
Timing and
Clocking

6.205

9/23/25 https://fpga.mit.edu/6205/F25 1

Planning Stuff

• Week 03 Due Tomorrow
• Week 04 Released Thursday (video)

9/23/25 https://fpga.mit.edu/6205/F25 2

Look at your Vivado logs!
• If your build doesn’t work, open up the obj folder and

the vivado.log file will have information about your
build.
• Go through it! Focus on Warnings and Critical Warnings,

• “latch”....not good.
• “multi-driven net”....not good.
• “no driver”...possibly not good if referring to signal you care

about.
• “no load”...possibly not good if referring to signal you care

about.

9/23/25 https://fpga.mit.edu/6205/F25 3

Look at your Vivado logs!

9/23/25 https://fpga.mit.edu/6205/F25 4

O P E N
T H E L O G

answers
6.205 Student:

Notes on UART RX

• I went and from the computer decided to send
down 0, then 1, then 2, then 3…to 255 over UART.
• This was the trace on the UART_RXD line

9/23/25 https://fpga.mit.edu/6205/F25 5

0 1 2 3 4 5 6 7 8 9 A

UART Packet

• In the UART standard there is no guarantee in
regards to inter-byte spacing between bytes sent
down.
• It can vary (and often does)

9/23/25 https://fpga.mit.edu/6205/F25 6

Packet 1
10 bits

Packet 2
10 bits

Packet 3
10 bits

…… Dead-time
Dead-
time

However…the FT2232 chip on our
board that handles the UART…
• Packs the UART packets very tightly

9/23/25 https://fpga.mit.edu/6205/F25 7

0 1 2 3 4 5 6 7 8 9 A

However…the FT2232 chip on our
board that handles the UART…
• Packs the UART packets very tightly

9/23/25 https://fpga.mit.edu/6205/F25 8

2 3 4 5

Basically no inter-byte spacing

As a result…
• Be careful with verifying too long or staying in a

state too long! Read instructions for uart_receive!

9/23/25 https://fpga.mit.edu/6205/F25 9

Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

Verify low for half BAUD Verify high from 0.5BAUD to 1 BAUD

Could fall off cliff into next start bit… :/

FSMs in History

9/23/25 https://fpga.mit.edu/6205/F25 10

Car Alarm FSM
• Up until 2021 the

“FSM” lab in 6.111
was making a car
alarm

• FSM design was
and still can be a
very common
approach to digital
circuit design

9/23/25 https://fpga.mit.edu/6205/F25 11

Car Alarm FSM
• When Gim graduated

from MIT he got a job
with DEC (Digital
Equipment Corporation)
that made the PDP-1
among other computers
and then TI
• Got big signing bonus and

bought a nice convertible
• Parked Convertible went

into apartment.
• Convertible was not there

came out

9/23/25 https://fpga.mit.edu/6205/F25 12

Gim Hom
Took 6.111 in 1969..graduated in 1970

6.111 Instructor 2013-2021
Now retired

Car Theft FSMs
• 2016, MA: ~7 million people, 6,600 car thefts for year
• 1975, MA: 5.8 million people, 91,000 car thefts for year (peak)

9/23/25 https://fpga.mit.edu/6205/F25 13

Massachusetts was the
#1 state for car theft for
1965-1987!!!

~5% of cars were stolen per year in MA

Car Alarm FSM
• Gim built a car alarm for

his car.
• Designed it using an FSM-

based approach.
• Had ~11 states
• Built it just like we talked

about last week (bubble-
diagram…developed
logic, implemented…)

9/23/25 https://fpga.mit.edu/6205/F25 14

Fuel pump relayCloaking
device

Gim’s FSM-based car alarm for his car
Built using 4000-series CMOS chips

(top of the line at the time)

Magnavox Odyssey (1972)

9/23/25 https://fpga.mit.edu/6205/F25 15

• First commercially available
game system
• Completely FSM-based

https://www.pong-story.com/odyssey.htm

• Implemented completely with discrete transistors:

9/23/25 https://fpga.mit.edu/6205/F25 16
https://www.pong-story.com/odyssey.htm

Was just a large finite state machine

9/23/25 https://fpga.mit.edu/6205/F25 17

stateinputs state-transition logic output logic “clock”

https://www.pong-story.com/odyssey.htm

Magnavox Odyssey Game System

9/23/25 https://fpga.mit.edu/6205/F25 18

http://odysim.blogspot.com/2020/

Magnavox Odyssey Game System

9/23/25 https://fpga.mit.edu/6205/F25 19
https://www.youtube.com/watch?app=desktop&v=NsluZfTMRno&ab_channel=OdysseyNow

https://youtube.com/playlist?list=PLtApm-Ri5WTIAEV1ClufPrca2MTj4uSvT&feature=shared

Hockey

Basketball

Cat and Mouse

Early 1970s

• Most arcade systems were just FSMs implemented
in discrete logic, including:

• Pong
• Breakout

• Space Invaders was first arcade machine to move
some game logic to an Intel 8080 microprocessor.

9/23/25 https://fpga.mit.edu/6205/F25 20

Evolution of FSM-based Games

• http://www.pong-story.com/gi.htm

9/23/25 https://fpga.mit.edu/6205/F25 21

AY-3-8500 “Ball-and-Paddle” chip

https://commons.wikimedia.org/wiki/File:AY-3-8500.jpg

• As 1970s rolled on, entire
game systems would get put
on single chips
• “Ball-and-Paddle” Chips would

be sold by companies and then
other companies would buy
them and put their own “skin”
on them and sell them as their
own. Many times it was the
same game underneath
• Atari 2600 was first

microprocessor-based home
video game system

TV Fun

• Runs off an AY-3-8500
• Made by APF who started out importing Japanese

8-track players
• Company went bankrupt in the great video game

crash of 1983.
• Have one set upstairs in lab in case anybody wants

to play.

9/23/25 https://fpga.mit.edu/6205/F25 22

Tiger Electronics Games

9/23/25 https://fpga.mit.edu/6205/F25 23
https://oladaniel.com/pica-pic

Tiger Electronics Games

9/23/25 https://fpga.mit.edu/6205/F25 24

• Tiger Electronics had 100’s of
versions of these in the 1980s
and 1990s
• Almost all of them were based

on three or four common finite
state machine game chips or
four-bit microcontrollers (very
poorly documented/insider
information)
• They’d slap a different LCD skin

and game art onto the same
chip and resell

Modern Games
• Modern games are far too complex to be

implemented with an FSM in any productive way
(though it is still generally possible)

• However well-characterized chunks of game
software is still used and re-used/skinned (for
example game engines)

• But also stuff gets reskinned all the time

9/23/25 https://fpga.mit.edu/6205/F25 25

Candy Crush Saga

9/23/25 https://fpga.mit.edu/6205/F25 26

Pet Rescue Saga

9/23/25 https://fpga.mit.edu/6205/F25 27

Soda Saga

9/23/25 https://fpga.mit.edu/6205/F25 28

Bubble Witch 3 Saga

9/23/25 https://fpga.mit.edu/6205/F25 29

Farm Heroes Saga

9/23/25 https://fpga.mit.edu/6205/F25 30

Finite State Machines Relevant

• Designing systems as finite state machines is still
very common in digital design.

• Doing it in a structured way can make your HDL
very transparent so you know what you’re getting!

• You’ll see data sheets and other places with FSM
diagrams and many protocols express their
functionality with FSMs.

9/23/25 https://fpga.mit.edu/6205/F25 31

See them
everywhere

9/23/25 https://fpga.mit.edu/6205/F25 32

I2C FSM

USB 3.0 LTSSM FSM

Clocks and Time
Times and Clocks

9/23/25 https://fpga.mit.edu/6205/F25 33

9/23/25 https://fpga.mit.edu/6205/F25 34

Clocking and Synchronous Communication
Module M1 Module M2

CLK

Ideal world:

CLKM1

CLKM2

M1 and M2 clock edges aligned in time

Signal 1

Signal 1

Delay Estimation: Simple RC Networks

9/23/25 https://fpga.mit.edu/6205/F25 35

vout

vin C

R

tp = ln (2) t = 0.69 RC

review

Low-to-High High-to-Low

Simple CMOS Circuit

RC Equation

9/23/25 https://fpga.mit.edu/6205/F25 36

!"
!#$ %

!
! "
#$
#"%C +

Vs = 5 V

Switch is closed t<0

Switch opens t>0

Vs = VR + VC

Vs = iR R+ Vc iR =

Vs =









−=

−
!"
#

$% C'' !









−=

−
!"
#

$ %C !"

So Signals Experience Delays

• “Signals” generally have their delays expressed
with:

• Contamination Delay
• Propagation Delay

• But the clock is not immune to delay too!

9/23/25 https://fpga.mit.edu/6205/F25 37

9/23/25 https://fpga.mit.edu/6205/F25 38

time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

jeeze, this
diagram again!?

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2

≥tHOLD,reg2

Two Requirements/
Conclusions:

9/23/25 https://fpga.mit.edu/6205/F25 39

Clock Skew
Module M1 Module M2

CLK

Real world has clock skew:

CLKM1

CLKM2

M2 clock delayed with respect to M1 clock

delay

Oops! Skew has caused a hold
time problem!

1. Wire delay
2. Different clocks!

Signal 1

Signal 1

Clocks are Not Perfect: Clock Skew

9/23/25 https://fpga.mit.edu/6205/F25 40

D

clk1

QIn Combinational
Logic

D

clk2

Q

Wire delay

clk1

clk2

δ>0

CLout

tclk2 – tclk1tskew =
Based off of times of rising edges.

Not periods!

You Can Have Two Types of Skew!

9/23/25 https://fpga.mit.edu/6205/F25 41

!!
"#

"#$%&'()*)+,%(-,.

$%C'(#)*(%#)+
I%-(K! "

#$IL0$%C

!"#$%

#$IL1

!/
! " $%C'(#)*(%#)+

I%-(K

#$IL2

!0
3 3 3! "

!"#$%

!!
"#

"N$%2,P#*)+,%(-,.

$%C'(#)*(%#)+
I%-(K! "

#$IL0

!"#$%

#$IL1

!/
! " $%C'(#)*(%#)+

I%-(K

#$IL2

!0
3 3 3! "

!"#$% $%C

!!
"#

"#$%&'()*)+,%(-,.

$%C'(#)*(%#)+
I%-(K! "

#$IL0$%C

!"#$%

#$IL1

!/
! " $%C'(#)*(%#)+

I%-(K

#$IL2

!0
3 3 3! "

!"#$%

!!
"#

"N$%2,P#*)+,%(-,.

$%C'(#)*(%#)+
I%-(K! "

#$IL0

!"#$%

#$IL1

!/
! " $%C'(#)*(%#)+

I%-(K

#$IL2

!0
3 3 3! "

!"#$% $%C

ØAdapted from J. Rabaey, A. Chandrakasan, B. Nikolic,
 “Digital Integrated Circuits: A Design Perspective” Copyright 2003 Prentice Hall/Pearson.

Positive Skew:

Negative Skew:

9/23/25 https://fpga.mit.edu/6205/F25 42

Positive Skew

!"#$

!"#%

!"#$

δ

!"#$ + δ

+%C'δ

!

"

#

$

!!
"#

"#$%&'()*)+,%(-,.

$%C'(#)*(%#)+
I%-(K! "

#$IL0$%C

!"#$%

#$IL1

!/
! " $%C'(#)*(%#)+

I%-(K

#$IL2

!0
3 3 3! "

!"#$%

!!
"#

"N$%2,P#*)+,%(-,.

$%C'(#)*(%#)+
I%-(K! "

#$IL0

!"#$%

#$IL1

!/
! " $%C'(#)*(%#)+

I%-(K

#$IL2

!0
3 3 3! "

!"#$% $%C

ØAdapted from J. Rabaey, A. Chandrakasan, B. Nikolic,
 “Digital Integrated Circuits: A Design Perspective” Copyright 2003 Prentice Hall/Pearson.

The launching edge arrives (in time) before the receiving edge
Flow of Data

“Flow” of Clock

9/23/25 https://fpga.mit.edu/6205/F25 43

Negative Skew

!!
"#

"#$%&'()*)+,%(-,.

$%C'(#)*(%#)+
I%-(K! "

#$IL0$%C

!"#$%

#$IL1

!/
! " $%C'(#)*(%#)+

I%-(K

#$IL2

!0
3 3 3! "

!"#$%

!!
"#

"N$%2,P#*)+,%(-,.

$%C'(#)*(%#)+
I%-(K! "

#$IL0

!"#$%

#$IL1

!/
! " $%C'(#)*(%#)+

I%-(K

#$IL2

!0
3 3 3! "

!"#$% $%C

!"#$

!"#%

C!"#

δ

C!"#'(δ

!

"

#

$

ØAdapted from J. Rabaey, A. Chandrakasan, B. Nikolic,
 “Digital Integrated Circuits: A Design Perspective” Copyright 2003 Prentice Hall/Pearson.

The receiving edge arrives (in time) before the launching edge
Flow of Data

“Flow” of Clock

9/23/25 https://fpga.mit.edu/6205/F25 44

time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

Timing

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2

≥tHOLD,reg2

Two Requirements/
Conclusions:

• The Setup equation:

How does Skew Affect Those Equations?
• Originally in our model circuit, we assume all devices experience

the clock edges at the same time!!!!!

9/23/25 https://fpga.mit.edu/6205/F25 45

CLK
@

everywhere

tCLK

tedge1 tedge2

tCLK = tedge2 - tedge1

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tedge1 +tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tedge2

• ...was really short-hand for:

9/23/25 https://fpga.mit.edu/6205/F25 46

CLK
@
reg1

tCLK

With Skew in the Mix...

CLK
@
reg2

±skew

tskew

tedge1 tedge2

• The equation turns into:
tedge1 +tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tedge2 + tskew

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tclk + tskew

• But since tCLK = tedge2 – tedge1

tCLK + tskew

9/23/25 https://fpga.mit.edu/6205/F25 47

With Skew
±skew

• If that’s now our modified setup equation…
• Positive skew makes equation easier to satisfy
• Negative skew makes equation harder to satisfy

• It can still be fixed even in negative skew case
• BUT you have degree of freedom with tPD,logic …maybe

you can change that?
• AND/OR you could also increase tclk as well.

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tclk + tskew

What about Hold
Time?

• If the second register is getting its clock edge tskew
after the first register that means it needs hold the
values at the input of reg2 for tskew longer

• Hold Equation gets modified to be :-/

9/23/25 https://fpga.mit.edu/6205/F25 48

±skew

tCD,reg1 + tCD,logic ≥ tHOLD,reg2+ tskew

What about Hold
Time?

9/23/25 https://fpga.mit.edu/6205/F25 49

±skew

tCD,reg1 + tCD,logic ≥ tHOLD,reg2+ tskew

• The “growth” from positive skew is not on low side of
inequality so…

• Positive skew makes equation harder to satisfy.
• Further there’s nothing you can do since contamination

delays are usually very low and beyond our control

• Negative skew makes equation easier to satisfy.

Conclusions

• Positive clock skew improves the minimum cycle time
of our design but makes it harder to meet register hold
times.
• Negative clock skew hurts the minimum cycle time of

our design but makes it easier to meet register hold
times.
• Positive skew is tougher to deal with

9/23/25 https://fpga.mit.edu/6205/F25 50

±skew

tCD,reg1 + tCD,logic ≥ tHOLD,reg2+ tskew

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tclk + tskew

9/23/25 https://fpga.mit.edu/6205/F25 51

Low-skew Clocking in FPGAs

Figures from Xilinx App Notes

• When Vivado is doing place-and-route it tries to
position logic so that skew is minimized wherever
possible

• Special clock paths and buffers exist throughout the
chip to distribute the clock as effectively as possible.

• Think of it like priority boarding/VIP status for signals

From the Vivado Docs

9/23/25 https://fpga.mit.edu/6205/F25 52

Other Problems you can have with
clocks...
• Stable Clock:

• Jittery Clock:

9/23/25 https://fpga.mit.edu/6205/F25 53

Clock jitter means cycle-to-cycle you can have larger or shorter clock periods!

Clocks Are Not Perfectly
Periodic!:

9/23/25 https://fpga.mit.edu/6205/F25 54

Typical crystal oscillator
100mhz (10ns)
Jitter: 1ps

• Jitter is an approximation of how much the clock
period can increase/decrease cycle to cycle:
• Can make it harder to meet timing since it effectively

shortens tclk …
• Even though some cycles might have larger tclk, we, as

engineers are required to be big pessimists and plan for
the worst case at all times...
• and that affects the setup equation…

tPD,reg1+tPD,logic+ tSETUP,reg2 ≤ tCLK - 2tjitter

• 50% Duty Cycle Clock

• Not 50% Duty Cycle Clock

9/23/25 https://fpga.mit.edu/6205/F25 55

Other Problems you can have with
clocks...

What is the clock period of the 50% duty cycle clock vs the non-50% duty cycle clock?

Trick question: they’re the same. I got you.

So What? Fifty Shmifty

• Even though the clock period is the same, there can
be issues.
• In more advanced designs, you use both clock

edges (timing gets more complicated). 50% duty
cycle ensures equal time for both halves of logic
• Too far of a deviation from 50% may also break the

setup/hold time model of our flip-flops
• Most flip flops have minimium-pulse duration specs...go

too low and they won’t react appropriately.

9/23/25 https://fpga.mit.edu/6205/F25 56

Also 50% is “Pure”

• A pure 50% Duty cycle signal has no odd harmonics*
• Non 50% duty cycle will have odd harmonics, so you

can get more noise

9/23/25 https://fpga.mit.edu/6205/F25 57
https://incompliancemag.com/spectra-of-digital-clock-signals/

*Take 6.300

Almost All Modern Digital Design is CMOS:

9/23/25 6.9000 Spring 2025 58

VDD

VIN

NFET

PFET

VOUT

• PFET in charge of making
signal go to 1.

• NFET in charge of making
signal go to 0.

• They work in a
Complementary fashion

Device Physics is Hard*

9/23/25 https://fpga.mit.edu/6205/F25 59

https://www.iue.tuwien.ac.at/phd/park/node30.html

• The electrons and holes that
N- and P- channel devices use
are uneven in mobility so it is
very hard to make exactly
balanced N- and P- channel
FETS
• They may pull to 1 and pull to

0 with different “strengths”
• Very easy for circuits to quickly

deviate from equal time in on
and off state!

(6.2080, 6.2090, 6.6400, etc...)

*but fun and fulfilling

Duty Cycle
• Driving clocks with healthy circuits that get some

daily exercise is important

9/23/25 https://fpga.mit.edu/6205/F25 60

And Other Special Circuits

• Other Special Circuits like Phase-Locked Loops help
designs keep healthy, clean 50% duty cycle clocks
with low jitter

• They can also be used to make clocks from other
clocks!

9/23/25 https://fpga.mit.edu/6205/F25 61

9/23/25 https://fpga.mit.edu/6205/F25 62

Goal: Use as few clock domains as possible

Suppose we have a reference clk at frequency f and we
want signals at f/2, f/4, f/8, etc.:????

9/23/25 https://fpga.mit.edu/6205/F25 63

Goal: use as few clock domains as possible

CLK

CLK2

CLK4

CLK8

CLK16

Very hard to have synchronous communication between clk
and clk16 domains… Can lead to lots of timing violations!

No! don’t do
it this way, you’ll
never make a dime

Suppose we have a
reference clk at frequency f
and we want signals at f/2,
f/4, f/8, etc.:????

9/23/25 https://fpga.mit.edu/6205/F25 64

Goal: Use as few clock domains as possible

Suppose we have a reference clk at frequency f and we
want signals at f/2, f/4, f/8, etc.:????

9/23/25 https://fpga.mit.edu/6205/F25 65

Solution: One clock, Many enables
• Use one (high speed)

clock, but create enable
signals to select a
subset of the edges to
use for a particular
piece of sequential logic
(much easier on timing
requirements)

CLK

ENB2

ENB4

ENB8

ENB16

count 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1414

= clock edge selected by enable signal

Yes! A good idea
that will lead to
good outcomes

How to Make
Frequencies and Clocks
Where do they come from???

9/23/25 https://fpga.mit.edu/6205/F25 66

Where do we get frequencies?

https://en.wikipedia.org/wiki/Ring_oscillator

• Particular combinational circuits that are fed back
onto themselves so that they cannot be stable can
be made to form oscillators.
• The ring oscillator above is a classic example.
• There is no stable set of output states so this circuit

perpetually oscillates.
• Period of oscillation is based on the delay of each

element

9/23/25 https://fpga.mit.edu/6205/F25 67

16MHz Crystal

Where do we get frequencies?
• Most frequencies come from

Crystal Oscillators made of quartz
• Equivalent to very High-Q RLC tank

circuits
• Incorporate into circuit like that

below and boom, you’ve got a
square wave of some specified
frequency dependent largely on
the crystal

https://en.wikipedia.org/wiki/Crystal_oscillatorhttp://www.z80.info/uexosc.htm

9/23/25 68https://fpga.mit.edu/6205/F25

High Frequencies
• Very hard to get a crystal oscillator to operate

above ~200 MHz (7th harmonic of resonance of
crystal itself, which usually is limited to about 30
MHz due to fabrication limitations)

• Where does the 2.33 GHz clock of my iPhone come
from then?

• Frequency Multipliers!

9/23/25 69https://fpga.mit.edu/6205/F25

Voltage Controlled Oscillator

http://www.electronicshub.org/voltage-controlled-oscillators-vco/

• It is very easy to make voltage-
controlled oscillators that run up to
1GHz or more.

• Low voltage circuit oscillates at low
frequency

• Higher voltageàhigher frequency
oscillation

• Block Diagram: A simple VCO (not type found
in FPGA). Same general idea...
You use FEEDBACK to make a
circuit unstable but guide that
instability into productive
oscillations with careful tuning
and external control!

VCO𝑉! 𝑓"

9/23/25 70https://fpga.mit.edu/6205/F25

Voltage Controlled Oscillator

http://www.electronicshub.org/voltage-controlled-oscillators-vco/

• It is very easy to make voltage-controlled oscillators that run up
to several GHz or more.

• Why don’t we just:

• Pick the voltage 𝑉! that is needed to get the frequency we want
𝑓"?

• That’s gotta be ok right?
• Same reason we don’t see op amps in open loop out in the wild

or horses making executive decisions…they are too
unstable…gotta place them in negative feedback

VCO𝑉! 𝑓"

9/23/25 71https://fpga.mit.edu/6205/F25

Phase Locked Loop (PLL)

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

• Place the unstable, but capable, VCO in a feedback
loop.

9/23/25 72https://fpga.mit.edu/6205/F25

Phase Locked Loop (PLL)

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

• A PLL is a circuit that can track an input frequency 𝑓!"#
of a system and reproduce it at the output 𝑓$

9/23/25 73https://fpga.mit.edu/6205/F25

GOTTA GO THROUGH EACH PART

Phase Locked Loop (PLL)

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

• The Phase, Frequency Detector

9/23/25 74https://fpga.mit.edu/6205/F25

Phase Detector
• Can be a simple XOR, XNOR gate

• Low-pass the output

9/23/25 75https://fpga.mit.edu/6205/F25

Phase
Detector...

9/23/25 https://fpga.mit.edu/6205/F25 76

clk1

clk2

comp

clk1

clk2

comp
comp(avg) (quite low)

clk1

clk2

comp
comp(avg) (quite high)

Almost In Phase Signals:

Almost Out-of-Phase Signals:

Phase Detector
• Can be a simple XOR, XNOR gate

• Low-pass the output

• If near the desired frequency already this can work…if it
is too far out, it won’t and can be very unreliable since
phase and frequency are related but not quite the same
thing, it will lock onto harmonics, etc…

• For frequency we instead use a PFD:
• Phase/Frequency Detector:

9/23/25 77https://fpga.mit.edu/6205/F25

Phase-Frequency Detection
• Built around Flip-Flops with Asynchronous Resets:

9/23/25 https://fpga.mit.edu/6205/F25 78

D Q

CLK

RST

rst

q

d

clk

time

Build This Circuit:

9/23/25 https://fpga.mit.edu/6205/F25 79

Both D’s are tied to 1 clkA

clkB

1.pallen.ece.gatech.edu/Academic/ECE_6440/Summer_2003/L070-DPLL(2UP).pdf

Phase Frequency Detection

9/23/25 https://fpga.mit.edu/6205/F25 80

• Circuit starts in State 0 (middle) (“Up” off, “Dn” off)
• First clock to rise will move into one of two side states:
• clkA?: State 1 (”Up” on, ”Dn” off)
• clkB?: state II (“Dn” on, “Up” off)

• When loser finally rises, circuit resets to State 0 (middle)
• Competition starts again
1.pallen.ece.gatech.edu/Academic/ECE_6440/Summer_2003/L070-DPLL(2UP).pdf

clkA

clkB

Phase Frequency
Detection

9/23/25 https://fpga.mit.edu/6205/F25 81

• If clkA is higher frequency, it will, on average, win more
races and the FSM will spend more time in State I

• If clkB is higher frequency, it will, on average, win more
races and the FSM will spend more time in State II

• The closer they are, the more balanced the State I and
State II time will be

• The greater their difference, the greater the on-average
discrepency

1.pallen.ece.gatech.edu/Academic/ECE_6440/Summer_2003/L070-DPLL(2UP).pdf

clkA

clkB

UP and DN control a capacitor voltage

• If you’re in State I:
• Increase voltage on

capacitor

• If you’re in State II:
• Decrease voltage on

capacitor

• The voltage that builds
up will be tightly related
to how different these
two clocks are Phase

Freq
Detector

http://www.globalspec.com/reference/72819/203279/2-7-phase-detectors-with-charge-pump-output

9/23/25 82https://fpga.mit.edu/6205/F25

Charge up cap

Bleed down cap

Charge
Pump

Low
Pass
Filter

Phase Locked Loop (PLL)

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

• So that’s those three pieces

9/23/25 83https://fpga.mit.edu/6205/F25

Phase Locked Loop (PLL)

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

• So this circuit can make 𝑓% = 𝑓!"# and there’s lots of
uses for this (frequency locking, etc...)
• But that doesn’t help us! I want higher frequencies. You said we could do

that.
• I feel betrayed and angry and don’t know how to express that emotion in

a healthy way

• How can we make a higher frequency?

9/23/25 84https://fpga.mit.edu/6205/F25

+

-

R2

Vo
VI

R1

V-

𝑉* = 𝑉#
𝑅+

𝑅+ + 𝑅,

V+ • A voltage divider in feedback path gives us
voltage gain!

Use Resistors in Voltage Divider in Feedback Path!

𝐾 =
1

1 − 𝑝 + 𝐺
𝑝 ≈ 0.9999 means 𝐾 =

1
𝐺

𝐺 =
𝑅+

𝑅+ + 𝑅,
The gain 𝐴- of this circuit is therefore:

𝐴- =
𝑅+ + 𝑅,
𝑅+

The gain of a “non-inverting amplifier”

9/23/25 85https://fpga.mit.edu/6205/F25

Same Idea with Phase Locked Loops!

Use a Clock Divider in Feedback Path!
• A clock divider in feedback path gives us clock gain!

• By lying to the circuit, you can emotionally manipulate the
system as a whole to make higher, stable frequencies.

𝑓#𝑓$%&

“𝑓'%()”

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

÷ 𝑛
We ”lie” to the PFD so that
it pushes the system more

9/23/25 86https://fpga.mit.edu/6205/F25

Where is that coming from?

9/23/25 https://fpga.mit.edu/6205/F25 87

𝑓#𝑓$%&

“𝑓'%()”

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

÷ 𝑛
We ”lie” to the PFD so that
it pushes the system more

Can actually just use flip-flops to divide

9/23/25 https://fpga.mit.edu/6205/F25 88

• The PFD will handle the phase
mismatch that arises from the
propagation delays naturally

Example of a Toxic Relationship Circuit

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

÷ 4

9/23/25 89https://fpga.mit.edu/6205/F25

100 MHz

Makes 100 MHz

”Sorry VCO. You tried, but
you’re only making 25 MHz.

Be better.”

Example of a Toxic Relationship Circuit

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

÷ 4

9/23/25 90https://fpga.mit.edu/6205/F25

100 MHz
“How about now?”
Makes 200 MHz

”Nope still not good
enough, VCO. Sigh.

I’m only seeing 50 MHz.”

Example of a Toxic Relationship Circuit

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

÷ 4

9/23/25 91https://fpga.mit.edu/6205/F25

100 MHz
“How about now?”
Makes 400 MHz

”Finally you’re doing what I
asked you to do, VCO. I see

100Mhz.”

Conclusions
• Do not be in emotionally manipulative friendships or

work-relationships, regular relationships. You are
better than that.
• Do not emotionally manipulate other people.
• Circuits are not people so it is probably ok and can be

beneficial.
• Negative fractional feedback in PLLs allows us to

generate higher frequencies that are stable since they
are referenced to lower (stable) frequency sources.

9/23/25 https://fpga.mit.edu/6205/F25 92

Add a Pre- and Post- Divider for Flex

𝑓#𝑓$%&

“𝑓'%()”

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

÷ 𝑛2

9/23/25 93https://fpga.mit.edu/6205/F25

÷ 𝑛3 ÷ 𝑛4

• There will often be additional stages of frequency
division to improve flexibility and range

Do we/I have to build this?
• Yes/No. Circuit is too sensitive for us to specify

details in Verilog on an FPGA

9/23/25 https://fpga.mit.edu/6205/F25 94

• Most FPGAs have
pre-built “hardened”
Mixed-Mode Clock
Management
(MMCM) units and
PLLs to deploy

• You can configure
them with “wizards”

In Week 04

• We’ll build HDMI video from scratch.
• For 720p we’ll need:
• a clock at 74.25 MHz (for the pixels)
• A clock at 371.25 MHz (for the bits of the pixels to

be sent serially)
• We’ll use this clock along with a device that is built to

run using always @(posedge clk or negedge clk) to get
742.25 MHz of data out to drive the 720p data.

9/23/25 https://fpga.mit.edu/6205/F25 95

So to Make 74.25 MHz and 371.25 MHz?

9/23/25 https://fpga.mit.edu/6205/F25 96

• Instance of clock manager:

1. Takes in 100 MHz

2. Divides by 5

3. Multiplies by 37.125

4a. Divide by 10 for 74.25 MHz

4b. Divide by 2 for 371.25 MHz

Side-Note

𝑓#𝑓$%&

“𝑓'%()”

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

÷ 𝑛2

9/23/25 97https://fpga.mit.edu/6205/F25

÷ 𝑛3 ÷ 𝑛4

• n& and n' can generally be fractions by switching
between several dividers with a time-weighted
averaging

Timing in Vivado
Starting to Look

9/23/25 https://fpga.mit.edu/6205/F25 98

Let’s Look at Some Code:

• Very Simple top_level:
• Use sw[15:0] and

buttons to seed two
values into 16 bit
registers:

• Dividend
• Divisor

• When btn[0] is pushed:
• DIVIDE the 16 bit

numbers

9/23/25 https://fpga.mit.edu/6205/F25 99

`timescale 1ns / 1ps
`default_nettype none

module top_level(
 input wire clk_100mhz, //clock @ 100 mhz
 input wire [15:0] sw, //switches
 input wire [3:0] btn, //all four momentary button switches
 output logic [15:0] led //just here for the funs
);

 logic [3:0] old_btn;
 logic [15:0] quotient;
 logic [15:0] dividend;
 logic [15:0] divisor;
 assign led = quotient;

 always_ff @(posedge clk_100mhz)begin
 for (int i=0; i<4; i=i+1)begin
 old_btn[i] <= btn[i];
 end
 end
 always_ff @(posedge clk_100mhz)begin
 if (btn[0] & ~old_btn[0])begin
 quotient <= dividend/divisor; //divide
 end
 if (btn[1] & ~old_btn[1])begin
 dividend <= sw; //divide //load dividend
 end
 if (btn[2] & ~old_btn[2])begin
 divisor <= sw; //divide //load dividend
 end
 end
endmodule

`default_nettype wire

What does this build

9/23/25 https://fpga.mit.edu/6205/F25 100

D Q
dividend[15:0]

sw[15:0]
btn[2:0]

D Q
divisor[15:0]

quotient[15:0]
D Q

led[15:0]“/”
aka

divide

Let’s Build it.
• Terminal Output:

9/23/25 https://fpga.mit.edu/6205/F25 101

jodalyst@Josephs-MBP lec06 % ./remote/r.py build.py build.tcl hdl/* xdc/* obj

...

...

...

Writing bitstream obj/final.bit...
INFO: [Vivado 12-1842] Bitgen Completed Successfully.
INFO: [Project 1-1876] WebTalk data collection is mandatory when using a ULT device.
To see the specific WebTalk data collected for your design, open the
usage_statistics_webtalk.html or usage_statistics_webtalk.xml file in the
implementation directory.
INFO: [Common 17-83] Releasing license: Implementation
7 Infos, 0 Warnings, 0 Critical Warnings and 0 Errors encountered.
write_bitstream completed successfully
write_bitstream: Time (s): cpu = 00:00:04 ; elapsed = 00:00:14 . Memory (MB): peak =
2729.707 ; gain = 206.934 ; free physical = 2837 ; free virtual = 8407

”Hmmm Looks good.”

“Jeeze when I deploy this in a high-throughput system
where I have a new pair of numbers to divide every 10ns,
the division results are trash. Oh well it must be a failure
of the FPGA or literally anything other than things that I
have done. Gonna ask for the checkoff.”

9/23/25 https://fpga.mit.edu/6205/F25 102

Quote overheard in lab.

You look through the output from
the build…

9/23/25 https://fpga.mit.edu/6205/F25 103

Verification completed successfully
Phase 20 Verifying routed nets | Checksum: 12923a084

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674

Phase 21 Depositing Routes
Phase 21 Depositing Routes | Checksum: 14a6fdc22

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674

Phase 22 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-21.399| TNS=-129.552| WHS=0.090 | THS=0.000 |

Phase 22 Post Router Timing | Checksum: 1a0e6c79b

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674
CRITICAL WARNING: [Route 35-39] The design did not meet timing requirements. Please run
report_timing_summary for detailed reports.
Resolution: Verify that the timing was met or had small violations at all previous steps (synthesis,
placement, power_opt, and phys_opt). Run report_timing_summary and analyze individual timing paths.
INFO: [Route 35-253] TNS is the sum of the worst slack violation on every endpoint in the design. Review
the paths with the biggest WNS violations in the timing reports and modify your constraints or your
design to improve both WNS and TNS.
INFO: [Route 35-16] Router Completed Successfully

Phase 23 Post-Route Event Processing
Phase 23 Post-Route Event Processing | Checksum: 3725a886

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674

Routing Is Done.

Starting at line 1322:

Look at

9/23/25 https://fpga.mit.edu/6205/F25 104

post_route_timing.rpt

Timing Report

Slack (VIOLATED) : -21.399ns (required time - arrival time)
 Source: dividend_reg[15]/C
 (rising edge-triggered cell FDRE clocked by gclk {rise@0.000ns fall@4.000ns period=10.000ns})
 Destination: quotient_reg[0]/D
 (rising edge-triggered cell FDRE clocked by gclk {rise@0.000ns fall@4.000ns period=10.000ns})
 Path Group: gclk
 Path Type: Setup (Max at Slow Process Corner)
Requirement: 10.000ns (gclk rise@10.000ns - gclk rise@0.000ns)
Data Path Delay: 31.483ns (logic 21.642ns (68.742%) route 9.841ns (31.258%))

 Logic Levels: 82 (CARRY4=80 LUT2=1 LUT3=1)
 Clock Path Skew: 0.026ns (DCD - SCD + CPR)
 Destination Clock Delay (DCD): 4.926ns = (14.926 - 10.000)
 Source Clock Delay (SCD): 5.079ns
 Clock Pessimism Removal (CPR): 0.179ns
 Clock Uncertainty: 0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
 Total System Jitter (TSJ): 0.071ns
 Total Input Jitter (TIJ): 0.000ns
 Discrete Jitter (DJ): 0.000ns
 Phase Error (PE): 0.000ns

What is Slack?
• Slack: measure of how safe your timing is
• The two big timing constraints we worry about are

related to setup and hold
• Therefore there are two Slack values:

• Setup slack: trequired – tactual

• Hold slack: tactual – trequired

9/23/25 https://fpga.mit.edu/6205/F25 105

These are defined such that:
Positive is GOOD J
Negative is BAD L

9/23/25 https://fpga.mit.edu/6205/F25 106

time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

Timing Diagram

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2

≥tHOLD,reg2

Two Requirements/
Conclusions:

This thing again. Unbelievable, it is almost like this
diagram is important or something

9/23/25 https://fpga.mit.edu/6205/F25 107

time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

tSETUP,reg2

Add in Slack

tPD,reg1 + tPD,logic + tSETUP,reg2 + tSETUP,Slack = tCLK

tCD,reg1 + tCD,logic = tHOLD,reg2 + tHOLD,Slack

tHOLD,reg2

Equations*

tSETUP,Slack

tHOLD,Slack

tSETUP,Slack = tCLK-(tPD,reg1 + tPD,logic + tSETUP,reg2)
tHOLD,Slack = tCD,reg1 + tCD,logic - tHOLD,reg2

*not inequalities

Conclusion

• Positive Slack is GOOD
• Negative Slack is BAD

9/23/25 https://fpga.mit.edu/6205/F25 108

Timing Report

Slack (VIOLATED) : -21.399ns (required time - arrival time)
 Source: dividend_reg[15]/C
 (rising edge-triggered cell FDRE clocked by gclk {rise@0.000ns fall@4.000ns period=10.000ns})
 Destination: quotient_reg[0]/D
 (rising edge-triggered cell FDRE clocked by gclk {rise@0.000ns fall@4.000ns period=10.000ns})
 Path Group: gclk
 Path Type: Setup (Max at Slow Process Corner)
Requirement: 10.000ns (gclk rise@10.000ns - gclk rise@0.000ns)
Data Path Delay: 31.483ns (logic 21.642ns (68.742%) route 9.841ns (31.258%))

 Logic Levels: 82 (CARRY4=80 LUT2=1 LUT3=1)
 Clock Path Skew: 0.026ns (DCD - SCD + CPR)
 Destination Clock Delay (DCD): 4.926ns = (14.926 - 10.000)
 Source Clock Delay (SCD): 5.079ns
 Clock Pessimism Removal (CPR): 0.179ns
 Clock Uncertainty: 0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
 Total System Jitter (TSJ): 0.071ns
 Total Input Jitter (TIJ): 0.000ns
 Discrete Jitter (DJ): 0.000ns
 Phase Error (PE): 0.000ns

Look at

9/23/25 https://fpga.mit.edu/6205/F25 109

routerpt_report_timing.rpt

1/3 from routing
2/3 from routing

This is not good Negative Slack

Results

• By default Vivado only gives you a few offending
paths (our default is one) and it provides them in
order of worst to best
• You can ask for more paths using different

arguments;

9/23/25 https://fpga.mit.edu/6205/F25 110

https://docs.xilinx.com/r/2025.1-English/ug835-vivado-tcl-commands/report_timing

Final Projects Coming Up
• In another ~week or so, we have to start thinking

about planning on starting to get going on final
projects.

• First part of that is teaming and teams benefit from
targeting shared goals

• On the site, we’ll put up an archive of final projects

9/23/25 https://fpga.mit.edu/6205/F25 111

Past Project (with Microphone)

9/23/25 https://fpga.mit.edu/6205/F25 112

Sudoku Solver

9/23/25 https://fpga.mit.edu/6205/F25 113

