
Administrative
• Week 04 Due tomorrow
• Week 05 Comes out on 

Thursday:
• Using BRAMs to make 

image sprites
• Video/Camera pipeline
• Working with Camera to 

track objects
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• Final Project Dates and Schedule Will be Released 
Tomorrow/Thursday. Archive on site now
• Start Teaming! We will want to have teams by next 

week so we can either form teams or have you 
start formulating projects.



Memory
•Overview of Memories
•Memories on the FPGA
•Memories in Verilog
•External Memories

•Flash
•DRAM
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It’s about cats…singing cats 



Memories: The general state…
• The good news: huge selection of technologies
• Small & faster vs. large & slower
• Every year capacities go up and prices go down

• The bad news: perennial system bottleneck
• Latencies (access time) haven’t kept pace with cycle times
• Often a separate technology from logic, so must communicate 

between silicon, so physical limitations (# of pins, R’s and C’s and 
L’s) limit bandwidths
• Likely one of the limiting factor in cost & performance of many 

digital systems (including your designs): designers spend a lot of 
time figuring out how to keep memories running at peak 
bandwidth
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Memory in Hardware vs. 
Memory “in” Software

• There is a huge disconnect in software, particularly 
in higher level languages, to memory...in fact one of 
the reasons high-level languages exist is to facilitate 
that disconnect
• Python at first glance makes it seem like you can 

instantaneously access  

• This is absolutely 100% not the case!
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for i in range(1000):
  print(y[i])



In reality…
• Memory is often stored in very tightly packed, difficult 

to access arrays.
• Doing things with the data in that memory 

(reads/writes) inherently takes time (maybe many 
clock cycles)…”instant” access is often not easy
• In HW,  “instant” access is actually instant.  There’s no 

Python interpreter there to lie to you and add cushy 
pillows around you. If you want something instantly, 
Verilog/Vivado will try to give it to you and it may be 
impossible…or very expensive to do.
• You need to be aware of that.
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How do we Electrically Remember Things?

• We can convey/transfer information with voltages 
that change over time

• How can we store information in an electrically 
accessible manner?

• Store in either:
• Electric Field
• Magnetic Field
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Early attempts:
• Punched Cards have 

existed as 
electromechanical 
program storage since 
~1800s
• Switches would sense 

holes in card and 
interpret as 1’s and 0’s
• We’re mostly concerned 

with rewritable storage 
mechanisms today (cards 
were true ROMs)
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https://en.wikipedia.org/wiki/Computer_programming_in_the_punched_card_era

Computer program in punched card format



Electronic Memories in History

• Drum Memory:
• Information stored magnetically on large rotating metallic 

cylinder
• Could read/write to it

• Did not require periodic refresh

• Non-volatile (lasted after power cycles off)
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http://www.computerhistory.org/timeline/memory-storage/
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• Early form of FIFO memory
• Generate a wave pattern 

which exists for a few 
milliseconds in mercury
• Recover on the other end 

and either modify/reload 
or use 
• Requires “refresh” circuitry
• Volatile (info lost soon 

after power cut)

https://matsuuratomoya.com/en/works/post-past_sotsuten/

Delay Line Memory



William’s Tube
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• Take advantage of non-negligible decay 
time of phosphors on CRT to store data 
discussed in lecture 7
• Project data image
• Little bit later (milliseconds) recover it . 

Using a camera
• Either use it or re-project it for later use
• Again requires periodic refresh



Mechanical Delay 
Line Memory
• Store about 8,000 bits 

in the form of 
clockwise or counter-
clockwise rotations 
applied to a very long 
piece of wire
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Soviet Delay Line Memory

• Required repeatedly reading them out and writing 
them back in like the Mercury delay line
• Turn off power twists get lost.



Core Memory
• Store 1’s and 0’s in the 

magnetic field of small 
toroids (magnetic cores)
• Where the term “core 

dump” comes from.
• Used up until mid 70’s
• Non volatile!

https://en.wikipedia.org/wiki/Magnetic-core_memory#/media/File:KL_Kernspeicher_Makro_1.jpg
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More Modern Memory

• Most modern memory uses some form of 
transistor-based structure to maintain data in 
either a long or short term

• How is it done?

• How does how it is done constrain how we can use 
and how much of it we have to use?
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Modern Memory Classification

9/30/25 https://fpga.mit.edu/6205/F25 14

Volatile

Random
Access

Sequential
Access

Non-Volatile
Read-Write Memory

SRAM,
DRAM

NAND Flash (SSD),
NOR Flash

Memory

FIFO



Modern Memory Classification
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Volatile

Random
Access

Sequential
Access

Non-Volatile
Read-Write Memory

SRAM,
DRAM

NAND Flash (SSD),
NOR Flash

Memory

FIFO

• Random Access: Give any address, get corresponding 
data. Access to memory need not be in a certain order
• Sequential Access: Put in values in an order, get them 

out in same order. Can’t get or modify values at your 
desire…must wait for appropriate value to appear at 
ordered output (FIFO or shift buffer is an example)



Modern Memory Classification
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Volatile

Random
Access

Sequential
Access

Non-Volatile
Read-Write Memory

SRAM,
DRAM

NAND Flash (SSD),
NOR Flash

Memory

FIFO

• Volatile: Maintains data only as long as power is 
applied

• Non-Volatile: Maintains data after power is applied!



Memory Density Tradeoff
• High-density memory technologies rarely 

enable “direct” access to anything inside of 
them. 
• There’s just too many wires that would be 

needed and you wouldn’t be able to be very 
dense.
• Instead the memory-storage technology 

(transistors or whatever) are usually built into 
large grids which are accessed in a row-column 
format.
• This has implications for reading and writing!!!
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Memory Array Architecture 
(SRAM, Flash, DRAM)

Input-Output
(M bits)

2L-K Bit Line

Word Line

Storage Cell

M*2K

Amplify swing to
rail-to-rail amplitude

Selects appropriate word
(i.e., multiplexer)

Sense Amps/Driver

Column DecodeA0

AK-1

Row
 Decode

AK

AK+1

AL-1

2L-K row 
by

Mx2K column 
cell array

Small cells ® small mosfets ® small dV on bit line2LxM memory
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Memory Array’s (Inspiration in Switches)
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• If you have 16 switches, 
you can convey that 
using 16 independent 
wires (one-hot encoding)
• Alternatively if you 

assemble in an 
array/matrix, you can do 
with 8 wires (if you add 
some interfacing 
circuitry)
• Same situation in most memory architectures   

With correct interfacing you can still 
think of this as a 16X1 array of 
switches!!! Even though it isn’t



As a result…
• Can’t simultaneously 

access multiple locations.
• In most technologies you 

can access one (or maybe 
two) entries at any point 
in time!
• In some layouts reading 

out two nearby addresses 
is easier/faster than 
reading out two addresses 
in different spots.
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Input-Output
(M bits)

2L-K Bit Line

Word Line

Storage Cell

M*2K

Sense Amps/Driver

Column DecodeA0

AK-1

Row
 Decode

AK

AK+1

AL-1



3D Memory
• Last  decade has seen 

proliferation of 3D memory 
architectures.
• Same rough technology idea, 

but instead of planes, go to 
cubes of memory.
•Much higher densities.
• Still can only access a few 

spots at one time
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https://sst.semiconductor-digest.com/2017/07/overcoming-challenges-in-3d-nand-volume-manufacturing/



LARGE

Memory Limitations

• No memory does 
everything we want. 
• Different types excel 

in different ways.
• Part of Digital 

Engineering is dealing 
with that.
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On our FPGA Board!
• Regular registers in logic blocks

• Operates at system clock speed, expensive (CLB utilization)
• Configuration set by Verilog design (eg FIFO, single/dual port, etc)

• FPGA Distributed memory (small SRAM)
• Operates at system clock speed
• Uses LUTs  (64 bits) for implementation, expensive (CLB utilization)
• Requires significant routing for implementation
• Configured using IP 
•  Theoretical maximum:  ~1Mbit

• FPGA Block RAM (larger SRAM):
• 2,760K bits total (in 76/150 chunks)

• DDR3  SDRAM 
• 1 GiB  
• Requires MIG (Memory Interface Generator)

• Flash memory NAND storage
• 16MiB 
• Slow read access, even slower write access time!

• microSD port larger NAND storage
• Different SD Card sizes (multi GB)
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Inside 
the 
FPGA

Outside 
the 
FPGANotice the larger memory 

devices are outside the 

FPGA 



Same Issue with 6.191 Processor Design

• The more accessible 
and quick-to-access, 
the more expensive 
and physically large 
a memory will be
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Good Coverage of Modern Types

• The memory types on our FPGA board provide a 
good coverage of most modern forms of digital 
memory, so we’ll go through them now.

9/30/25 https://fpga.mit.edu/6205/F25 25



Memory IN the FPGA
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FPGA Memory: Two Types

• The FPGA has two dedicated sets of resources 
(other than Flipflops) for storing information. 

• All are comprised of SRAM (Static Random-Access 
Memory)
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Hold on…Aren’t FlipFloppies Memory?
• Yes, they are memory and you can use them like 

this:
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clk

doutD Q
din

logic [7:0] storage;
logic [7:0] din;
logic enable;
logic [7:0] dout;
assign dout = storage;
always_ff @(posedge clk_in)begin
  if (enable)begin
    storage <= din;
  end
end

enable

8 8

This *might* synthesize using flip flops



Flip Flops
• Flip flops are distributed all 

over the board in the logic 
cells
• Nearby for convenience
• Are meant for holding 

smaller temporary chunks of 
data
• Flip flops are not meant for 

bulk storage… (an image, for 
example)
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LUTs
Used to synthesize all 
combinational stuff 

Fast carry chain
For mult-slice logic 

(addition, etc)
Route through these for 

registers. Else bypass 
for purely 

combinational

FF/Latches



Flip Flops
• Think of nearby flipflops as 

the registers you see in a 
processor
• Quick and relatively small 

memory access units
• Nearby so easy to route to
• Immediately accessible (not 

living in dense piles in which 
only one entry can be read 
at a time)
• But what about more 

memory?
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LUTs
Used to synthesize all 
combinational stuff 

Fast carry chain
For mult-slice logic 

(addition, etc)
Route through these for 

registers. Else bypass 
for purely 

combinational

FF/Latches



FPGA Internal Memory: Two Types

• The FPGA has two dedicated sets of resources for 
storing information in larger quantities
• Block RAM
• Distributed RAM

• Both are comprised of SRAM (Static Random-
Access Memory)
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Static RAM (SRAM) Cell (The 6-T Cell)
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Write: Set BL, BL to (0,VDD ) or (VDD,0) 
                then enable WL (= VDD)

Read: Disconnect drivers from BL and BL, then 
enable WL (=VDD). Sense a small change in BL or 
BL

§ State held by cross-coupled inverters (M1-M4)
§ Retains state as long as power supply turned on
§ Feedback must be overdriven to write into the memory

𝑩𝑳 𝑩𝑳



FPGA Memory: Two Types
• The SRAM in our FPGA (Xilinx 7S50T) is organized 

into two types (meant for using as memory 
explicitly):
• Block RAM (BRAM):
• Large continuous chunks of SRAM
• 36 kbits a piece
• 75 of these on our particular FPGA 

• Distributed RAM:
• Of the ~32,000 LUTs on the FPGA, about 9,600 have 64 

bits of SRAM in them that is usable
• Can use this spread-out RAM as well (to squeeze 

another ~614.4 Kbits out of chip…but this takes away 
resources from your logic so you should use as last 
resort!
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Block Memories (BRAMs)
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There’s 75 of these 36Kx1 bit 
SRAM arrays

• Our FPGA has 75 dual-
port SRAM modules
• Can write-to and 

lookup values using 
these two ports as 
needed
• Used these as audio 

storage in week 3, will 
use for video frame 
buffer in week 4 and 
beyond.



The BRAM is a dense array

Input-Output
(M bits)

2L-K Bit Line

Word Line

Storage Cell

M*2K

Amplify swing to
rail-to-rail amplitude

Selects appropriate word
(i.e., multiplexer)

Sense Amps/Driver

Column DecodeA0

AK-1

Row
 Decode

AK

AK+1

AL-1

2L-K row 
by

Mx2K column 
cell array

Small cells ® small mosfets ® small dV on bit line2LxM memory
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BRAM Timing
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At best, a Block RAM will 
never provide asynchronous 
reads.  You can get 
synchronous reads with a 
one-clock cycle delay

It is strongly 
recommended 
to use them 
with a two-
cycle delay 
though!



BRAM Operation
BRAM

Single-port
Config.

CLK
WE

ADDR
DI DO

9/30/25 https://fpga.mit.edu/6205/F25 37



FPGA Memory: Two Types
• The SRAM in our FPGA (Xilinx 7S50T) is organized 

into two types (meant for using as memory 
explicitly):
• Block RAM (BRAM):
• Large continuous chunks of SRAM
• 36 kbits a piece
• 75 of these on our particular FPGA 

• Distributed RAM:
• Of the ~32,000 LUTs on the FPGA, about 9,600 have 64 

bits of SRAM in them that is usable for general memory.
• Can use this spread-out RAM as well (to squeeze 

another ~614.4 Kbits out of chip…but this takes away 
resources from your logic so you should use as last 
resort!
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Distributed RAM: Each Logic Cell is 
made of Four Six-Input Lookup Tables 
with inputs that can be set
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Out

I0
I1
I2
I3
I4
I5

0SRAM

1SRAM

63SRAM
…

• These LUTs are programmed to 
give us our logic functions and 
that program is set in 
SRAM...they can therefore 
synthesize any six-input lookup-
table/function/Karnaugh Map

• In some logic cells, you can 
alternatively use this SRAM for 
regular generic memory! 



SliceL vs. Slice M
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SliceL 
LUTs programmed when bitfile written

SliceM 
Memory used in LUT programming 

broken out and available



Distributed RAM is Distributed
• Each 64 bits of LUT specification is broken out…so 

each Slice (with Four LUT6’s) has 256 bits of RAM 
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Four of these per slice

FPGA

SliceM’s are distributed all over the FPGA:



Distributed RAM vs. Block RAM
• Distributed RAM:
• More flexible:

• Smaller unit size (256 bits)
• read multiple (>2) values at once
• Single-cycle reads/writes

• Block RAM:
• Less flexible:

• Bigger unit size (18kbits or 36 kbits)
• Dual-port ONLY (<=2)…can avoid using one if you want
• Risky single-cycle reads/writes
• No single-cycle bulk reset
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Small Memory in Verilog
• 8X256 memory:
• Synchronous write
• Asynchronous aka combinational read
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module mem_one( input wire clk,
                input wire [7:0] w_idx, //write address
                input wire [7:0] din, //write value
                input wire we, //write enable
                input wire [7:0] r_idx, //read address
                output logic [7:0] dout); //read value

  logic [7:0] memory [0:255];
  always_ff @(posedge clk)begin
    if (we)begin
      memory[w_idx] <= din;
    end
  end
  assign dout = memory[r_idx];
endmodule



Result of Design:
• Because of what was asked, Vivado “inferred” the 

usage of Distributed RAM
• Why is this using 32 LUTs?
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2. Slice Logic Distribution
---------------------------

+------------------------------------------+------+-------+------------+-----------+-------+
|                 Site Type                | Used | Fixed | Prohibited | Available | Util% |
+------------------------------------------+------+-------+------------+-----------+-------+
| Slice                                    |    8 |     0 |          0 |      8150 |  0.10 |
|   SLICEL                                 |    0 |     0 |            |           |       |
|   SLICEM                                 |    8 |     0 |            |           |       |
| LUT as Logic                             |    0 |     0 |          0 |     32600 |  0.00 |
| LUT as Memory                            |   32 |     0 |          0 |      9600 |  0.33 |
|   LUT as Distributed RAM                 |   32 |     0 |            |           |       |
|     using O5 output only                 |    0 |       |            |           |       |
|     using O6 output only                 |   32 |       |            |           |       |
|     using O5 and O6                      |    0 |       |            |           |       |
|   LUT as Shift Register                  |    0 |     0 |            |           |       |
| Slice Registers                          |    0 |     0 |          0 |     65200 |  0.00 |
|   Register driven from within the Slice  |    0 |       |            |           |       |
|   Register driven from outside the Slice |    0 |       |            |           |       |
| Unique Control Sets                      |    1 |       |          0 |      8150 |  0.01 |
+------------------------------------------+------+-------+------------+-----------+-------+

From post_place_util.rpt



Small Memory
• 8X256 memory:
• Synchronous write
• Synchronous read
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module mem_one( input wire clk,
                input wire [7:0] w_idx, //write address
                input wire [7:0] din, //write value
                input wire we, //write enable
                input wire [7:0] r_idx, //read address
                output logic [7:0] val); //read value

  logic [7:0] memory [0:255];
  always_ff @(posedge clk)begin
    if (we)begin
      memory[w_idx] <= din;
    end
    dout <= memory[r_idx]; //moved
  end
endmodule



Result of Design
• No Longer Building with Distributed RAM, Instead Vivado 

Chose a Block RAM (because it has a tendency to choose 
BRAM when provided the option)

9/30/25 https://fpga.mit.edu/6205/F25 46

2. Slice Logic Distribution
---------------------------

+------------------------------------------+------+-------+------------+-----------+-------+
|                 Site Type                | Used | Fixed | Prohibited | Available | Util% |
+------------------------------------------+------+-------+------------+-----------+-------+
| Slice                                    |    0 |     0 |          0 |      8150 |  0.00 |
|   SLICEL                                 |    0 |     0 |            |           |       |
|   SLICEM                                 |    0 |     0 |            |           |       |
| LUT as Logic                             |    0 |     0 |          0 |     32600 |  0.00 |
| LUT as Memory                            |    0 |     0 |          0 |      9600 |  0.00 |
|   LUT as Distributed RAM                 |    0 |     0 |            |           |       |
|   LUT as Shift Register                  |    0 |     0 |            |           |       |
| Slice Registers                          |    0 |     0 |          0 |     65200 |  0.00 |
|   Register driven from within the Slice  |    0 |       |            |           |       |
|   Register driven from outside the Slice |    0 |       |            |           |       |
| Unique Control Sets                      |    0 |       |          0 |      8150 |  0.00 |
+------------------------------------------+------+-------+------------+-----------+-------+

3. Memory
---------

+-------------------+------+-------+------------+-----------+-------+
|     Site Type     | Used | Fixed | Prohibited | Available | Util% |
+-------------------+------+-------+------------+-----------+-------+
| Block RAM Tile    |  0.5 |     0 |          0 |        75 |  0.67 |
|   RAMB36/FIFO*    |    0 |     0 |          0 |        75 |  0.00 |
|   RAMB18          |    1 |     0 |          0 |       150 |  0.67 |
|     RAMB18E1 only |    1 |       |            |           |       |
+-------------------+------+-------+------------+-----------+-------+



Small Memory
• 8X256 memory:
• Synchronous write
• Synchronous read
• Bulk Resettable
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module mem_three( input wire clk,
                  input wire rst,
                  input wire [7:0] w_idx,
                  input wire [7:0] din,
                  input wire we,
                  input wire [7:0] r_idx,
                  output logic [7:0] dout);

  logic [7:0] memory [0:255];
  always_ff @(posedge clk)begin
    if (rst)begin
      for (int i=0; i<256; i=i+1)begin
        memory[i] <=0;
      end
    end else if (we)begin
      memory[w_idx] <= din;
    end
    dout <= memory[r_idx];
  end
endmodule

Only new thing compared to 
before is we can erase 
memory in one clock cycle



Results…
• Uh oh…
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2. Slice Logic Distribution
---------------------------

+--------------------------------------------+------+-------+------------+-----------+-------+
|                  Site Type                 | Used | Fixed | Prohibited | Available | Util% |
+--------------------------------------------+------+-------+------------+-----------+-------+
| Slice                                      | 1043 |     0 |          0 |      8150 | 12.80 |
|   SLICEL                                   |  718 |     0 |            |           |       |
|   SLICEM                                   |  325 |     0 |            |           |       |
| LUT as Logic                               |  841 |     0 |          0 |     32600 |  2.58 |
|   using O5 output only                     |    0 |       |            |           |       |
|   using O6 output only                     |  802 |       |            |           |       |
|   using O5 and O6                          |   39 |       |            |           |       |
| LUT as Memory                              |    0 |     0 |          0 |      9600 |  0.00 |
|   LUT as Distributed RAM                   |    0 |     0 |            |           |       |
|   LUT as Shift Register                    |    0 |     0 |            |           |       |
| Slice Registers                            | 2056 |     0 |          0 |     65200 |  3.15 |
|   Register driven from within the Slice    |    8 |       |            |           |       |
|   Register driven from outside the Slice   | 2048 |       |            |           |       |
|     LUT in front of the register is unused | 1697 |       |            |           |       |
|     LUT in front of the register is used   |  351 |       |            |           |       |
| Unique Control Sets                        |  257 |       |          0 |      8150 |  3.15 |
+--------------------------------------------+------+-------+------------+-----------+-------+

3. Memory
---------

+----------------+------+-------+------------+-----------+-------+
|    Site Type   | Used | Fixed | Prohibited | Available | Util% |
+----------------+------+-------+------------+-----------+-------+
| Block RAM Tile |    0 |     0 |          0 |        75 |  0.00 |
|   RAMB36/FIFO* |    0 |     0 |          0 |        75 |  0.00 |
|   RAMB18       |    0 |     0 |          0 |       150 |  0.00 |
+----------------+------+-------+------------+-----------+-------+

Being able to reset everything instantly is not 
possible with almost any denser memory 
technology easly. This design achieves this 
”performance” using the actual flip flops at 
massive expense of resources



Distributed RAM vs. Block RAM
• Distributed RAM:

• Trading logic for memory
• Occupies a logic cell whenever you use it (more you use, the 

fewer logic cells you have for logic)
• For large data structures/memories, needs to use lots of 

memory units (can be hard to route)
• Too much usage can make it hard to place and route (long 

builds!)
• Block RAM:

• Meant to be memory and nothing else
• Relatively dense!
• Use it or lose it. It is there…if you don’t use it, you don’t get 

free logic instead so you should use it.
• For large things, will outperform distributed RAM in 

speed/latency
• Generally won’t constrain place and route like distributed 

RAM usage will!
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FFs vs. Distributed RAM vs. Block RAM
• Conclusions:
• Flip Flops (avoid for “memory” at all costs):
• Very small things…local variables (state, math, etc…)

• Distributed RAM:
• Small things (16 bit shift register), small memories of a 

few hundred bytes, few entries, 
• Design actually needs async/quick reads*
• etc… 
• These are all best implemented with Distributed RAM:

• Block RAM:
• Large things (images, large audio files, etc), large buffers, 

all best implemented with Block RAMs
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*for good reasons…not because you are lazy and don’t feel like dealing with issues. Seriously, 
you will lose points on final projects if you make poor or lazy memory choices.



How do We Specify Which to Use?
• We do it with how we write Verilog.
• These “wants” will lead to the following inferences:
• Async/quick reads?àDistributed RAM
• Bulk resets? à FF’s 

• Already showed some examples
• In reality memory of any medium-large size has delays 

with associated with it and we need to learn to expect 
that and build it into our designs
• Must have Verilog properly reflect that!
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Building a Block RAM
• Use Verilog in a very particular way, Vivado can 

confidently “infer” block RAM usage
• Use pre-provided Verilog modules:
• These are guaranteed to simulate properly (right 

amount of delay and other issues)
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module xilinx_single_port_ram_read_first #(
parameter RAM_WIDTH = 18, // Specify RAM data width
parameter RAM_DEPTH = 1024, // Specify RAM depth (number of entries)
parameter RAM_PERFORMANCE = "HIGH_PERFORMANCE", // Select "HIGH_PERFORMANCE" or "LOW_LATENCY" 
parameter INIT_FILE = "" // Specify name/location of RAM initialization file if using one (leave blank if 
not)
) (
input [clogb2(RAM_DEPTH-1)-1:0] addra, // Address bus, width determined from RAM_DEPTH
input [RAM_WIDTH-1:0] dina, // RAM input data
input clka, // Clock
input wea, // Write enable
input ena, // RAM Enable, for additional power savings, disable port when not in use
input rsta, // Output reset (does not affect memory contents)
input regcea, // Output register enable
output [RAM_WIDTH-1:0] douta // RAM output data
);

reg [RAM_WIDTH-1:0] BRAM [RAM_DEPTH-1:0];
reg [RAM_WIDTH-1:0] ram_data = {RAM_WIDTH{1'b0}};



3. Memory
---------

+-------------------+------+-------+------------+-----------+-------+
|     Site Type     | Used | Fixed | Prohibited | Available | Util% |
+-------------------+------+-------+------------+-----------+-------+
| Block RAM Tile    | 32.5 |     0 |          0 |        75 | 43.33 |
|   RAMB36/FIFO*    |   32 |     0 |          0 |        75 | 42.67 |
|     RAMB36E1 only |   32 |       |            |           |       |
|   RAMB18          |    1 |     0 |          0 |       150 |  0.67 |
|     RAMB18E1 only |    1 |       |            |           |       |
+-------------------+------+-------+------------+-----------+-------+

xilinx_single_port_ram_read_first #(
     .RAM_WIDTH(8), // Specify RAM data width
     .RAM_DEPTH(WIDTH*HEIGHT*2), // Specify RAM depth (number of entries)
     .RAM_PERFORMANCE("HIGH_PERFORMANCE"), // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
     .INIT_FILE(`FPATH(image2.mem)) // Specify name/location of RAM initialization)     
  image_brom (
     .addra(image_addr), // Address bus, width determined from RAM_DEPTH
     .dina(0), // RAM input data, width determined from RAM_WIDTH
     .clka(pixel_clk_in), // Clock
     .wea(0), // Write enable
     .ena(1), // RAM Enable, for additional power savings, disable port when not in use
     .rsta(rst_in), // Output reset (does not affect memory contents)
     .regcea(1), // Output register enable
     .douta(palette_lookup) // RAM output data, width determined from RAM_WIDTH
  );

Building a Block RAM
• If we use our Verilog in a very particular way, 

Vivado can confidently “infer” block RAM usage
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This (week 05) leads to this usage:



xilinx_single_port_ram_read_first #(
     .RAM_WIDTH(8), 
     .RAM_DEPTH(WIDTH*HEIGHT), 
     .RAM_PERFORMANCE("HIGH_PERFORMANCE"), // "HIGH_PERFORMANCE" or "LOW_LATENCY"
     .INIT_FILE(`FPATH(image2.mem))
  

Using a Block RAM
• If we use our Verilog in a very particular way, 

Vivado can confidently “infer” block RAM usage
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Width (bits)

Depth (# of entries)

“High Performance” means 
more latency
But this also means it is 
much easier to build this 
design (fitting it into 
timing)

Preload it with files
(either ROM or 
initial values of 
RAM)



Block RAM Uses
• Store Images (Week 5) :using as a ROM in that case
• Store Video (Week 5…second half): Frame buffer
• Store Audio (Week 3)
• Clock Domain Crossing (Week 5, 6, 7):
• With dual-port RAM, you can write with one clock and 

read with another (can specify some settings to prevent 
race conditions, though no 100% guarantee)

• Store anything you want! (rest of life)
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SRAM Summary

• Block RAM (and less so Distributed RAM) should be 
your first choice in storing information
• Quick and reliable:
• Want measurement? Ask for it and get it:

• One cycle later (some Distributed RAM configs)
• One or two cycles later from BRAM

• Limited amounts of it on FPGA (0.5 Mbyte of 
BRAM, ~amount of Dist RAM)
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Memory OFF the FPGA
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Off-FPGA Memories
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SD card (NAND Flash)
EEPROM

front back

DDR3
Dynamic Memory



Two-ish Major Off-FPGA Options
• Flash/EEPROM: 
• Many different form factors, very slow to read/write, but 
non-volatile, meaning it will last beyond power cycles

• Dynamic Random Access Memory (DRAM):
• Potentially very high read-write rates
• Needs to be constantly refreshed (dynamic)
• Volatile…~100 ms after power-off, memory lost
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EPROM Families
• Includes EPROM, EEPROM, Flash 

memory, (and SSDs) 
• Utilize Floating Gates
• Different from SRAM!
• Instead of ~6 transistors per bit, 

you can do about 1 or so!
• Acts sorta like SRAM from 

outside but Non-Volatile and 
writes are much slower than 
reads 
• Invented by Dov Frohman while 

at Intel ~1970ish
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An early EPROM.
You’d program electrically and 
then shine UV onto it to erase 
it…don’t use these anymore



Quick Review on MOSFETs

𝑉!

𝑉"

𝑉# = 0V

𝒊𝑫𝑺
𝑖"# = 𝐾 𝑉! − 𝑉& '

𝑖"# = 𝐾 𝑉! − 𝑉& 𝑉" −
𝑉"'

2

In sub-threshold mode:

Above Threshold (saturation)
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• Basically:
• If VG is > VT you conduct (are ”on”)
• If VG is < VT you do not conduct (are ”off”)

• Traditionally VT is a function of doping, 
transistor dimensions, etc…
• BUT!....



Floating Gate MOSFETs

𝑉!

𝑉"

𝑉#

𝒊𝑫𝑺

https://www.electronicsweekly.com/news/research-news/device-rd/iedm-hybrid-floating-gate-scales-flash-to-10nm-2012-12/

10 nm Flash Gate

GATE
Floating GATE

Drain Source
Presence or absence of carriers on floating gate affects the threshold 
voltage of MOSFET
• Default (“binary 1”)…Threshold voltage is lower VTL 
• (no electrons trapped in gate)

• Programmed bit (”binary 0”)…threshold voltage is higher VTH
• (electrons trapped in gate)
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White stuff is 
all oxide 
insulator



Hot Carrier Injection/Tunneling to 
Program/Reprogram
• To add or remove electrons to the floating gate you use 

a quantum tunneling phenomenon
• High voltage (~12V over 100’s of Angstroms) is used to 

force electrons to tunnel into floating gate… the term 
“hot” refers to high energies on electrons.  
• A similar process is used in reverse to tunnel them out 

again
• High voltage is a potentially destructive process and will 

eventually ruin the device.  Flash traditionally therefore 
has limits of ~ several 100,000’s of program/erase cycles
• Mitigate issues by wear-leveling (try to spread out 

usage across all of device…like rotating tires on a car)
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To Program a 0
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+
--12V

e-e-

e- e-

Threshold voltage is now Higher

GATE

Floating GATE

Source



To Program a 1 aka erase
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+
-+12V

e-e-

e- e-

Threshold voltage is now Lower

GATE

Floating GATE

Source



NOR Flash

S0 S1 S2 S3 Out

0 0 0 0 1

1 0 0 0 0 if B0==1, 1 if B0==0

0 1 0 0 0 if B1==1, 1 if B1==0

0 0 1 0 0 if B2==1, 1 if B2==0

0 0 0 1 0 if B3==1, 1 if B3==0

Like a NOR gate since 
when all bits are 1, 
bit line goes low if 
any input is turned 
high…hence called 
NOR Flash

S0 S1 S2 S3

Bit Line

1 on the select bits means voltage:
• greater than VTL  (low threshold from no trapped carriers)
• less than VTH (high threshold from trapped carriers)
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NAND Flash

S0

S1

S2

S3

Bit Line

S0 S1 S2 S3 Out

>VTH >VTH >VTH >VTH 0

VTL<V<VTH >VTH >VTH >VTH 0 if B0==1, 1 if B0==0

>VTH VTL<V<VTH >VTH >VTH 0 if B1==1, 1 if B1==0

>VTH >VTH VTL<V<VTH >VTH 0 if B2==1, 1 if B2==0

>VTH >VTH >VTH VTL<V<VTH 0 if B3==1, 1 if B3==0

Like a NAND gate since 
when all bits are 1, bit line 
goes low if tested input is 
also 1…hence called 
NAND Flash

word_select
Turn word_select HI to enable whole word
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NAND vs. NOR Flash?
• Have Pros cons related to r/w time, size, etc.
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https://www.semanticscholar.org/paper/White-Paper-Two-Flash-Technologies-Compared-%3A-NOR-
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Using Flash with FPGA Board
• You can use the 16MBits of Quad-SPI Flash to 

permanently “program” the board (the –f 
flag)...use wisely.
• About 80% is unused with full binary so you could 

use this for permanent storage (I never have, but it 
is doable...can also really mess stuff up)
• Can also interface directly to multi-GB. SD card 

(which is itself Flash just in a different format)
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Floating Gates
• Some neat recent work using floating gates and their 

adjustable threshold capabilities
• Result is ability to adjust/teach a single transistor when to 

fire based on input signals! 

Floating Gate neural-like implementations, 2017
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2022 improvements 

2023 work



Two-ish Major Off-FPGA Options
• Flash/EEPROM: 
• Many different form factors, very slow to read/write, but 
non-volatile, meaning it will last beyond power cycles

• Dynamic Random Access Memory (DRAM):
• Potentially very high read-write rates
• Needs to be constantly refreshed (dynamic)
• Volatile…~100 ms after power-off, memory lost

9/30/25 https://fpga.mit.edu/6205/F25 71



DRAM
• Dynamic Random Access Memory!
• Single transistor and capacitor per bit (capacitor does 

the storage)
• Can be made extremely dense and therefore economical
• Are quite fast:
• SRAM will have access time of down to 10ns or less 

(consistent)
• DRAM will have access time from 50-250ns (variable)
• EEPROM/Flash way slower (esp for writes)

• Capacitors decay rather quickly (especially since DRAM 
capacitors are about 10 femtoFarads) so need to be 
refreshed every 64 milliseconds.
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Dynamic RAM (DRAM) Cell

§ DRAM relies on charge stored in a capacitor to hold state
§ Found in all high density memories (one bit/transistor)
§ Must be “refreshed” or state will be lost – high overhead

DRAM uses 
Special 

Capacitor 
Structures 

To Write: set Bit Line (BL) to 0 or VDD
& enable Word Line (WL) (i.e., set to VDD )

To Read: set Bit Line (BL) to VDD /2
& enable Word Line (i.e., set it to VDD )

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

[Rabaey03]

!"
#!

$BCB

!$B

!"

#

$"
B&&!"

B&&

D(&

#$%&'()*) +',-()*)

)G+),+-
B&&.L

9/30/25 https://fpga.mit.edu/6205/F25 73



DRAM is inherently one-port
• DRAM is always a one-

port entity. 
• Have to read and  

write over same port
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RAS
CAS
EN
WE

CLK

ADDRESS
16

DIO
16

SDRAM



DRAM Memory and Controller
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• Reading is destructive!
• Data stored on small capacitor
• To read it we must bleed the capacitor 

off
• Therefore need to refresh

• Need to refresh even when not 
reading (every 100 ms)
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Asynchronous DRAM

Column lines start charged to mid-
voltage (RAS=1)
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Asynchronous DRAM

Select Row and feed output of each 
column into feedback amplifiers to 
sense/regenerate 1s and 0s
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Read/Write by adjusting some 
input/output selector (associated 
with MUX signal)

Asynchronous DRAM
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Select which Column to route out

Asynchronous DRAM
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Route out desired bits
ALSO 
Redirect read out columns back up 
to recharge appropriate columns

Asynchronous DRAM
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Recharge capacitors fully

Then you’re back to 
beginning

Asynchronous DRAM
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Then you’re back to 
beginning

Asynchronous DRAM



DRAM Cells are Staggered 
Physically
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• The sense amplifiers 
use two parallel bit 
lines (one active and 
one for reference) to 
detect the slight 
perturbation when 
you discharge the 
capacitor



Many Flavors of DRAM

• DRAM (Asynchronous)
• SDRAM (Synchronous DRAM) 

• (one clock cycle per operation)
• Single Data Rate SDRAM (SDR SDRAM):

• One R/W per clock Cycle
• Double-Data Rate SDRAM (DDR SDRAM)

• Two R/W per clock cycle (called double pumping)
• Faster Double-Data Rate SDRAM (DDR2 SDRAM)
• And DDR3 and DDR4 (lower voltages, higher clocks)
• LDDR3 and LDDR4 (low power variants)
• DDR5…just faster in general 🤣…just keeps going…

9/30/25 https://fpga.mit.edu/6205/F25 84



DRAM

• DRAM is extremely dense.
• That tiny chip holds 1 billion 

yes/no decisions
• In a vast 2D array
• That is constantly bleeding 

out due to thermodynamics
• Requiring the entire thing to 

be rewritten every 64 ms
• Row then column must be 

specified
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DRAM

• The constant need for refreshing means getting info 
into and out of the DRAM is not an easy task…
• Even more complicated in modern devices because 

they’ll have different banks/channels/buffers
• Requires something to handle all the needs for 

refreshes and balancing them with requests for 
reads/writes, etc…
• This is the job of a Memory Interface/Controller
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Using DDR3 on Urbana Board
• Urbana board has ~128MB of DDR3
• We’ll use a Memory Controller to take care of the 

hard part of controlling the DDR3, though working 
with the memory controller is not super simple 
either.
• We’ll start using it in Week 6
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Using DDR3 on Urbana Board
• DRAM is *FAST*, BUT:
• A lot of delay from a read request to the data out
• Response time can be variable since DRAM will be taken 

offline periodically to internally refresh its values…
• if you’re trying to access something that is in a bank 

getting refreshed, your readout (or write) will be 
delayed
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Read request

Data appears (~230 ns later)Readout is variable



Often need to surround SDRAM 
with other memory
• There will be input and output buffers

• And you’ll have to wait for transactions to go 
through to get what you want.

• There’s no way around that.
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FIFO (First-In-First-Out)
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• Basically a Queue like you see in Python or 
something, but we can’t dynamically allocate storage 
space ahead of time at our low level!

• Data is not randomly accessed, but instead is 
accessed in the order it was provided
• Can generate either using Dist RAM or BRAM

FIFO
DIN

DOUT
SRAM



FIFO Implemented with BRAM:
• Remember structure of 

BRAM:
• Dual Port allows us to 

simultaneously read 
and write to different 
SRAM cells 
• Add some logic around 

it to store and 
autoincrement the 
memory addresses and 
you’ve got a FIFO
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Where to Use FIFOs?
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• Anytime you have two modules sharing data (one 
providing data to another) and they may be 
producing/consuming in differing patterns (We’ll 

BRAM FIFO
DIN SRAM

Memory 
controller

DIN

Actual 
DRAM 
chipBRAM FIFO

DOUT SRAM DOUT

Other 
FPGA 
logic



Using DDR3 on Urbana Board
• SDRAM is good for:
• LOTs of data needed in random access at medium data rates 

• (~100 MBytes/s average R/W)
• LOTS and LOTs of data needed in short high speed bursts

• ~1.2 GBytes/s in small bursts
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And remember the disconnect!
• You cannot write your Verilog HDL with the same 

disconnect as you would with Python or C when it 
comes to memory.

• You need to think about and account for memory 
delays and give your system time to do what it 
needs to with memory.

• You must be careful what you ask for when it 
comes to memory! It may not be possible.
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