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Administrative

§ Week 1’s content is due tomorrow (Wednesday) 
night at 11:59pm

§ Week 2’s content will come out Thursday after 
lecture @4pm
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Review

1. Have an Idea: “I have three wires of one bit, x,y, 
and z. 
§ I want to treat them collectively as a number…where z is 

the one’s place, y is the two’s place, and x is the four’s 
place. 

§ If that number is 3, 5, 6, or 7, I want the output bit to be 
high, else I want it to be low.

*”High” and “Low” refer to the two states in 
the digital domain
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Review

2. Implement the idea in SystemVerilog:
module some_module 
  ( input wire x,
    input wire y,
    input wire z,
    output logic out);

  logic [2:0] temp;
  assign temp = {x,y,z};
  always_comb begin
   if (temp>=5)begin
   out = 1'b1; //specify bit
  end else if (temp==3)begin
      out = 1'b1; //specify bit
    end else begin
      out = 1’b0; //specify bit
    end
  end
endmodule
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This Then gets Turned into a Circuit

§ Most synthesis tools will provide some sort of 
intermediate visualization if you want.  

§ Yosys (an open toolchain) can do this somewhat 
easily.

§ This site here: https://digitaljs.tilk.eu/ is built on 
Yosys and let’s you see what pops out

§ For example module from previous page yields…
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Equivalent Schematic
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This can be helpful, but isn’t the full 
story
§ In reality when this gets built on an FPGA, 

additional steps will be taken to reduce it into more 
primitive functional expression, which we can 
helpfully visualize with a truth table or sum of 
products.

§ For this example, it would look like this:

𝒙 𝒚 𝒛 𝒐𝒖𝒕𝒑𝒖𝒕_𝟏

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-7



Review

§ These truth tables are important because they are 
effectively the ”code” that are used to program the 
fundamental units of the FPGA, the CLBs and 
associated wiring

𝒙 𝒚 𝒛 𝒐𝒖𝒕𝒑𝒖𝒕_𝟏

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1
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Xilinx Logic Blocks

§ Our FPGAs have about 
8500 of these à

§ Called “Logic Slices”

§ Each slice has four 
CLBs (“Configurable 
Logic Blocks”) that 
form the clay from 
which we sculpt our 
digital functions
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Variables in Verilog

§ We’ll use the logic type for our basic variable in 
6.205

§ It can represent a few different things depending 
on usage:
§ A “wire”…literally the routed output of some logic
§ A “reg”…a device that can hold a value over time (a form 

of memory)
§ Right now we’re not super worried about “reg”s

logic a; //simple variable (one bit in size)...can only hold 0 or 1
logic a,b,c; //declaring three single bit variables at the same time
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There are other Data Types

§ SystemVerilog the language has other datatypes
§ There are int’s, shorts, etc…all with 

signed/unsigned versions…we’ll leave them be for a 
little bit!

§ However when we do things with loops we’ll use 
int’s to help us iterate!

§ For now just use logic variables. 
§ Can be any size
§ By default unsigned (we’ll worry about signed-ness in 

future weeks)
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Multibits in Verilog

§ Want variables that can contain more than one bit 
of information?

§ Specify the sizing left-to-right like shown
§ Can make any size you want, 2, 11, 17 bits
§ Don’t feel compelled to use extra bit just because 

you’ve heard of variables being 32 bits or 16 bits 
before. Not bound by that structure.

logic [7:0] a; //8bit value (also think of this as an array of 8 bits)
logic [31:0] b; //32 bit value
logic [12:0] c,d; //making two arrays, each 13 bits that called c and d
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Arrays in Verilog

§ Can also make “2D” arrays (packed/unpacked):
§ The bottom two arrays are similar, but also 

different:
§ One is “packed”
§ One is “unpacked”

§ Packed dimensions are specified before the variable 
name

§ Unpacked dimensions are specified after the 
variable name

logic [7:0] array3; //8 bit "packed array"
logic [7:0] array4 [2:0]; //three 8 bit unpacked arrays (b[0] not contiguous with b[1])
logic [2:0][7:0] array5 ; //three 8 bit packed arrays 
   //(array5[0] contiguous with array5[1])
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Un/Packed Arrays
§ Packed means:

§ Whole structure is continuous
§ Like a subdivided larger array

§ Unpacked means:
§ Separate/not continuous

logic [7:0] array3;       //8 bit "packed array"
logic [7:0] array4 [2:0]; //three 8 bit unpacked arrays (b[0] not contiguous with b[1])
logic [2:0][7:0] array5 ; //three 8 bit packed arrays 
                          //(array5[0] contiguous with array5[1])
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Un/Packed Arrays
§ Packed/Unpacked has little meaning beyond the 

program construct within the Verilog language

§ Unpacked array: Use to handle the output of three 
separate adders, for example

§ Packed array: Use to represent a string type 
object, for example (maybe?).

logic [7:0] array3;       //8 bit "packed array"
logic [7:0] array4 [2:0]; //three 8 bit chunks (unpacked)
logic [2:0][7:0] array5 ; //really just one 24-bit chunk with sub-indexing convenience
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Get familiar with the Three Bases

§ Get somewhat fluent 
with the three bases.

§ It will make life easier!
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Values in Verilog

§ Good practice to always specify values in the 
following form: S'Txxxx_xxxx where
§ S is the size of the number (in bits)
§ ' is the single quote marker
§ T is the numerical base you’re specifying the value in

§ b for binary (0,1)
§ d for decimal (0,1,2,3,4,5,6,7,8,9)
§ h for hex (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

§ xxxx_xxxx are your values
§ The _ is ignored in evaluation
§ use _ to make more readable
§  Don’t need to use _ but is really nice
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Values in Verilog

10'b0101_0101_00; //10 bit size of value...
10'b1; //10 bit value but only lsb specified...so this is saying 10'b0000_0000_01;
12'hF0F; //12 bits..this would be 12'b1111_0000_1111;
9'hF0F; //9 bits so 9'b1_0000_1111; top three cut off since we said only 9 long
15; //assumed to be an 32 bit integer by default: 
    //              'b0000_0000_0000_0000_0000_0000_0000_1111;

§ Some examples:
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Assignments

§ Consider these:

§ What values will all five variables have?

logic a, b, c, d, e;
assign a = 1'b1; //best practice shows you mean to make this 1 bit
assign b = 0;
assign c = 1;
assign d = 15; 
assign e = a && b; 
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Assignments II

§ What about arrays?

§ Watch out for size! 
§ Arrays have a size…you try to fit something too 

large in…it will get cut off (lsb’s will get preference) 

logic [7:0] a, b, c;
assign a = 8'b1010_1010; //good!
assign b = 16'hF0F0; //fine, but the top eight bits won't get stored
assign c = 32; //fine, but has: 8'b0010_0000 in it (surprise?)
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Assignments III

§ What if we’d like to merge arrays?:

§ Index into them however you want

logic [7:0] a, b, c;
assign a = 8'b1010_1010; //good!
assign b = 16'hF0F0; //fine, but the top eight bits won't get stored
assign c = 32; //fine, but has: 8'b0010_0000 in it (surprise?)
logic [15:0] d;
logic [7:0] e, f;
assign d = {a,b}; //16'b1010_1010_1111_0000
assign e = {a[3:0], b[3:0]}; //has 8'b1010_0000;
assign f = {a,b}; //will have: 8'b1111_0000;
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Assignments IIIb

§ What about this?

§ Uhoh: e = 3’b001. 

§ Specify size and type!!!

logic [2:0] e;
assign e = {1,1,1};

logic [2:0] e;
assign e = {1’b1,1’b1,1’b1};
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Other Ways to Assign (Implicit)
§ Can also assign values upon declaration of 

variables in Verilog (implicit declaration as opposed 
to explicit with the assigns):

logic a = 1'b1; //same as assign a= 1'b1;
logic b = 1’b0; 
logic [3:0] c = 4'b1010;

I’d generally recommend against doing this! Because...
logic [3:0] d = 4'b1100;
assign d = 4'hF; 
//might error out...might "choose for you"
§ Be careful!  Can’t assign twice!  This is not 

software! Higher up on page does not necessarily  
mean “earlier”
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Other Ways to Assign (always_comb)

§ You can also assign values/set relationships inside 
of a block known as always_comb

§ Don’t need to use assign in always_comb:

logic a, b, c;

assign a = 1'b1;
assign b = 1'b0;
assign c = a^b;

//alternatively could do:
always_comb begin
  a = 1'b1;
  b = 1'b0;
  c = a^b;
end
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Why Use an always_comb?

§ Can let you be more expressive, particularly when 
more complicated relationships need to be 
expressed!

§ For example, can now do if/else logic cleanly

logic [3:0] a, b, c; //three four bit values!
always_comb begin
  if (a==4'b1010)begin
    c = 4'b1; //(0001)
  end else if (b==4'b0000)begin
    c = 4'b1010;
  end else begin
    c = 4'b0000;
  end
end

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-25



Why Use an always_comb?

§ Always-family blocks also are analyzed in order if 
you use (=) assignments…Example:

§ Is the same as:

assign a = 4'b1010 + b + c;

logic [3:0] a, b, c; //three four bit values!
always_comb begin
  a = 4'b1010;
  a = a+b;
  a = a+c; 
end
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Inside an always-type block

§ Order of Code *can* matter

§ The entire block is analyzed and turned into a 
“hidden” one-liner like this*:

logic [3:0] a, b, c; //three four bit values!
always_comb begin
  a = 4'b1010; //this line evaluated first!
  a = a+b; //this line evaluated second!
  a = a+c; //this line evaluated third!
end

assign a = 4'b1010 + b + c;
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Case Statement
§ Need to do in an always block:

§ Use these in place of long-chained if/else statements 
that are checking same variable

§ Always have a default case! (safe, good practice)
§ There is no fall-through in Verilog (no need for break 

statements like in C/C++)

logic [8:0] a;
logic [1:0] b;
//make b 0, if a is 'b1111_0000
//make b 1, if a is 'b1010_0001
//make b 2, if a is 'b0000_1000
//else b is 3
always_comb begin
  case(a)
    8'hF0 : b = 2'b0;
    8'hA1 : b = 2'b1;
    8'h08 : b = 2'b10;
    default : b = 2'd3; 
  endcase
end
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Why Try to Avoid Long-Chained If-Else?

§ Because if, else if, else if, else...  has a priority 
encoded in it....a hierarchy of when one decision 
should be made relative to others.
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Case Statements

§ Can evaluate to 
multi-bit 
multiplexers which 
are relatively 
“shallow” pieces of 
logic with lower 
propagation 
delays

§ And readily 
available in FPGA:

§ More on Thursday
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Always blocks?
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§ For stuff you write, stick with 
specific always family blocks:
§ always_comb
§ always_ff (coming up)
§ always_latch (coming up)



What about always @(*)

§ Historically, there was just one always block and 
you would infer different types of logic 
(combinational, latch, or sequential) from what was 
in the parentheses:

always @(<sensitivity list>)begin

  //do your stuff here when a change happens
  //to anything specified in sensitivy list

end

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-32



Simple combinational adder

§ For example you would do:

§ Verilog 2001 brought in the “wildcard”. Same as 
above can be done with:

always @(x,y)begin
  z= x+y;
end

“any time x or y 
changes, z changes as 
x+y.”  This is a purely 
combinational adder

always @(*)begin
  z= x+y;
end

“any time anything in the 
block changes, z changes 
as x+y.”  This is a purely 
combinational adder
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Consider This Situation

§ “I want a combinational circuit that says z = x+y if 
x is 3.”

§ Here’s my solution:

always @(*)begin
  if (x==3)begin
    z = x+y;
  end
end

§ Problems with this?
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Remember what we’re doing

§ We are specifying (using HDL) a Boolean function. 
That function has a finite input space. 

§ We need to make sure we are specifying how this 
circuit should work for the entire input space:

§ Code above is saying set z to be x+y when x==3.  
It says nothing else. 

§ There is a device that will enable this as stated but 
it is not combinational!

always @(*)begin
  if (x==3)begin
    z = x+y;
  end
end
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The Resulting Truth Table

§ Let’s just assume x is two bits...

§ Not to decide is to decide...
§ What you just want it stay the same or something?  

That’s opening up a whole world of issues... 
Staying the same means you need a concept of 
time in your truth table...
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A part that remembers 
(starting in Lec 03)
§ Talked a little about stateful things in lecture 1... in 

addition to combinational blocks there are several 
stateful things too!

§ Two big ones!

D Q

CLK

D Q

Edge-Triggered Sample-and-Hold Device

D Flip-Flop

“store D when clk rises”

D Q

E

D Q

E

Level-Triggered Sample-and-Hold Device

D Latch

“store D when E is 
high”
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Missing Input Space

§ This code fails to specify what to do when x!=3.
§ It therefore assumes you want to do nothing.
§ A latch will do that:

§ When x==3, set z to be x+y
§ When x!=3, hold the value you already have

§ Correct code would be:

always @(*)begin
  if (x==3)begin
    z = x+y;
  end
end

always @(*)begin
  if (x==3)begin
    z = x+y;
  end else begin
    z = 0;
  end
end
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A latch is not combinational

§ Suddenly your design will have “memory” in it 
where you never intended.

§ This can mess up your simulations and designs! 
§ Vivado will happily synthesize a latch for you since 

it’ll think that’s what you want.
§ Forcing it to know you want combinational logic 

(via always_comb) can throw warnings:

§ It will also ensure there’s less chance of simulation-
to-reality variations

WARNING: [Synth 8-327] inferring latch for variable 
‘z_reg’ [/top_level.sv:12]
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To be annoying!!!!

§ We are specifying (using HDL) a 
Boolean function. That function 
has a finite input space. 

§ We need to make sure we are 
specifying how this circuit should 
work for the entire input space:
§ Ideally do this explicitly
§ If you do implicitly make sure you’re 

doing so responsibly!
§ If you fail to specify your truth 

table in full, unknown behaviors 
will exist and wreak havoc

𝒙 𝒚 𝒛 𝒐𝒖𝒕𝒑𝒖𝒕_𝟏

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 ?

1 1 0 ?

1 1 1 ?
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Never use always
Always use always_comb
§ When writing your logic:

§ Make sure to cover the entire input space for each variable 
in its entirety!

§ Do not forget about leftovers:
§ Have a terminal else in case of if/else if chain
§ Have a default case in the case of a case statement
§ Initialize starting values for variables at start of 
always_comb block!

§ Scan output logs from vivado for word “latch”.  If there’s 
any getting inferred, make sure it is because you want 
them (very unlikely in our class)
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In Conclusion
No way drugs always@() blocks are 
for loserzz! I’ve got too much to lose 

to get mixed up with them.

al
wa
ys
 @
(*
)IEEE 1364-2001

§ For stuff you write, 
stick with specific 
always family blocks:
§ always_comb
§ always_ff (coming up)
§ always_latch (coming 

up)

§ Tons of legacy code will 
have them so you should 
be aware and know how to 
how to read it and deal 
with it!
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Other Syntax...Ternaries

§ See these a lot in Verilog
§ One-line if/else/if chains done on right side of 

assignment:
logic [1:0] a, b;

a = b==2'b11? 2'b0: 2'b10;

a is 

if b==2’b11:
    a is 2’b0

else a 
is 2’b10
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Ternaries

§ Can also be done outside always_comb in regular 
assignment statements:

logic [1:0] a, b;
assign a = b==2'b11? 2'b0: 2'b10;
//if b is 2'b11, a is 0, else it is 2'b10

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-44



Ternaries

§ Can also chain ternaries

§ Is the same as:

§ Or since we’re in a C-style language:

always_comb begin
  if (a==4'b1010)begin
    c = 4'b1; //(0001)
  end else if (b==4'b0000)begin
    c = 4'b1010;
  end else begin
    c = 4'b0000;
  end
end

logic [3:0] a, b, c; //three four bit values!
assign c = a==4'b1010 ? 4'b1 : b==4'b0000 ? 4'b1010 : 4'b0000;

logic [3:0] a, b, c; //three four bit values!
assign c = a==4'b1010 ? 4'b1 
   : b==4'b0000 ? 4'b1010 
   : 4'b0000;
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Ternary style Specification

§ One benefit of it is that by its syntactic nature it 
forces you to have a trailing else:

§ You cannot have something like this:

§ Nice because it forces you to cover your full input 
space of possibility, avoiding gaps/resulting latch

logic [1:0] a, b;
assign a = b==2'b11? 2'b0: 2'b10;
//if b is 2'b11, a is 0, else it is 2'b10

logic [1:0] a, b;
assign a = b==2'b11? 2'b0;
//if b is 2'b11, a is 0
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Competing Assignments

§ What if I have two always_comb blocks?

§ Only one will be chosen, the other ignored. It will 
not  make a union or merge the two.

always_comb begin
  a = c + e;
end

always_comb begin
  a = d + 5;
end
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Multiple always-type blocks

§ It is fine to use values across multiple always 
blocks or continuous assign statements, but you 
should only specify them in one and only one 
location!

§ Specifying/assigning a variable in multiple always-
type blocks is a no-no however

always_comb begin
  d = a+ 5;
end

always_comb begin
  b = a + 8;
end
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Where to Create Variables

§ Variables are things that exist physically

§ Always blocks are meant to describe action.

§ You can never declare variables in an always block

§ As much as possible try to declare at top (with nice 
comments)

§ And implement logic (assign, always_comb, etc) 
below it
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Parameters

§ Parameters are different than variables.

§ Their values can change, but only at the compile-
stage.

§ At run-time they are constants.

§ They allow us to make flexible designs (make an 
adder that can be 8 bits or 14 bits or whatever)
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Parameters

§ Parameters allow us more flexibility in 
programmatically describing our designs:

localparam GOOD = 8'b1111_1111; //not changeable
localparam STATE_SIZE = 8;
parameter BAD = 8'b1111_0000; //changeable (see in a few slides how/where)
logic [STATE_SIZE-1:0] state; //made size of state variable based on param
logic [1:0] output;
always_comb begin
  case(state)
    GOOD : output = 2'b11;
    BAD : output = 2'b00;
    default : output = 2'b10;
endcase
end

Apply more meaningful names to 
values in certain contexts of 
program 

Allow us to describe 
variable attributes 
using common adjustable 
values
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Parameters

§ localparam is local to the module it exists in
§ parameter is local, but (depending on context), 

can be a configuration setting (see in a minute)
§ Always CAPITALIZE so they are easy to spot
§ Parameters can be based on other parameters!

§ $clog2 is a Verilog math operator run at compile 
time

§ Other Verilog math functions here: 
https://www.chipverify.com/verilog/verilog-math-functions

parameter NUM_CHICKENS = 167;
parameter CHICKEN_WIDTH = $clog2(NUM_CHICKENS);
logic [CHICKEN_WIDTH-1: 0] chicken_counter;
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Modules

§ Just like the idea of functions in software! Wrap up 
functionality in a reusable and “instantiable” blob

module not_gate (input wire x, output logic y);
  assign y = !x;
Endmodule

module main_module();
  logic a,b;
  assign a = 1'b1;
  not_gate ng1 (a,b); //ng1 is name of instance
endmodule

Specify 
input/output 
variables and 
attributes 
(like size)

Do your operations

Make an instance of your module 
(name it) and use it

Declare instance like:  module_name  instance_name (arg0,arg1,…);
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Modules...but you really should use 
named port convention!
§ Just like the idea of functions in software! Wrap up 

functionality in a reusable and “instantiable” blob

module not_gate (input wire x, output logic y);
  assign y = !x;
Endmodule

module main_module();
  logic a,b;
  assign a = 1'b1;
  not_gate ng1 (.x(a), .y(b)); //ng1 is name of instance
endmodule

Specify 
input/output 
variables and 
attributes 
(like size)

Do your operations

Make an instance of your module 
(name it) and use it
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Parameterized Modules

§ We mentioned parameters previously. They can be 
used to make flexible modules:

module add_constant #(parameter TO_ADD = 12) 
  (input wire [7:0] val_in, output logic [7:0] val_out);
  assign val_out = val_in + TO_ADD;
endmodule

module top();
  logic[7:0]a,b,c,d;
  assign a = 8'd11;
  assign c = 8'b100;
  add_constant ac_0 (.val_in(a), .val_out(b));

  add_constant #(.TO_ADD(5)) ac_1 (.val_in(c), .val_out(d));
  //value of b?
  //value of d?
endmodule
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Parameterized Modules

§ Parameterizable modules are more complicated to 
write, but their reusability is a great feature

§ If a parameter is not specialized upon instantiation, 
the default is used instead.

§ Parameters can be used to specify other 
parameters in the design!
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Operator Precedence

§ Largely borrowed from C!
§ Be careful some of these often 

feel out of order for people.
§ Left/right shift for example!
§ For example if:

§ x=100
§ q=8
§ What will y be?

assign y = x + q>>2;

§ 27...not…102
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Reduction Operators in Verilog
§ Reduction operators act like their bitwise cousins, 

but are done on a variable rather than between 
several: 

logic [7:0] b, d;
logic a, c;

assign a = |b; //if anything in b is 1, a is 1
assign c = &d; //everything in d needs to b 1
//four others xor and xnor are particularly 
useful
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for loops

§ For loops (and to a lesser extent while loops) exist 
in Verilog to more conveniently lay out our 
hardware.

§ They are NOT for loops “in time”. They are for 
loops “in space”

§ There are two general types:
§ Generate for loops (for loops in a generate block)
§ Regular for loops

§ Which one works can be confusing* so we’ll over it 
here

*the rules have also changed as Verilog evolved so there can be 
confusing info on the internet 
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Regular for loop

§ If you are in an always block and just need to 
replace a bunch of repetitive lines, a for loop can 
help

§ Let’s say I had to do some annoying operation a 
bunch of times with some variables:

logic [7:0] b [63:0];
logic [7:0] c [63:0];
logic [63:0] a;

//assume b and c are large enough
always_comb begin
  for(integer i =0; i<64; i= i+1)begin
    a[i] = b[i]>c[63-i];
  end
end
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Generate for loops

§ Put a for loop in a generate block.
§ Use this any time you need to :

§ create multiple assign statements
§ Create multiple always_comb, always_ff blocks

§ OR:
§ Create multiple instances of a module
§ Create logics 

§ Need to use a genvar for your iterating variable 
rather than an integer.

§ Can also label your for loops to have access the 
modules or entities created within
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Generate For Loops

generate
  genvar i;
  for(i=0; i<5; i=i+1)begin: myloop
    logic[31:0] hi;
    assign hi = 32'hAAAAAAAA ^ i;
  end
endgenerate
//outside of generate, those logics can be accessed with:
// myloop[2].hi for example
// this is needed since the logic hi needs more 
// specificity than provided otherwise.

An Example:
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Rule about For Loops

§ Inside an always_comb (or always_ff?):
§ Use regular for loop

§ Want to make multiple assign statements? Or 
Multiple always-type blocks? or multiple modules?:
§ Use a generate loop!

§ In both instances, the iterating variables of the 
loop have no intrinsic hardware meaning…they 
exist as a helper variable during specification (a 
copy-paster thingie)
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wire vs. logic. vs. reg

§             Can only be signal flow (“nets”). From perspective of 
a module, signals coming into module are conveyed by wires. 
In other usage, declared wires can only be given values with 
assign statement. A wire can also be associated with 
combinational logic.

§             Ideally represents a flipflop or latch (storage 
mechanism), but in reality can also turn into a net (in other 
words a wire)/ combinational logic based on usage (cover 
more on Thursday in Lec 03). Only given values with always-
family blocks. DO NOT USE IN 6.205

§              Can represent all datatypes. Its usage dictates what 
it ultimately represents (combinational logic or Flip Flops). 
Can be worked with assign and always-family blocks

wire

reg

logic
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Why logic?
§ In addition to allowing us to just use one general type rather than two, 

the logic datatype has stricter protections against multi-driven nets

§ Logic on output should prevent: 

module thing(input wire [3:0] a,b, 
output wire [3:0] c);
  //some behavior goes here
endmodule

module main_module();
  logic[3:0] a,b,c;
  thing my_thing(.a(a), .b(b), .c(c));
  assign c = 4'b1010; //whoops might miss checks in Vivado (multi-driven net)
endmodule

module thing(input wire [3:0] a,b, 
output logic [3:0] c);
  //some behavior goes here
endmodule

module main_module();
  logic[3:0] a,b,c;
  thing my_thing(.a_in(a), .b_in(b), .c_in(c));
  assign c = 4'b1010; //should get caught on synthesis
endmodule

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-65



So why still use wire in module 
definitions at all?

§ Seems excessive...Let’s just use logic for 
everything.

§ We would...but...

§ This is a thing we do in 6.205 to help us with our 
Vivado toolchain since it is a picky, picky child.

module thing(input wire [3:0] a_in,
             input wire [3:0] b_in, 
             output wire [3:0] c_out);
  //stuff
endmodule
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If we had a module definition like this:

§ This would run just fine in all honesty.

§ In the scope of this module, what logic ”is” isn’t 
specified, but by default Verilog interpreters tend 
to assign the “wire” attribute to unspecified things 
(like these logic’s would be).
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module thing(input logic [3:0] a,
             input logic [3:0] b, 
             output logic [3:0] c);
  assign c = a ^ b;
endmodule
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The Problem...

§ This verilog will synthesize perfectly happy for the 
same reason the verilog on the previous page did. 
Why???

§ d id undeclared, but Verilog just assumes it is a 
“wire” by default...a one-bit wire. omg why.
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module thing(input logic [3:0] a,
             input logic [3:0] b, 
             output logic [3:0] c);
  
  assign d = 4;
  assign c = a ^ b ^ d;
endmodule
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To Protect Ourselves...

§ we will (and should) often add the a directive at 
the top of our file to protect against this:

§ This forces Verilog to treat everything not explicitly 
declared as a none entity and working with those 
_will_  throw an error
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`default_nettype none
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The downside of that though...
§ All inputs and outputs are of type logic
§ A logic is an abstract type whose physical realization 

is determined through usage.

§ In the scope of this module, how these inputs should 
get their values is never specified so their actual 
manifestation is left undefined and defaults to a none 
and an error gets thrown (good!)

`default_nettype none
module thing(input logic [3:0] a,
             input logic [3:0] b, 
             output logic [3:0] c);
  assign c = a ^ b;
endmodule
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So must make the inputs into wires
§ All inputs are now wires

§ In the scope of this module, inputs a and b are 
explicitly known to be wires (things that convey 
signals) so there’s no ambiguity

§ Still have that great protection against accidental 
variables since they’ll be none!

`default_nettype none
module thing(input wire [3:0] a,
             input wire [3:0] b, 
             output logic [3:0] c);
  assign c = a ^ b;
endmodule
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But That’s Not Enough

§ It just keeps going...

§ A lot of Vivado’s source files and modules rely on the default 
nettype being wire (I know who would do that?).

§ So after our module we need to set things back to defaulting 
to wire

§ So we’ll tack this on at the end of files:
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`default_nettype wire
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To Satisfy All of These Issues

§ Declare inputs to a module as wires since it will 
fully specify what they are

§ Begin and end all modules with nettype compiler 
directives.  This will protect you from implicit 
declarations by Vivado 

`default_nettype none
module thing(input wire [3:0] a,
             input wire [3:0] b, 
             output logic [3:0] c);
  assign c = a ^ b;
endmodule
`default_nettype wire
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Kind of Annoying

§ Yeah it is. :/ But this is the sort of thing you deal 
with when working with a large vendor’s toolchain.

§ Or a language that just can’t let go of the past and 
keeps maintaining various degrees of backwards 
compatibility back to the 1980s
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Let’s build some different adders

§ Adder 1 (parameter practice):
§ Add up two variable width values (width is parameterized)

§ Adder 2: A parameterized adder module that works 
for an arbitrary bit width and an arbitrary number 
of input values

§ Adder 3/if time…(to get some generate practice):
§ Explicitly lay out a tree-shaped adder module for 8, 8-wide 

inputs.
§ Force the structure to be a tree shape:
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