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Administrative
• Abstract Feedback sent out/is coming
• Block Diagram report is due on Tue 10/29 at 5pm. 
• You’ll also get feedback after

• Week/Lab 07 Due Thursday
• Project presentation will take place in the week of 

November 4th to the 8th

• Details will come in a couple days about sign ups.
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Interfacing with Devices
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Interfacing with Things
• Sensors 
• Actuators
• Memory
• Microcontrollers
• Etc…
• We need ability/fluency to extract info from and 

work with them
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How to get Access to the signals 
in first place?
• Some devices are analog out (can therefore read 

them with an A-to-D converter) (ADXL335 
accelerometer…or the microphone we used in Lab 
02, for example)
• These have limited functionality…and also it is 

analog so there’s the whole noise issue....which is 
not nice
• Most modern sensors by-far are interfaced to in a 

digital form
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The reason for this is signal integrity 
and is the same argument for why we 
do computation digitally
• It is true that most things we care about in terms of 

sensing and transducing are analog phenomena

• But Analog is inherently noisy…
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Sensing…
• Why not keep analog until digital compute?
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Analog 
phenomena

Digital
Compute

Converts analog energy
To electrical energy (voltage or current)
• Sound: microphone
• Light: camera/photosensor
• Temperature: 
• Vibration
• Smell/air
• Etc…

Transducer

If this leg of the journey stays analog,
The likelihood of information getting 
lost becomes much higher

So most of the time asap in your 
signal chain you convert to digital



Microphones
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Older analog-out microphone module: 

https://www.researchgate.net/figure/The-design-of-a-MEMS-microphone_fig1_339839767

Modern MEMS microphone:
(digital out)

Cracked open sitting on a coin

https://www.electronicdesign.com/technologies/analog/article/21808368/vesper-
introduces-digital-mems-microphone-with-integrated-adc



Many sensors are so cheap now…
• …That multiple are used.

• The iPhone 15 has four microphones on it

• Airpods/most quasi-decent headphones now have 
six microphones in them (three for each side). Also 
have two accelerometers on each earbud for 
orientation and speech detection

• This pattern is happening a lot
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Also many “sensors”…

• …Have multiple transducers on them.

• So often “the microphone” is multiple microphones
• Or “the camera” is multiple cameras, etc… 
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MPU-9250
• 3-axis Accelerometer (16-bit readings)
• 3-axis Gyroscope (16-bit readings)
• 3-axis Magnetic Hall Effect Sensor (Compass) (16 bit readings)
• SPI or I2C communication (!)…no analog out
• On-chip Filters (programmable)
• On-chip programmable offsets
• On-chip programmable scale!
• On-chip sensor fusion possible (with quaternion output)!
• Interrupt-out (for low-power applications!)
• On-chip sensor fusion and other calculations (can do orientation 

math on-chip or pedometry even)
• So cheap they usually aren’t even counterfeited! J
• Communicates using either I2C or SPI
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Board: $5.00 from Ebay
Chip: $1.00 in bulk
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Accelerometers
• First MEMS accelerometer: 1979
• Position of a proof mass is capacitively sensed and 

decoded to provide acceleration data
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Proof Mass
SpringSpring

Measure 
Capacitance via 
Impedance 
Divider𝑎! → Δ𝑑

SEM of two-axis accelerometer

𝑑
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Uses of Acceleration Measurements:

• Acceleration can be used to detect motion 
• (pedometer, free-fall/drop detection):

• Use gravity and trig to find orientation:
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𝜃" = tan#$
𝑎!
𝑎%

−𝑎!

−𝑎"

𝑔

𝑎& = 𝑎%' + 𝑎"' + 𝑎!'
Accelerometer directions 

+X, +Y, +Z

Chip
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Problems
• Accelerometers have huge amounts of high-

frequency noise
• To fix, usually Low Pass Filter the raw signal (Infinite 

Impulse Response* approach shown below)
• This cuts down on frequency response though L
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𝜃"[𝑛] = 𝜃"[𝑛 − 1]𝛽 + 1 − 𝛽 tan#$
𝑎![𝑛 − 1]
𝑎%[𝑛 − 1]

0 < 𝛽 < 1

𝜃! Angle estimate around y axis

Filter Coefficient𝑎"
𝑎#

X acceleration

z acceleration

10/22/24 *from lecture 12



Bring in Gyroscopes
• Provide Direct Angular 

Velocity which we can 
integrate to get angle 
• Very little high-frequency 

noise, but lots of low 
frequency noise (Gyros drift 
like crazy)
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Gyro readings are “around” the 
axis they refer to (use right-

hand rule):
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Gyro Operation
• Resonating Proof Mass

• Electrostatic Drive
• Piezoelectric Drive

• Turning out-of-plane:
• Proof-mass fights the turn
• Detect deviation via 

capacitance

• Do this for all three axes
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Proof Mass
SpringSpring

Measure 
Capacitance via 
Impedance 
Divider

Resonating

Measure 
Capacitance via 

Impedance 
Divider

Proof Mass Spring

Spring

Measure 
Capacitance via Impedance Divider

Resonating

Measure Capacitance via 
Impedance 

Divider

Rotation of Device

Changes in capacitance 
measured at different 
points

Scale not accurate/nor design details
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How to use Gyro Readings:
• Because of Drift (low frequency noise/offset) you want to 

avoid doing much long-term integration with a gyro reading
• Having beta less than unity ensures any angle that comes 

from gyro reading will eventually disappear, but in short term 
it will dominate 
• Depending on time step:
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𝜃( 𝑛 = 𝛽𝜃( 𝑛 − 1 + 𝑇𝑔"[𝑛 − 1]

0 < 𝛽 < 1 Filter Coefficient

𝑇 Time Step

𝑔! Gyro y reading

𝛽 ≈ 0.95 starting point
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What to do?

• Using only accelerometer, leaves us blind to 
motion/change in the short term but fine in the 
long-term

• Using only gyroscope, leaves us blind in the long 
term, but good in the short term

• What to do?
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Merge the signals

• Complementary Filter:

• Very simple form of sensor fusion (where you merge 
data from more than one sensor to build up model of 
what is going on)
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𝜃! 𝑛 = 𝛽 𝜃! 𝑛 − 1 + 𝑇𝑔![𝑛 − 1] + 1 − 𝛽 tan$%
𝑎#[𝑛 − 1]
𝑎"[𝑛 − 1]

0 < 𝛽 < 1 Filter Coefficient

𝑇 Time Step

𝑔! Gyro y reading 𝑎"
𝑎#

X acceleration

z acceleration𝛽 ≈ 0.95	good starting point
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Sensor Fusion
• Most modern sensors are used with other sensors:
• Can be incorporated open-loop (like complementary 

filter on previous page)
• Or incorporate into “learning” algorithms:
• NLMS, Kalman, LQE, Baysean, Linear-Observer System
• Estimate, compare to new data, correct, repeat…
• These usually feature dynamic filters which learn how to 

filter the signal they care about
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So a plethora of sensors out there
• And they all need to be communicated with…
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Common Chip-to-Chip Communication 
Protocols (not exhaustive)

• Parallel (not so much anymore)…mostly memory and things that 
need to send data at very high rates such as a camera, high-speed 
ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy 
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications
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Clock Line
(Optional)

Data Line 0

Data Line 1

Data Line 2

Data Line N

Parallel and Series at High Level
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Parallel Link: Serial Link:

10/22/24

Device 1 Device 2…

Clock Line
(Optional)

Data Line 0
Device 1 Device 2

10101001100
10101010001
11110001100

10010011001

………

time

sample 0

sample 1
10101001100

sample 0

sample 1

time



Parallel vs. Serial

• Parallel (not so much on individual small devices)…mostly 
memory and things that need to send data at very high rates such 
as a camera, high-speed ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy 
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications

https://fpga.mit.edu/6205/F24 2410/22/24

SERIAL PROTOCOLS

PARALLEL PROTOCOLS



When Choose Parallel?
• When you need to transfer large amounts of data, 

parallel is a better choice. 
• Data Transfer Rate will scale ~linearly with number 

of wires
• But Have to be careful of wiring length:
• Ensure bits arrive same time
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https://docs.toradex.com/102492-layout-design-guide.pdf

Printed Circuit Board (PCB) 
traces length-balanced so all 
bits in a parallel frame arrive 
at the same time (really 
matters)



Serial Communications
• Sending information one bit at a time vs. many bits in 

parallel
• Serial: good for long distance (save on cable, pin and 

connector cost, easy synchronization).  Requires “serializer” 
at sender, “deserializer” at receiver
• Parallel: issues with clock skew, crosstalk, interconnect 

density, pin count.  Used to dominate for short-distances 
(eg, between chips).
• BUT modern preference is for parallel, but independent 

serial links (eg, PCI-Express x1,x2,x4,x8,x16) as a hedge 
against link failures. Ethernet, USB, etc… these all follow 
that same pattern
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Serial Standards

• A zillion Serial standards
• Asynchronous (no explicit clock) vs. Synchronous (CLK 

line in addition to DATA line).
• Recent trend to reduce signaling voltages: save power, 

reduce transition times
• Control/low-bandwidth Interfaces: SPI, I2C, 1-Wire, PS/2, 

AC97, CAN, I2S, 
• Networking: RS232, Ethernet, T1, Sonet
• Computer Peripherals: USB, FireWire, Fiber Channel, 

Infiniband, SATA, Serial Attached SCSI
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Common Chip-Chip Communication 
Protocols
• Parallel (not super common, but exists in high speed 

situations).

• UART “serial” (still common in some classes of devices)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common

https://fpga.mit.edu/6205/F24 2810/22/24



UART (Lab 03)

• Stands for Universal Asynchronous Receiver Transmitter
• Requires agreement ahead-of-time between devices 

regarding things like clock rate (BAUD), etc…
• Two wire communication
• Cannot really share

• (every pair of devices needs own pair of lines so wires scales as 2𝑛
where 𝑛 is the number of devices)

• Data rate really < 1Mbps (though can maybe push a little bit)
• Data sent least significant bit (lsb) first
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TX/RX

RX/TX

Device 1 Device 2
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Serial (UART)
• Line Hi at rest
• Drops Low to indicate start
• 8 (or 9 bits follows) sent least significant bit first
• Goes high (stop bit)
• Can have optional parity bit for simple error correction



Common Chip-Chip Communication 
Protocols
• Parallel (not super common, but exists in high speed 

situations).

• UART “serial” (still common in some classes of devices)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common
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Note on Terminology

• Just like with our AXI protocol discussion, in chip-to-
chip communications, Master/Slave terminology is 
heavily used in SPI and I2C
• Changing slowly, but hopefully it’ll change soon
• We might use ”Main”/”Secondary” to keep the letters 

the same or ”Controller” and “Peripheral”
• Also seeing SDO/SDI for “Serial Data Out/In” with 

respect to controlling device more recently
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SPI

• Stands for Serial-Peripheral Interface
• Four Wires:
• COPI: Controller-Out-Peripheral-In…
• CIPO: Controller-In-Peripheral-Out…
• SCK: Serial Clock
• CE/CS (Chip Enable or Chip Select)

• SCK removes need to agree ahead of time on data rate 
(from UART)…makes data interpretation easier!
• High Data Rates: (1MHz up to ~70 MHz clock (bits))
• Data msb or lsb first…up to devices
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COPI
CIPOController

Device
Peripheral

DeviceSCK
CE/CS

10/22/24

MOSI also = SDO “serial data out”
MISO also SDI “serial data in”
Also seeing now:
COPI = Controller Out Peripheral In
CIPO = Controller In Peripheral Out



SPI

• Can share COPI/CIPO Bus so the wire 
requirement scales as 3 + 𝑛 where 𝑛 is 
the number of devices
• Addition of multiple secondaries 

requires additional select wires
• Hardware/firmware for SPI is pretty 

easy to implement:
• Wires are uni-directional
• Classic “duh” sort of approach to digital 

communication, but very robust.
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COPI
CIPOController

Device
Peripheral
Device 1SCK

CE0/CS0

CE1/CS1

10/22/24

Peripheral
Device 2



SPI Example
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…

SCK

CS

Here I am talking to a MCP3008 10 bit ADC

X X 1 1 0 0 1 X X X X X X X X X X X X X
COPI/MOSI

X X X X X X X X 0 0 0 0 1 0 1 1 0 1 1
CIPO/MISO

CMOD-A7-35T
MCP3008

From MCP3008 Datasheet

10/22/24

MCP3008 is a 8-channel 10 bit ADC from 
Microchip Semi that communicates over 
SPI

Sends its data msb first



SPI Example
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…

SCK

CS

X X 1 1 0 0 1 X X X X X X X X X X X X X
COPI/MOSI

X X X X X X X X 0 0 0 0 1 0 1 1 0 1 1
CIPO/MISO

MCP3008 (Peripheral/Secondary Device) Dialog

Artix-7 (Controller/Main Device) Dialog

“Hey MCP3008”
“0001011011”

“Give me a 
single-ended 
reading…” “From your 

channel 1”
”We’re done 
here. ”

10/22/24

X means don’t care

Come from datasheet



SPI In Real Life
• Here I am talking to the 

same chip I was 
daydreaming about talking 
to on the previous slide. 
• Dreams do come true
• I’m saying, “give me your 

measurement on Channel 
1,” and it is responding with 
“10’b0001011011” mapped 
to 3.3V or 0.293 V
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CS

SCK

COPI

CIPO

11001000001011011
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REMINDER: Digital In Analog Life 
vs Digital in Digital Life
• “There’s Grandeur in this view of life…”
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Logic Analyzer Capture from Lab 02 Oscilloscope Analog Capture of 
different SPI transaction



D/C
RES

SPI*
• Six Wires:

• COPI: Controller-Out-Peripheral-In
• CIPO: Controller-In-Peripheral-Out
• SCK: Clock
• CE/CS (Chip Enable or Chip Select)
• RES: Reset Device
• D/C: Data/Command (often seen in devices 

where you need to write tons of data (i.e. a 
display)

• Three/Two Wires:
• If a device has nothing to say, drop CIPO:
• If you assume only one device on bus drop 

CE/CS, so only have SCK and COPI, sometimes 
just called “DO” (for data out) in this situation
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COPI
CIPO

Controller
Device

Peripheral
Device

SCK
CE0/CS0
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Twitch LEDs:

LCD Display:



Common Chip-Chip Communication 
Protocols
• Parallel (not super common, but exists in high speed 

situations).

• UART “serial” (still common in some classes of devices)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common
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I2C
• Stands for Inter-Integrated Circuit communication
• Invented in 1980s
• Two Wire, One for Clock, one for data (bi-

directional)
• Usually 100kHz or 400 kHz clock (newer versions go 

to 3.4 MHz)
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SDA

SCL

Controller
Device

Peripheral
Device
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On i2C Multiple Devices Require 
Same # of Wires
• Devices come with their own ID 

numbers (originally a 7 bit value 
but more modern ones have 10 
bits)…allows potentially up to 
2^7 devices or 2^10 on a bus 
(theoretically anyways)

• ID’s are specified at the factory, 
usually several to choose from 
when you implement and you 
select them by pulling external 
pins HI or LOW
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SDA

SCL

Controller
Device

Peripheral
Device 1
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Peripheral
Device 2



I2C
• Only two wires…one used for synchronizing data 

and one used for conveying data in both directions:
• Controller à Peripheral
• Peripheral à Controller

https://fpga.mit.edu/6205/F24 4310/22/24

SDA

SCL

Controller
Device

Peripheral
Device 1

Peripheral
Device 2

• And also you need to let 
multiple devices possibly 
speak and listen…
• There’s a lot here…
• It needs a more complicated:
• Hardware
• Protocol



More to story (need pull-up resistors)
• i2C uses an open drain
• Meaning both Controller and 

Peripheral Device are either:
• LOW
• “High-Impedance”

• Need external pull-up resistors
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4.7kΩ

3.3V

SDA

SCL

3.3V

4.7kΩ

These resistors are large reason why data rate is so low!

10/22/24

Controller
Device

Peripheral
Device



Tri-State
• inout is an “input-output”…needs some special 

handling...you can both write to them (only using 
combinational logic) and read from them...the 
usual way to work with them is the following:
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In verilog…

10/22/24

inout sda;

logic sda_val;

assign sda = sda_val? 1’bz: 1’b0;

//if desired:
always_ff @(posedge clk)begin
  sda_val <= 1; //do a non-blocking assign to sda_val if desired
  //this indirectly affects sda then
end



As a result:
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Mode Main Secondary
Controller Transmit HiZ (HI) or LOW HiZ (listening)

Peripheral ACK/NACK HiZ (listening) HiZ (HI) or LOW
Peripheral Transmit HiZ (listening) HiZ (HI) or LOW

Controller ACK/NACK HiZ (HI) or LOW HiZ (listening)

SDA in

VGS

4.7kΩ

3.3V

SDA

inout sda;
logic sda_val;
assign sda = sda_val? 1’bz: 1’b0;

Wanna write to SDA?

sda_val <= 0; //or 1 if desired

Wanna read to SDA?

sda_val <= 1;
//wait clock cycle…
some_reg <= sda; //read from input 
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i2C Operation
• Data is conveyed on SDA (Either from Main or 

Secondary depending on point during 
communication)
• SCL is a 50% duty cycle clock
• SDA generally changes on falling edge of SCL (isn’t 

required, but is a convenient marker for targeting 
transitions) 
• SDA sampled at rising edge of SCL
• Main is in charge of setting SCL frequency and 

driving it
• Data is sent msb first
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Notice how much more rigid this is 

compared to SPI 



Meanings I: (Start, Stop, Sampling)
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SCL:

SDA:

Controller Claims Bus (START)
By pulling SDA LOW while SCL is HIIdle State

SDA and SCL sit HI

Data from SDA sampled @ posedge of SCL

Data/State on SDA transitions
@ falling edge of SCL

Controller Releases Bus (STOP)
By pulling SDA HI while SCL is HI

HI

LO

HI

LO

10/22/24



Meanings II  Address
• First thing sent by Controller is 7 bit address (10 bit 

in more modern i2C…don’t worry about that)

• If a device on the bus possesses that address, it 
acknowledges (ACK=0/NACK=1) and it becomes the 
secondary for the time being.

• All other devices (other than Controller/Peripheral 
Devices) will ignore until STOP signal appears later 
on.
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Meanings III (Read/Write Bit)
• After sending address, a Read/Write Bit is specified 

by Controller on SDA: 
• If Write (0) is specified, the next byte will be a register to 

write to, and following bytes will be information to write 
into that register
• If Read (1) is specified, the Peripheral Device will start 

sending data out, with the Controller Device 
acknowledging after every byte (until it wants data to not 
be sent anymore)
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Meanings IV (ACK/NACK)
• After every 8 bits, it is the listener’s job to 

acknowledge or not acknowledge the data just 
sent (called an ACK/NACK)
• Transmitter pulls SDA HI and listens for next 

reading the next time SCL transitions high:
• If LOW, then receiver acknowledges data
• If remains HI, no acknowledgement

• Transmitter/Receiver act accordingly
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Meanings V
• For Controller Device to write to Peripheral Device:

• START
• Send Device Address (with Write bit)
• Send register you want to write to 
• Send data…until you’re satisfied, doing ACK/NACKs along the way
• STOP

• For Controller Device to read from Peripheral Device a common (though not universal procedure) is:
• START
• Send Device Address (with Write bit)
• Send register you want to read from  (think of this like setting a cursor in the register map)
• ReSTART communication
• Send Device Address (With Read bit)
• Read the bits  (it’ll start from where the cursor was left pointing at)
• After every 8 bits, it is Controller’s job to ACK/NACK Peripheral…continued acknowledgement 

leads to continued data out by Peripheral.  
• Not-Acknowledge says “no more data from Peripheral”
• STOP leads to Controller ceasing all communication
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MPU-9250
• 3-axis Accelerometer (16-bit readings)
• 3-axis Gyroscope (16-bit readings)
• 3-axis Magnetic Hall Effect Sensor (Compass) (16 bit readings)
• SPI or I2C communication (!)…no analog out
• On-chip Filters (programmable)
• On-chip programmable offsets
• On-chip programmable scale!
• On-chip sensor fusion possible (with quaternion output)!
• Interrupt-out (for low-power applications!)
• On-chip sensor fusion and other calculations (can do orientation 

math on-chip or pedometry even)
• So cheap they usually aren’t even counterfeited! J
• Communicates using either I2C or SPI
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Board: $5.00 from Ebay
Chip: $1.00 in bulk

10/22/24



Implementing i2C on FPGA with 
MPU9250:
• Made Controller i2C module in Verilog
• Used MPU9250 Data sheet: 42 pages (basic 

functionality, timing requirements, etc…)
• MPU9250 Register Map: 55 pages
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State-Machine 
Implementation of 
i2C Main/Controller
• Continuously reads 2 bytes 

starting at the 0x3B register      
(X accelerometer data)

• Print out value in hex in LEDs
• 34 States
• Clocked at 200kHz, and 

creates 100 kHz SCL
• Change SDA on falling edge of 

SCL
• Sample SDA on rising edge of 

SCL
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State-Machine 
Implementation of i2C 
Main/Controller

• Redundant states (repeated 
READ/WRITE, ADDRESS, ACK/NACK, 
etc…)

• ARM manual describes ~20 state 
FSM for full I2C…this is just a toy 
implementation of specific I2C 
operation

• Included code on site for 
reference/starting point

• Diagram: on next page for reference
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…200 more lines

10/22/24



IDLE START1
ADDRESS1

ADDRESS2

READWRITE1

REGISTER1

REGISTER2

ACKNACK1A

ACKNACK1C

IDLE

ACKNACK2AACKNACK2C

IDLE

STOP

READ2

READ1

START2

ADDRESS3

ADDRESS4

READWRITE2

ACKNACK3A

ACKNACK3C

IDLE

READ3

READ4
ACK4

NACK

NACK

ACK

NACK

ACK

NACK
ACK

7x

7x
8x

8x

8x
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01010101010101010101010101010101010101110101010101010101010101010101010101010 …
SCL

SDA

10/22/24

Communication Part 

SDA

SCL

VCC

GND

Nexys4

MPU9250

Can also do this on our current board
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01010101010101010101010101010101010101110101010101010101010101010101010101010 …
SCL

SDA

10/22/24

Communication Part 

SDA

SCL

VCC

GND

Nexys4

MPU9250

Can also do this on our current board

Needs a dialogue
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01010101010101010101010101010101010101110101010101010101010101010101010101010

Nexys4 MPU9250

Device Address (0x68)
Write=0

Acknowledge=0

Device Register (0x3B)

Acknowledge=0

Device Address (0x68)

Read=1

Data Read InStart

…
SCL

SDA

Controller ACK

ReStart

10/22/24

Communication Part 

SDA

SCL

VCC

GND

Nexys4

MPU9250



Communication Part 
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1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0  

01010101010101010101010101010101010101110101010101010101010101010101010101010

SDA

SCL

VCC

GND

Nexys4

MPU9250

…
SCL

SDA

“I claim this bus”

“Hey, 0x68…”

“I wanna tell 
you something”

“ACK I’m here. 
Sounds good”

“Look at your 
0x6B register”

“ACK 
OK”

“Different thought”

“Hey, 0x68…”

“Read to me 
from where
 you’re looking”

“ACK For 
sure”

“0x6D”

”ACK…
More, please”

MPU9250 (Peripheral Device) DialogNexys4 (Controller Device) Dialog
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Communication in Real-Life:
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Data being sent from MPU9250

Triggered on leaving IDLE state 

SCL = Purple

SDA = Yellow

10/22/24

Data being sent to MPU9250



Running and reading X acceleration:
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16’hFD88 = 16’b1111_1101_1000_1000  (2’s complement)
Flip bits to get magnitude: 16’b0000_0010_0111_0111
=-315
Full-scale (default +/- 2g)  
-315/(2**15)*2g = -0.02g J makes sense

16’h4088 = 16’b0100_0000_1000_1000  (2’s complement)
Leave bits to get magnitude: 16’b0100_0000_1000_1000
=+16520
Full-scale (default +/- 2g)
-16520/(2**15)*2 = +1.01g   J makes sense!

Horizontal: Vertical:

HOOKUP
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Clock-Stretching (Cool part of i2C!!!)

• Normally Controller drives SCL, but since Controller 
drives SCL high by going hiZ, it leaves the option open 
for Peripheral to step in and prevent SCL from going 
high by pulling SCL LOW
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SCL:

Main wanted to pull SCL HI but 
Secondary prevents by pull LOW 

(red never happens)

Once Secondary goes HiZ again, Main 
picks back up on SCL

• Allows Perhiperal a way to buy time/slow down things (if it requires 
multiple clock cycles to process incoming data and/or generate 
output)

😻
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I2C Can Also Be a “Multi-Controller” Bus

• In SPI, there is a pre-determined  device in charge 
of the system. I2C is potentially much more 
egalitarian
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• Devices can be design to yield based on who claims a bus first…but 
you have to be careful…what if two devices claim a bus at the same 
time…potential problems?  Can get bus contention so need to be 
careful

10/22/24

SDA:

Controller Claims Bus (START)
By pulling SDA LOW while SCL is HIIdle State

SDA and SCL sit HI

Controller Releases Bus (STOP)
By pulling SDA HI while SCL is HI

HI

LO



Common Chip-Chip Communication 
Protocols
• Parallel (not super common, but exists in high speed 

situations).

• UART “serial” (still common in some classes of devices)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common
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SCL

I2S (Inter-IC Sound Bus)

• Not related to i2C at all
• Intended for Digitized Stereo Data
• Three Wires:

• SDA: Serial Data (The actual music)
• WS: Word Select (Left/Right Channel)
• SCL: Serial Clock (For Synchronization)

• Push-Pull Driving (like SPI…no need for pull-up resistors)
• Data sent msb first
• Clock-rate dictated by sample rate (44.1kHz @16 bits per 

channel /w 2 channels = ~1.4 MHz for example
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SDA

WS
Controller Peripheral
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I2S 

https://fpga.mit.edu/6205/F24 6810/22/24

Two identical microphones share all three lines

Microphone told to be 
the “left” microphone by 
hardwiring LR to ground

Microphone told to be 
the “right” microphone 
by hardwiring LR to VDD



i2S 
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WS specifies whose 
turn it is to speak 
(left or right channel)



Implementation
• UART: Not too bad:
• Transmitter is trivial to write.
• Receiver is non-trivial, but can be done.

• You’ve built a SPI modules already…it was pretty 
short/easy.
• SPI is much more open to interpretation and 

flexible…really a family of closely related protocols so 
always check your data sheets for specifics.

• Vivado has IP cores for i2C and i2S, though rolling 
your own may honestly be easier (it really is a 
choice)
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Compare and Contrast?
• Generally the fewer the wires the more rigid the 

protocol
• SPI can be very flexible and high speed (have only 

10 bits to send?  No problem…send 10!...can’t do 
that do that with i2C…need to zero-pad up to the 
next full byte (16 bits)
• In terms of implementation, generally with 

communication protocols, the more wires, the 
easier the protocol/less overhead

https://fpga.mit.edu/6205/F24 7110/22/24



Which to Choose?
• SPI is generally easier and more flexible to implement, 

but only certain devices use it since it takes up a lot of 
pins (and pins are expensive/limited)
• ”Slow” and “Fast” data rates are relative too…i2C is not 

as much of a compromise now as it was fifteen years 
ago, particularly with high-speed i2C (or even now that 
400 kHz rates are common)
• Remember, these are all meant for chip-to-chip 

communications!
• Check out the example i2C code from this lecture for the 

IMU…see if you can add clock-stretching! (not required)
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Other protocols!
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PS/2 Keyboard/Mouse Interface

• 2-wire interface (CLK, DATA), bidirectional 
transmission of serial data at 10-16kHz
• Format

• Device generates CLK, but host can
request-to-send by holding CLK low
for 100us

• DATA and CLK idle at “1”, CLK starts when
there’s a transmission.  DATA changes on
CLK, sampled on CLK

• 11-bit packets: one start bit of “0”, 8 data bits 
(LSB first), odd parity bit, one stop bit of “1”.

• Keyboards send scan codes (not ASCII!) for each 
press, 8’hF0 followed by scan code for each 
release

• Mice send button status, Δx and Δy of 
movement since last transmission
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Figures from digilentinc.com
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PS/2 Keyboard/Mouse Interface
• 2 signal wire interface (CLK, DATA), 

bidirectional transmission of serial 
data at 10-16kHz

Figures from digilentinc.com
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Controller Area Network (CAN) 
Bus
• Common bus protocol found in cars and other 

systems
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https://www.digikey.com/en/blog/how-to-simplify-the-test-of-can-bus-networks



CAN Bus

• Modules all share one common twisted wire 
channel
• Signaling is differential rather than single-ended 

(like HDMI)
• Allows cables to be run long distances with good noise 

suppression

• Devices claim bus and listen with addressing 
scheme kinda similar to I2C
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https://www.digikey.com/en/blog/how-to-simplify-the-test-of-can-bus-networks



USB: Universal Serial Bus
• USB 1.0 (12 Mbit/s)  introduced in 1996

• USB 2.0 (480 Mbit/s) in 2000

• USB 3.0 (5 Gbit/s) in 2012

• USB-C 2016.

• USB 3.2 (30 Gbit/s) in July 20, 2017

• USB 4.0 (40 Gbit/s) 2019

• USB 4.0 2.0 (120 Gbits/s) 2022

• Created by Compaq, Digital, IBM, Intel, Northern Telecom and Microsoft.

• Uses differential bi-direction serial communications 
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Type A USB 2.0 – 4 pins

Type A & B 
Pinout Mini/Micro Pinout USB 3.0

Credit: Reddit
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USB: Universal Serial Bus 
• Far, far more defined layers than 

your other things we’ve seen

• The 2000 version of USB spec was 
570 pages long

• USB 3.2 (2017) Approximately 
900 pages long at this point 
+supplemental stuff

• USB 4.0 (2019)…similar and so on
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Complexity (logarithmic scale):

SPI

I2C

USB

UART

I2S



How is Data Transmitted in USB 
(High Level):
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• Communication uses handshakes to establish 
capable/expected data rates
• Host device (computer for example), assigns 

connected devices temporary IDs on shared bus.
• Packets of information, including headers, 

payloads, and error checks (CRC5, CRC16, and 
CRC32 are used) are sent between host and client 
devices
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How is Data Transmitted in USB (Bit 
Level):
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• USB uses twisted wire pairs and there is no CLOCK wire
• All data is transmitted using Non-Return-Zero-Inverted (NRZI) 

encoding:
• A 0 is encoded as a value change
• A 1 is encoded by no change

• After initial synchronization byte, the receiver extracts the 
clock from the on-average probability of 0’s in the data (which 
give transitions) using local oscillator and Phase-Locked Loops
• Avoid long stretches of 1’s by bit-stuffing (shoving 0’s in to 

avoid periods of time where no transitions happen)…similar to 
ether protocols
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USB - C
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• New connector brought in with USB 3 standard
• Universal connector for power and data – first product MacBook Air – one and 

only port!
• Symmetrical – no “correct” orientation (Good for 10,000 

insert/withdrawals…10 kiloinserts)
• Supports DisplayPort, HDMI, power, USB, and VGA. Uses differential bi-

direction serial communications 
• Supplies up to 100W power (5V @ up to 2A, 12V @ up to 5A, and 20V @ up to 

5A)
• Voltage dictated by software handshake, etc..
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USB 4
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• 2019 saw introduction of USB4
• Partially motivated by Intel/Apples donation of 

Thunderbolt spec to USB consortium in ~2017
• Requires use of USB-C-type cable
• Data rates up to 40 Gbps (1 full HD movie per second)



USB 4 2.0
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• 2022 and 2023 saw introduction of USB4 2.0
• Requires use of USB-C-type cable
• Data rates up to 120 Gbps (3 full HD movie per second 

because society needed that rather than UBI or 
universal healthcare)



FTDI Chipsets
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• Future Technology Devices International Ltd 
(FTDI) is a Scottish Electronics firm that makes 
USB interfaces
• They produce devices that convert between USB 

and:
• UART
• SPI
• I2C
• Parallel Out
• Etc…

• Extremely common (we use a few on our FPGA)
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Lies!

• The UART you wrote in Lab 3 
wasn’t actually to the computer.
• It was to an FT2232 chip by 

FTDI
• Takes UART and converts back 

and forth to USB for you 
automatically
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FT2232 Chip



The Great FTDI Bricking of 2014

https://fpga.mit.edu/6205/F24 87

• From the beginning of USB to only recently, most USB devices 
used FTDI-based chip sets to interface (source of those annoying 
FTDXX.h library issues you’d always see in Windows)
• Your optical mouse would have some circuit and it would 

communicate internally with UART…then the FTDI chip would 
convert to USB

• Dozens of “clones” were built to work with that software, these 
clones often times selling for a small fraction of the cost of the 
original FTDI chips

• In 2014 FTDI they released a software update, included in most 
Windows Service Packs that bricked all “non-genuine” devices

• Turned out a lot of ”legit” products were using 
counterfeits/clones
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• Used to provide remote 
interrogation/identification
• Frequency bands:
• 125 - 134 kHz  [MIT ID]*
• 13.56 MHz [US Passports, MBTA pass, NFC protocols
• 400 – 960 MHz  UHF

        [EZPASS  915mhz ~ 1 mw]**
• 2.45 GHz 
• 5.8 GHz 
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*  excitation/broadcast powered

** battery powered

RFID: Radio Frequency Identification

Battery

Transmitting
antenna

EZ Pass Internals

*http://groups.csail.mit.edu/mac/classes/6.805/student-papers/fall04-papers/mit_id/#specs

Like in MIT IDs:
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125khz RFID
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125khz transmitter

Receiver 

Powered by 125khz broadcast 
signal
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Older MIT RFID

• 125 kHz carrier
• 62.5 kHz modulating 

wave phase-shifts 
every 16 cycles:
• 𝜋 shift indicates a 1
• No shift indicates a 0

• …so we’ve got:
• Phase-shift-encoded 

Non-Return-to-Zero-
Mark Encoding (NRZ-M)
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Stimulating and Receiving Coils

FFT of Pickup on Receiving 
Coil while Stimulating Coil 
has 125 kHz driven into it 
and NO CARD in between
(Spike is 125 kHz centered)

FFT of Pickup on Receiving Coil 
while Stimulating Coil has 125 kHz 
driven into it and CARD is in 
between
(LOOK AT THAT SIDEBAND 
ACTION!!!)
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More Modern MIT ID 

• 13.56 MHz part of the ISM band
• Think they use a NRZI encoding
• NFC also runs in same frequency bands
• A bit more of a complicated protocol than 125 kHz 

variant.
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Conclusions
• Tons of protocols (just skimming the surface here)
• Great way to add complexity to a project!
• But! Plan ahead if talking to devices in final 

projects. 
• If interfacing to FPGA directly, interfacing anything 

above the most simple devices can take time!
• That Virtual Reality headset team from 2019 probably spent 

40% of their time writing a driver to control the screens over 
SPI (at 70 MHz)
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