
Communication
Protocols etc…

6.205

https://fpga.mit.edu/6205/F24 110/22/24

Administrative
• Abstract Feedback sent out/is coming
• Block Diagram report is due on Tue 10/29 at 5pm.
• You’ll also get feedback after

• Week/Lab 07 Due Thursday
• Project presentation will take place in the week of

November 4th to the 8th

• Details will come in a couple days about sign ups.

10/22/24 https://fpga.mit.edu/6205/F24 2

Interfacing with Devices

10/22/24 https://fpga.mit.edu/6205/F24 3

Interfacing with Things
• Sensors
• Actuators
• Memory
• Microcontrollers
• Etc…
• We need ability/fluency to extract info from and

work with them

https://fpga.mit.edu/6205/F24 410/22/24

How to get Access to the signals
in first place?
• Some devices are analog out (can therefore read

them with an A-to-D converter) (ADXL335
accelerometer…or the microphone we used in Lab
02, for example)
• These have limited functionality…and also it is

analog so there’s the whole noise issue....which is
not nice
• Most modern sensors by-far are interfaced to in a

digital form

https://fpga.mit.edu/6205/F24 510/22/24

The reason for this is signal integrity
and is the same argument for why we
do computation digitally
• It is true that most things we care about in terms of

sensing and transducing are analog phenomena

• But Analog is inherently noisy…

10/22/24 https://fpga.mit.edu/6205/F24 6

Analog
phenomena

Digital
System

Analog
phenomena

Manipulation

Sensing…
• Why not keep analog until digital compute?

10/22/24 https://fpga.mit.edu/6205/F24 7

Analog
phenomena

Digital
Compute

Converts analog energy
To electrical energy (voltage or current)
• Sound: microphone
• Light: camera/photosensor
• Temperature:
• Vibration
• Smell/air
• Etc…

Transducer

If this leg of the journey stays analog,
The likelihood of information getting
lost becomes much higher

So most of the time asap in your
signal chain you convert to digital

Microphones

10/22/24 https://fpga.mit.edu/6205/F24 8

Older analog-out microphone module:

https://www.researchgate.net/figure/The-design-of-a-MEMS-microphone_fig1_339839767

Modern MEMS microphone:
(digital out)

Cracked open sitting on a coin

https://www.electronicdesign.com/technologies/analog/article/21808368/vesper-
introduces-digital-mems-microphone-with-integrated-adc

Many sensors are so cheap now…
• …That multiple are used.

• The iPhone 15 has four microphones on it

• Airpods/most quasi-decent headphones now have
six microphones in them (three for each side). Also
have two accelerometers on each earbud for
orientation and speech detection

• This pattern is happening a lot

10/22/24 https://fpga.mit.edu/6205/F24 9

Also many “sensors”…

• …Have multiple transducers on them.

• So often “the microphone” is multiple microphones
• Or “the camera” is multiple cameras, etc…

10/22/24 https://fpga.mit.edu/6205/F24 10

MPU-9250
• 3-axis Accelerometer (16-bit readings)
• 3-axis Gyroscope (16-bit readings)
• 3-axis Magnetic Hall Effect Sensor (Compass) (16 bit readings)
• SPI or I2C communication (!)…no analog out
• On-chip Filters (programmable)
• On-chip programmable offsets
• On-chip programmable scale!
• On-chip sensor fusion possible (with quaternion output)!
• Interrupt-out (for low-power applications!)
• On-chip sensor fusion and other calculations (can do orientation

math on-chip or pedometry even)
• So cheap they usually aren’t even counterfeited! J
• Communicates using either I2C or SPI

https://fpga.mit.edu/6205/F24 11

Board: $5.00 from Ebay
Chip: $1.00 in bulk

10/22/24

Accelerometers
• First MEMS accelerometer: 1979
• Position of a proof mass is capacitively sensed and

decoded to provide acceleration data

https://fpga.mit.edu/6205/F24 12

Proof Mass
SpringSpring

Measure
Capacitance via
Impedance
Divider𝑎! → Δ𝑑

SEM of two-axis accelerometer

𝑑

10/22/24

Uses of Acceleration Measurements:

• Acceleration can be used to detect motion
• (pedometer, free-fall/drop detection):

• Use gravity and trig to find orientation:

https://fpga.mit.edu/6205/F24 13

𝜃" = tan#$
𝑎!
𝑎%

−𝑎!

−𝑎"

𝑔

𝑎& = 𝑎%' + 𝑎"' + 𝑎!'
Accelerometer directions

+X, +Y, +Z

Chip

10/22/24

Problems
• Accelerometers have huge amounts of high-

frequency noise
• To fix, usually Low Pass Filter the raw signal (Infinite

Impulse Response* approach shown below)
• This cuts down on frequency response though L

https://fpga.mit.edu/6205/F24 14

𝜃"[𝑛] = 𝜃"[𝑛 − 1]𝛽 + 1 − 𝛽 tan#$
𝑎![𝑛 − 1]
𝑎%[𝑛 − 1]

0 < 𝛽 < 1

𝜃! Angle estimate around y axis

Filter Coefficient𝑎"
𝑎#

X acceleration

z acceleration

10/22/24 *from lecture 12

Bring in Gyroscopes
• Provide Direct Angular

Velocity which we can
integrate to get angle
• Very little high-frequency

noise, but lots of low
frequency noise (Gyros drift
like crazy)

https://fpga.mit.edu/6205/F24 15

Gyro readings are “around” the
axis they refer to (use right-

hand rule):

time (seconds)

an
gl

e
(a

rb
. u

ni
ts

)
An

gu
la

r v
el

oc
ity

 (a
rb

. u
ni

ts
)

10/22/24

Gyro Operation
• Resonating Proof Mass

• Electrostatic Drive
• Piezoelectric Drive

• Turning out-of-plane:
• Proof-mass fights the turn
• Detect deviation via

capacitance

• Do this for all three axes

https://fpga.mit.edu/6205/F24 16

Proof Mass
SpringSpring

Measure
Capacitance via
Impedance
Divider

Resonating

Measure
Capacitance via

Impedance
Divider

Proof Mass Spring

Spring

Measure
Capacitance via Impedance Divider

Resonating

Measure Capacitance via
Impedance

Divider

Rotation of Device

Changes in capacitance
measured at different
points

Scale not accurate/nor design details

10/22/24

How to use Gyro Readings:
• Because of Drift (low frequency noise/offset) you want to

avoid doing much long-term integration with a gyro reading
• Having beta less than unity ensures any angle that comes

from gyro reading will eventually disappear, but in short term
it will dominate
• Depending on time step:

https://fpga.mit.edu/6205/F24 17

𝜃(𝑛 = 𝛽𝜃(𝑛 − 1 + 𝑇𝑔"[𝑛 − 1]

0 < 𝛽 < 1 Filter Coefficient

𝑇 Time Step

𝑔! Gyro y reading

𝛽 ≈ 0.95 starting point

10/22/24

What to do?

• Using only accelerometer, leaves us blind to
motion/change in the short term but fine in the
long-term

• Using only gyroscope, leaves us blind in the long
term, but good in the short term

• What to do?

https://fpga.mit.edu/6205/F24 1810/22/24

Merge the signals

• Complementary Filter:

• Very simple form of sensor fusion (where you merge
data from more than one sensor to build up model of
what is going on)

https://fpga.mit.edu/6205/F24 19

𝜃! 𝑛 = 𝛽 𝜃! 𝑛 − 1 + 𝑇𝑔![𝑛 − 1] + 1 − 𝛽 tan$%
𝑎#[𝑛 − 1]
𝑎"[𝑛 − 1]

0 < 𝛽 < 1 Filter Coefficient

𝑇 Time Step

𝑔! Gyro y reading 𝑎"
𝑎#

X acceleration

z acceleration𝛽 ≈ 0.95	good starting point

10/22/24

Sensor Fusion
• Most modern sensors are used with other sensors:
• Can be incorporated open-loop (like complementary

filter on previous page)
• Or incorporate into “learning” algorithms:
• NLMS, Kalman, LQE, Baysean, Linear-Observer System
• Estimate, compare to new data, correct, repeat…
• These usually feature dynamic filters which learn how to

filter the signal they care about

10/22/24 https://fpga.mit.edu/6205/F24 20

So a plethora of sensors out there
• And they all need to be communicated with…

10/22/24 https://fpga.mit.edu/6205/F24 21

Common Chip-to-Chip Communication
Protocols (not exhaustive)

• Parallel (not so much anymore)…mostly memory and things that
need to send data at very high rates such as a camera, high-speed
ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications

https://fpga.mit.edu/6205/F24 2210/22/24

Clock Line
(Optional)

Data Line 0

Data Line 1

Data Line 2

Data Line N

Parallel and Series at High Level

https://fpga.mit.edu/6205/F24 23

Parallel Link: Serial Link:

10/22/24

Device 1 Device 2…

Clock Line
(Optional)

Data Line 0
Device 1 Device 2

10101001100
10101010001
11110001100

10010011001

………

time

sample 0

sample 1
10101001100

sample 0

sample 1

time

Parallel vs. Serial

• Parallel (not so much on individual small devices)…mostly
memory and things that need to send data at very high rates such
as a camera, high-speed ADCs, etc…

• UART “Serial” (still common in random devices, reliable and easy
to implement)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common in audio-
specific applications

https://fpga.mit.edu/6205/F24 2410/22/24

SERIAL PROTOCOLS

PARALLEL PROTOCOLS

When Choose Parallel?
• When you need to transfer large amounts of data,

parallel is a better choice.
• Data Transfer Rate will scale ~linearly with number

of wires
• But Have to be careful of wiring length:
• Ensure bits arrive same time

10/22/24 https://fpga.mit.edu/6205/F24 25

https://docs.toradex.com/102492-layout-design-guide.pdf

Printed Circuit Board (PCB)
traces length-balanced so all
bits in a parallel frame arrive
at the same time (really
matters)

Serial Communications
• Sending information one bit at a time vs. many bits in

parallel
• Serial: good for long distance (save on cable, pin and

connector cost, easy synchronization). Requires “serializer”
at sender, “deserializer” at receiver
• Parallel: issues with clock skew, crosstalk, interconnect

density, pin count. Used to dominate for short-distances
(eg, between chips).
• BUT modern preference is for parallel, but independent

serial links (eg, PCI-Express x1,x2,x4,x8,x16) as a hedge
against link failures. Ethernet, USB, etc… these all follow
that same pattern

https://fpga.mit.edu/6205/F24 2610/22/24

Serial Standards

• A zillion Serial standards
• Asynchronous (no explicit clock) vs. Synchronous (CLK

line in addition to DATA line).
• Recent trend to reduce signaling voltages: save power,

reduce transition times
• Control/low-bandwidth Interfaces: SPI, I2C, 1-Wire, PS/2,

AC97, CAN, I2S,
• Networking: RS232, Ethernet, T1, Sonet
• Computer Peripherals: USB, FireWire, Fiber Channel,

Infiniband, SATA, Serial Attached SCSI

10/22/24 https://fpga.mit.edu/6205/F24 27

Common Chip-Chip Communication
Protocols
• Parallel (not super common, but exists in high speed

situations).

• UART “serial” (still common in some classes of devices)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common

https://fpga.mit.edu/6205/F24 2810/22/24

UART (Lab 03)

• Stands for Universal Asynchronous Receiver Transmitter
• Requires agreement ahead-of-time between devices

regarding things like clock rate (BAUD), etc…
• Two wire communication
• Cannot really share

• (every pair of devices needs own pair of lines so wires scales as 2𝑛
where 𝑛 is the number of devices)

• Data rate really < 1Mbps (though can maybe push a little bit)
• Data sent least significant bit (lsb) first

https://fpga.mit.edu/6205/F24 29

TX/RX

RX/TX

Device 1 Device 2

10/22/24

10/22/24 https://fpga.mit.edu/6205/F24 30

Serial (UART)
• Line Hi at rest
• Drops Low to indicate start
• 8 (or 9 bits follows) sent least significant bit first
• Goes high (stop bit)
• Can have optional parity bit for simple error correction

Common Chip-Chip Communication
Protocols
• Parallel (not super common, but exists in high speed

situations).

• UART “serial” (still common in some classes of devices)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common

https://fpga.mit.edu/6205/F24 3110/22/24

Note on Terminology

• Just like with our AXI protocol discussion, in chip-to-
chip communications, Master/Slave terminology is
heavily used in SPI and I2C
• Changing slowly, but hopefully it’ll change soon
• We might use ”Main”/”Secondary” to keep the letters

the same or ”Controller” and “Peripheral”
• Also seeing SDO/SDI for “Serial Data Out/In” with

respect to controlling device more recently

https://fpga.mit.edu/6205/F24 3210/22/24

SPI

• Stands for Serial-Peripheral Interface
• Four Wires:
• COPI: Controller-Out-Peripheral-In…
• CIPO: Controller-In-Peripheral-Out…
• SCK: Serial Clock
• CE/CS (Chip Enable or Chip Select)

• SCK removes need to agree ahead of time on data rate
(from UART)…makes data interpretation easier!
• High Data Rates: (1MHz up to ~70 MHz clock (bits))
• Data msb or lsb first…up to devices

https://fpga.mit.edu/6205/F24 33

COPI
CIPOController

Device
Peripheral

DeviceSCK
CE/CS

10/22/24

MOSI also = SDO “serial data out”
MISO also SDI “serial data in”
Also seeing now:
COPI = Controller Out Peripheral In
CIPO = Controller In Peripheral Out

SPI

• Can share COPI/CIPO Bus so the wire
requirement scales as 3 + 𝑛 where 𝑛 is
the number of devices
• Addition of multiple secondaries

requires additional select wires
• Hardware/firmware for SPI is pretty

easy to implement:
• Wires are uni-directional
• Classic “duh” sort of approach to digital

communication, but very robust.

https://fpga.mit.edu/6205/F24 34

COPI
CIPOController

Device
Peripheral
Device 1SCK

CE0/CS0

CE1/CS1

10/22/24

Peripheral
Device 2

SPI Example

https://fpga.mit.edu/6205/F24 35

…

SCK

CS

Here I am talking to a MCP3008 10 bit ADC

X X 1 1 0 0 1 X X X X X X X X X X X X X
COPI/MOSI

X X X X X X X X 0 0 0 0 1 0 1 1 0 1 1
CIPO/MISO

CMOD-A7-35T
MCP3008

From MCP3008 Datasheet

10/22/24

MCP3008 is a 8-channel 10 bit ADC from
Microchip Semi that communicates over
SPI

Sends its data msb first

SPI Example

https://fpga.mit.edu/6205/F24 36

…

SCK

CS

X X 1 1 0 0 1 X X X X X X X X X X X X X
COPI/MOSI

X X X X X X X X 0 0 0 0 1 0 1 1 0 1 1
CIPO/MISO

MCP3008 (Peripheral/Secondary Device) Dialog

Artix-7 (Controller/Main Device) Dialog

“Hey MCP3008”
“0001011011”

“Give me a
single-ended
reading…” “From your

channel 1”
”We’re done
here. ”

10/22/24

X means don’t care

Come from datasheet

SPI In Real Life
• Here I am talking to the

same chip I was
daydreaming about talking
to on the previous slide.
• Dreams do come true
• I’m saying, “give me your

measurement on Channel
1,” and it is responding with
“10’b0001011011” mapped
to 3.3V or 0.293 V

https://fpga.mit.edu/6205/F24 37

CS

SCK

COPI

CIPO

11001000001011011

10/22/24

REMINDER: Digital In Analog Life
vs Digital in Digital Life
• “There’s Grandeur in this view of life…”

10/22/24 https://fpga.mit.edu/6205/F24 38

Logic Analyzer Capture from Lab 02 Oscilloscope Analog Capture of
different SPI transaction

D/C
RES

SPI*
• Six Wires:

• COPI: Controller-Out-Peripheral-In
• CIPO: Controller-In-Peripheral-Out
• SCK: Clock
• CE/CS (Chip Enable or Chip Select)
• RES: Reset Device
• D/C: Data/Command (often seen in devices

where you need to write tons of data (i.e. a
display)

• Three/Two Wires:
• If a device has nothing to say, drop CIPO:
• If you assume only one device on bus drop

CE/CS, so only have SCK and COPI, sometimes
just called “DO” (for data out) in this situation

https://fpga.mit.edu/6205/F24 39

COPI
CIPO

Controller
Device

Peripheral
Device

SCK
CE0/CS0

10/22/24

Twitch LEDs:

LCD Display:

Common Chip-Chip Communication
Protocols
• Parallel (not super common, but exists in high speed

situations).

• UART “serial” (still common in some classes of devices)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common

https://fpga.mit.edu/6205/F24 4010/22/24

I2C
• Stands for Inter-Integrated Circuit communication
• Invented in 1980s
• Two Wire, One for Clock, one for data (bi-

directional)
• Usually 100kHz or 400 kHz clock (newer versions go

to 3.4 MHz)

https://fpga.mit.edu/6205/F24 41

SDA

SCL

Controller
Device

Peripheral
Device

10/22/24

On i2C Multiple Devices Require
Same # of Wires
• Devices come with their own ID

numbers (originally a 7 bit value
but more modern ones have 10
bits)…allows potentially up to
2^7 devices or 2^10 on a bus
(theoretically anyways)

• ID’s are specified at the factory,
usually several to choose from
when you implement and you
select them by pulling external
pins HI or LOW

https://fpga.mit.edu/6205/F24 42

SDA

SCL

Controller
Device

Peripheral
Device 1

10/22/24

Peripheral
Device 2

I2C
• Only two wires…one used for synchronizing data

and one used for conveying data in both directions:
• Controller à Peripheral
• Peripheral à Controller

https://fpga.mit.edu/6205/F24 4310/22/24

SDA

SCL

Controller
Device

Peripheral
Device 1

Peripheral
Device 2

• And also you need to let
multiple devices possibly
speak and listen…
• There’s a lot here…
• It needs a more complicated:
• Hardware
• Protocol

More to story (need pull-up resistors)
• i2C uses an open drain
• Meaning both Controller and

Peripheral Device are either:
• LOW
• “High-Impedance”

• Need external pull-up resistors

https://fpga.mit.edu/6205/F24 44

4.7kΩ

3.3V

SDA

SCL

3.3V

4.7kΩ

These resistors are large reason why data rate is so low!

10/22/24

Controller
Device

Peripheral
Device

Tri-State
• inout is an “input-output”…needs some special

handling...you can both write to them (only using
combinational logic) and read from them...the
usual way to work with them is the following:

https://fpga.mit.edu/6205/F24 45

In verilog…

10/22/24

inout sda;

logic sda_val;

assign sda = sda_val? 1’bz: 1’b0;

//if desired:
always_ff @(posedge clk)begin
 sda_val <= 1; //do a non-blocking assign to sda_val if desired
 //this indirectly affects sda then
end

As a result:

https://fpga.mit.edu/6205/F24 46

Mode Main Secondary
Controller Transmit HiZ (HI) or LOW HiZ (listening)

Peripheral ACK/NACK HiZ (listening) HiZ (HI) or LOW
Peripheral Transmit HiZ (listening) HiZ (HI) or LOW

Controller ACK/NACK HiZ (HI) or LOW HiZ (listening)

SDA in

VGS

4.7kΩ

3.3V

SDA

inout sda;
logic sda_val;
assign sda = sda_val? 1’bz: 1’b0;

Wanna write to SDA?

sda_val <= 0; //or 1 if desired

Wanna read to SDA?

sda_val <= 1;
//wait clock cycle…
some_reg <= sda; //read from input

10/22/24

i2C Operation
• Data is conveyed on SDA (Either from Main or

Secondary depending on point during
communication)
• SCL is a 50% duty cycle clock
• SDA generally changes on falling edge of SCL (isn’t

required, but is a convenient marker for targeting
transitions)
• SDA sampled at rising edge of SCL
• Main is in charge of setting SCL frequency and

driving it
• Data is sent msb first

https://fpga.mit.edu/6205/F24 4710/22/24

Notice how much more rigid this is

compared to SPI

Meanings I: (Start, Stop, Sampling)

https://fpga.mit.edu/6205/F24 48

SCL:

SDA:

Controller Claims Bus (START)
By pulling SDA LOW while SCL is HIIdle State

SDA and SCL sit HI

Data from SDA sampled @ posedge of SCL

Data/State on SDA transitions
@ falling edge of SCL

Controller Releases Bus (STOP)
By pulling SDA HI while SCL is HI

HI

LO

HI

LO

10/22/24

Meanings II Address
• First thing sent by Controller is 7 bit address (10 bit

in more modern i2C…don’t worry about that)

• If a device on the bus possesses that address, it
acknowledges (ACK=0/NACK=1) and it becomes the
secondary for the time being.

• All other devices (other than Controller/Peripheral
Devices) will ignore until STOP signal appears later
on.

https://fpga.mit.edu/6205/F24 4910/22/24

Meanings III (Read/Write Bit)
• After sending address, a Read/Write Bit is specified

by Controller on SDA:
• If Write (0) is specified, the next byte will be a register to

write to, and following bytes will be information to write
into that register
• If Read (1) is specified, the Peripheral Device will start

sending data out, with the Controller Device
acknowledging after every byte (until it wants data to not
be sent anymore)

https://fpga.mit.edu/6205/F24 5010/22/24

Meanings IV (ACK/NACK)
• After every 8 bits, it is the listener’s job to

acknowledge or not acknowledge the data just
sent (called an ACK/NACK)
• Transmitter pulls SDA HI and listens for next

reading the next time SCL transitions high:
• If LOW, then receiver acknowledges data
• If remains HI, no acknowledgement

• Transmitter/Receiver act accordingly

https://fpga.mit.edu/6205/F24 5110/22/24

Meanings V
• For Controller Device to write to Peripheral Device:

• START
• Send Device Address (with Write bit)
• Send register you want to write to
• Send data…until you’re satisfied, doing ACK/NACKs along the way
• STOP

• For Controller Device to read from Peripheral Device a common (though not universal procedure) is:
• START
• Send Device Address (with Write bit)
• Send register you want to read from (think of this like setting a cursor in the register map)
• ReSTART communication
• Send Device Address (With Read bit)
• Read the bits (it’ll start from where the cursor was left pointing at)
• After every 8 bits, it is Controller’s job to ACK/NACK Peripheral…continued acknowledgement

leads to continued data out by Peripheral.
• Not-Acknowledge says “no more data from Peripheral”
• STOP leads to Controller ceasing all communication

https://fpga.mit.edu/6205/F24 5210/22/24

MPU-9250
• 3-axis Accelerometer (16-bit readings)
• 3-axis Gyroscope (16-bit readings)
• 3-axis Magnetic Hall Effect Sensor (Compass) (16 bit readings)
• SPI or I2C communication (!)…no analog out
• On-chip Filters (programmable)
• On-chip programmable offsets
• On-chip programmable scale!
• On-chip sensor fusion possible (with quaternion output)!
• Interrupt-out (for low-power applications!)
• On-chip sensor fusion and other calculations (can do orientation

math on-chip or pedometry even)
• So cheap they usually aren’t even counterfeited! J
• Communicates using either I2C or SPI

https://fpga.mit.edu/6205/F24 53

Board: $5.00 from Ebay
Chip: $1.00 in bulk

10/22/24

Implementing i2C on FPGA with
MPU9250:
• Made Controller i2C module in Verilog
• Used MPU9250 Data sheet: 42 pages (basic

functionality, timing requirements, etc…)
• MPU9250 Register Map: 55 pages

https://fpga.mit.edu/6205/F24 5410/22/24

State-Machine
Implementation of
i2C Main/Controller
• Continuously reads 2 bytes

starting at the 0x3B register
(X accelerometer data)

• Print out value in hex in LEDs
• 34 States
• Clocked at 200kHz, and

creates 100 kHz SCL
• Change SDA on falling edge of

SCL
• Sample SDA on rising edge of

SCL

https://fpga.mit.edu/6205/F24 5510/22/24

State-Machine
Implementation of i2C
Main/Controller

• Redundant states (repeated
READ/WRITE, ADDRESS, ACK/NACK,
etc…)

• ARM manual describes ~20 state
FSM for full I2C…this is just a toy
implementation of specific I2C
operation

• Included code on site for
reference/starting point

• Diagram: on next page for reference

https://fpga.mit.edu/6205/F24 56

…200 more lines

10/22/24

IDLE START1
ADDRESS1

ADDRESS2

READWRITE1

REGISTER1

REGISTER2

ACKNACK1A

ACKNACK1C

IDLE

ACKNACK2AACKNACK2C

IDLE

STOP

READ2

READ1

START2

ADDRESS3

ADDRESS4

READWRITE2

ACKNACK3A

ACKNACK3C

IDLE

READ3

READ4
ACK4

NACK

NACK

ACK

NACK

ACK

NACK
ACK

7x

7x
8x

8x

8x

https://fpga.mit.edu/6205/F24 5710/22/24

https://fpga.mit.edu/6205/F24 58

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010 …
SCL

SDA

10/22/24

Communication Part

SDA

SCL

VCC

GND

Nexys4

MPU9250

Can also do this on our current board

https://fpga.mit.edu/6205/F24 59

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010 …
SCL

SDA

10/22/24

Communication Part

SDA

SCL

VCC

GND

Nexys4

MPU9250

Can also do this on our current board

Needs a dialogue

https://fpga.mit.edu/6205/F24 60

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010

Nexys4 MPU9250

Device Address (0x68)
Write=0

Acknowledge=0

Device Register (0x3B)

Acknowledge=0

Device Address (0x68)

Read=1

Data Read InStart

…
SCL

SDA

Controller ACK

ReStart

10/22/24

Communication Part

SDA

SCL

VCC

GND

Nexys4

MPU9250

Communication Part

https://fpga.mit.edu/6205/F24 61

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010

SDA

SCL

VCC

GND

Nexys4

MPU9250

…
SCL

SDA

“I claim this bus”

“Hey, 0x68…”

“I wanna tell
you something”

“ACK I’m here.
Sounds good”

“Look at your
0x6B register”

“ACK
OK”

“Different thought”

“Hey, 0x68…”

“Read to me
from where
 you’re looking”

“ACK For
sure”

“0x6D”

”ACK…
More, please”

MPU9250 (Peripheral Device) DialogNexys4 (Controller Device) Dialog

10/22/24

Communication in Real-Life:

https://fpga.mit.edu/6205/F24 62

Data being sent from MPU9250

Triggered on leaving IDLE state

SCL = Purple

SDA = Yellow

10/22/24

Data being sent to MPU9250

Running and reading X acceleration:

https://fpga.mit.edu/6205/F24 63

16’hFD88 = 16’b1111_1101_1000_1000 (2’s complement)
Flip bits to get magnitude: 16’b0000_0010_0111_0111
=-315
Full-scale (default +/- 2g)
-315/(2**15)*2g = -0.02g J makes sense

16’h4088 = 16’b0100_0000_1000_1000 (2’s complement)
Leave bits to get magnitude: 16’b0100_0000_1000_1000
=+16520
Full-scale (default +/- 2g)
-16520/(2**15)*2 = +1.01g J makes sense!

Horizontal: Vertical:

HOOKUP

10/22/24

Clock-Stretching (Cool part of i2C!!!)

• Normally Controller drives SCL, but since Controller
drives SCL high by going hiZ, it leaves the option open
for Peripheral to step in and prevent SCL from going
high by pulling SCL LOW

https://fpga.mit.edu/6205/F24 64

SCL:

Main wanted to pull SCL HI but
Secondary prevents by pull LOW

(red never happens)

Once Secondary goes HiZ again, Main
picks back up on SCL

• Allows Perhiperal a way to buy time/slow down things (if it requires
multiple clock cycles to process incoming data and/or generate
output)

😻

10/22/24

I2C Can Also Be a “Multi-Controller” Bus

• In SPI, there is a pre-determined device in charge
of the system. I2C is potentially much more
egalitarian

https://fpga.mit.edu/6205/F24 65

• Devices can be design to yield based on who claims a bus first…but
you have to be careful…what if two devices claim a bus at the same
time…potential problems? Can get bus contention so need to be
careful

10/22/24

SDA:

Controller Claims Bus (START)
By pulling SDA LOW while SCL is HIIdle State

SDA and SCL sit HI

Controller Releases Bus (STOP)
By pulling SDA HI while SCL is HI

HI

LO

Common Chip-Chip Communication
Protocols
• Parallel (not super common, but exists in high speed

situations).

• UART “serial” (still common in some classes of devices)

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very common

• I2S (Inter-Integrated Circuit Sound Bus) very common

https://fpga.mit.edu/6205/F24 6610/22/24

SCL

I2S (Inter-IC Sound Bus)

• Not related to i2C at all
• Intended for Digitized Stereo Data
• Three Wires:

• SDA: Serial Data (The actual music)
• WS: Word Select (Left/Right Channel)
• SCL: Serial Clock (For Synchronization)

• Push-Pull Driving (like SPI…no need for pull-up resistors)
• Data sent msb first
• Clock-rate dictated by sample rate (44.1kHz @16 bits per

channel /w 2 channels = ~1.4 MHz for example

https://fpga.mit.edu/6205/F24 67

SDA

WS
Controller Peripheral

10/22/24

I2S

https://fpga.mit.edu/6205/F24 6810/22/24

Two identical microphones share all three lines

Microphone told to be
the “left” microphone by
hardwiring LR to ground

Microphone told to be
the “right” microphone
by hardwiring LR to VDD

i2S

https://fpga.mit.edu/6205/F24 6910/22/24

WS specifies whose
turn it is to speak
(left or right channel)

Implementation
• UART: Not too bad:
• Transmitter is trivial to write.
• Receiver is non-trivial, but can be done.

• You’ve built a SPI modules already…it was pretty
short/easy.
• SPI is much more open to interpretation and

flexible…really a family of closely related protocols so
always check your data sheets for specifics.

• Vivado has IP cores for i2C and i2S, though rolling
your own may honestly be easier (it really is a
choice)

https://fpga.mit.edu/6205/F24 7010/22/24

Compare and Contrast?
• Generally the fewer the wires the more rigid the

protocol
• SPI can be very flexible and high speed (have only

10 bits to send? No problem…send 10!...can’t do
that do that with i2C…need to zero-pad up to the
next full byte (16 bits)
• In terms of implementation, generally with

communication protocols, the more wires, the
easier the protocol/less overhead

https://fpga.mit.edu/6205/F24 7110/22/24

Which to Choose?
• SPI is generally easier and more flexible to implement,

but only certain devices use it since it takes up a lot of
pins (and pins are expensive/limited)
• ”Slow” and “Fast” data rates are relative too…i2C is not

as much of a compromise now as it was fifteen years
ago, particularly with high-speed i2C (or even now that
400 kHz rates are common)
• Remember, these are all meant for chip-to-chip

communications!
• Check out the example i2C code from this lecture for the

IMU…see if you can add clock-stretching! (not required)

https://fpga.mit.edu/6205/F24 7210/22/24

Other protocols!

10/22/24 https://fpga.mit.edu/6205/F24 73

PS/2 Keyboard/Mouse Interface

• 2-wire interface (CLK, DATA), bidirectional
transmission of serial data at 10-16kHz
• Format

• Device generates CLK, but host can
request-to-send by holding CLK low
for 100us

• DATA and CLK idle at “1”, CLK starts when
there’s a transmission. DATA changes on
CLK, sampled on CLK

• 11-bit packets: one start bit of “0”, 8 data bits
(LSB first), odd parity bit, one stop bit of “1”.

• Keyboards send scan codes (not ASCII!) for each
press, 8’hF0 followed by scan code for each
release

• Mice send button status, Δx and Δy of
movement since last transmission

https://fpga.mit.edu/6205/F24 74

Figures from digilentinc.com

10/22/24

https://fpga.mit.edu/6205/F24 75

PS/2 Keyboard/Mouse Interface
• 2 signal wire interface (CLK, DATA),

bidirectional transmission of serial
data at 10-16kHz

Figures from digilentinc.com

10/22/24

Controller Area Network (CAN)
Bus
• Common bus protocol found in cars and other

systems

10/22/24 https://fpga.mit.edu/6205/F24 76

https://www.digikey.com/en/blog/how-to-simplify-the-test-of-can-bus-networks

CAN Bus

• Modules all share one common twisted wire
channel
• Signaling is differential rather than single-ended

(like HDMI)
• Allows cables to be run long distances with good noise

suppression

• Devices claim bus and listen with addressing
scheme kinda similar to I2C

10/22/24 https://fpga.mit.edu/6205/F24 77

https://www.digikey.com/en/blog/how-to-simplify-the-test-of-can-bus-networks

USB: Universal Serial Bus
• USB 1.0 (12 Mbit/s) introduced in 1996

• USB 2.0 (480 Mbit/s) in 2000

• USB 3.0 (5 Gbit/s) in 2012

• USB-C 2016.

• USB 3.2 (30 Gbit/s) in July 20, 2017

• USB 4.0 (40 Gbit/s) 2019

• USB 4.0 2.0 (120 Gbits/s) 2022

• Created by Compaq, Digital, IBM, Intel, Northern Telecom and Microsoft.

• Uses differential bi-direction serial communications

https://fpga.mit.edu/6205/F24 78

Type A USB 2.0 – 4 pins

Type A & B
Pinout Mini/Micro Pinout USB 3.0

Credit: Reddit

10/22/24

USB: Universal Serial Bus
• Far, far more defined layers than

your other things we’ve seen

• The 2000 version of USB spec was
570 pages long

• USB 3.2 (2017) Approximately
900 pages long at this point
+supplemental stuff

• USB 4.0 (2019)…similar and so on

https://fpga.mit.edu/6205/F24 7910/22/24

Complexity (logarithmic scale):

SPI

I2C

USB

UART

I2S

How is Data Transmitted in USB
(High Level):

https://fpga.mit.edu/6205/F24 80

• Communication uses handshakes to establish
capable/expected data rates
• Host device (computer for example), assigns

connected devices temporary IDs on shared bus.
• Packets of information, including headers,

payloads, and error checks (CRC5, CRC16, and
CRC32 are used) are sent between host and client
devices

10/22/24

How is Data Transmitted in USB (Bit
Level):

https://fpga.mit.edu/6205/F24 81

• USB uses twisted wire pairs and there is no CLOCK wire
• All data is transmitted using Non-Return-Zero-Inverted (NRZI)

encoding:
• A 0 is encoded as a value change
• A 1 is encoded by no change

• After initial synchronization byte, the receiver extracts the
clock from the on-average probability of 0’s in the data (which
give transitions) using local oscillator and Phase-Locked Loops
• Avoid long stretches of 1’s by bit-stuffing (shoving 0’s in to

avoid periods of time where no transitions happen)…similar to
ether protocols

10/22/24

USB - C

https://fpga.mit.edu/6205/F24 82

• New connector brought in with USB 3 standard
• Universal connector for power and data – first product MacBook Air – one and

only port!
• Symmetrical – no “correct” orientation (Good for 10,000

insert/withdrawals…10 kiloinserts)
• Supports DisplayPort, HDMI, power, USB, and VGA. Uses differential bi-

direction serial communications
• Supplies up to 100W power (5V @ up to 2A, 12V @ up to 5A, and 20V @ up to

5A)
• Voltage dictated by software handshake, etc..

10/22/24

USB 4

10/22/24 https://fpga.mit.edu/6205/F24 83

• 2019 saw introduction of USB4
• Partially motivated by Intel/Apples donation of

Thunderbolt spec to USB consortium in ~2017
• Requires use of USB-C-type cable
• Data rates up to 40 Gbps (1 full HD movie per second)

USB 4 2.0

10/22/24 https://fpga.mit.edu/6205/F24 84

• 2022 and 2023 saw introduction of USB4 2.0
• Requires use of USB-C-type cable
• Data rates up to 120 Gbps (3 full HD movie per second

because society needed that rather than UBI or
universal healthcare)

FTDI Chipsets

https://fpga.mit.edu/6205/F24 85

• Future Technology Devices International Ltd
(FTDI) is a Scottish Electronics firm that makes
USB interfaces
• They produce devices that convert between USB

and:
• UART
• SPI
• I2C
• Parallel Out
• Etc…

• Extremely common (we use a few on our FPGA)

10/22/24

Lies!

• The UART you wrote in Lab 3
wasn’t actually to the computer.
• It was to an FT2232 chip by

FTDI
• Takes UART and converts back

and forth to USB for you
automatically

10/22/24 https://fpga.mit.edu/6205/F24 86

FT2232 Chip

The Great FTDI Bricking of 2014

https://fpga.mit.edu/6205/F24 87

• From the beginning of USB to only recently, most USB devices
used FTDI-based chip sets to interface (source of those annoying
FTDXX.h library issues you’d always see in Windows)
• Your optical mouse would have some circuit and it would

communicate internally with UART…then the FTDI chip would
convert to USB

• Dozens of “clones” were built to work with that software, these
clones often times selling for a small fraction of the cost of the
original FTDI chips

• In 2014 FTDI they released a software update, included in most
Windows Service Packs that bricked all “non-genuine” devices

• Turned out a lot of ”legit” products were using
counterfeits/clones

10/22/24

• Used to provide remote
interrogation/identification
• Frequency bands:
• 125 - 134 kHz [MIT ID]*
• 13.56 MHz [US Passports, MBTA pass, NFC protocols
• 400 – 960 MHz UHF

 [EZPASS 915mhz ~ 1 mw]**
• 2.45 GHz
• 5.8 GHz

https://fpga.mit.edu/6205/F24 88

* excitation/broadcast powered

** battery powered

RFID: Radio Frequency Identification

Battery

Transmitting
antenna

EZ Pass Internals

*http://groups.csail.mit.edu/mac/classes/6.805/student-papers/fall04-papers/mit_id/#specs

Like in MIT IDs:

10/22/24

125khz RFID

https://fpga.mit.edu/6205/F24 89

125khz transmitter

Receiver

Powered by 125khz broadcast
signal

10/22/24

Older MIT RFID

• 125 kHz carrier
• 62.5 kHz modulating

wave phase-shifts
every 16 cycles:
• 𝜋 shift indicates a 1
• No shift indicates a 0

• …so we’ve got:
• Phase-shift-encoded

Non-Return-to-Zero-
Mark Encoding (NRZ-M)

https://fpga.mit.edu/6205/F24 90

Stimulating and Receiving Coils

FFT of Pickup on Receiving
Coil while Stimulating Coil
has 125 kHz driven into it
and NO CARD in between
(Spike is 125 kHz centered)

FFT of Pickup on Receiving Coil
while Stimulating Coil has 125 kHz
driven into it and CARD is in
between
(LOOK AT THAT SIDEBAND
ACTION!!!)

10/22/24

More Modern MIT ID

• 13.56 MHz part of the ISM band
• Think they use a NRZI encoding
• NFC also runs in same frequency bands
• A bit more of a complicated protocol than 125 kHz

variant.

10/22/24 https://fpga.mit.edu/6205/F24 91

Conclusions
• Tons of protocols (just skimming the surface here)
• Great way to add complexity to a project!
• But! Plan ahead if talking to devices in final

projects.
• If interfacing to FPGA directly, interfacing anything

above the most simple devices can take time!
• That Virtual Reality headset team from 2019 probably spent

40% of their time writing a driver to control the screens over
SPI (at 70 MHz)

10/22/24 https://fpga.mit.edu/6205/F24 92

