
6.205
(aka 6.111)

Combinational Logic

Fall 2025
September 9, 2025 https://fpga.mit.edu/6205/F25 L02-1

Administrative

§ Week 1’s content is due tomorrow (Wednesday)
night at 11:59pm

§ Week 2’s content will come out Thursday after
lecture @4pm

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-2

Review

1. Have an Idea: “I have three wires of one bit, x,y,
and z.
§ I want to treat them collectively as a number…where z is

the one’s place, y is the two’s place, and x is the four’s
place.

§ If that number is 3, 5, 6, or 7, I want the output bit to be
high, else I want it to be low.

*”High” and “Low” refer to the two states in
the digital domain

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-3

Review

2. Implement the idea in SystemVerilog:
module some_module
 (input wire x,
 input wire y,
 input wire z,
 output logic out);

 logic [2:0] temp;
 assign temp = {x,y,z};
 always_comb begin
 if (temp>=5)begin
 out = 1'b1; //specify bit
 end else if (temp==3)begin
 out = 1'b1; //specify bit
 end else begin
 out = 1’b0; //specify bit
 end
 end
endmodule

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-4

This Then gets Turned into a Circuit

§ Most synthesis tools will provide some sort of
intermediate visualization if you want.

§ Yosys (an open toolchain) can do this somewhat
easily.

§ This site here: https://digitaljs.tilk.eu/ is built on
Yosys and let’s you see what pops out

§ For example module from previous page yields…

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-5

https://digitaljs.tilk.eu/

Equivalent Schematic

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-6

This can be helpful, but isn’t the full
story
§ In reality when this gets built on an FPGA,

additional steps will be taken to reduce it into more
primitive functional expression, which we can
helpfully visualize with a truth table or sum of
products.

§ For this example, it would look like this:

𝒙 𝒚 𝒛 𝒐𝒖𝒕𝒑𝒖𝒕_𝟏

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-7

Review

§ These truth tables are important because they are
effectively the ”code” that are used to program the
fundamental units of the FPGA, the CLBs and
associated wiring

𝒙 𝒚 𝒛 𝒐𝒖𝒕𝒑𝒖𝒕_𝟏

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-8

Xilinx Logic Blocks

§ Our FPGAs have about
8500 of these à

§ Called “Logic Slices”

§ Each slice has four
CLBs (“Configurable
Logic Blocks”) that
form the clay from
which we sculpt our
digital functions

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-9

Variables in Verilog

§ We’ll use the logic type for our basic variable in
6.205

§ It can represent a few different things depending
on usage:
§ A “wire”…literally the routed output of some logic
§ A “reg”…a device that can hold a value over time (a form

of memory)
§ Right now we’re not super worried about “reg”s

logic a; //simple variable (one bit in size)...can only hold 0 or 1
logic a,b,c; //declaring three single bit variables at the same time

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-10

There are other Data Types

§ SystemVerilog the language has other datatypes
§ There are int’s, shorts, etc…all with

signed/unsigned versions…we’ll leave them be for a
little bit!

§ However when we do things with loops we’ll use
int’s to help us iterate!

§ For now just use logic variables.
§ Can be any size
§ By default unsigned (we’ll worry about signed-ness in

future weeks)

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-11

Multibits in Verilog

§ Want variables that can contain more than one bit
of information?

§ Specify the sizing left-to-right like shown
§ Can make any size you want, 2, 11, 17 bits
§ Don’t feel compelled to use extra bit just because

you’ve heard of variables being 32 bits or 16 bits
before. Not bound by that structure.

logic [7:0] a; //8bit value (also think of this as an array of 8 bits)
logic [31:0] b; //32 bit value
logic [12:0] c,d; //making two arrays, each 13 bits that called c and d

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-12

Arrays in Verilog

§ Can also make “2D” arrays (packed/unpacked):
§ The bottom two arrays are similar, but also

different:
§ One is “packed”
§ One is “unpacked”

§ Packed dimensions are specified before the variable
name

§ Unpacked dimensions are specified after the
variable name

logic [7:0] array3; //8 bit "packed array"
logic [7:0] array4 [2:0]; //three 8 bit unpacked arrays (b[0] not contiguous with b[1])
logic [2:0][7:0] array5 ; //three 8 bit packed arrays
 //(array5[0] contiguous with array5[1])

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-13

Un/Packed Arrays
§ Packed means:

§ Whole structure is continuous
§ Like a subdivided larger array

§ Unpacked means:
§ Separate/not continuous

logic [7:0] array3; //8 bit "packed array"
logic [7:0] array4 [2:0]; //three 8 bit unpacked arrays (b[0] not contiguous with b[1])
logic [2:0][7:0] array5 ; //three 8 bit packed arrays
 //(array5[0] contiguous with array5[1])

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-14

Un/Packed Arrays
§ Packed/Unpacked has little meaning beyond the

program construct within the Verilog language

§ Unpacked array: Use to handle the output of three
separate adders, for example

§ Packed array: Use to represent a string type
object, for example (maybe?).

logic [7:0] array3; //8 bit "packed array"
logic [7:0] array4 [2:0]; //three 8 bit chunks (unpacked)
logic [2:0][7:0] array5 ; //really just one 24-bit chunk with sub-indexing convenience

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-15

Get familiar with the Three Bases

§ Get somewhat fluent
with the three bases.

§ It will make life easier!

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-16

Values in Verilog

§ Good practice to always specify values in the
following form: S'Txxxx_xxxx where
§ S is the size of the number (in bits)
§ ' is the single quote marker
§ T is the numerical base you’re specifying the value in

§ b for binary (0,1)
§ d for decimal (0,1,2,3,4,5,6,7,8,9)
§ h for hex (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

§ xxxx_xxxx are your values
§ The _ is ignored in evaluation
§ use _ to make more readable
§ Don’t need to use _ but is really nice

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-17

Values in Verilog

10'b0101_0101_00; //10 bit size of value...
10'b1; //10 bit value but only lsb specified...so this is saying 10'b0000_0000_01;
12'hF0F; //12 bits..this would be 12'b1111_0000_1111;
9'hF0F; //9 bits so 9'b1_0000_1111; top three cut off since we said only 9 long
15; //assumed to be an 32 bit integer by default:
 // 'b0000_0000_0000_0000_0000_0000_0000_1111;

§ Some examples:

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-18

Assignments

§ Consider these:

§ What values will all five variables have?

logic a, b, c, d, e;
assign a = 1'b1; //best practice shows you mean to make this 1 bit
assign b = 0;
assign c = 1;
assign d = 15;
assign e = a && b;

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-19

Assignments II

§ What about arrays?

§ Watch out for size!
§ Arrays have a size…you try to fit something too

large in…it will get cut off (lsb’s will get preference)

logic [7:0] a, b, c;
assign a = 8'b1010_1010; //good!
assign b = 16'hF0F0; //fine, but the top eight bits won't get stored
assign c = 32; //fine, but has: 8'b0010_0000 in it (surprise?)

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-20

Assignments III

§ What if we’d like to merge arrays?:

§ Index into them however you want

logic [7:0] a, b, c;
assign a = 8'b1010_1010; //good!
assign b = 16'hF0F0; //fine, but the top eight bits won't get stored
assign c = 32; //fine, but has: 8'b0010_0000 in it (surprise?)
logic [15:0] d;
logic [7:0] e, f;
assign d = {a,b}; //16'b1010_1010_1111_0000
assign e = {a[3:0], b[3:0]}; //has 8'b1010_0000;
assign f = {a,b}; //will have: 8'b1111_0000;

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-21

Assignments IIIb

§ What about this?

§ Uhoh: e = 3’b001.

§ Specify size and type!!!

logic [2:0] e;
assign e = {1,1,1};

logic [2:0] e;
assign e = {1’b1,1’b1,1’b1};

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-22

Other Ways to Assign (Implicit)
§ Can also assign values upon declaration of

variables in Verilog (implicit declaration as opposed
to explicit with the assigns):

logic a = 1'b1; //same as assign a= 1'b1;
logic b = 1’b0;
logic [3:0] c = 4'b1010;

I’d generally recommend against doing this! Because...
logic [3:0] d = 4'b1100;
assign d = 4'hF;
//might error out...might "choose for you"
§ Be careful! Can’t assign twice! This is not

software! Higher up on page does not necessarily
mean “earlier”

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-23

Other Ways to Assign (always_comb)

§ You can also assign values/set relationships inside
of a block known as always_comb

§ Don’t need to use assign in always_comb:

logic a, b, c;

assign a = 1'b1;
assign b = 1'b0;
assign c = a^b;

//alternatively could do:
always_comb begin
 a = 1'b1;
 b = 1'b0;
 c = a^b;
end

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-24

Why Use an always_comb?

§ Can let you be more expressive, particularly when
more complicated relationships need to be
expressed!

§ For example, can now do if/else logic cleanly

logic [3:0] a, b, c; //three four bit values!
always_comb begin
 if (a==4'b1010)begin
 c = 4'b1; //(0001)
 end else if (b==4'b0000)begin
 c = 4'b1010;
 end else begin
 c = 4'b0000;
 end
end

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-25

Why Use an always_comb?

§ Always-family blocks also are analyzed in order if
you use (=) assignments…Example:

§ Is the same as:

assign a = 4'b1010 + b + c;

logic [3:0] a, b, c; //three four bit values!
always_comb begin
 a = 4'b1010;
 a = a+b;
 a = a+c;
end

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-26

Inside an always-type block

§ Order of Code *can* matter

§ The entire block is analyzed and turned into a
“hidden” one-liner like this*:

logic [3:0] a, b, c; //three four bit values!
always_comb begin
 a = 4'b1010; //this line evaluated first!
 a = a+b; //this line evaluated second!
 a = a+c; //this line evaluated third!
end

assign a = 4'b1010 + b + c;

September 9, 2025 https://fpga.mit.edu/6205/F25

*or something...differences aren’t important now.

L02-27

Case Statement
§ Need to do in an always block:

§ Use these in place of long-chained if/else statements
that are checking same variable

§ Always have a default case! (safe, good practice)
§ There is no fall-through in Verilog (no need for break

statements like in C/C++)

logic [8:0] a;
logic [1:0] b;
//make b 0, if a is 'b1111_0000
//make b 1, if a is 'b1010_0001
//make b 2, if a is 'b0000_1000
//else b is 3
always_comb begin
 case(a)
 8'hF0 : b = 2'b0;
 8'hA1 : b = 2'b1;
 8'h08 : b = 2'b10;
 default : b = 2'd3;
 endcase
end

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-28

Why Try to Avoid Long-Chained If-Else?

§ Because if, else if, else if, else... has a priority
encoded in it....a hierarchy of when one decision
should be made relative to others.

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-29

Can end up having a loooong propagation delay

𝑡!"

Case Statements

§ Can evaluate to
multi-bit
multiplexers which
are relatively
“shallow” pieces of
logic with lower
propagation
delays

§ And readily
available in FPGA:

§ More on Thursday

L02-30September 9, 2025 https://fpga.mit.edu/6205/F25

Always blocks?

September 9, 2025 L02-31https://fpga.mit.edu/6205/F25

§ For stuff you write, stick with
specific always family blocks:
§ always_comb
§ always_ff (coming up)
§ always_latch (coming up)

What about always @(*)

§ Historically, there was just one always block and
you would infer different types of logic
(combinational, latch, or sequential) from what was
in the parentheses:

always @(<sensitivity list>)begin

 //do your stuff here when a change happens
 //to anything specified in sensitivy list

end

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-32

Simple combinational adder

§ For example you would do:

§ Verilog 2001 brought in the “wildcard”. Same as
above can be done with:

always @(x,y)begin
 z= x+y;
end

“any time x or y
changes, z changes as
x+y.” This is a purely
combinational adder

always @(*)begin
 z= x+y;
end

“any time anything in the
block changes, z changes
as x+y.” This is a purely
combinational adder

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-33

Consider This Situation

§ “I want a combinational circuit that says z = x+y if
x is 3.”

§ Here’s my solution:

always @(*)begin
 if (x==3)begin
 z = x+y;
 end
end

§ Problems with this?

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-34

Remember what we’re doing

§ We are specifying (using HDL) a Boolean function.
That function has a finite input space.

§ We need to make sure we are specifying how this
circuit should work for the entire input space:

§ Code above is saying set z to be x+y when x==3.
It says nothing else.

§ There is a device that will enable this as stated but
it is not combinational!

always @(*)begin
 if (x==3)begin
 z = x+y;
 end
end

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-35

The Resulting Truth Table

§ Let’s just assume x is two bits...

§ Not to decide is to decide...
§ What you just want it stay the same or something?

That’s opening up a whole world of issues...
Staying the same means you need a concept of
time in your truth table...

September 9, 2025 https://fpga.mit.edu/6205/F25

𝒙[𝟏] 𝒙[𝟎] 𝑓 𝑥, 𝑦, 𝑧
0 0 ?
0 1 ?
1 0 ?
1 1 𝒙 + 𝐲

L02-36

A part that remembers
(starting in Lec 03)
§ Talked a little about stateful things in lecture 1... in

addition to combinational blocks there are several
stateful things too!

§ Two big ones!

D Q

CLK

D Q

Edge-Triggered Sample-and-Hold Device

D Flip-Flop

“store D when clk rises”

D Q

E

D Q

E

Level-Triggered Sample-and-Hold Device

D Latch

“store D when E is
high”

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-37

Missing Input Space

§ This code fails to specify what to do when x!=3.
§ It therefore assumes you want to do nothing.
§ A latch will do that:

§ When x==3, set z to be x+y
§ When x!=3, hold the value you already have

§ Correct code would be:

always @(*)begin
 if (x==3)begin
 z = x+y;
 end
end

always @(*)begin
 if (x==3)begin
 z = x+y;
 end else begin
 z = 0;
 end
end

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-38

A latch is not combinational

§ Suddenly your design will have “memory” in it
where you never intended.

§ This can mess up your simulations and designs!
§ Vivado will happily synthesize a latch for you since

it’ll think that’s what you want.
§ Forcing it to know you want combinational logic

(via always_comb) can throw warnings:

§ It will also ensure there’s less chance of simulation-
to-reality variations

WARNING: [Synth 8-327] inferring latch for variable
‘z_reg’ [/top_level.sv:12]

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-39

To be annoying!!!!

§ We are specifying (using HDL) a
Boolean function. That function
has a finite input space.

§ We need to make sure we are
specifying how this circuit should
work for the entire input space:
§ Ideally do this explicitly
§ If you do implicitly make sure you’re

doing so responsibly!
§ If you fail to specify your truth

table in full, unknown behaviors
will exist and wreak havoc

𝒙 𝒚 𝒛 𝒐𝒖𝒕𝒑𝒖𝒕_𝟏

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 ?

1 1 0 ?

1 1 1 ?

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-40

Never use always
Always use always_comb
§ When writing your logic:

§ Make sure to cover the entire input space for each variable
in its entirety!

§ Do not forget about leftovers:
§ Have a terminal else in case of if/else if chain
§ Have a default case in the case of a case statement
§ Initialize starting values for variables at start of
always_comb block!

§ Scan output logs from vivado for word “latch”. If there’s
any getting inferred, make sure it is because you want
them (very unlikely in our class)

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-41

In Conclusion
No way drugs always@() blocks are
for loserzz! I’ve got too much to lose

to get mixed up with them.

al
wa
ys
 @
(*
)IEEE 1364-2001

§ For stuff you write,
stick with specific
always family blocks:
§ always_comb
§ always_ff (coming up)
§ always_latch (coming

up)

§ Tons of legacy code will
have them so you should
be aware and know how to
how to read it and deal
with it!

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-42

Other Syntax...Ternaries

§ See these a lot in Verilog
§ One-line if/else/if chains done on right side of

assignment:
logic [1:0] a, b;

a = b==2'b11? 2'b0: 2'b10;

a is

if b==2’b11:
 a is 2’b0

else a
is 2’b10

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-43

Ternaries

§ Can also be done outside always_comb in regular
assignment statements:

logic [1:0] a, b;
assign a = b==2'b11? 2'b0: 2'b10;
//if b is 2'b11, a is 0, else it is 2'b10

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-44

Ternaries

§ Can also chain ternaries

§ Is the same as:

§ Or since we’re in a C-style language:

always_comb begin
 if (a==4'b1010)begin
 c = 4'b1; //(0001)
 end else if (b==4'b0000)begin
 c = 4'b1010;
 end else begin
 c = 4'b0000;
 end
end

logic [3:0] a, b, c; //three four bit values!
assign c = a==4'b1010 ? 4'b1 : b==4'b0000 ? 4'b1010 : 4'b0000;

logic [3:0] a, b, c; //three four bit values!
assign c = a==4'b1010 ? 4'b1
 : b==4'b0000 ? 4'b1010
 : 4'b0000;

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-45

Ternary style Specification

§ One benefit of it is that by its syntactic nature it
forces you to have a trailing else:

§ You cannot have something like this:

§ Nice because it forces you to cover your full input
space of possibility, avoiding gaps/resulting latch

logic [1:0] a, b;
assign a = b==2'b11? 2'b0: 2'b10;
//if b is 2'b11, a is 0, else it is 2'b10

logic [1:0] a, b;
assign a = b==2'b11? 2'b0;
//if b is 2'b11, a is 0

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-46

Competing Assignments

§ What if I have two always_comb blocks?

§ Only one will be chosen, the other ignored. It will
not make a union or merge the two.

always_comb begin
 a = c + e;
end

always_comb begin
 a = d + 5;
end

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-47

Multiple always-type blocks

§ It is fine to use values across multiple always
blocks or continuous assign statements, but you
should only specify them in one and only one
location!

§ Specifying/assigning a variable in multiple always-
type blocks is a no-no however

always_comb begin
 d = a+ 5;
end

always_comb begin
 b = a + 8;
end

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-48

Where to Create Variables

§ Variables are things that exist physically

§ Always blocks are meant to describe action.

§ You can never declare variables in an always block

§ As much as possible try to declare at top (with nice
comments)

§ And implement logic (assign, always_comb, etc)
below it

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-49

Parameters

§ Parameters are different than variables.

§ Their values can change, but only at the compile-
stage.

§ At run-time they are constants.

§ They allow us to make flexible designs (make an
adder that can be 8 bits or 14 bits or whatever)

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-50

Parameters

§ Parameters allow us more flexibility in
programmatically describing our designs:

localparam GOOD = 8'b1111_1111; //not changeable
localparam STATE_SIZE = 8;
parameter BAD = 8'b1111_0000; //changeable (see in a few slides how/where)
logic [STATE_SIZE-1:0] state; //made size of state variable based on param
logic [1:0] output;
always_comb begin
 case(state)
 GOOD : output = 2'b11;
 BAD : output = 2'b00;
 default : output = 2'b10;
endcase
end

Apply more meaningful names to
values in certain contexts of
program

Allow us to describe
variable attributes
using common adjustable
values

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-51

Parameters

§ localparam is local to the module it exists in
§ parameter is local, but (depending on context),

can be a configuration setting (see in a minute)
§ Always CAPITALIZE so they are easy to spot
§ Parameters can be based on other parameters!

§ $clog2 is a Verilog math operator run at compile
time

§ Other Verilog math functions here:
https://www.chipverify.com/verilog/verilog-math-functions

parameter NUM_CHICKENS = 167;
parameter CHICKEN_WIDTH = $clog2(NUM_CHICKENS);
logic [CHICKEN_WIDTH-1: 0] chicken_counter;

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-52

Modules

§ Just like the idea of functions in software! Wrap up
functionality in a reusable and “instantiable” blob

module not_gate (input wire x, output logic y);
 assign y = !x;
Endmodule

module main_module();
 logic a,b;
 assign a = 1'b1;
 not_gate ng1 (a,b); //ng1 is name of instance
endmodule

Specify
input/output
variables and
attributes
(like size)

Do your operations

Make an instance of your module
(name it) and use it

Declare instance like: module_name instance_name (arg0,arg1,…);

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-53

Modules...but you really should use
named port convention!
§ Just like the idea of functions in software! Wrap up

functionality in a reusable and “instantiable” blob

module not_gate (input wire x, output logic y);
 assign y = !x;
Endmodule

module main_module();
 logic a,b;
 assign a = 1'b1;
 not_gate ng1 (.x(a), .y(b)); //ng1 is name of instance
endmodule

Specify
input/output
variables and
attributes
(like size)

Do your operations

Make an instance of your module
(name it) and use it

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-54

Parameterized Modules

§ We mentioned parameters previously. They can be
used to make flexible modules:

module add_constant #(parameter TO_ADD = 12)
 (input wire [7:0] val_in, output logic [7:0] val_out);
 assign val_out = val_in + TO_ADD;
endmodule

module top();
 logic[7:0]a,b,c,d;
 assign a = 8'd11;
 assign c = 8'b100;
 add_constant ac_0 (.val_in(a), .val_out(b));

 add_constant #(.TO_ADD(5)) ac_1 (.val_in(c), .val_out(d));
 //value of b?
 //value of d?
endmodule

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-55

Parameterized Modules

§ Parameterizable modules are more complicated to
write, but their reusability is a great feature

§ If a parameter is not specialized upon instantiation,
the default is used instead.

§ Parameters can be used to specify other
parameters in the design!

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-56

Operator Precedence

§ Largely borrowed from C!
§ Be careful some of these often

feel out of order for people.
§ Left/right shift for example!
§ For example if:

§ x=100
§ q=8
§ What will y be?

assign y = x + q>>2;

§ 27...not…102

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-57

Reduction Operators in Verilog
§ Reduction operators act like their bitwise cousins,

but are done on a variable rather than between
several:

logic [7:0] b, d;
logic a, c;

assign a = |b; //if anything in b is 1, a is 1
assign c = &d; //everything in d needs to b 1
//four others xor and xnor are particularly
useful

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-58

for loops

§ For loops (and to a lesser extent while loops) exist
in Verilog to more conveniently lay out our
hardware.

§ They are NOT for loops “in time”. They are for
loops “in space”

§ There are two general types:
§ Generate for loops (for loops in a generate block)
§ Regular for loops

§ Which one works can be confusing* so we’ll over it
here

*the rules have also changed as Verilog evolved so there can be
confusing info on the internet

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-59

Regular for loop

§ If you are in an always block and just need to
replace a bunch of repetitive lines, a for loop can
help

§ Let’s say I had to do some annoying operation a
bunch of times with some variables:

logic [7:0] b [63:0];
logic [7:0] c [63:0];
logic [63:0] a;

//assume b and c are large enough
always_comb begin
 for(integer i =0; i<64; i= i+1)begin
 a[i] = b[i]>c[63-i];
 end
end

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-60

Generate for loops

§ Put a for loop in a generate block.
§ Use this any time you need to :

§ create multiple assign statements
§ Create multiple always_comb, always_ff blocks

§ OR:
§ Create multiple instances of a module
§ Create logics

§ Need to use a genvar for your iterating variable
rather than an integer.

§ Can also label your for loops to have access the
modules or entities created within

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-61

Generate For Loops

generate
 genvar i;
 for(i=0; i<5; i=i+1)begin: myloop
 logic[31:0] hi;
 assign hi = 32'hAAAAAAAA ^ i;
 end
endgenerate
//outside of generate, those logics can be accessed with:
// myloop[2].hi for example
// this is needed since the logic hi needs more
// specificity than provided otherwise.

An Example:

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-62

Rule about For Loops

§ Inside an always_comb (or always_ff?):
§ Use regular for loop

§ Want to make multiple assign statements? Or
Multiple always-type blocks? or multiple modules?:
§ Use a generate loop!

§ In both instances, the iterating variables of the
loop have no intrinsic hardware meaning…they
exist as a helper variable during specification (a
copy-paster thingie)

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-63

wire vs. logic. vs. reg

§ Can only be signal flow (“nets”). From perspective of
a module, signals coming into module are conveyed by wires.
In other usage, declared wires can only be given values with
assign statement. A wire can also be associated with
combinational logic.

§ Ideally represents a flipflop or latch (storage
mechanism), but in reality can also turn into a net (in other
words a wire)/ combinational logic based on usage (cover
more on Thursday in Lec 03). Only given values with always-
family blocks. DO NOT USE IN 6.205

§ Can represent all datatypes. Its usage dictates what
it ultimately represents (combinational logic or Flip Flops).
Can be worked with assign and always-family blocks

wire

reg

logic

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-64

Why logic?
§ In addition to allowing us to just use one general type rather than two,

the logic datatype has stricter protections against multi-driven nets

§ Logic on output should prevent:

module thing(input wire [3:0] a,b,
output wire [3:0] c);
 //some behavior goes here
endmodule

module main_module();
 logic[3:0] a,b,c;
 thing my_thing(.a(a), .b(b), .c(c));
 assign c = 4'b1010; //whoops might miss checks in Vivado (multi-driven net)
endmodule

module thing(input wire [3:0] a,b,
output logic [3:0] c);
 //some behavior goes here
endmodule

module main_module();
 logic[3:0] a,b,c;
 thing my_thing(.a_in(a), .b_in(b), .c_in(c));
 assign c = 4'b1010; //should get caught on synthesis
endmodule

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-65

So why still use wire in module
definitions at all?

§ Seems excessive...Let’s just use logic for
everything.

§ We would...but...

§ This is a thing we do in 6.205 to help us with our
Vivado toolchain since it is a picky, picky child.

module thing(input wire [3:0] a_in,
 input wire [3:0] b_in,
 output wire [3:0] c_out);
 //stuff
endmodule

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-66

If we had a module definition like this:

§ This would run just fine in all honesty.

§ In the scope of this module, what logic ”is” isn’t
specified, but by default Verilog interpreters tend
to assign the “wire” attribute to unspecified things
(like these logic’s would be).

September 9, 2025 https://fpga.mit.edu/6205/F25

module thing(input logic [3:0] a,
 input logic [3:0] b,
 output logic [3:0] c);
 assign c = a ^ b;
endmodule

L02-67

The Problem...

§ This verilog will synthesize perfectly happy for the
same reason the verilog on the previous page did.
Why???

§ d id undeclared, but Verilog just assumes it is a
“wire” by default...a one-bit wire. omg why.

September 9, 2025 https://fpga.mit.edu/6205/F25

module thing(input logic [3:0] a,
 input logic [3:0] b,
 output logic [3:0] c);

 assign d = 4;
 assign c = a ^ b ^ d;
endmodule

L02-68

To Protect Ourselves...

§ we will (and should) often add the a directive at
the top of our file to protect against this:

§ This forces Verilog to treat everything not explicitly
declared as a none entity and working with those
will throw an error

September 9, 2025 https://fpga.mit.edu/6205/F25

`default_nettype none

L02-69

The downside of that though...
§ All inputs and outputs are of type logic
§ A logic is an abstract type whose physical realization

is determined through usage.

§ In the scope of this module, how these inputs should
get their values is never specified so their actual
manifestation is left undefined and defaults to a none
and an error gets thrown (good!)

`default_nettype none
module thing(input logic [3:0] a,
 input logic [3:0] b,
 output logic [3:0] c);
 assign c = a ^ b;
endmodule

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-70

So must make the inputs into wires
§ All inputs are now wires

§ In the scope of this module, inputs a and b are
explicitly known to be wires (things that convey
signals) so there’s no ambiguity

§ Still have that great protection against accidental
variables since they’ll be none!

`default_nettype none
module thing(input wire [3:0] a,
 input wire [3:0] b,
 output logic [3:0] c);
 assign c = a ^ b;
endmodule

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-71

But That’s Not Enough

§ It just keeps going...

§ A lot of Vivado’s source files and modules rely on the default
nettype being wire (I know who would do that?).

§ So after our module we need to set things back to defaulting
to wire

§ So we’ll tack this on at the end of files:

September 9, 2025 https://fpga.mit.edu/6205/F25

`default_nettype wire

L02-72

To Satisfy All of These Issues

§ Declare inputs to a module as wires since it will
fully specify what they are

§ Begin and end all modules with nettype compiler
directives. This will protect you from implicit
declarations by Vivado

`default_nettype none
module thing(input wire [3:0] a,
 input wire [3:0] b,
 output logic [3:0] c);
 assign c = a ^ b;
endmodule
`default_nettype wire

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-73

Kind of Annoying

§ Yeah it is. :/ But this is the sort of thing you deal
with when working with a large vendor’s toolchain.

§ Or a language that just can’t let go of the past and
keeps maintaining various degrees of backwards
compatibility back to the 1980s

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-74

Let’s build some different adders

§ Adder 1 (parameter practice):
§ Add up two variable width values (width is parameterized)

§ Adder 2: A parameterized adder module that works
for an arbitrary bit width and an arbitrary number
of input values

§ Adder 3/if time…(to get some generate practice):
§ Explicitly lay out a tree-shaped adder module for 8, 8-wide

inputs.
§ Force the structure to be a tree shape:

September 9, 2025 https://fpga.mit.edu/6205/F25 L02-75

