Timing and
Clocking

6.205




Planning Stuff

 Week 03 Due Tomorrow
* Week 04 Released Thursday (video)



Look at your Vivado logs!

* If your build doesn’t work, open up the obj folder and
the vivado.log file will have information about your
build.

* Go through it! Focus on Warnings and Critical Warnings,
e “latch”....not good.
* “multi-driven net”....not good.

* “no driver”...possibly not good if referring to signal you care
about.

* “no load”...possibly not good if referring to signal you care
about.



Look at your Vivado logs!

9/23/25 https://fpga.mit.edu/6205/F25



Notes on UART RX

* | went and from the computer decided to send
down O, then 1, then 2, then 3...to 255 over UART.

* This was the trace on the UART_RXD line

8
—
E—
—
—
=
=
—

9/23/25 https://fpga.mit.edu/6205/F25



UART Packet

* In the UART standard there is no guarantee in
regards to inter-byte spacing between bytes sent
down.

* [t can vary (and often does)

Packet 1 Packet 2 Packet 3
10 bits 10 bits 10 bits

9/23/25 https://fpga.mit.edu/6205/F25



004alC

However...the FT2232 c

that ha

* Packs the UART pac

0 1
— A

2

NP ON our

ndles the UART...

3
A
Y

kets very tightly

4
A

9 A

8
A A
| |

! |
|
|
|
|
|

A
| |

UL

9/23/25

A
| |

AL

https://fpga.mit.edu/6205/F25




004alC

that ha

e Packs t

ne UART pac

2
A

However...the FT2232 chip on our

ndles the UART...
kets very tightly

| A

S

9/23/25

|

|| | 1

B o

|

//

Basically no inter-byte spacing

https://fpga.mit.edu/6205/F25



AS a re S u |t Cee Could fall off cliff into next start bit... :/

* Be careful with verifying too long or staying in a
state too long! Read instructions for uart_receivfe!

Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

T

Verify low for half BAUD Verify high from 0.5BAUD to 1 BAUD

9/23/25 https://fpga.mit.edu/6205/F25 9



FSMs In History



Description of Anti-Theft System

Since your client is completely focused on her start-up, she wants an anti-theft system that's highly automated. The system is armed automatically after she turns off the i
passenger and both the driver's door and passenger’s doors are open, the system arms itself after all the doors have been closed and T_ARM_DELAY has passed; that del

Once the system has been armed, opening the driver’s door the system begins a countdown. If the ignition is not turned on within the countdown interval (T_DRIVER_D!

(T_ALARM_ON) after the door closes, at which time the system resets to the armed but silent state. If the ignition is turned on within the countdown interval, the system|

. H
. Announcements Always a paragon of politeness, your client opens the passenger door first if she's transporting a guest. When the passenger door is opened first, a separate, presumably 1o}
driver's door and insert the key in the ignition to disarm the system.
Labkit
Nexysd DDR There is a status indicator LED on the dash. It blinks with a two-second period when the system is armed. It is constantly illuminated either the system is in the countdow|
HI S M " | b . 6 1 1 1
a I n L]

So far this all is ordinary alarm functionality. But you're worried that a knowledgable thief might disable the siren and then just drive off with the car. So you've added an
Power is only restored when first the ignition is turned on and then the driver presses both a hidden switch and the brake pedal simultaneously. Power is then latched on u

The diagram below lists all the sensors (inputs) and actuators (outputs) connected to the system.

Final Projects
»Project info

[
:mwm « passenger door switch ~—
»Past projects - all « driver door switch \ )

Inputs:

»Schedule * ignition switch

*MIT cert ired
N « brake pedal switch

+ hidden switch
*Submit PDFs

*$Staffed Lab Hours

Course info

Course objectives.

e ( Outputs:

Loals )\ « fuel pump power
Piazza (new tab) N « status indicator

— * siren

[}
. F S M e S I g n Wa S Figure 1: System diagram showing sensors (inputs) and actuators (outputs)

The system timings are based on four parameters (in seconds): the delay between exiting the car and the arming of the alarm (T_ARM_DELAY), the length of the countd|
(T_PASSENGER_DELAY), and the length of time the siren sounds (T_ALARM_ON). The default value for each parameter is listed in the table below, but each may be

[}
Time_Parameter_Selector switches specify the parameter number of the parameter to be changed. Time_Value switches are a 4-bit value representing the value to be prog:
selected parameter to Time_Value. Note that your system should behave correctly even if one or more of the parameters is set to 0.

Default Timing Parameters

Interval Name Symbol Parameter Number Default Time (sec) Time Value
V e r C O m m O n Arming delay T_ARM_DELAY 00 6 0110
Countdown, driver's door T_DRIVER_DELAY 01 8 1000
Countdown, passenger door T_PASSENGER_DELAY 10 15 1111
Siren ON time T_ALARM_ON 11 10 1010

approach to digital —
circuit design "

9/23/25 https://fpga.mit.edu/6205/F25 11



Car Alarm FSM

* When Gim graduated
from MIT he got a job
with DEC (Digital

that made the PDP-1
among other computers
and then Ti

* Got big signing bonus and
bought a nice convertible

* Parked Convertible went
Into apartment.

 Convertible was not there
came out

9/23/25 https://fpga.mit.edu/6205/F25

Gim Hom

Equipment Corporation) Took 6.111 in 1969..graduated in 1970

6.111 Instructor 2013-2021
Now retired

12



Car Theft FSMs

e 2016, MA: ~7 million people, 6,600 car thefts for year
e 1975, MA: 5.8 million people, 91,000 car thefts for year (peak)

Massachusetts Population and Rate of Crime Rank Compared to other States ~5% Of cars were StO/en per year In MA

State Year Population Index Violent Property Murder Rape Robbery Assault Burglary Larceny Vehicle
Massachusetts 1960 8 35 36 33 41 38 32 36 34 38 11
Massachusetts 1961 8 29 35 28 42 35 31 34 29 32 Vi
Massachusetts 1962 9 26 33 24 40 37 25 31 26 31
Massachusetts 1963 9 28 33 27 40 39 27 33 27 33
Massachusetts 1964 9 26 33 25 37 37 24 38 25 34
Massachusetts 1965 10 23 33 22 36 39 21 36 23 35
Massachusetts 1966 10 24 32 23 38 41 19 36 21 37
Massachusetts 1967 10 25 34 25 38 37 23 37 25 38
Massachusetts 1968 10 21 31 20 35 35 21 35 19 35
Massachusetts 1969 10 19 29 18 35 38 19 35 15 34 1

State Year Population Index Violent Property Murder Rape Robbery Assault Burglary Larceny Vehicle
Massachusetts 1970 10 20 31 18 38 33 19 35 14 35 1 State
Massachusetts 1971 10 16 27 16 36 38 13 33 13 32
Massachusetts 1972 10 17 26 16 38 39 11 29 13 35
Massachusetts 1973 10 15 20 14 36 34 10 29 12 33
Massachusetts 1974 10 12 20 11 37 37 10 29 12 32
Massachusetts 1975 10 11 16 12 39 29 9 26 13 34
Massachusetts 1976 10 13 18 12 40 37 11 22 11 36
Massachusetts 1977 10 15 17 16 43 31 12 19 13 37
Massachusetts 1978 10 16 16 17 40 31 13 19 12 38
Massachusetts 1979 10 16 15 15 41 32 12 16 11 36 1

State Year Population Index Violent Property Murder Rape Robbery Assault Burglary Larceny Vehicle
Massachusetts 1980 11 16 13 17 39 31 9 13 13 39 1
Massachusetts 1981 11 20 12 21 40 30 8 15 17 40
Massachusetts 1982 11 18 14 21 37 31 10 13 19 40
Massachusetts 1983 11 20 12 22 40 28 9 10 20 41
Massachusetts 1984 12 25 13 24 36 25 12 12 25 41
Massachusetts 1985 12 23 16 25 39 23 12 14 24 40
Massachusetts 1986 12 26 18 27 38 26 14 17 28 43
Massachusetts 1987 13 26 14 28 42 26 15 14 31 45
Massachusetts 1988 13 23 13 25 38 25 14 11 29 41

Massachusetts was the

#1 state for car theft for
1965-1987!1!

Year Population Index Violent Property Murder Rape Robbery Assault Burglary Larceny Vehicle
Massachusetts 2000 i3 42 21 44 41 36 27 14 41 49 16
Massachusetts 2001 13 41 20 43 42 29 25 15 40 47 18
Massachusetts 2002 13 39 18 42 38 34 24 17 39 46 18
Massachusetts 2003 13 28 17 40 42 30 19 18 36 46 18
Massachusetts 2004 13 39 18 42 37 33 20 18 38 47 22
Massachusetts 2005 13 42 19 45 37 36 20 18 35 48 30
Massachusetts 2006 13 41 20 44 35 37 21 19 34 45 33
Massachusetts 2007 14 42 22 42 37 38 23 18 33 45 36
Massachusetts 2008 14 37 20 44 41 39 24 14 32 45 35
Massachusetts 2009 15 37 17 43 38 38 23 14 33 45 33
State Year Population Index Violent Property Murder Rape Robbery Assault Burglary Larceny Vehicle
Massachusetts 2010 14 32 13 38 31 35 18 11 29 41 34
Massachusetts 2011 14 36 14 42 37 37 20 12 32 43 34
Massachusetts 2012 14 40 19 44 46 39 20 14 33 48 39
Massachusetts 2013 14 36 16 45 43 16 18 15 35 46 39
Massachusetts 2014 14 39 18 46 43 35 20 14 38 47 40
Massachusetts 2015 15 42 18 47 45 38 27 14 42 48 42
Massachusetts 2016 15 45 23 47 47 42 26 20 45 49 44

e B N ]

e

W o = = N e

9/23/25 https://fpga.mit.edu/6205/F25 13



Car Alarm FSM

e Gim built a car alarm for
his car.

* Designed it using an FSM-
Gim’s FSM-based car alarm for his car
based a pproach : Built using 4000-series CMOS chips

e Had ~11 states (top of the line at the time)

* Built it just like we talked
about last week (bubble-
diagram...developed
logic, implemented...)

:
|
.
31N
v

9/23/25 https://fpga.mit.edu/6205/F25 14



Magnavox Odyssey (1972

* First commercially available

1TL200 BLAK & BK12 ODYSSEY GAME SIMULATOR

PLAYER 25POT
PLAVER 15P0T comPosITE
VID
HORIZ SYNC SUMMER ]
VERT SYNC
(] 3
o | CoAvER [ ] mayeR Plawe M 7P vl T
L L SPOT SPOT o—|
UNIT HORIZ| GENERATOR GENERATOR 4. | OSCILLATOR
5c ]
CHANNEL
SWITCH
MODULATED
SPEED VHF
ENGLISH S
oc i BAI
ENGLISH svolrl [ GATE
enuisw [ FLIPFLOP | 1] Genenaton [ MATRIX HE
oc FILTER
S
G,
BALL VERTICAL g le— &no
FLIP-FLOP =1 SyNe 2
RESET — GENERATOR H
—— °
[ S— ANTENNA
asis it | GAME
SWITCH
PLAYER 2 C3 PLAYER 2 HORIZONTAL ! g:?EWYBAR |
CONTROL SPOT
ENoLis UNIT womiz|  GENERATOR GENERATOR . adinpd !
B | ]
| S 0 |

T
VERTICAL HORIZONTAL

Figure 1 -- Odyssey Block Diagram

9/23/25

TO TELEVISION
VHF TERMINALS

game system
* Completely FSM-based

CROWBAR CIRCUIT

Causes Ball and GATE MATRIX
PLAYER 1SPOT or Player to dis- RF FILTER ENGLISH FLIP-FLOP  Determines coincidence
GENERATOR appear at coincidence.  Eliminatesun-  Changes Ball’s of Players and Ball or
Generates video  R39 RF OSCILLATOR  Circuit soldered on desirable fre- direction and Ball and Wall to
for Player 1 VERT Generates RF Master Board quencies from control when it trigger flip-flops.
spot FREQ  TP1  carrier (HIDDEN) RF signal. touches Player or crowbar circuit.

Q1 REGULATOR
Provides voltage
to all transistor
circuits

VERT. SYNC GEN.

Produces § V y ’ ¥y
BOY yerties! ) 5 BALL FLIP-FLOP
e pulses ‘ Makes Ball
7 bounce when it
SENERATOR 7 7 J touches Wall
Generates video
for Wall spot
W1 BATTIN
W2 GROUND HORIZ. SYNC GEN. BALLSPOT R PLAYER2SPOT  R31
Mixes video  Produces 5 V, GENERATOR  BALL GENERATOR PLAYER
e 15,734 Hz. Generates HEIGHT Generatesvideo 2 HEIGHT
(BK 12 Onlv) horizontal video for for Player 2
sync pulses. Ball spot. spot.

Figurs 3 Master Board Module Location

https://fpga.mit.edu/6205/ll5§5051//www'pong-Story'Com/Odyssey'htm 15



* Implemented completely with discrete transistors:

MAGNAVOX ODYSSEY 1TL200BLAK SCHEMATIC DIAGRAM
Scanned from original service manual by David WINTER
http://www.pong-story.com

HANO CONTROL NO. 1 703488-2 WANG CONTROL NO. 2 7034882
' —Y vear

T RE FLTER
7034982

“

i HORIZ SYNC GENERATOR

ne

0w 1o wosuiare

—— e ___

RIFLE TRONIX 703520-1
3 e reny o]

BASE DIAGRAMS

MASTER PC 80 703490-4

https://www.pong-story.com/odyssey.htm
9/23/25 https://fpga.mit.edu/6205/F25 16



Was just a large finite state machine

PLAYER 2 SPOT k| 1 i r
PLAYER 1SPOT COMPOSITE [} 1!
VIDEO Y
HORIZ SYNC SUMMER 08
VERT SYNC
VERTICAL HORIZONTAL
= —EEEE  -| o
VERT, _[ > SE il
PLAYER 1 DC PLAYER1 | WALL RE
ENGLISH CONTROL SPOT SPOT o—1 BSCILLATOR
UNIT HORIZ|  GENERATOR GENERATOR 4
DC CHANNEL
S SWITCH
MODULATED
ENGLISH SAdEy et
De >
ENGLISH g:&TL GATE
ENGLISH FLIP-FLOP {o GENERATOR MATRIX RE
Be FILTER
[ ]
w
RESET ‘ZJ GAME
Y VERTICAL g ¢ CORD
FLIP-FLOP ¢+ SYNC S
RESET GENERATOR 5
(=]
A ANTENNA
__J r——-Y¥4 GAME
VERT SWITCH
PLAYER2  [bc | PLAYER 2 HORIZONTAL L iy oag |
CONTROL SPOT SYNC 4 |
ENGLISH T voriz| GENERATOR GENERATOR [~ {ow sty
L3 | oard) |
DC
[ |
n
VERTICAL HORIZONTAL TO TELEVISION
VHF TERMINALS

Figure 1 -- Odyssey Block Diagram

inputs  state state-transition logic output logic “clock”

https://www.pong-story.com/odyssey.htm
9/23/25 https://fpga.mit.edu/6205/F25 17



Magnavox Odyssey Game System

9/23/25

b >

Thiz {5

o £ O

ccccccccc

wlele|l]=]e
<[c[=]e]=
I\

http://odysim.blogspot.com/2020/

https://fpga.mit.edu/6205/F25

18



Magnavox Odyssey Game System

Hockey

Kim Rachael

Cat and Mouse

' Jake Patrick
2

https://youtube.com/playlist?list=PLtApm-Ri5SWTIAEV1ClufPrca2MTj4uSvT&feature=shared
https://www.youtube.com/watch?app=desktop&v=NsluZfTMRno&ab channel=0dysseyNow
9/23/25 https://fpga.mit.edu/6205/F25 19



Early 1970s

* Most arcade systems were just FSMs implemented
in discrete logic, including:
* Pong
e Breakout

* Space Invaders was first arcade machine to move
some game logic to an Intel 8080 microprocessor.



Evolution of FSM-based Games

* As 1970s rolled on, entire
game systems would get put
on single chips

* “Ball-and-Paddle” Chips would
be sold by companies and then
other companies would buy
them and put their own “skin”
on them and sell them as their
own. Many times it was the
same game underneath

* Atari 2600 was first G g
microprocessor-based home B
video game system e e i g

AY-3-8500

AY-3-8500 “Ball-and-Paddle” chip

* http://www.pong-story.com/gi.htm https://commons.wikimedia.org/wiki/File:AY-3-8500.jpg

9/23/25 https://fpga.mit.edu/6205/F25 21



TV Fun

* Runs off an AY-3-8500

* Made by APF who started out importing Japanese
8-track players

 Company went bankrupt in the great video game
crash of 1983.

* Have one set upstairs in lab in case anybody wants
to play.

9/23/25 https://fpga.mit.edu/6205/F25 22



Tiger Electronics Games

ELECTRONIC ELECTRONIC

ri

MAX o]}
OFF SOUND SCORE START ACL

MAX ON TM and © 1984 Cinema '84

SOUND SCORE START ACL

\ \ \ L
T™ and 1984 Cinema ‘84 K

rine

WEAPON

OFF

WEAPON

https://oladaniel.com/pica-pic
9/23/25 https://fpga.mit.edu/6205/F25 23



Tiger Electronics Games

* Tiger Electronics had 100’s of
versions of these in the 1980s
and 1990s

* Almost all of them were based
on three or four common finite
state machine game chips or
four-bit microcontrollers (very
poorly documented/insider
information)

* They’d slap a different LCD skin
and game art onto the same
chip and resell

9/23/25 https://fpga.mit.edu/6205/F25 24



Modern Games

 Modern games are far too complex to be
implemented with an FSM in any productive way
(though it is still generally possible)

* However well-characterized chunks of game
software is still used and re-used/skinned (for
example game engines)

* But also stuff gets reskinned all the time



9/23/25

' (7
~ e
we . |

Vsl 3

Sl

:

()

Q .,
-"-'. A
veee

Q . = -

=
> "D
) 9
coe .,

https://fpga.mit.edu/6205/F25

26




Pet Rescue Saga

9/23/25 https://fpga.mit.edu/6205/F25 27



Soda Saga

9/23/25

https://fpga.mit.edu/6205/F25

28



Bubble Witch 3 Saga

(@]
N

https://fpga.mit.edu/6

9/23/25



Farm Heroes Saga

9/23/25 https://fpga.mit.edu/6205/F25

30



Finite State Machines Relevant

* Designing systems as finite state machines is still
very common in digital design.

* Doing it in a structured way can make your HDL
very transparent so you know what you’re getting!

* You'll see data sheets and other places with FSM
diagrams and many protocols express their
functionality with FSMs.



See them
everywhere

Directed From
Any Other States

USB 3.0 LTSSM FSM
@

Directed. PowerOn Reset,
USB2 Bus Reset
Farand R SS.Disabled
ar- Re-0C .Disal
Absent Rx Detect
Overlimat
(US Port ONLY)
3 Warm Reset. C
Rx.Detect )= Bower On Resel ¥

o \

LFPS LEPS Timeout,
Timeout Timeout Warm Reset, Dirécled
(DS Port ONLY) LFPS
LFPS Link Non- Directed Hancahate
Timeout recoverable Polling \ \
° Directed Teneo  Tumeout
Training

i

LGO_U3 W
Symbol Hot Reset
AON s AT S

- LGO_ut Training
o Error, Directed
LFPS Handshake
LFPS Handshake

LFPS Handshake

9/23/25

12C FSM

command

bit_cnt\= 0

bit_cnt=0

ena="'1"
w ='0" OR new addr

ena="‘1"
rw = 1" OR new addr

bit_cnt\=0 bit_cnt\=0

ena =1
rw ="1" AND same addr

ena="‘1

rw ='0° AND same addr bit_cnt=0  bit_cnt=0

https://fpga.mit.edu/6205/F25 32



Clocks and Time

Times and Clocks



Clocking and Synchronous Communication

Module M1 i i Module M2
I Signal 1 I
— > pr—
> >
CLK
Ideal world:

CLKM]_ E
Signal 1 ) A A

CLKMZ e

v

M1 and M2 clock edges aligned in time
9/23/25 https://fpga.mit.edu/6205/F25 34



Delay Estlmatlon Simple RC Networks

Simple CMOS Circuit T v,
l: 50%
Vou I |
Vin o——9 _ | |
° : : t
_I T“ Vout
Low-to-High High-to-Low
Vaa Yaa
review
o
Rn$ o
Vin
— +
T Vou
T v out(t) - (1 _ e_t/T) V
L LT~
9/23/25 https://fpga.mit.edu/6205/F25 35




RC Equation

VS:5V

i

|
|
)
<
a

V,=5V
Switch is closed t<0

Switch opens t>0

Vi=Vp+ V,
V, =i R+ V. ig= cdVe
= RC%H/C .
dt
_t
V. =V,|1-e



So Signhals Experience Delays

* “Signals” generally have their delays expressed
with:
e Contamination Delay
* Propagation Delay

e But the clock is not immune to delay too!



. h . reg 1 sigl sig2 reg 2
From T, h
Jeeze, t IS somewhere | D Q_y D Q}— 7o somewhere
diagram again!? A A
* e CLK
: =determined state
A tek
> '\ .
) ] & =undetermined state
cK tPD,regl I
Tep,reg1*™ - ZtseTUp reg2 -
sigl §
< tPD,Iogic
tCD logic e
' >
time
t + t .+t <t
Two Requirements/ PD,regl PD,logic SETUP,reg2 CLK
Conclusions:
tep,regt t e, logic 2 tHOLD reg2
https://fpga.mit.edu/6205/F25 38



Clock Skew

Module M1 Module M2
I Signal 1 I
— , > pr—
--------------------------- ' 1. Wire delay
2. Different clocks! Oops! Skew has caused a hold

Real world has clock skew: time problem!

ke, 7L -
Signal 1 X X X
CLKyp \ I

v

M2 clock delayed with respect to M1 clock
9/23/25 https://fpga.mit.edu/6205/F25 39



Clocks are Not Perfect: Clock Skew

Cloyt
r \\
n Iy o Combinational D Ql—
Logic
+ N J e
| > Wire delay clk2
clkl ol
clk1 |
k2 i | | | |

9/23/25 https://fpga.mit.edu/6205/F25 NO’(‘ 40



You Can Have Two Types of Skew!

( Positive Skew: \
In Combinational 3
ombinationa
Logic D/\Q

CLK 4 tcikq tciko j tciks
> 4> > r

[ Negative Skew: \
/ R S R2 R3
n ombinationa Combinational
— D Q Logic b aq Logic b Q-
A JAN A
f tciki tcik tciks
- -
delay delay CLK

\_

» Adapted from J. Rabaey, A. Chandrakasan, B. Nikolic,
“Digital Integrated Circuits: A Design Perspective” Copyright 2003 Prentice Hall/Pearson.

9/23/25 https://fpga.mit.edu/6205/F25



Positive Skew

The launching edge arrives (in time) before the receiving edge

D)
Flow of Data

>
| RA1 Compinational R2 R3
n ombinationa Combinational
— D Q{ Logic D/\Q Logic b ao—
W /\
CLK t t t
f CLKT_ J— f CLK2 J— f CLK3
f delay «rjop” of CIOCMIay >
) TCLK+ B g
- Teik ;
CLK1 @ ©
0
CLK2 @) @

> Adapted from J. Rabaey, A. Chandrakasan, B. Nikolic,

“Digital Integrated Circuits: A Design Perspective” Copyright 2003 Prentice Hall/Pearson.
9f23/ https://fpga.mit.edu/6205/F25 42



Negative Skew

The receiving edge arrives (in time) before the launching edge
Flow of Data >

R1 Combinational R2 R3
ombinationa Combinational a
b Q Logic b Q Logic b Q '
JAN JAN JAN
tc tc tc
f LK1 ) P f LK2 3 f LK3
. delay “Flow” of Clock delay CLK
) Toikt © "
h Teik .
CLK1 @ ®
CLK2 < @

» Adapted from J. Rabaey, A. Chandrakasan, B. Nikolic,
“Digital Integrated Circuits: A Design Perspective” Copyright 2003 Prentice Hall/Pearson.

9/23/25 https://fpga.mit.edu/6205/F25



reg

1

reg 2

JAN

Q

" " From sig1 sig2
TI I I . I n g somewhere b Q_’ b
JAN
CLK
: =determined state
A tek
< , .
) g & =undetermined state
CLK tPD,regl I
tep,reg1*” ) 2tsETUP reg2 -
sigl §
e tPD,Iogic
sig2 ZtHOLD,regZ m N
tCD logic e
' >
time
t + t .+t <t
Two Requirements/ PD,regl PD,logic SETUP,reg2 CLK
Conclusions:
tep,regt t e, logic 2 tHOLD reg2
9/23/25 https://fpga.mit.edu/6205/F25 44




How does Skew Affect Those Equations?

* Originally in our model circuit, we assume all devices experience

the clock edges at the same time!!!!!
reg1 . reg 2
EQ%ZWhT D Qﬂl MR = |, To somewhere
JAN AN
4 CLK | |
; tewk :
54 .................................................................. >E
CLK
: | | |
everywhere : teik = tedgez - tedgen ; -

tedgel tedge2

* The Setup equation:  tep,reg1 + trp,iogic T tseTupreg2 < tewk

e ...was really short-hand for:

- +pp reg1 T tpp,logic T TseTUPreg2 < -

9/23/25 https://fpga.mit.edu/6205/F25 45




reg 1 reg 2

With Skew in the Mix... == L& .7
CL

.4 .................................................................. >
Lok
CLK I I I
@ : :
H Tesnns »:
regl tskew:
o | B
@ ' :
reg2 — ->
tedgel tedgeZ:

toe + T :
€rrnnnnnnnanaeeeeernnnnns LK RO e reeereeeeeenns >t

* The equation turns into:
- +tPD,reg1 + tPD,Iogic + tSETUP,regZ < - t tskew
¢ But Since tCLK = tedgez_ tedgel

tpp,regt T Upp logic T LsETUPreg2 S . + Tojew

9/23/25 https://fpga.mit.edu/6205/F25 46



reg1 reg 2
sig1

. From sig2 To somewhere
With Skew == T F
JAN JAN
=

tpp,reg1 T tpp,logic T TsETUPreg2 S . + Lopew

* If that’s now our modified setup equation...
 Positive skew makes equation easier to satisfy
* Negative skew makes equation harder to satisfy

* It can still be fixed even in negative skew case

* BUT you have degree of freedom with tpp o -..maybe
you can change that?

* AND/OR you could also increase t,, as well.




What about Hold
Time?

* If the second register is getting its clock edge t

reg 1

reg 2

N To somewhere

sig2
rom D Q D Q
somewhere
JAN JAN
oL >

skew

after the first register that means it needs hold the

values at the input of reg2 for t

skew

* Hold Equation gets modified to be :-/

tep,regt t e logic 2 tHOLD, reg2

+ 1

skew

longer



somewhere

What about Hold R P YO
Time? i v )

+ 1

tepregt T e logic 2 tHolp reg2 T skew

* The “growth” from positive skew is not on low side of
inequality so...

* Positive skew makes equation harder to satisfy.

* Further there’s nothing you can do since contamination
delays are usually very low and beyond our control

* Negative skew makes equation easier to satisfy.



reg 1

From D Q

Conclusions S

sig1
—>

reg 2

D Q

JAN

N To somewhere

oL >

top,regt T pp logic T LsETUPreg2 S Il + Toiew

tep reg1 + tep,logic 2 tHoLp,regat |

skew

* Positive clock skew improves the minimum cycle time
of our design but makes it harder to meet register hold

times.

* Negative clock skew hurts the minimum cycle time of
our design but makes it easier to meet register hold

times.
* Positive skew is tougher to deal with



Low-skew Clocking in FPGAS

* When Vivado is doing place-and-route it tries to
position logic so that skew is minimized wherever
possible

 Special clock paths and buffers exist throughout the
chip to distribute the clock as effectively as possible.

* Think of it like priority boarding/VIP status for signals

Figures from Xilinx App Notes



From the Vivado Docs

Technical Information Portal

AMDA

2] Signin

o o 8

€ Search Vivado Design Suite Properties Reference Guide (UG912)  UG912
« Opt Design

— Search in document

Related Information

Table of con- Keywords Q T
tents -
BLOCK_SYNTH GCLK_DESKEW
ﬁ BUFFER_TYPE
- (=]
orams  acny mowe CLOCK_DEDICATED_ROUTE & & ®

9/23/25

CASCADE_HEIGHT
CELL_BLOAT_FACTOR
CFGBVS
CLOCK_BUFFER_TYPE
CLOCK_DEDICATED_ROUTE
CLOCK_DELAY_GROUP
CLOCK_EXPANSION_WINDOW
CLOCK_LOW_FANOUT
CLOCK_REGION
CLOCK_ROUTE_GUIDE
CLOCK_ROOT

The CLOCK_DEDICATED_ROUTE property is enabled (TRUE) by default, and ensures that clock resource placement DRCs are considered
error conditions that must be corrected prior to routing or bitstream generation. CLOCK_DEDICATED_ROUTE=FALSE downgrades the
placement DRC to a warning and lets the Vivado router use fabric routing to connect from a clock-capable 10 (CCIO) to a global clock
resource such as an MMCM.

A\ CAUTION! Setting CLOCK_DEDICATED_ROUTE to FALSE can result in sub-optimal clock delays, resulting in potential timing violations
and other issues.

External user clocks must be brought into the FPGA on differential clock pin pairs called clock-capable inputs (CCIO). These CCIOs provide
dedicated, high-speed routing to the internal global and regional clock resources to guarantee timing of various clocking features. Refer to
the 7 Series FPGAs Clocking Resources User Guide (UG472), or the UltraScale Architecture Clocking Resources User Guide (UG572) for
more information on clock placement rules.

The CLOCK_DEDICATED_ROUTE property is generally used when it becomes necessary to place clock components in such a way as to
take clock routing off of the dedicated clock trees in the target FPGA, and use standard routing channels. If the dedicated routes are not
available, setting CLOCK_DEDICATED_ROUTE to FALSE demotes a clock placement DRC from an ERROR to a WARNING when a clock
source is placed in a sub-optimal location compared to its load clock buffer.

https://fpga.mit.edu/6205/F25 52



Other Problems you can have with
clocks...

e Stable Clock:

S [ A A I N O

e Jittery Clock:

B . S I I S

Clock jitter means cycle-to-cycle you can have larger or shorter clock periods!

9/23/25 https://fpga.mit.edu/6205/F25 53



Tak '®

Clocks Are Not Perfectly -

clk © 5*'|® ® | ihiter

Periodic!: P

Y REGS Combinational
i Logic
N\

A

CLK |

e Jitter is an approximation of how much the clock
period can increase/decrease cycle to cycle:

* Can make it harder to meet timing since it effectively
shortens t, ...

* Even though some cycles might have larger tclk, we, as
engineers are required to be big pessimists and plan for
the worst case at all times...

* and that affects the setup equation...

tPD,reg1+tPD,Iogic+ tSETUP,regZ g T thitter Typical crystal oscillator
100mhz (10ns)

Jitter: 1ps
9/23/25 https://fpga.mit.edu/6205/F25 54

_



Other Problems you can have with
clocks...

* 50% Duty Cycle Clock

S [ A A I N O

* Not 50% Duty Cycle Clock

M mn_rn _mn - Ti

What is the clock period of the 50% duty cycle clock vs the non-50% duty cycle clock?

Trick question: they’re the same. | got you.

9/23/25 https://fpga.mit.edu/6205/F25 55



So What? Fifty Shmifty

* Even though the clock period is the same, there can
be issues.

* In more advanced designs, you use both clock
edges (timing gets more complicated). 50% duty
cycle ensures equal time for both halves of logic

* Too far of a deviation from 50% may also break the
setup/hold time model of our flip-flops

* Most flip flops have minimium-pulse duration specs...go
too low and they won’t react appropriately.



Also 50% is “Pure”

|

i
%

>

5

* A pure 50% Duty cycle signal has no odd harmonics*

* Non 50% duty cycle will have odd harmonics, so you
can get more noise

Ref 107.0 dBuV Atten 20 dB Ref 107.0 dBu¥ Atten 20 dB
Peak Peak

Log Log

10 10

dB/ dB/

52l Wy bl b VJ 52 bl MLW(J o el Al

FC
FC
X
Take 6.300

Center S0.00 MHz Span 100,0 MHz
Center 50.00 MHz Span 100.0 MHz ¢ ,
#Res BH 100.0 kHz  #VEW 300.0 kHz #Sveep 1000 ns | LFReS BH _100.0 kHz __#VBH 300.0 kHz #Sveep 100.0 as

49% Duty Cycle 50% Duty Cycle 57

https://incompliancemag.com/spectra-of-digital-clock-signals/



Almost All Modern Digital Design is CMOS:

* PFET in charge of making —
sighal go to 1.

VOUT

* NFET in charge of making
signal go to 0.

* They workina 7
Complementary fashion NFET =" =



DEVi ce P hySiCS iS |—| a rd * (6.2080, 6.2090, 6.6400, etc...)

* The electrons and holes that —
N- and P- channel devices use .
are uneven in mobility soitis £ |
very hard to make exactly s |
balanced N- and P- channel -
FETS

* They may pullto Land pullto " 2 2 7
0 with different “strengths” el i oo st o ok e

* VVery easy for circuits to quickly
deviate from equal time in on *but fun and fulfilling
and off state!



Duty Cycle

* Driving clocks with healthy circuits that get some
daily exercise is important

AMDA Technical Information Portal 5] Signin

¢ seach  Vivado Design Suite 7 Series FPGA and Zynq 7000 SoC Libraries Guide (UG953)  UG953  2025-05-29 & o e

UL T MO ST T U ST S OUT MU (W AT V)

e Search in document

Table of con- Keywords Q= BUFG =+ e

tents
XIlIINX Parameterizea Macros
Primitive: Global Clock Simple Buffer

Unimacros

&

PDF and at- Functional Categories BUFG
tachments
Design Elements
o BSCANE2
« BUFG X10654
BUFGCE

BUFGCE_1

BUFGCTRL This design element is a high-fanout buffer that connects signals to the global routing resources for low skew distribution of the signal.
BUFGs are typically used on clock nets as well other high fanout nets like sets/resets and clock enables.

Introduction

BUFGMUX
BUFGMUX_1 Port Descriptions

BUFGMUX_CTRL
Direction
BUFH s
|

BUFHCE Input 1 Clock input.
BUFIO
BUFMR

9/23/25 https://fpga.mit.edu/6205/F25 60

(0] Output 1 Clock output.




And Other Special Circuits

e Other Special Circuits like Phase-Locked Loops help
designs keep healthy, clean 50% duty cycle clocks
with low jitter

* They can also be used to make clocks from other
clocks!



Goal: Use as few clock domains as possible

Suppose we have a reference clk at frequency f and we
want signals at /2, f/4, /8, etc.:????

logic clk2,clk4,clk8,clkl6;

always_ff @(posedge clk)begin
clk2 <= ~clk2;

end

always_ff @(posedge clk2)begin
clkd4 <= ~clk4;

end

always_ff @(posedge clk4)begin
clk8 <= ~clkl6;

end

always_ff @(posedge clk8)begin
clkl6 <= ~clkl6;

end

9/23/25 https://fpga.mit.edu/6205/F25 62



Goal: use as few clock domains as possible

logic clk2,clk4,c1k8,clkl6;

Suppose we have a T ey e No! don’t do

end it this way, you’ll
reference clk at frequency f st et e poyer make o dime
and We Want Signals atf/Z, :rl]:ays_ff @(posedge clk4)begin
/4, /8, etc.:????

always_ff @(posedge c1k8)begin

clk1l6 <= ~clk16;
end

CLK

CLK2

CLK4

CLK8

Very hard to have synchronous communication between clk
and clk16 domains... Can lead to lots of timing violations!
https://fpga.mit.edu/6205/F25 63

9/23/25



Goal: Use as few clock domains as possible

Suppose we have a reference clk at frequency f and we
want signals at /2, f/4, /8, etc.:????

logic [3:0] count;
always_ff @(posedge clk) begin

count <= count + 1; // counts 0..15
end
logic enb2, enb4, enb8, enbl6;
assign enb2 = (count[0] == 1'bl);
assign enb4 = (count[1:0] == 2'b11);
assign enb8 = (count[2:0] == 3'b111);
assign enb1l6 = (count[3:0] == 4'b1111);

always_ff @(posedge clk) begin
if (enb2) begin
// get here every 2nd cycle
end
end

9/23/25 https://fpga.mit.edu/6205/F25 64



Solution: One clock, Many enables

Use one (high speed) logic [3:0] count;
always_ff @(posedge clk) begin
clock, but create enable | count <= connt + 13 /7 counts 0..15
S|gnals to Select a log%c enb2, enb4, enbs, enblt?; \
assign enb2 = (count[0] == 1'bl);
assign enb4 = (count[1:0] == 2'b11);
SUbset Of the edges to ass%gn enb8 = (count[2:0] == 3'b111); Yes! A good idea
use for a part|CUIar assign enb16 = (count[3:0] == 4'b1111); that WI” Iead to
piece of sequential logic i Gont) megn good outcomes
(much easier on timing o S TeTE Svery nd rete
. end
requirements)
CLK > |
count | 4515 ] 0] 1] 2] 3 5 | 6| 7| 8] 9 |10|11]12]13]14
N2 <x f i w f ¥ i f -
ENB4 1 T ] 1
ENBS 1 ]
ENB16 1
= clock edge selected by enable signal
9/23/25 https://fpga.mit.edu/6205/F25 65



How to Make
Frequencies and Clocks

Where do they come from???



Where do we get frequencies?

o> P!
e Particular combinational circuits that are fed back

onto themselves so that they cannot be stable can
be made to form oscillators.

* The ring oscillator above is a classic example.

* There is no stable set of output states so this circuit
perpetually oscillates.

* Period of oscillation is based on the delay of each
element

https://en.wikipedia.org/wiki/Ring_osciliator



Where do we get frequencies?

* Most frequencies come from

Crystal Oscillators made of quartz \s\)

* Equivalent to very High-Q RLC tank
circuits

16MHz Crystal

* Incorporate into circuit like that
below and boom, you’ve got a . i

. I T
square wave of some specified DOy L e

frequency dependent largely on
the crystal

11111 SERIES RESONANT OSCILLATOR CIRCUIT

http.//www.z80.info/uexosc.htm https://en.wikipedia.org/wiki/Crystal_oscillator



igh Frequencies

* VVery hard to get a crystal oscillator to operate
above ~200 MHz (7t harmonic of resonance of
crystal itself, which usually is limited to about 30
MHz due to fabrication limitations)

* Where does the 2.33 GHz clock of my iPhone come
from then?

* Frequency Multipliers!



Voltage Controlled Oscillator

* It is very easy to make voltage-
controlled oscillators that run up to
1GHz or more.

* Low voltage circuit oscillates at low

frequency
* Higher voltage—>higher frequency
oscillation
_l_ O oV
e Block Diagram: A simple VCO (not type found

in FPGA). Same general idea...
You use FEEDBACK to make a
v, VCO f circuit unstable but guide that
instability into productive
oscillations with careful tuning
and external control!

http://www.electronicshub.org/voltage-controlled-oscillators-vco/



Voltage Controlled Oscillator

* |t is very easy to make voltage-controlled oscillators that run up
to several GHz or more.

 Why don’t we just:

Vi VCO fo

* Pick the voltage V; that is needed to get the frequency we want
fo?

* That’s gotta be ok right?

http://www.electronicshub.org/voltage-controlled-oscillators-vco/



Phase Locked Loop (PLL)

* Place the unstable, but capable, VCO in a feedback
loop.

Phase, Ch LP Filt
fre fH Frequency p arge — Her vVCO —r—o £,
Detector ump \

. Y

fmeas




Phase Locked Loop (PLL)

* APLL s a circuit that can track an input frequency f.¢
of a system and reproduce it at the output f,

Phase, Ch LP Filt
fre fH Frequency p arge — Her vVCO —r—me £,
Detector ump \

. Y

fmeas

GOTTA GO THROUGH EACH PART



Phase Locked Loop (PLL)

* The Phase, Frequency Detector

o—| Frequency Charge | | LP Filter
fref Detector Pump —\

. Y

fmeas

VCO

— ,




Phase Detector
* Can be a simple XOR, XNOR gate

* Low-pass the output

Gain =2/t _.

Fl——-.
|
!
0 /2 [ Phase
T T /2\ / T difference

Phase detector
range =Tt

9/23/25 https://fpga.mit.edu/6205/F25

75



Phase ) 3L
Detector... " Dwmp Dol

/ Almost In Phase Signals: \

s MU LU L LT

clk,
omp— L LLL R RRE AR DORD DORRUOIT

(quite low) /
>

Almost Out-of-Phase Signals:

. e LU LU LU L

clk, |
compIIIIIIIIIIIIIIIIIIIIIII

Comp(an)T (quite high)

P i IR
—

9/23/25 https://fpga.mit.edu/6205/F25



Phase
detector

Phase Detector o] ... o,
* Can be a simple XOR, XNOR gate— ° “/2/5\ Phase

/2 m difference

* Low-pass the output

Phase detector
range =Tt

* If near the desired frequency already this can work...if it
is too far out, it won’t and can be very unreliable since
phase and frequency are related but not quite the same
thing, it will lock onto harmonics, etc...

* For frequency we instead use a PFD:
* Phase/Frequency Detector:



Phase-Frequency Detection

* Built around Flip-Flops with Asynchronous Resets:

always_ff @(posedge clk or posedge rst)begin

D QpF— if (rst)begin
q <= 0; //immediate reset to 0
'>CLK end else begin

q <= d; //update on clock edge

RST end
I end
clk
d
: I I [ ] l
rst I I
time >

9/23/25 https://fpga.mit.edu/6205/F25 78



VbD

Build This Circuit:

D FFp Q 0A Up

Both D’s are tied to 1 clka, —*{ Clk R
( a2
' \

D R QB Dn
FFg Q g

StateII B T State 0 A T State I

AT BT Fig. 2.2-13

1.pallen.ece.gatech.edu/Academic/ECE_6440/Summer_2003/L070-DPLL(2UP).pdf

9/23/25 https://fpga.mit.edu/6205/F25 79



Phase Frequency Detection

VDD

State II BT State 0 A T State I
clka » Clk R
3 _—
\ < -
—D R QB Dn
Q >
clkg P Fig. 2.2-12

 Circuit starts in State 0 (middle) (“Up” off, “Dn” off)
* First clock to rise will move into one of two side states:
* clk,?: State 1 ("Up” on, ”"Dn” off)
* clkg?: state Il (“Dn” on, “Up” off)
* When loser finally rises, circuit resets to State O (middle)
* Competition starts again

1.pallen.ece.gatech.edu/Academic/ECE_6440/Summer_2003/L070-DPLL(2UP).pdf



Phase Frequency

. P Fr, o Up
etection clka —fcik v
saell B} sue0 Al Sutel "—( B
D R QB Dn
FFg Q g
Clk Fig. 2.2-12

AT BT Fig. 2.2-13

* If clk, is higher frequency, it will, on average, win more
races and the FSM will spend more time in State |

* If clkg is higher frequency, it will, on average, win more
races and the FSM will spend more time in State |l

* The closer they are, the more balanced the State | and
State Il time will be

* The greater their difference, the greater the on-average
discrepency

1.pallen.ece.gatech.edu/Academic/ECE_6440/Summer_2003/L070-DPLL(2UP).pdf



UP and DN control a capacitor voltage

* If you’'re in State I:

* Increase voltage on
capacitor rodp Qb=

* If you're in State Il:

* Decrease voltage on -
capacitor

* The voltage that builds  w—w
up will be tightly related  "t—
to how different these

DN

two clocks are PFhase Charge Low
req Pump Pass
Detector

Filter

http://www.globalspec.com/reference/72819/203279/2-7-phase-detectors-with-charge-pump-output



Phase Locked Loop (PLL)

* So that’s those three pieces

o—| Frequency Charge | | LP Filter
fref Detector Pump —\

. Y

fmeas

VCO

— ,




Phase Locked Loop (PLL)

* So this circuit can make fy = f,..r and there’s lots of

uses for this (frequency locking, etc...)

* But that doesn’t help us! | want higher frequencies. You said we could do
that.

| feel betrayed and angry and don’t know how to express that emotion in
a healthy way

* How can we make a higher frequency?

fref._>

Phase,
Frequency
Detector

fmeas

_,|

Y. Y

Charge
Pump

LP Filter
N\

— f,




Use Resistors in Voltage Divider in Feedback Path!

V.

Vie + * A voltage divider in feedback path gives us
] ® Vo voltage gain!
—-
R. 1 1
AN K = ~ 0.9999 means I
l1-p+aG P K G
R1 G = R,
Ry +R,
= The gain A, of this circuit is therefore:
_Ri+R,
— Ry The gain of a “non-inverting amplifier”
V=1
Ry +R,

Same Idea with Phase Locked Loops!

9/23/25 https://fpga.mit.edu/6205/F25 85



Use a Clock Divider in Feedback Path!

* A clock divider in feedback path gives us clock gain!

* By lying to the circuit, you can emotionally manipulate the
system as a whole to make higher, stable frequencies.

Phase, Ch LP Filt
fre fH Frequency p arge —) ter vVCoO —r—e £,
Detector ump \

Y Y

”fmeas g

We “lie” to the PFD so that
it pushes the system more




Where is that coming from?

Phase, :
Frequency LP Filter VCO

Detector \

—e |

We “lie” to the PFD so that
it pushes the system more

9/23/25 https://fpga.mit.edu/6205/F25



Can actually just use flip-flops to divide

Charge

Vi
Detector Pump

LP Filter
N\

VCO

* The PFD will handle the phase
mismatch that arises from the
propagation delays naturally

® fo

logic clk2,clk4,clk8,clkl6;

always_ff @(posedge clk)begin
clk2 <= ~clk2;

end

always_ff @(posedge clk2)begin
clk4 <= ~clk4;

end

always_ff @(posedge clk4)begin
clk8 <= ~clk16;

end

always_ff @(posedge clk8)begin
clkle <= ~clk16;

end



Example of a Toxic Relatienshp Circuit

Detector Pump \
Y Y

FOOMRZLT prase Ch LP Filt
—) Frequency—)l arge — ter VCO —P *Makes 100 MHz*

”Sorry VCO. You tried, but
you’re only making 25 MHz.
Be better.”




Example of a Toxic Relatienshp Circuit

100 MHz Phase ch b Fil
’ arge 1ter B -
—) Frequency g — VCO A *How about now?*
Detector Pump \ Makes 200 MHz

Y Y

”Nope still not good
enough, VCO. Sigh.
I’'m only seeing 50 MHz.”




Example of a Toxic Relatienshp Circuit

100 MHz Phase ch b Fil
’ arge 1ter B -
—) Frequency g — VCO A *How about now?*
Detector Pump \ Makes 400 MHz

Y Y

”Finally you’re doing what |
asked you to do, VCO. | see
100Mhz.”




Conclusions

* Do not be in emotionally manipulative friendships or
work-relationships, regular relationships. You are
better than that.

* Do not emotionally manipulate other people.

e Circuits are not people so it is probably ok and can be
beneficial.

* Negative fractional feedback in PLLs allows us to
generate higher frequencies that are stable since they
are referenced to lower (stable) frequency sources.



Add a Pre- and Post- Divider for Flex

* There will often be additional stages of frequency

division to improve flexibility and range

f;ef

—

Phase,
Frequency

”fmeas g

_.|

Detector

. Y

Charge
Pump

LP Filter
N\

VCO

fo



Do we/l have to build this?

* Yes/No. Circuit is too sensitive for us to specify
details in Verilog on an FPGA

e Most FPGAs have

Re-customize IP

jon
L4 1P Ssymbol Component Name | clk_wiz_0
=IN/Z10Y YD & M0 ' M | Oshow v disabled ports
uuuuuuuuuuu
requestea
¥ clk_out1 clk_out1 200 €3 | 200.00000
clk_out2 clk_out2 100.000 0.000 50.000
a I I a ge I I I e n clk_out3 100.000 0000 s 50000
clk_outd 100.000 0.000

00000

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

clk_out5 100.000 0000  |ws 50000
[}
( M M C M ) u n ItS a n d - m R ——

Clocking Feedback
SSSSSS Signaling
dlkin dkout! == OutputClock  sequence Number
1 ® Automatic Control On-Chip
1 Automatic Control Off-Chip
. : User-Controlled On-Chip
. YO u Ca n CO n Igu re o ol
1
1
L] L]
(o ”
ooooooooooooooooooooooooooooooo
MMCM/PLL
reset power_down

cccccc




In Week 04

* We'll build HDMI video from scratch.
* For 720p we’ll need:
* aclock at 74.25 MHz (for the pixels)

* A clock at 371.25 MHz (for the bits of the pixels to
be sent serially)
* We'll use this clock along with a device that is built to

run using always @(posedge clk or negedge clk) to get
742.25 MHz of data out to drive the 720p data.



So to Make 74.25 MHz and 371.25 MHz?

* Instance of clock manager:

MMCME2_ADV
#(.BANDWIDTH

. CLKOUT4_CASCADE

. COMPENSATION

. STARTUP_WAIT

.DIVCLK_DIVIDE

. CLKFBOUT_MULT_F

. CLKFBOUT_PHASE

. CLKFBOUT_USE_FINE_PS

.CLKOUTQ_DIVIDE_F

. CLKOUT@_PHASE

. CLKOUTQ_DUTY_CYCLE

. CLKOUTO@_USE_FINE_PS

.CLKOUT1_DIVIDE

. CLKOUT1_PHASE

. CLKOUT1_DUTY_CYCLE

.CLKOUT1_USE_FINE_PS

. CLKIN1_PERIOD
mmcm_adv_inst

// Output clocks

9/23/25

"OPTIMIZED"),
"FALSE"),
"ZHOLD"),
"FALSE")
5),
37.125) 4
0.000),
"FALSE"),

(

(

E 2. Divides by 5
(

(

(

(

(10.000), -
(

(

("

(

(

(

(

(

— 3. Multiplies by 37.125

— 4a. Divide by 10 for 74.25 MHz

0.000),
0.500),
'"FALSE"),

) — 4b. Divide by 2 for 371.25 MHz

2),
0.000),
0.500),
"FALSE"),

10.000) )G

1. Takes in 100 MHz

https://fpga.mit.edu/6205/F25 96



Side-Note

f ref Phase,
&— — 11 PP Frequency
Detector
T
“fmeas”

Charge
Pump

LP Filter
N\

VCO

ns and n, can generally be fractions by switching

between several dividers with a time-weighted

averaging

fo



Timing in Vivado

Starting to Look




Let’s Look at Some Code:

“timescale 1ns / 1ps
“default_nettype none

module top_level(
input wire clk_100mhz, //clock @ 100 mhz

° l . input wire [15:0] sw, //switch
Ve ry Slmple top_level' izgﬂt ﬁ?: [3:0] b‘i\r,:, //Z\Ilv{ 1C°03|S" momentary button switches
output logic [15:0] led //just here for the funs
);

e Use sw([15:0] and |

logic [3:0] old_btn;

logic [15:0] tient;

buttons to seed two logic 11310] deotdend;

logic [15:0] divisor;

values into 16 bit 20%iqn 1ed = quotient;

always_ff @(posedge clk_100mhz)begin

registers: et Lt

end
® V7] end
[)I\/I(jEEr1(j always_ff @(posedge clk_10@mhz)begin
.. if (btn[0] & ~old_btn[0])begin o
° D|V|Sor enguotlen‘c <= dividend/divisor; //divide

if (btn[1] & ~old_btn[1])begin

P When btn [O] iS pUShed: engividend <= sw; //divide //load dividend

if (btn[2] & ~old_btn[2])begin
divisor <= sw; //divide //load dividend

* DIVIDE the 16 bit end

end

numbe r‘S endmodule

“default_nettype wire

9/23/25 https://fpga.mit.edu/6205/F25 99



What does this build

sw[15:0]
btn[2:0] )

dividend[15:0]

divisor[15:0]

>

>

quotient[15:0]

aka
divide

——

—

led[15:0]
ﬁ




Let’s Build it.

* Terminal Output:

jodalyst@Josephs-MBP lec06 % ./remote/r.py build.py build.tcl hdl/*x xdc/*x obj

Writing bitstream obj/final.bit...
INFO: [Vivado 12-1842] Bitgen Completed Successfully.

INFO: [Project 1-1876] WebTalk data collection is mandatory when using a ULT device.

To see the specific WebTalk data collected for your design, open the
usage_statistics_webtalk.html or usage_statistics_webtalk.xml file in the
implementation directory.

INFO: [Common 17-83] Releasing license: Implementation

7 Infos, @ Warnings, @ Critical Warnings and @ Errors encountered.
write_bitstream completed successfully

write_bitstream: Time (s): cpu = 00:00:04 ; elapsed = 00:00:14 . Memory (MB):
2729.707 ; gain = 206.934 ; free physical = 2837 ; free virtual = 8407

peak =

"Hmmm Looks good.”




“Jeeze when | deploy this in a high-throughput system
where | have a new pair of numbers to divide every 10ns,

the division results are trash. Oh well it must be a failure
of the FPGA or literally anything other than things that |
have done. Gonna ask for the checkoff.”

Quote overheard in lab.

9/23/25 https://fpga.mit.edu/6205/F25 102



You look through the output from
the build...

Starting at line 1322:

Verification completed successfully
Phase 20 Verifying routed nets | Checksum: 129230084

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674

Phase 21 Depositing Routes

Phase 21 Depositing Routes | Checksum: 1l4a6fdc22

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free

physical = 3116 ; free virtual = 8674

Phase 22 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-21.399| TNS=-129.552| WHS=0.090 | THS=0.000 |

Phase 22 Post Router Timing | Checksum: la@e6c79b

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674

CRITICAL WARNING: [Route 35-39] The design did not meet timing requirements. Please run
report_timing_summary for detailed reports.

Resolution: Verify that the timing was met or had small violations at all previous steps (synthesis,
placement, power_opt, and phys_opt). Run report_timing_summary and analyze individual timing paths.
INFO: [Route 35-253] TNS is the sum of the worst slack violation on every endpoint in the design. Review
the paths with the biggest WNS violations in the timing reports and modify your constraints or your
design to improve both WNS and TNS.

INFO: [Route 35-16] Router Completed Successfully

Phase 23 Post-Route Event Processing
Phase 23 Post-Route Event Processing | Checksum: 37250886

Tlme{i%X§5cpu = 00:00:12 ; elapsed = 00:0 Memor (M%%Zcﬁka = 2520.699 ; gain = 0.000 ; free 103

phyg 3116 ; free virtual = 8674 ﬁﬂps;?fpgarn| X et



Look at

post_route_timing.rpt

Timing Report

Slack (VIOLATED) : -21.399ns (required time - arrival time)
Source: dividend_reg[15]/C
(rising edge-triggered cell FDRE clocked by gclk {rise@®@.000ns fall@4.000ns period=10.000ns})
Destination: quotient_reg[@]/D
(rising edge-triggered cell FDRE clocked by gclk {rise@®@.000ns fall@4.000ns period=10.000ns})

Path Group: gclk
Path Type: Setup (Max at Slow Process Corner)
Requirement: 10.000ns (gclk rise@10.000ns - gclk rise@d.000ns)
Data Path Delay: 31.483ns (logic 21.642ns (68.742%) route 9.841ns (31.258%))
Logic Levels: 82 (CARRY4=80 LUT2=1 LUT3=1)
Clock Path Skew: @.920ons (DCD - SCD + CPR)
Destination Clock Delay (DCD): 4.920ns = ( 14.926 - 10.000 )
Source Clock Delay (SCD): 5.079ns
Clock Pessimism Removal (CPR): 0.179ns
Clock Uncertainty: 0.035ns  ((TSIA2 + TIJA2)A1/2 + D)) / 2 + PE
Total System Jitter (TS): 0.071ns
Total Input Jitter (T1)): 0.000ns
Discrete Jitter (D1): 0.000ns
Phase Error (PE): 0.000ns

9/23/25 https://fpga.mit.edu/6205/F25

104




What is Slack?

* Slack: measure of how safe your timing is

* The two big timing constraints we worry about are
related to setup and hold

* Therefore there are two Slack values:
* Setup slack: trequired — Tactual
* Hold slack: tactuaI - trequired

These are defined such that:
Positive is GOOD ©
Negative is BAD &



reg 1

Timing Diagram et LI S

JAN

This thing again. Unbelievable, it is almost like this

CLK

sig1

reg 2

D

JAN

Q

diagram is important or something

: =determined state

A tek

A
y

CLK >

tPD,regl I

tep,regt 2tsETUP reg2

A
\ 4

sigl §

A

tPD,Iogic
sig2 2tHoLD,reg2 ‘m

DN

tCD,Iogic e
, »
time
t + t .+t <1
Two Requirements/ PD,regl PD,logic SETUP,reg2 CLK
Conclusions:
tep,regt t e, logic 2 tHOLD reg2
9/23/25 https://fpga.mit.edu/6205/F25 106

]
& =undetermined state




Adg In SlaCk —_ =determined state

tewk
< a ]
b & =undetermined state
CLK tPD,regl I
Tep,regi*™ tseTupslack  LSETUPreg2
sigl k §
< 'tPD,Iogic
tCD,Iogic “©
. >
_ time
tHOLD,regZ <
-~ tHoup,slack
tpp,reg1 T tpp,logic T TseTuPreg2 T tseTuPSlack = teik
tep,regt t e logic = tHolp,reg2 T tHoLb, slack
- _ .
Equations tserupsiack = ok (tpp,regt + thp,jogic T tseTURreg2 )

tHOLD,SIack = tCD,regl + tCD,Iogic - tHOLD,regZ

9/23/25

https://fpga.mit.edu/6205/F25 . o 107
*not inequalities



Conclusion

* Positive Slack is GOOD
* Negative Slack is BAD



This is not good Negative Slack

Look at

routerpt_report_timing.rpt

Timing Report ‘(””’,—

Slack (VIOLATED) : -21.399ns (required time - arrival time)
Source: dividend_reg[15]/C
(rising edge-triggered cell FDRE clocked by gclk {rise@@.000ns fall@4.000ns period=10.000ns})
Destination: quotient_reg[@]/D
(rising edge-triggered cell FDRE clocked by gclk {rise@@.000ns fall@4.000ns period=10.000ns})
Path Group: gclk
Path Type: Setup (Max at Slow Process Corner)
Requirement: 10.000ns (gclk rise@10.000ns - gclk rise@@.000ns)
Data Path Delay: 31.483ns (logic 21.642ns (68.742%) route 9.841ns (31.258%))
Logic Levels: 82 N(CARRY4=80 LUT2=1 LUT3=1)
Clock Path Skew: 0.02%ns (DCD - SCD + CPR)
Destination Clock Delay (DQD): 4.920ns = ( 14.926 - 10.000 )
Source Clock Delay s 5.079ns
Clock Pessimism Removal (CPR): 0.179ns
Clock Uncertainty: 0.035ny ((TSIAZ2 + TIJA2)AM1/2 + D)) / 2 + PE
Total System Jitter (TS 0.071ns
Total Input Jitter (T11) 0.000ns
Discrete Jitter (OBDE 0.000ns
Phase Error (PE): 0.000ns

1/3 from routing
2/3 from routing

9/23/25 https://fpga.mit.edu/6205/F25 109



Results

* By default Vivado only gives you a few offending
paths (our default is one) and it provides them in
order of worst to best

* You can ask for more paths using different
arguments;

https://docs.xilinx.com/r/2025.1-English/ug835-vivado-tcl-commands/report_timing



Final Projects Coming Up

* In another ~“week or so, we have to start thinking
about planning on starting to get going on final
projects.

* First part of that is teaming and teams benefit from
targeting shared goals

* On the site, we'll put up an archive of final projects



Past Project (with Microphone)




Sudoku Solver




