6.2050 Final Project Block Diagram

Team: Ruth Lu (ruthluvu)*, Shreya Chaudhary (shreyach)*

Working Title: Ciphertext Inference Accelerator (CIA): FPGA Accelerator for Fully Ho-
momorphic Encryption for Inference Models - Block Diagram

1 System Overview

Our system, the Ciphertext Inference Accelerator (CIA), will use threshold fully homomor-
phic encryption (TFHE) to perform inference tasks on data encoded with learning with
error (LWE, specifically general LWE or GLWE). Our goal is to accelerate secure inference
tasks by using the FPGA. For our system, we will be building a system that can perform
encryption, decryption, and a simple MNIST classifier on an encrypted image.

The core modules for FHE inference will include:

e A UART controller for communication with outside parties
e GLWE encryption and decryption

— Random number generator to add small gaussian errors (e€) to ciphertext

— Public-secret key multiplication module
e Inference / NN

— FHE Matrix multiplication module
— Bootstrapping module

Our system will do the following: an external device can send it a piece of unencrypted
data and a public/secret key, and our system will encode the data and store the ciphertext.
The external device can also send it encrypted input, and the FPGA will run it through an
inference model, then send the encrypted output back to the device. The external device
can also send it an encrypted input, and the FPGA will decrypt it. Finally, the FPGA can
just send back what the external device sent it.

We chose to make these 4 separate data flows in our system to model potential real world
use cases. It would be unlikely for a user to ask a device to encrypt, run inference, and
decrypt a piece of plaintext data since that would defeat the point of ciphered inference. A
system will likely only perform one of the three. The option for the FPGA to send the same
data back is for debugging purposes.

2 Block Diagram

datugut [7:0] ra:dq
/ 5 pa— !
e ; Fn ; B
‘—";-’fb UART —-Lc checksim _“L""‘-ag r::hr Funchion [,[’ 0]
o /,M conteolle ;‘ivgﬁpigr valid T ‘
— -— 4 o
700 "6“":] ,mda ‘m‘" -e Lrnp*
%] LWE i &
— uuyﬂ-&a" —3| 0o
-] J duls ok A _ouk
i 4 [7:01 UART [2:2]
. N , £ ——
\P‘l"! | __vall s | obput
r |4—_—
NN —>0l frocosso fealeJ 4———4—[710]
Adke - ok
||A
LWE Fon 1o
J,g_unp
iy

2.1 High Level Detalils

The UART module will receive data from the computer. It can also send back its own
message to let the computer know to resend (in case checksum shows data was corrupted)
or to tell the computer that the system is busy and cannot take more data.

The data flow is as follows: when the UART module receives data, the first two bits will
encode the function (encryption, inference, decryption, or nothing). Using this information,
the data processor will save all following information into the necessary BRAMs (plaintext
BRAM, ciphertext BRAM, public key BRAM, or secret key BRAM) and registers. Once
the data processor has saved everything into registers and has received a valid signal from
the checksum, it sends out a valid signal to let one module know to start computation, and
output processor will inform the data processor that it is no longer ready to accept inputs.

A valid signal is sent to one of the 3 core computation modules, then the mux selects
which valid output the output processor pays attention to. Once output processor sees a
valid signal, it will send the proper data (determined by the function implemented) to the
UART. Once it is done sending (and the computer verifies it with checksum), it will let data

processor know it is ready, which will remove the backpressure on the system so the UART
receiver will start being able to receive data and pass it to the data processor again.

2.2 1IPs needed

e BRAM interface - We will store the client’s data on the BRAM as we expect the size
of it to be less than 1000 bits. We will also store the weights of the NN, the public
key, the switching key, and the secret key.

2.3 Memory

e Storing plaintext and ciphertext. MNIST is 28 by 28 pixels, and each pixel can be
described as 0 or 1. It will require 784 bits plaintext, and after encryption (if we
choose q = 32), it will be about 25 kb.

e The public key, secret key, and switching key (used for bootstrapping) will each be
1kb. We limit k = 1000, which is secure as it is larger than the number of bits being
encrypted, preventing some attacks, but not overly large (which will make the system
slower and use more resources). These will each be stored in BRAM.

e Our planned network architecture will have an input of 784 nodes, two hidden layers
with 10 nodes, and an output layer of 10 nodes. This means there will be 784*10+(10*10)*2
= 8040 weights and 8040 biases. We will be using 8-bit quantization, which means the
entire neural net will take about 129 kb. (It can be stored entirely on BRAM.)

3 GLWE Module

3.1 Encryption

LWE Encrypt

i PuLch -seceel
i>.

va“rA

rea

dat ProalMd' additign __"_“l’i

GLWE encryption is defined as a-s—i—e—i—bL%J where ¢, p are a power of 2. This will use two
main modules: public-private key dot product, vector addition, and the epsilon generator.
The relevant variables are as following:

e a: The public key mod q of size 1001. This will be stored in the BRAM.

e s: The secret input by the user of size 1000. This will be stored in the BRAM.

e b: The plaintext message. This will also be stored in the BRAM.

e ¢, p: The parameters of the problems. This will be stored in a register and passed to

the error module.

3.2 Public-secret key dot product

V“wl(t‘ civa recuC
Piece: ke il pacast Public key BRAR

pk [19:07]

Pk [39:203

Eyim 0]

pk [59: 401

valid

This module will perform an operation critical to both encryption and decryption with
parallelization: taking the dot product of the public and secret keys, which are both binary
vectors. The resulting value is added to the noised plaintext to encrypt it.

Parallelization is achieved by storing 20 bits of each key in each address of BRAM, which
allows computation on all these bits to be done in the 3 clock cycles needed to load an
address and perform the bitwise and. More bits could potentially be parallelized, although
we would need to see if this meets timing.

3.2.1 ¢ Generator

The € generator will need to randomly generate a number between a given parameter [-B,
B] for generally small B << ¢/p. This will initially be implemented in a similar manner as
in lab (random based effectively on a timer) and later can be converted into something more
secure.

3.3 Decryption

LWE Dt‘uyp}-
V'\L& > ow’lbiﬂ 5,{5,\0'- va“rA
key
abbruck :
dof r;r.,a{uc[_ g and] Vul':i
Mmask
p [6:0]
1’[t:v]

LWE decryption checks if (b—a-c)/(¢/p). This will once again involve a public-private key
dot product and vector subtraction and will use similar modules as the encryption module.

4 NN Module

NN

hddn_ lager. verlid
+Aen
e valid A , ke
N el S L e
—_—t D D oy Mateix
|(.79, Ml‘“»]P“CnHD’\ e
I« i
& oukpbh volid

This module will work with a pretrained neural network. We will then quantize all of
the weights using 8-bit linear quantization, and these quantized weights will be loaded into
BRAM during build. We decided to quantize these weights to make the neural network
smaller without losing significant accuracy. This will allow us to run the computations on
the FPGA without taking a significant amount of space to store the weights.

The main purpose of the NN module is to control the flow of data through the neural
net. Layer selector will keep track of which layer the computation is currently in and pass
that information to the matrix multiplication and addition modules.

4.1 FHE Matrix Multiplication

NN DA m

vzuﬂhh LoY [1:0]) aokgr [1:0]

weighb [0 [3:2]

weighe (3] €129y

FHE Ma[’rf)(M\l[HPl;CQ{iO(\

re_selecl

vebid .
|
Al -
b | NN [15:0] .
sel-loyer addr ’mw] BRAM / [32:02 weabeix velid
v NN
Bea}'-‘l’rwp _M—p recoashruc tor

[16:0] | ¢7 [43:07 &
R
— J"* BRAM L [N\

7«,«‘» O | [63:0]

—LDHL [6300 1
0 BRAM [—F—

The FHE matrix multiplication module is similar to the matrix multiplication module
and will take in the following inputs:

e reset - active high reset will make the module reset (not pictured)
e valid - active high valid signal indicates the module should start computation

e sel_layer - which layer of weights to look at (0 or 1) and selects which node BRAM to
look at (0 for ciphertext BRAM, 1 for NN hidden layer BRAM)

The rc_select module will read one address (2 values are stored in each address) from each
of the corresponding BRAMs (the NN BRAM and the node BRAM chosen by sel_layer). The
dot product module will multiply then add them together before sending to the bootstrapping
module to reduce the error. Doing 2 calculations at once adds parallelization, but makes it
a bit more complex. The dot product will then be sent to the matrix reconstructor, which
will store them into either the hidden layer BRAM or the NN output BRAM. When all
operations are done, the module will send valid to the next module to let it know that the
correct BRAM has the necessary information.

4.2 Bootstrapping

Because the error will corrupt the encrypted message after too many operations, bootstrap-

ping is necessary to successfully decrypt the data. Effectively, bootstrapping will re-encrypts

the offset necessary to decrypt, and by doing this, it can reduce the total noise of the circuit.
Bootstrapping consists of three main parts:

1. Modulus switching
2. Blind Rotation

3. Sample extraction

Generally, the bootstrapping scheme is the most complicated and time- and resource-
intensive part of the FHE scheme. Each of the above modules builds upon existing matrix
multiplication and vector operation modules, so we can efficiently add parallelization.

4.2.1 Modulus Switching

Modulus switching then converts the ciphertext from mod ¢ to mod w where w is a power
of 2 such that p < w < ¢q. This is effectively conducted with an element-wise scaling of
the original GLWE-encrypted ciphertext by round(%a). This submodule will consequently
utilize existing modules to perform the vector scaling.

4.2.2 Blind Rotation

It next uses blind rotation to shift all of the coefficients of the input polynomial by an
encrypted amount. Effectively assuming M is a matrix of the coefficients, we are multiplying
by a X" where 7 is an encrypted value. This will effectively encrypt the value we need to
decrypt / denoise the result.

The blind rotation algorithm will work by first decomposing the decryption value of 7
into powers of 2 (iterating over each bit of the value). If the ciphertext value at position
i is 1, it will multiply the original message M by a rotation matrix X ~¢. This module will
then require iterative matrix multiplication. Given the previously defined modules, we can
parallelize this operation.

4.2.3 Sample Extraction

Finally, sample extraction extracts the results from the blind rotation to get a new key
that we can use for future operation which will yield results with a smaller noise. Effectively,
sample extract can extract out the coefficients of an interim output of a scheme (for example,
the output of blind rotation) to formulate a new ciphertext scheme (for example, GLWE)
and will not introduce any additional noise to the ciphertext. Copying the coefficients of
the public key to elsewhere should simply involve moving values from one BRAM location
to another.

5 Conclusion

This design presents a correct and parallelizable implementation of FHE-secure inference.
Our design lies the framework to create a correct implementation of TFHE that can securely
run a neural network output. Our design tries to achieve our second goal by utilizing the
FPGA’s parallelization to reduce clock cycles both for the large number of computations
needed for encryption/decryption and bootstrapping, providing for a faster accelerator.

There remain potential issues with the design. It is possible that the plaintext image
(784 bits) needs to be stored in memory instead of registers. This would only significantly
change our error module, since it would need to take the image out of memory instead of
registers.

Some problems remain unresolved. We are still determining the best way to implement
bootstrapping, as it is a complex computation that can take advantage of parallelization.

6 Appendix

6.1 Details about FHE Operations

6.1.1 Constant Scalar Multiplication

In TFHE, multiplying by a constant can be done by simply multiplying the ciphertext. This
will be done often in matrix multiplication when multiplying by a weight.

6.1.2 Constant Addition

Addition by a constant requires encryption by a trivial LWE ciphertext (setting A and error
to 0, just multiplying the addition by a constant).

	System Overview
	Block Diagram
	High Level Details
	IPs needed
	Memory

	GLWE Module
	Encryption
	Public-secret key dot product
	 Generator

	Decryption

	NN Module
	FHE Matrix Multiplication
	Bootstrapping
	Modulus Switching
	Blind Rotation
	Sample Extraction

	Conclusion
	Appendix
	Details about FHE Operations
	Constant Scalar Multiplication
	Constant Addition

