one(input wire clk,
 input wire [7:0] w_idx, //write address
 input wire [7:0] din, //write value
 input wire we, //write enable
 input wire [7:0] r_idx, //read address
 output logic [7:0] val); //read value

 logic [7:0] memory [0:255];
 always_ff @(posedge clk)begin
 if (we)begin
 memory[w_idx] <= din;
 end
 dout <= memory[r_idx]; //moved
 end
endmodule

Result of Design
• No Longer Building with Distributed RAM, Instead Vivado

Chose a Block RAM (because it has a tendency to choose
BRAM when provided the option)

9/30/25 https://fpga.mit.edu/6205/F25 46

2. Slice Logic Distribution

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	0	0	0	8150	0.00
SLICEL	0	0			
SLICEM	0	0			
LUT as Logic	0	0	0	32600	0.00
LUT as Memory	0	0	0	9600	0.00
LUT as Distributed RAM	0	0			
LUT as Shift Register	0	0			
Slice Registers	0	0	0	65200	0.00
Register driven from within the Slice	0				
Register driven from outside the Slice	0				
Unique Control Sets	0		0	8150	0.00
+--+------+-------+------------+-----------+-------+

3. Memory

+-------------------+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+-------------------+------+-------+------------+-----------+-------+
Block RAM Tile	0.5	0	0	75	0.67
RAMB36/FIFO*	0	0	0	75	0.00
RAMB18	1	0	0	150	0.67
RAMB18E1 only	1				
+-------------------+------+-------+------------+-----------+-------+

Small Memory
• 8X256 memory:
• Synchronous write
• Synchronous read
• Bulk Resettable

9/30/25 https://fpga.mit.edu/6205/F25 47

module mem_three(input wire clk,
 input wire rst,
 input wire [7:0] w_idx,
 input wire [7:0] din,
 input wire we,
 input wire [7:0] r_idx,
 output logic [7:0] dout);

 logic [7:0] memory [0:255];
 always_ff @(posedge clk)begin
 if (rst)begin
 for (int i=0; i<256; i=i+1)begin
 memory[i] <=0;
 end
 end else if (we)begin
 memory[w_idx] <= din;
 end
 dout <= memory[r_idx];
 end
endmodule

Only new thing compared to
before is we can erase
memory in one clock cycle

Results…
• Uh oh…

9/30/25 https://fpga.mit.edu/6205/F25 48

2. Slice Logic Distribution

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	1043	0	0	8150	12.80
SLICEL	718	0			
SLICEM	325	0			
LUT as Logic	841	0	0	32600	2.58
using O5 output only	0				
using O6 output only	802				
using O5 and O6	39				
LUT as Memory	0	0	0	9600	0.00
LUT as Distributed RAM	0	0			
LUT as Shift Register	0	0			
Slice Registers	2056	0	0	65200	3.15
Register driven from within the Slice	8				
Register driven from outside the Slice	2048				
LUT in front of the register is unused	1697				
LUT in front of the register is used	351				
Unique Control Sets	257		0	8150	3.15
+--+------+-------+------------+-----------+-------+

3. Memory

+----------------+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+----------------+------+-------+------------+-----------+-------+
Block RAM Tile	0	0	0	75	0.00
RAMB36/FIFO*	0	0	0	75	0.00
RAMB18	0	0	0	150	0.00
+----------------+------+-------+------------+-----------+-------+

Being able to reset everything instantly is not
possible with almost any denser memory
technology easly. This design achieves this
”performance” using the actual flip flops at
massive expense of resources

Distributed RAM vs. Block RAM
• Distributed RAM:

• Trading logic for memory
• Occupies a logic cell whenever you use it (more you use, the

fewer logic cells you have for logic)
• For large data structures/memories, needs to use lots of

memory units (can be hard to route)
• Too much usage can make it hard to place and route (long

builds!)
• Block RAM:

• Meant to be memory and nothing else
• Relatively dense!
• Use it or lose it. It is there…if you don’t use it, you don’t get

free logic instead so you should use it.
• For large things, will outperform distributed RAM in

speed/latency
• Generally won’t constrain place and route like distributed

RAM usage will!

9/30/25 https://fpga.mit.edu/6205/F25 49

FFs vs. Distributed RAM vs. Block RAM
• Conclusions:
• Flip Flops (avoid for “memory” at all costs):
• Very small things…local variables (state, math, etc…)

• Distributed RAM:
• Small things (16 bit shift register), small memories of a

few hundred bytes, few entries,
• Design actually needs async/quick reads*
• etc…
• These are all best implemented with Distributed RAM:

• Block RAM:
• Large things (images, large audio files, etc), large buffers,

all best implemented with Block RAMs

9/30/25 https://fpga.mit.edu/6205/F25 50

*for good reasons…not because you are lazy and don’t feel like dealing with issues. Seriously,
you will lose points on final projects if you make poor or lazy memory choices.

How do We Specify Which to Use?
• We do it with how we write Verilog.
• These “wants” will lead to the following inferences:
• Async/quick reads?àDistributed RAM
• Bulk resets? à FF’s

• Already showed some examples
• In reality memory of any medium-large size has delays

with associated with it and we need to learn to expect
that and build it into our designs
• Must have Verilog properly reflect that!

9/30/25 https://fpga.mit.edu/6205/F25 51

Building a Block RAM
• Use Verilog in a very particular way, Vivado can

confidently “infer” block RAM usage
• Use pre-provided Verilog modules:
• These are guaranteed to simulate properly (right

amount of delay and other issues)

9/30/25 https://fpga.mit.edu/6205/F25 52

module xilinx_single_port_ram_read_first #(
parameter RAM_WIDTH = 18, // Specify RAM data width
parameter RAM_DEPTH = 1024, // Specify RAM depth (number of entries)
parameter RAM_PERFORMANCE = "HIGH_PERFORMANCE", // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
parameter INIT_FILE = "" // Specify name/location of RAM initialization file if using one (leave blank if
not)
) (
input [clogb2(RAM_DEPTH-1)-1:0] addra, // Address bus, width determined from RAM_DEPTH
input [RAM_WIDTH-1:0] dina, // RAM input data
input clka, // Clock
input wea, // Write enable
input ena, // RAM Enable, for additional power savings, disable port when not in use
input rsta, // Output reset (does not affect memory contents)
input regcea, // Output register enable
output [RAM_WIDTH-1:0] douta // RAM output data
);

reg [RAM_WIDTH-1:0] BRAM [RAM_DEPTH-1:0];
reg [RAM_WIDTH-1:0] ram_data = {RAM_WIDTH{1'b0}};

3. Memory

+-------------------+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+-------------------+------+-------+------------+-----------+-------+
Block RAM Tile	32.5	0	0	75	43.33
RAMB36/FIFO*	32	0	0	75	42.67
RAMB36E1 only	32				
RAMB18	1	0	0	150	0.67
RAMB18E1 only	1				
+-------------------+------+-------+------------+-----------+-------+

xilinx_single_port_ram_read_first #(
 .RAM_WIDTH(8), // Specify RAM data width
 .RAM_DEPTH(WIDTH*HEIGHT*2), // Specify RAM depth (number of entries)
 .RAM_PERFORMANCE("HIGH_PERFORMANCE"), // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
 .INIT_FILE(`FPATH(image2.mem)) // Specify name/location of RAM initialization)
 image_brom (
 .addra(image_addr), // Address bus, width determined from RAM_DEPTH
 .dina(0), // RAM input data, width determined from RAM_WIDTH
 .clka(pixel_clk_in), // Clock
 .wea(0), // Write enable
 .ena(1), // RAM Enable, for additional power savings, disable port when not in use
 .rsta(rst_in), // Output reset (does not affect memory contents)
 .regcea(1), // Output register enable
 .douta(palette_lookup) // RAM output data, width determined from RAM_WIDTH
);

Building a Block RAM
• If we use our Verilog in a very particular way,

Vivado can confidently “infer” block RAM usage

9/30/25 https://fpga.mit.edu/6205/F25 53

This (week 05) leads to this usage:

xilinx_single_port_ram_read_first #(
 .RAM_WIDTH(8),
 .RAM_DEPTH(WIDTH*HEIGHT),
 .RAM_PERFORMANCE("HIGH_PERFORMANCE"), // "HIGH_PERFORMANCE" or "LOW_LATENCY"
 .INIT_FILE(`FPATH(image2.mem))

Using a Block RAM
• If we use our Verilog in a very particular way,

Vivado can confidently “infer” block RAM usage

9/30/25 https://fpga.mit.edu/6205/F25 54

Width (bits)

Depth (# of entries)

“High Performance” means
more latency
But this also means it is
much easier to build this
design (fitting it into
timing)

Preload it with files
(either ROM or
initial values of
RAM)

Block RAM Uses
• Store Images (Week 5) :using as a ROM in that case
• Store Video (Week 5…second half): Frame buffer
• Store Audio (Week 3)
• Clock Domain Crossing (Week 5, 6, 7):
• With dual-port RAM, you can write with one clock and

read with another (can specify some settings to prevent
race conditions, though no 100% guarantee)

• Store anything you want! (rest of life)

9/30/25 https://fpga.mit.edu/6205/F25 55

SRAM Summary

• Block RAM (and less so Distributed RAM) should be
your first choice in storing information
• Quick and reliable:
• Want measurement? Ask for it and get it:

• One cycle later (some Distributed RAM configs)
• One or two cycles later from BRAM

• Limited amounts of it on FPGA (0.5 Mbyte of
BRAM, ~amount of Dist RAM)

9/30/25 https://fpga.mit.edu/6205/F25 56

Memory OFF the FPGA

9/30/25 https://fpga.mit.edu/6205/F25 57

Off-FPGA Memories

9/30/25 https://fpga.mit.edu/6205/F25 58

SD card (NAND Flash)
EEPROM

front back

DDR3
Dynamic Memory

Two-ish Major Off-FPGA Options
• Flash/EEPROM:
• Many different form factors, very slow to read/write, but
non-volatile, meaning it will last beyond power cycles

• Dynamic Random Access Memory (DRAM):
• Potentially very high read-write rates
• Needs to be constantly refreshed (dynamic)
• Volatile…~100 ms after power-off, memory lost

9/30/25 https://fpga.mit.edu/6205/F25 59

EPROM Families
• Includes EPROM, EEPROM, Flash

memory, (and SSDs)
• Utilize Floating Gates
• Different from SRAM!
• Instead of ~6 transistors per bit,

you can do about 1 or so!
• Acts sorta like SRAM from

outside but Non-Volatile and
writes are much slower than
reads
• Invented by Dov Frohman while

at Intel ~1970ish
9/30/25 https://fpga.mit.edu/6205/F25 60

An early EPROM.
You’d program electrically and
then shine UV onto it to erase
it…don’t use these anymore

Quick Review on MOSFETs

𝑉!

𝑉"

𝑉# = 0V

𝒊𝑫𝑺
𝑖"# = 𝐾 𝑉! − 𝑉& '

𝑖"# = 𝐾 𝑉! − 𝑉& 𝑉" −
𝑉"'

2

In sub-threshold mode:

Above Threshold (saturation)

9/30/25 https://fpga.mit.edu/6205/F25 61

• Basically:
• If VG is > VT you conduct (are ”on”)
• If VG is < VT you do not conduct (are ”off”)

• Traditionally VT is a function of doping,
transistor dimensions, etc…
• BUT!....

Floating Gate MOSFETs

𝑉!

𝑉"

𝑉#

𝒊𝑫𝑺

https://www.electronicsweekly.com/news/research-news/device-rd/iedm-hybrid-floating-gate-scales-flash-to-10nm-2012-12/

10 nm Flash Gate

GATE
Floating GATE

Drain Source
Presence or absence of carriers on floating gate affects the threshold
voltage of MOSFET
• Default (“binary 1”)…Threshold voltage is lower VTL
• (no electrons trapped in gate)

• Programmed bit (”binary 0”)…threshold voltage is higher VTH
• (electrons trapped in gate)

9/30/25 https://fpga.mit.edu/6205/F25 62

White stuff is
all oxide
insulator

Hot Carrier Injection/Tunneling to
Program/Reprogram
• To add or remove electrons to the floating gate you use

a quantum tunneling phenomenon
• High voltage (~12V over 100’s of Angstroms) is used to

force electrons to tunnel into floating gate… the term
“hot” refers to high energies on electrons.
• A similar process is used in reverse to tunnel them out

again
• High voltage is a potentially destructive process and will

eventually ruin the device. Flash traditionally therefore
has limits of ~ several 100,000’s of program/erase cycles
• Mitigate issues by wear-leveling (try to spread out

usage across all of device…like rotating tires on a car)

9/30/25 https://fpga.mit.edu/6205/F25 63

To Program a 0

9/30/25 https://fpga.mit.edu/6205/F25 64

+
--12V

e-e-

e- e-

Threshold voltage is now Higher

GATE

Floating GATE

Source

To Program a 1 aka erase

9/30/25 https://fpga.mit.edu/6205/F25 65

+
-+12V

e-e-

e- e-

Threshold voltage is now Lower

GATE

Floating GATE

Source

NOR Flash

S0 S1 S2 S3 Out

0 0 0 0 1

1 0 0 0 0 if B0==1, 1 if B0==0

0 1 0 0 0 if B1==1, 1 if B1==0

0 0 1 0 0 if B2==1, 1 if B2==0

0 0 0 1 0 if B3==1, 1 if B3==0

Like a NOR gate since
when all bits are 1,
bit line goes low if
any input is turned
high…hence called
NOR Flash

S0 S1 S2 S3

Bit Line

1 on the select bits means voltage:
• greater than VTL (low threshold from no trapped carriers)
• less than VTH (high threshold from trapped carriers)

9/30/25 https://fpga.mit.edu/6205/F25 66

NAND Flash

S0

S1

S2

S3

Bit Line

S0 S1 S2 S3 Out

>VTH >VTH >VTH >VTH 0

VTL<V<VTH >VTH >VTH >VTH 0 if B0==1, 1 if B0==0

>VTH VTL<V<VTH >VTH >VTH 0 if B1==1, 1 if B1==0

>VTH >VTH VTL<V<VTH >VTH 0 if B2==1, 1 if B2==0

>VTH >VTH >VTH VTL<V<VTH 0 if B3==1, 1 if B3==0

Like a NAND gate since
when all bits are 1, bit line
goes low if tested input is
also 1…hence called
NAND Flash

word_select
Turn word_select HI to enable whole word

9/30/25 https://fpga.mit.edu/6205/F25 67

NAND vs. NOR Flash?
• Have Pros cons related to r/w time, size, etc.

9/30/25 https://fpga.mit.edu/6205/F25 68

https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-
Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0

https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0
https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-Tal/52f7d974a7be1911b33cb64c26ba4d7f5b337d9e/figure/0

Using Flash with FPGA Board
• You can use the 16MBits of Quad-SPI Flash to

permanently “program” the board (the –f
flag)...use wisely.
• About 80% is unused with full binary so you could

use this for permanent storage (I never have, but it
is doable...can also really mess stuff up)
• Can also interface directly to multi-GB. SD card

(which is itself Flash just in a different format)

9/30/25 https://fpga.mit.edu/6205/F25 69

Floating Gates
• Some neat recent work using floating gates and their

adjustable threshold capabilities
• Result is ability to adjust/teach a single transistor when to

fire based on input signals!

Floating Gate neural-like implementations, 2017

9/30/25 https://fpga.mit.edu/6205/F25 70

2022 improvements

2023 work

Two-ish Major Off-FPGA Options
• Flash/EEPROM:
• Many different form factors, very slow to read/write, but
non-volatile, meaning it will last beyond power cycles

• Dynamic Random Access Memory (DRAM):
• Potentially very high read-write rates
• Needs to be constantly refreshed (dynamic)
• Volatile…~100 ms after power-off, memory lost

9/30/25 https://fpga.mit.edu/6205/F25 71

DRAM
• Dynamic Random Access Memory!
• Single transistor and capacitor per bit (capacitor does

the storage)
• Can be made extremely dense and therefore economical
• Are quite fast:
• SRAM will have access time of down to 10ns or less

(consistent)
• DRAM will have access time from 50-250ns (variable)
• EEPROM/Flash way slower (esp for writes)

• Capacitors decay rather quickly (especially since DRAM
capacitors are about 10 femtoFarads) so need to be
refreshed every 64 milliseconds.

9/30/25 https://fpga.mit.edu/6205/F25 72

Dynamic RAM (DRAM) Cell

§ DRAM relies on charge stored in a capacitor to hold state
§ Found in all high density memories (one bit/transistor)
§ Must be “refreshed” or state will be lost – high overhead

DRAM uses
Special

Capacitor
Structures

To Write: set Bit Line (BL) to 0 or VDD
& enable Word Line (WL) (i.e., set to VDD)

To Read: set Bit Line (BL) to VDD /2
& enable Word Line (i.e., set it to VDD)

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

[Rabaey03]

!"
#!

$BCB

!$B

!"

#

$"
B&&!"

B&&

D(&

#$%&'()*) +',-()*)

)G+),+-
B&&.L

9/30/25 https://fpga.mit.edu/6205/F25 73

DRAM is inherently one-port
• DRAM is always a one-

port entity.
• Have to read and

write over same port

9/30/25 https://fpga.mit.edu/6205/F25 74

RAS
CAS
EN
WE

CLK

ADDRESS
16

DIO
16

SDRAM

DRAM Memory and Controller

9/30/25 https://fpga.mit.edu/6205/F25 75

• Reading is destructive!
• Data stored on small capacitor
• To read it we must bleed the capacitor

off
• Therefore need to refresh

• Need to refresh even when not
reading (every 100 ms)

9/30/25 https://fpga.mit.edu/6205/F25 76

Asynchronous DRAM

Column lines start charged to mid-
voltage (RAS=1)

9/30/25 https://fpga.mit.edu/6205/F25 77

Asynchronous DRAM

Select Row and feed output of each
column into feedback amplifiers to
sense/regenerate 1s and 0s

9/30/25 https://fpga.mit.edu/6205/F25 78

Read/Write by adjusting some
input/output selector (associated
with MUX signal)

Asynchronous DRAM

9/30/25 https://fpga.mit.edu/6205/F25 79

Select which Column to route out

Asynchronous DRAM

9/30/25 https://fpga.mit.edu/6205/F25 80

Route out desired bits
ALSO
Redirect read out columns back up
to recharge appropriate columns

Asynchronous DRAM

9/30/25 https://fpga.mit.edu/6205/F25 81

Recharge capacitors fully

Then you’re back to
beginning

Asynchronous DRAM

9/30/25 https://fpga.mit.edu/6205/F25 82

Then you’re back to
beginning

Asynchronous DRAM

DRAM Cells are Staggered
Physically

9/30/25 https://fpga.mit.edu/6205/F25 83

• The sense amplifiers
use two parallel bit
lines (one active and
one for reference) to
detect the slight
perturbation when
you discharge the
capacitor

Many Flavors of DRAM

• DRAM (Asynchronous)
• SDRAM (Synchronous DRAM)

• (one clock cycle per operation)
• Single Data Rate SDRAM (SDR SDRAM):

• One R/W per clock Cycle
• Double-Data Rate SDRAM (DDR SDRAM)

• Two R/W per clock cycle (called double pumping)
• Faster Double-Data Rate SDRAM (DDR2 SDRAM)
• And DDR3 and DDR4 (lower voltages, higher clocks)
• LDDR3 and LDDR4 (low power variants)
• DDR5…just faster in general 🤣…just keeps going…

9/30/25 https://fpga.mit.edu/6205/F25 84

DRAM

• DRAM is extremely dense.
• That tiny chip holds 1 billion

yes/no decisions
• In a vast 2D array
• That is constantly bleeding

out due to thermodynamics
• Requiring the entire thing to

be rewritten every 64 ms
• Row then column must be

specified

9/30/25 https://fpga.mit.edu/6205/F25 85

DRAM

• The constant need for refreshing means getting info
into and out of the DRAM is not an easy task…
• Even more complicated in modern devices because

they’ll have different banks/channels/buffers
• Requires something to handle all the needs for

refreshes and balancing them with requests for
reads/writes, etc…
• This is the job of a Memory Interface/Controller

9/30/25 https://fpga.mit.edu/6205/F25 86

Using DDR3 on Urbana Board
• Urbana board has ~128MB of DDR3
• We’ll use a Memory Controller to take care of the

hard part of controlling the DDR3, though working
with the memory controller is not super simple
either.
• We’ll start using it in Week 6

9/30/25 https://fpga.mit.edu/6205/F25 87

Using DDR3 on Urbana Board
• DRAM is *FAST*, BUT:
• A lot of delay from a read request to the data out
• Response time can be variable since DRAM will be taken

offline periodically to internally refresh its values…
• if you’re trying to access something that is in a bank

getting refreshed, your readout (or write) will be
delayed

9/30/25 https://fpga.mit.edu/6205/F25 88
Read request

Data appears (~230 ns later)Readout is variable

Often need to surround SDRAM
with other memory
• There will be input and output buffers

• And you’ll have to wait for transactions to go
through to get what you want.

• There’s no way around that.

9/30/25 https://fpga.mit.edu/6205/F25 89

FIFO (First-In-First-Out)

9/30/25 https://fpga.mit.edu/6205/F25 90

• Basically a Queue like you see in Python or
something, but we can’t dynamically allocate storage
space ahead of time at our low level!

• Data is not randomly accessed, but instead is
accessed in the order it was provided
• Can generate either using Dist RAM or BRAM

FIFO
DIN

DOUT
SRAM

FIFO Implemented with BRAM:
• Remember structure of

BRAM:
• Dual Port allows us to

simultaneously read
and write to different
SRAM cells
• Add some logic around

it to store and
autoincrement the
memory addresses and
you’ve got a FIFO

9/30/25 https://fpga.mit.edu/6205/F25 91

Where to Use FIFOs?

9/30/25 https://fpga.mit.edu/6205/F25 92

• Anytime you have two modules sharing data (one
providing data to another) and they may be
producing/consuming in differing patterns (We’ll

BRAM FIFO
DIN SRAM

Memory
controller

DIN

Actual
DRAM
chipBRAM FIFO

DOUT SRAM DOUT

Other
FPGA
logic

Using DDR3 on Urbana Board
• SDRAM is good for:
• LOTs of data needed in random access at medium data rates

• (~100 MBytes/s average R/W)
• LOTS and LOTs of data needed in short high speed bursts

• ~1.2 GBytes/s in small bursts

9/30/25 https://fpga.mit.edu/6205/F25 93

And remember the disconnect!
• You cannot write your Verilog HDL with the same

disconnect as you would with Python or C when it
comes to memory.

• You need to think about and account for memory
delays and give your system time to do what it
needs to with memory.

• You must be careful what you ask for when it
comes to memory! It may not be possible.

9/30/25 https://fpga.mit.edu/6205/F25 94

