Signed Values in Verilog and Analog/Signal Processing Things

6.111 Fall 2024

Administrative

- Week 06 due yesterday
- Week 07 Out today (due *next Thursday*...give you an extra day).
- Last lab. We're not doing 8.
- After abstracts are due tomorrow @5pm, staff will meet to figure out who works with who and email you
- We're going to push the due date of the block diagram report to the Tuesday 29th

Week 7: Convolution

- Only have to write three modules
- Please start early

Phase 25 Post Router Timing INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.059 | TNS=-0.319 | WHS=0.050 | THS=0.000 |

Light travels 1.7 mm in the time that my design initially failed by

Signed Numbers

How to Represent Numbers

• Simplest approach is to just read the binary number in regular base 2 (just like in our friend base 10!)

Most arithmetic works out well too! b10001001 (137)

• Add/Subtract: + b00000101 (5) b10001110 (142)

'b00000101	(5)
<u>* 'b0000110</u>	(6)
 Multiply/Divide: 'b00000000	(0)
'b000001010	(10)
+'b0000010100	(20)
'b0000011110	(30)

Unsigned Values:

- 1 byte (8 bits): 2⁸ values: 256 numbers to rep
- Express from 0 to 255
 positive values 2 bytes (16 bits): 2¹⁶ values: 65,536 numbers
 Express from 0 to 65,535

0 *positive values*

- 4 bytes (32 bits): 2³² values: 4,294,967,296 nums
 - Express from 0 to 4,294,967,295

0		4,294,967,295
	positive values	
00000000_00000000_000000000		11111111_1111111_1111111_11111111

11111111 11111111

Inherent Modularity

- If we use a fixed number of bits, addition and other operations may produce results outside the range that the output can represent (up to 1 extra bit for addition)
 - This is known as an overflow
- Common approach: Ignore the extra bit
 - Gives rise to modular arithmetic: With N-bit numbers, equivalent to following all operations with mod 2^N
 - Visually, numbers "wrap around":

Happens with more bits too (8 bits)

 What happens if you add 131 to 155 with 8 bit?

What About Negatives?

- Our Number Schemes so far only allow representation of positive numbers (and zero).
- What about negatives? How can we do this in an efficient manner?

One Solution: "Sign Bit" (did this with Pong)

- If most-significant-bit (msb) is 0, interpret like a negative sign:
 - If 0, lower bits are from a positive number
 - If 1, lower bits are from a negative number
- To get the negative of the number, flip the msb:

'b00010001 == +(16+1) == 17
'b10010001 == -(16+1) == -17
'b00000000 == 0

- b1000000 == -0
- Major problem(s)?

Another Solution: "One's Complement"

- If most-significant-bit (msb) is 0, interpret like an unsigned value.
- If msb is 1, then number is negative, else positive.
- To get the negative of the number flip all the bits:

Major problem(s)?

Inherent Modularity to the Rescue

- Return to our 3-bit* number system:
- If I want to add 1, I just add 1 and move clockwise by 1 unit
- If I want to subtract 1, is there a number I could add using our same regular adding rules to get the same result? If so, that number could be called "-1", right?

*3 bits here since easy to think about and draw, but could do with any number of bits

A Negative Number

- If I start at "3" aka 'b011, what could I add to get to 1?
- To go back 2, I can add:
 2³ 2 = 6
- (3+6)%8 = 1.
- Or: "-010" = 110

Negating a Number

• In a 3bit space, The negative of a number can be expressed as:

$$"-A" = 8 - A$$

• Or written a different way:

$$-A'' = 1 + b111 - A$$

 'b111 minus any 3 bit value will be the same as the bitflip of that value (~A)

"-A" = 1 + (`b111 - A)

• So the negative of any value must be:

$$-A = 1 + \sim A$$

The Solution: 2's Complement

• For 000 to 111 what numbers do we get in this scheme?

Interesting...

 If we make 100 into -4, the system of numbers becomes consistent and easily extensible to more bits.

 With this model we can come up with some rules/observations...

Two's Complement (Signed) Ints

- For an *n* bit signed int, we represent from:
 - Min: -2^{n-1}
 - Max: $2^{n-1} 1$
 - Zero is always *all* zeros
- The negative of a number A is always $-A = 1 + \sim A$
- A number is positive if the msb is 0:
 - If so, just add up non-zero digits by weight as you do for unsigned
- A number is negative if msb is 1:
 - If so add weight of msb, then for all bits below that subtract off the weight of any non-zero digits:

Signed Values:

• 1 byte (8 bits): 2⁸ values: 256 numbers to rep

Math Operations Still Work

- Two's Complement is pretty nice because you can still do all your regular math operations pretty easily
- Also No double-zero!
- Pretty much all modern digital systems use two's complement math to represent signed integers

Signed Arithmetic in Verilog

Just add "signed" modifier to your variable declaration. \s

logic [15:0] a; // Unsigned
logic signed [16:0] signed_a; //signed

Using Signed Arithmetic in Verilog

ALL OF THE FOLLOWING ARE TREATED AS **UNSIGNED** IN VERILOG!!!

- Any operation on two operands, unless both operands are signed
- Based numbers (e.g. 12'd10), unless the explicit "s" modifier is used)
- Bit-select results a[5]
- Part-select results a[4:2]
- Concatenations

```
logic [15:0] a; // Unsigned
logic signed [15:0] b;
logic signed [16:0] signed_a;
logic signed [31:0] a_mult_b;
assign signed_a = a;//Convert to signed
assign a_mult_b = signed_a * b
```

Example of multiplying signed by unsigned

http://billauer.co.il/blog/2012/10/signed-arithmetics-verilog/

For example, consider these two test bench examples:

Not really synthesizable here (\$finish, \$display, etc)...but shows what Verilog is thinking

Sign extension

Consider the 8-bit 2's complement representation of:

$$42 = 00101010 -5 = ~00000101 + 1 = 11111010 + 1 = 11111011$$

What is their 16-bit 2's complement representation?

Using Signed Arithmetic in Verilog

Shifts in Verilog do not base themselves off of the type they are working on. >> is always binary shift.

"<<<" and ">>>" tokens result in arithmetic (signed) left and right shifts: multiple by 2 and divide by 2.

Right shifts will maintain the sign by filling in with sign bit values during shift

```
logic signed [3:0] x;
logic signed [3:0] value = 4'b1000; // -8
x = value >> 2 // results in 0010 or 2
x = value >>> 2 // results in 1110 or -2
logic [3:0] value = 4'b1000; // -8
x = value >> 2 // results in 0010 or 2
x = value >>> 2 // results in 0010 or -2 (is unsigned...extends with 0's)
```

Few Other Things

• When specifying numbers/constants you cand put a **s** in front to specify it as signed.

logic signed [7:0] x;	logic [7:0] x;
initial begin	initial begin
x = -'d5;	x = -'d5;
\$display("%d %8b", x,x); //prints: -5 11111011	\$display("%d %8b", x,x); //prints: 251 11111011
x = -'sd5;	x = -'sd5;
\$display("%d %8b", x,x); //prints: -5 11111011	\$display("%d %8b", x,x); //prints: 251 11111011
x = 'd5;	x = 'd5;
\$display("%d %8b", x,x); //prints: 5 00000101	\$display("%d %8b", x,x); //prints: 5 00000101
x = 'sd5;	x = 'sd5;
<pre>\$display("%d %8b", x,x); //prints: 5 00000101</pre>	<pre>\$display("%d %8b", x,x); //prints: 5 00000101</pre>
x = 'd234;	x = 'd234;
\$display(<mark>"%d %8b",</mark> x,x); //prints: -22 11101010	<pre>\$display("%d %8b", x,x); //prints: 234 11101010</pre>
x = 'sd128;	x = 'sd128;
\$display("%d %8b", x,x); //prints: -128 10000000	\$display("%d %8b", x,x); //prints: 128 1000000
#100;	#100;
<pre>\$finish;</pre>	\$finish;
end	end

Need to make a thing signed?

- Either use \$signed
- Or declared signed types to route through:

```
logic signed [3:0] x = 4'b1110; // -2 also -4'
logic [3:0] y = 4'b1100; //12 unsigned, (-4 signed)
logic signed [4:0] z
assign z = x*$signed(y);//interpret y as signed
//results in z having 5'b11000 in it (-8)
//OR:
logic signed [3:0] y_signed;
assign y_signed = y;
assign z = x*y_signed; //multiplication of two signed things is signed
//results in z having 5'b11000 in it (-8)
```

Signed Numbers Guideline

- Once you start using signed Verilog in a module or a signal path, just make everything you're using is signed. If you do that, you should be ok.
- Make sure everything upstream of a calculation has been done in only a signed environment (held in signed logics and used with signed logics.
- Signed/Unsigned bugs are some of the hardest to find so be cautious
- When in doubt also use \$signed

A variable being signed does NOT change the bits the variable contains!

- The signedness of a variable only impacts how operators are interpreted. It does not impact the bits themselves.
- Some operators are relatively robust and act kinda the same regardless if you are signed or unsigned! (+, -, bitwise operators, even *)
- But the setup and interpretation of these operations often needs slightly different framing based on the signedness

Verilog Operator	Name	Functional Group
[]	bit-select or part-select	
()	parenthesis	
!	logical negation	logical
~	negation	bit-wise
&	reduction AND	reduction
I	reduction OR	reduction
~&	reduction NAND	reduction
~	reduction NOR	reduction
٨	reduction XOR	reduction
~^ or ^~	reduction XNOR	reduction
+	unary (sign) plus	arithmetic
-	unary (sign) minus	arithmetic
{ }	concatenation	concatenation
{{ }}	replication	replication
*	multiply	arithmetic
/	divide	arithmetic
%	modulus	arithmetic
+	binary plus	arithmetic
-	binary minus	arithmetic
<<	shift left	shift
>>	shift right	shift
>	greater than	relational
>=	greater than or equal to	relational
<	less than	relational
<=	less than or equal to	relational
==	logical equality	equality
!=	logical inequality	equality
===	case equality	equality
!==	case inequality	equality
&	bit-wise AND	bit-wise
٨	bit-wise XOR	bit-wise
^~ or ~^	bit-wise XNOR	bit-wise
	bit-wise OR	bit-wise
&&	logical AND	logical
II	logical OR	logical
?:	conditional	conditional

Few Other Things

• When specifying numbers/constants you cand put a **s** in front to specify it as signed.

logic signed [7:0] x;	logic [7:0] x;
initial begin	initial begin
x = -'d5;	x = -'d5;
\$display("%d %8b", x,x); //prints: -5 11111011	<pre>\$display("%d %8b", x,x); //prints: 251 11111011</pre>
x = -'sd5;	x = -'sd5;
\$display("%d %8b", x,x); //prints: -5 11111011	<pre>\$display("%d %8b", x,x); //prints: 251 11111011</pre>
x = 'd5;	x = 'd5;
\$display("%d %8b", x,x); //prints: 5 00000101	<pre>\$display("%d %8b", x,x); //prints: 5 00000101</pre>
x = 'sd5;	x = 'sd5;
\$display("%d %8b", x,x); //prints: 5 00000101	<pre>\$display("%d %8b", x,x); //prints: 5 00000101</pre>
x = 'd234;	x = 'd234;
\$display("%d %8b", x,x); //prints: -22 11101010	<pre>\$display("%d %8b", x,x); //prints: 234 11101010</pre>
x = 'sd128;	x = 'sd128;
\$display("%d %8b", x,x); //prints: -128 10000000	\$display("%d %8b", x,x); //prints: 128 1000000
#100;	#100;
<pre>\$finish;</pre>	\$finish;
end	end

- In all comparative cases above we've put identical bits into variable. When we ask Verilog to perform an operation with those bits, its interpretation differs.
- This can bleed into sign extension and other peripheral tasks, for example...

Consider Multiplication

- Consider two variables. One has 'b101 in it another has 'b110 in it.
- If you invoke unsigned multiplication on these bits...stuff just sort of works:

'b101	(5)
<u>* 'b110</u>	(6)
' b000	(0)
'b1010	(10)
+ ' b10100	(20)
'b011110	(30)

 In actuality because the multiplication of a 3 bit by 3 bit number could result in 6 bits of result, you should "extend" but it can be just 0's

Consider Multiplication

• So for unsigned you're really doing this:

Consider Multiplication

overflow

10/17/24

- Consider two variables. One has 'b101 in it another has 'b110 in it
- If you invoke signed multiplication...stuff does not "just work". You *really* need to bit extend ahead of time to the worst case width:

https://fpga.mit.edu/6205/F24

Other Operations...

- Things like equality/inequality checks as well as division, mod, etc...
- These obviously are dependent on whether we interpret the bits as signed or unsigned (no surprise there)

Verilog Operator	Name	Functional Group
[]	bit-select or part-select	
()	parenthesis	
!	logical negation	logical
~	negation	bit-wise
&	reduction AND	reduction
I I	reduction OR	reduction
~&	reduction NAND	reduction
~l	reduction NOR	reduction
∧	reduction XOR	reduction
~^ or ^~	reduction XNOR	reduction
+	unary (sign) plus	arithmetic
-	unary (sign) minus	arithmetic
{ }	concatenation	concatenation
{{ }}	replication	replication
*	multiply	arithmetic
/	divide	arithmetic
%	modulus	arithmetic
+	binary plus	arithmetic
-	binary minus	arithmetic
<<	shift left	shift
>>	shift right	shift
>	greater than	relational
>=	greater than or equal to	relational
<	less than	relational
<=	less than or equal to	relational
==	logical equality	equality
!=	logical inequality	equality
===	case equality	equality
!==	case inequality	equality
&	bit-wise AND	bit-wise
^	bit-wise XOR	bit-wise
^~ or ~^	bit-wise XNOR	bit-wise
I	bit-wise OR	bit-wise
&&	logical AND	logical
<u> </u>	logical OR	logical
?:	conditional	conditional

Operator Precedence

- There is and always has been a very clear order in which operators get analyzed
- However some of these operators are sign dependent in precedence
- Sign dependence may lead to differing sign extension.
- And then weird things can happen.

Verilog Operator	Name	Functional Group
[]	bit-select or part-select	
()	parenthesis	
!	logical negation	logical
~	negation	bit-wise
&	reduction AND	reduction
I	reduction OR	reduction
~&	reduction NAND	reduction
~	reduction NOR	reduction
٨	reduction XOR	reduction
~^ or ^~	reduction XNOR	reduction
+	unary (sign) plus	arithmetic
-	unary (sign) minus	arithmetic
{ }	concatenation	concatenation
{{ }}	replication	replication
*	multiply	arithmetic
/	divide	arithmetic
%	modulus	arithmetic
+	binary plus	arithmetic
-	binary minus	arithmetic
<<	shift left	shift
>>	shift right	shift
>	greater than	relational
>=	greater than or equal to	relational
<	less than	relational
<=	less than or equal to	relational
==	logical equality	equality
!=	logical inequality	equality
===	case equality	equality
!==	case inequality	equality
&	bit-wise AND	bit-wise
٨	bit-wise XOR	bit-wise
^~ or ~^	bit-wise XNOR	bit-wise
I	bit-wise OR	bit-wise
&&	logical AND	logical
II	logical OR	logical
?:	conditional	conditional

Also using a "-" does not make a thing signed

- The unary operator "-" just does $-A = 1 + \sim A$
- The result is not inherently signed.
- So don't expect -(2'd2) to be a signed thing (for the purposes of operator determination)
Conclusions

- It seems like Verilog is strongly inclined towards unsigned numbers. Any of the following yield an unsigned value:
 - Any operation on two operands, unless both operands are signed.
 - Numbers given with an explicit base (e.g. 12'd10), unless the explicit "s" modifier is used)
 - Results of bit-select
 - Results of part-select
 - Concatenations
- Be careful of hidden sign extensions!
- Be careful of small one bit or two bit signed numbers...the patterns of two's complement stuff gets fuzzy at one bit.
- Use **\$signed** as needed...results in ugly code, but can make things safe.

(https://www.01signal.com/verilog-design/arithmetic/signed-wire-reg/)

DSP Concepts

Digital Signal Processing

A Digital System in an Analog World

 Many physical phenomena (sound, light, physics in general) are best-described as continuous entities

Visualizing Sampling

Continuous in Value and in Time

Discretization in Time

t

Discretization in Time and **Quantization** in Value

Discretization in Time and **Quantization** in Value

4 bit value encoding

https://fpga.mit.edu/6205/F24

Store in memory

- v[n] = [9,11,5,7,11,11,10,8,5,4,]
- 10 4-bit values: need 40 bits to represent!
- Good stuff. That's not a lot!

Reconstruction of Signal

4 bit value encoding

https://fpga.mit.edu/6205/F24

Reconstruction (with first-order hold interpolation)

Compare to original... not bad

4 bit value encoding

https://fpga.mit.edu/6205/F24

Errors

- **Discretization Error:** How "off" our readings are in time due to sampling at discrete intervals
- Quantization Error: How "off" our readings are in reproduced value...if our bin size is 50mV and our signal varies only by 20mV this is going to cause problems

Continuous in Value and in Time

Discretization in Time and **Quantization** in Value

Discretization in Time and **Quantization** in Value

Reproduce

Reproduce

Compare to original... Did not Capture the high-frequency Wiggles!

v[n] = [9,11,5,7,5,12,10,7,5,4,]

Potentially Bad Discretization Error

10/17/24

https://fpga.mit.edu/6205/F24

Continuous in Value and in Time

Discretization in Time and **Quantization** in Value

t

Discretization in Time and **Quantization** in Value

v[n] = [9,9,9,9,9,9,9,9,9,9]

Store in memory

- v[n] = [9,9,9,9,9,9,9,9,9,9]
- 10 4-bit values: need 40 bits in memory!
- Great. All is good.

Reproduce

v[n] = [9,9,9,9,9,9,9,9,9,9]

Reproduce

v[n] = [9,9,9,9,9,9,9,9,9,9]

Compare... to original also meh

10/17/24

Conclusions

- Care must be taken when choosing what rate you sample (discretize) your signal and at what bitdepth you quantize your sample
- There's no right answer, since it depends on context/use cases.
- Ideally want to sample at high rate and quantize with many bits...
- But taken to the extreme this uses a lot of resources (lots of memory and resources/lots of bits) so downward pressure on choices

Is that all there is to it?

- No, it is wayyy more complicated
- Let's just consider sample rate for right now (we'll revisit quantization later)

Sample Rate

- How frequently we sample our signal directly influences what we can effectively capture.
- A sample rate of f_s is only capable of expressing signals with frequencies less than $\frac{f_s}{2}$

Let's consider this situation though....

Let's digitize it...at this sample rate we shouldn't be able to capture it

4 bit value encoding

Discretization in Time and **Quantization** in Value

Store in memory

- v[n] = [9,11,5,7,5,12,10,7,5,4,]
- 10 4-bit values: need 40 bits in memory!
- Easy-peasy one-two-threesy

Reconstruct

Reproduce

Compare to original... Did not Capture the high-frequency Wiggles!

Great....but we still captured something! What <u>is</u> <i>that signal expressed by the red interpolation?
Consider this...

Sample it...

Store it...

Reconstruct it...

We've created a a different signal from what was before! WTH?

Or Consider this... if we start with this data...

And we Reconstruct the signal...is this ok?

First-order hold (connect-the dots)

If it came from this, ok... but...

It could have also come from this...Uh oh

First-order hold (connect-the dots)

Which one Made the Signal?

There's ambiguity in what those samples could represent...that means it really doesn't convey much, if any, information

Aliasing

- While we can't fully capture and reproduce signals with a frequency higher than the Nyquist sampling rate, it doesn't mean they **won't** have an impact!
- Energy from that high frequency will leak into the frame...a form of "spectral leakage"
- A sample rate of f_s can fully capture all information in a signal if and only if, the highest frequency in that signal is at or below $\frac{f_s}{2}$!
- If you don't do this, aliasing will appear (higher frequencies appear as a different signal (an "alias")) that can be expressed with the sample rate

Aliasing Can Happen in Space too

- Just like there are temporal frequencies (in time), images have spatial frequencies.
- Same issues arise!

This font has been processed with an anti-alias filter to prevent artifacts when displayed

Anti-alias Filtered

Not Anti-alias Filtered

https://en.wikipedia.org/wiki/Aliasing

10/17/24

https://fpga.mit.edu/6205/F24

Aliasing in Audio

https://www.youtube.com/watch?v=UaKho805vCE&ab_channel=MarkAndersonAudio

10/17/24

https://fpga.mit.edu/6205/F24

Solution

- The ONLY way to guarantee that a set of discrete points can unambiguously represent a signal is to guarantee that prior to sampling, we remove all energy that it exists in frequencies higher than the Nyquist Sampling Rate
- To do this we need a Low-Pass Filter!

Low Pass Filter

• Prior to Sampling, we must be sure that our signal has no significant energy above our Nyquist Rate

How Do You Actually Make a Filter?

- No time for math...6.003, more so 6.341 spend their time on this stuff*
- Several types of filters. Two big ones:
 - IIR: Infinite Impulse Response:
 - Uses past output history for filtering
 - FIR: Finite Impulse Response:
 - Uses input history for filtering

*and it is cool stuff!

Filters

- **Stateful** systems that analyze history signals to select for particular signal attributes:
 - Low-pass Filter: Lets through low-frequency signals
 - High-pass Filter: Lets through high-frequency signals
 - Band-pass Filter: Lets through selective group of frequencies
 - Band-stop Filter: Blocks selective group of frequencies

Infinite Impulse Response Filter (IIR)

$$y[n] = \alpha \cdot y[n-1] + \beta \cdot x[n]$$

- The current output (y[n]) of the filter is based on the weighted sum of the previous output (y[n − 1]) of the filter + the value of the input (x[n))*
- Sometimes called a recursive filter: "y is based off of y is based off of y..."
- Information enters the system through x but its influence on the output is dependent on the values of α and β

Infinite Impulse Response (Modified) $y[n] = \alpha \cdot y[n-1] + (1-\alpha) \cdot x[n]$ $0 \le \alpha \le 1$

- Fix the relationship of the new input and old output to one variable α :
 - As $\alpha \rightarrow 1$ input has less weight (takes time for it to affect output...blocks more high frequency events)
 - As $\alpha \to 0$ input has more weight (output quickly follows input...allows through more high frequency events (and everything actually)

IIR Filter $y[n] = \alpha \cdot y[n-1] + (1-\alpha) \cdot x[n]$ x(t)t y(t) t

Infinite Impulse Response (Modified) $y[n] = \alpha \cdot y[n-1] + (1-\alpha) \cdot x[n]$ $0 \le \alpha \le 1$

Infinite Impulse Response (Modified) $y[n] = \alpha \cdot y[n-1] + (1-\alpha) \cdot x[n] \quad 0 \le \alpha \le 1$

Finite Impulse Response

- Have the output be based off of a sliding window of the past history of the input.
- Literally just convolution basically

$$y[n] = b_0 \cdot x[n] + b_1 \cdot x[n-1] + b_2 \cdot x[n-2]$$

• Very powerful!! Huge flexibility in choosing those coefficients and can get a ton of behaviors!

FIR Filters

- Extremely flexible
- Often times many, many "taps" long (N in 1000s is not uncommon)

$$y[n] = \sum_{k=0}^{N-1} b_k \cdot x[n-k]$$

• The values you pick for these taps are arrived at using a number of DSP-oriented algorithms (beyond scope of course...but in 6.003/6.341, etc)

FIR Filters

$$y[n] = \sum_{k=0}^{N-1} b_k \cdot x[n-k]$$

- Some online tools, Matlab, Python, Vivado all have tools that allow you to:
 - specify how you want your filter to look
 - Provide you the coefficients needed to generate that filter
- The *b* coefficients are generally provided as real numbers between 0 and 1. But since we don't want to do floating point arithmetic, we usually scale them by some power of two and then round to integers.
 - Since coefficients are scaled by 2^M, we'll have to re-scale the answer by dividing by 2^M. But this is easy – just get rid of the bottom M bits!
- More taps generally means you can get better response:
 - Closer to ideal filter!

Finite Impulse Response

Finite Impulse Response (Modified)

$$y[n] = \sum_{k=0}^{N-1} b_k \cdot x[n-k]$$

Much nicer critical path (worst propagation delay)

Adding values that are N+M bits repeatedly grows the number of bits needed to not lose precision...will grow at between 1 bit per N and 1 bit per $\log_2(N)$! But this can grow large so there's ways to handle it

https://zipcpu.com/dsp/2017/07/21/bit-growth.html

DSP Blocks?

- These IIR and especially FIR filters sure do have a lot of multiply-then-add operations going on...
- Remember those DSP blocks? That's why they're designed the way they are

DSP Blocks

- Mult-then-add is a common operation chain in many things, particularly Digital Signal Processing
- FPGA has dedicated hardware modules called DSP48 blocks on it
 - 150 of them on Urbana FPGA board
 - Capable of single-cycle multiplies
- Can get inferred from using * in your Verilog that isn't a power of 2:
 - x*y, for example, will likely will result in DSP getting used
 - May take a full clock cycle so would need to budget tiing accordingly

DSP48 Slice (High Level)

Figure 1-1: Basic DSP48E1 Slice Functionality

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

FIR Filter (Iterative Design) $y[n] = \sum_{k=0}^{N-1} b_k \cdot x[n-k]$

- 1000's of taps will use way too much resources.
 Instead you can also build FSM-based FIR filters
 - Be given new input sample
 - Use one clock-cycle per multiply-add
 - Accumulate the sum
 - After N cycles, your output is calculated
 - Update a circular buffer to keep track of past values of x
- For audio usually plenty of clock cycles between each audio cycle anyways (you have 2000 clock cycles of 100 MHz between each audio sample of 48 ksps audio!)

Circular Buffer/Pointer in Action

FIR Wizard

- FIRs are so common, Vivado actually has some IP infrastructure to aid in designing them
- Can tune how pipelined vs.
 Iterative/FSM you want your FIR!
- Or use Python/numpy to determine coefficients

ocumentation				
	IP Location C Switch to Defaults			
Symbol F	req. Response Implementation Details Cc ← → Ξ	Component Name fir_compiler_	D	
	Freq. Response	Filter Options Channel Sp	Decification Implementation De	stailed Implementation Interface Summary
. Inter		Coefficient Options		
Integ	ger Frequency Response (Magnitude)	Coefficient Type	Signed 🗸	
		Quantization	Integer Coefficients 🗸 🗸	
50.0-		Coefficient Width	16 💿	[8 - 49]
40.0-		Best Precision Fraction	Length	
30.0-		Coefficient Fractional Bits	0	[0 - 0]
명 20.0 -		Coefficient Structure	Inferred v	
IU.0-				
8 0.0- X		Data Path Options		
-10.0 -		Input Data Type	Signed 🗸	
-20.0 -		Input Data Width	16 💿 [2 - 47]
-30.0 -		Input Data Fractional Bits		0 - 16]
-40.0	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	Output Width		1 241
	Normalized Frequency (X PI rad/sample)	Output Fractional Bits : 0	24	1 * 24]
Set to Display	1 (1 - 1)			
Filter Analysi	is			
Pass Band				
Range : 0	0.0 💿 - 0.5 💿			
	Min 18.061800 dB Max 43.525674 dB			
	ID Symbol Eron Response Implementation	Potoilo Cr4 N = COI	mpopent Name fir compiler 0	
	in Symbol Fred, Response implementation		in Teenite	
	Resource Estimates	Ci	Iter Options Chappel Specific	ation Implementation Detailed Implementat
		Fi	Iter Options Channel Specific	cation Implementation Detailed Implementation
	DSP slice count: 1	Fi	Iter Options Channel Specific	ation Implementation Detailed Implementation
	DSP slice count: 1 BRAM count: 0	Fi	Iter Options Channel Specific nterleaved Channel Specificatio Channel Sequence Basic	ation Implementation Detailed Implementation
	DSP slice count: 1 BRAM count: 0 Information	Fi	Iter Options Channel Specification Channel Sequence Basic Number of Channels 1	ation Implementation Detailed Implementation
	DSP slice count: 1 BRAM count: 0 Information Start-up Latency: 19	Fi	Iter Options Channel Specification Channel Sequence Basic Number of Channels 1 Select Sequence All	Implementation Detailed Implementation
	DSP slice count: 1 BRAM count: 0 Information Start-up Latency: 19 Calculated Coefficients: 21 Coefficient front padding: 0	Fi L	Iter Options Channel Specification Channel Sequence Basic Number of Channels 1 Select Sequence All Sequence ID List P4-0,P4-1,P4-	Implementation Detailed Implementation
	DSP slice count: 1 BRAM count: 0 Information Start-up Latency: 19 Calculated Coefficients: 21 Coefficient front padding: 0 Processing cycles per output: 11	Fi	Iter Options Channel Specificatio Channel Sequence Basic Number of Channels 1 Select Sequence All Sequence ID List P4-0,P4-1,P4-1	Implementation Detailed Implementation (1 - 1024) (2,P4-3,P4-4
	DSP slice count: 1 BRAM count: 0 Information Start-up Latency: 19 Calculated Coefficients: 21 Coefficient front padding: 0 Processing cycles per output: 11 AXI4 Stream Port Structure	Fi	Iter Options Channel Specification Channel Sequence Basic Number of Channels 1 Select Sequence All Sequence ID List P4-0,P4-1,P4- Parallel Channel Specification	implementation Detailed Implementation (1 - 1024) (2,P4-3,P4-4
	DSP slice count: 1 BRAM count: 0 Information Start-up Latency: 19 Calculated Coefficients: 21 Coefficient front padding: 0 Processing cycles per output: 11 AXI4 Stream Port Structure S_AXIS_DATA - TDATA	Fi	Iter Options Channel Specification Channel Sequence Basic Number of Channels 1 Select Sequence All Sequence ID List P4-0,P4-1,P4- Parallel Channel Specification Number of Paths	Implementation Detailed Implementation Implementation 0
	DSP slice count: 1 BRAM count: 0 Information Start-up Latency: 19 Calculated Coefficients: 21 Coefficient front padding: 0 Processing cycles per output: 11 AXI4 Stream Port Structure S_AXIS_DATA - TDATA Transaction_Field Type 0 REAL(15:0) fiel 6 0	Fi ا	Iter Options Channel Specification Channel Sequence Basic Number of Channels 1 Select Sequence All Sequence ID List P4-0,P4-1,P4- Parallel Channel Specification Number of Paths Number of Paths 1	Implementation Detailed Implementation (1 - 1024) (2,P4-3,P4-4 (1 - 16) (1 - 16)
	DSP slice count: 1 BRAM count: 0 Information Start-up Latency: 19 Calculated Coefficients: 21 Coefficient front padding: 0 Processing cycles per output: 11 AX14 Stream Port Structure S_AXIS_DATA - TDATA Transaction Field Type 0 REAL(15:0) fb/16_0	Fi	Iter Options Channel Specification Channel Sequence Basic Number of Channels 1 Select Sequence All Sequence ID List P4-0,P4-1,P4- Parallel Channel Specification Number of Paths Number of Paths 1 Select Format 1	Implementation Detailed Implementation (1 - 1024) (2,P4-3,P4-4 (1 - 16] (1 - 16] (1 - 16] (2,P4-3,P4-4)
	DSP slice count: 1 BRAM count: 0 Information Start-up Latency: 19 Calculated Coefficients: 21 Coefficient front padding: 0 Processing cycles per output: 11 AX14 Stream Port Structure S_AXIS_DATA - TDATA Transaction Field Type 0 REAL(15:0) fb(16_0 M_AXIS_DATA - TDATA	Fi	Iter Options Channel Specification Channel Sequence Basic Number of Channels 1 Select Sequence All Sequence ID List P4-0,P4-1,P4- Parallel Channel Specification Number of Paths Number of Paths 1 Select Format Sample Period (Clock Cycles)	Implementation Detailed Implementation (1 - 1024) (1 - 1024) (2,P4-3,P4-4 (1 - 16] (1 - 16] (1 - 16] (1 - 16] (1 - 1.0E7)
	DSP slice count: 1 BRAM count: 0 Information Start-up Latency: 19 Calculated Coefficients: 21 Coefficient front padding: 0 Processing cycles per output: 11 AX14 Stream Port Structure S_AXIS_DATA - TDATA Transaction Field Type 0 REAL(15:0) fb:16_0 M_AXIS_DATA - TDATA Transaction Field Type 0 REAL(23:0) fb:24_0	Fi	Iter Options Channel Specification Channel Sequence Basic Number of Channels 1 Select Sequence All Sequence ID List P4-0,P4-1,P4- Parallel Channel Specification Number of Paths 1 Hardware Oversampling Specific Select Format Sample Period (Clock Cycles) Input Sampling Frequency (MHz)	Implementation Detailed implementation on (1 - 1024) o) (1 - 1024) o) (1 - 16) cation (1 - 16) Frequency Specification (1 - 0.067) 1 (1 - 0.067) 0.001 (0 (1.06-6 - 161280.0))
	DSP slice count: 1 BRAM count: 0 Information 1 Start-up Latency: 19 Calculated Coefficients: 21 Coefficient front padding: 0 Processing cycles per output: 11 AX14 Stream Port Structure 11 Transaction Field Type 0 REAL(15:0) Transaction Field Type 0 REAL(23:0) 0 REAL(23:0)		Iter Options Channel Specification Channel Sequence Basic Number of Channels 1 Select Sequence All Sequence ID List P4-0,P4-1,P4- Parallel Channel Specification Number of Paths Number of Paths 1 Hardware Oversampling Specification Select Format Sample Period (Clock Cycles) Input Sampling Frequency (MHz)	Implementation Detailed implementation Implementation Detailed implementation Implementation Implementation Implementatio
	DSP slice count: 1 BRAM count: 0 Information Start-up Latency: 19 Calculated Coefficients: 21 Coefficient front padding: 0 Processing cycles per output: 11 AXI4 Stream Port Structure S_AXI5_DATA - TDATA Transaction Field Type 0 REAL(15:0) fix16_0 M_AXIS_DATA - TDATA Transaction Field Type 0 REAL(23:0) fix24_0 Interleaved Channel Sequences		Iter Options Channel Specification Channel Sequence Basic Channel Sequence Basic Number of Channels 1 Select Sequence All Sequence ID List P4-0,P4-1,P4- Parallel Channel Specification Number of Paths Number of Paths 1 Hardware Oversampling Specification Select Format Sample Period (Clock Cycles) Input Sampling Frequency (MHz)	Implementation Detailed Implementation Implementation Detailed Implementation Implementation Implementation Implementatio
	DSP slice count: 1 BRAM count: 0 Information 1 Start-up Latency: 19 Calculated Coefficients: 21 Coefficient front padding: 0 Processing cycles per output: 11 AXI4 Stream Port Structure 11 S_AXI5_DATA - TDATA Transaction Field Type: 0 REAL(15:0) fbx16_0 M_AXIS_DATA - TDATA Transaction Field Type: 0 REAL(23:0) fbx24_0		Iter Options Channel Specification Channel Sequence Basic Number of Channels 1 Select Sequence All Sequence ID List P4-0,P4-1,P4- Parallel Channel Specification Number of Paths 1 Hardware Oversampling Specific Select Format Semple Period (Clock Cycles) Input Sampling Frequency (MHz) Clock Frequency (MHz)	Implementation Detailed Implementation Implementation Detailed Implementation Implementation Implementation Implementatio
	DSP slice count: 1 BRAM count: 0 Information 1 Start-up Latency: 19 Calculated Coefficients: 21 Coefficient front padding: 0 Processing cycles per output: 11 AXI4 Stream Port Structure S_AXI5_DATA - TDATA Transaction Field Type 0 REAL(15:0) M_AXIS_DATA - TDATA Transaction Field Type 0 REAL(23:0) fix24_0		Iter Options Channel Specification Channel Sequence Basic Number of Channels 1 Select Sequence All Sequence ID List P4-0,P4-1,P4- Parallel Channel Specification Number of Paths 1 Hardware Oversampling Specific Select Format Sample Period (Clock Cycles) Input Sampling Frequency (MHz) Clock Frequency (MHz) Clock cycles per input: Clock cycles per output:	Implementation Detailed Implementation Implementation Detailed Implementation Implementation Implementation Implementatio

In 2D Space you can also make filters (week 7)

- The common way is a 2D FIR filter, except it exists in 2 dimensions
- Shown here is a 3x3 filter
- The weights of the coefficients make up the "kernel"
- It gets dragged/convolved across the screen

In 2D Space you can also make filters (week 7)

Ridge Detect

X Sobel Edge Detect

Y Sobel Edge Detect

X Sobel + Y Sobel

https://fpga.mit.edu/6205/F24
Quantization

Discretization in Time and **Quantization** in Value

4 bit value encoding

Quantized Values

If we use N bits to encode the magnitude of one of the discrete-time samples, we can capture 2^N possible values.

So we'll divide up the range of possible sample values into 2^N intervals and choose the index of the enclosing interval as the encoding for the sample value.

https://fpga.mit.edu/6205/F24

Quantization Error

Note that when we quantize the scaled sample values we may be off by up to $\pm \frac{1}{2}$ bin from the true sampled values.

During signal reconstruction, Quantization introduces a new signal: Quantization error!

http://digitalsoundandmusic.com/chapters/ch5/

10/17/24

https://fpga.mit.edu/6205/F24

Error Signal Drops with Higher Bit-depth

Amplitude of Error Signal Drops with higher bit depth

http://digitalsoundandmusic.com/chapters/ch5/

Structure of Quantization Noise

- The more bits we've used for quantizing:
 - The smaller our error gets
 - AND
 - The more "random" our error signal gets
- Fewer bits leads to error signal that actually looks like a signal :/ (NOT good)

(Color online) Quantization of a sinusoidal signal and the corresponding quantization noise for three different cases. (a) and (b) 5 bits (b) and (c) 2 bits and (d) and (e) 1 bit. It can be seen that for 5 bits the quantization noise is almost randomly varying as in (b), and for the 1 bit case in (e), it has the particular characteristic frequency of the original signal.

Pandey, Nitesh & Hennelly, Bryan. (2011). Quantization noise and its reduction in lensless Fourier digital holography. Applied optics. 50. B58-70, 10, 1364/AO.50.000B58. https://fpga.mit.edu/6205/F24

More Quantization Obfuscates Original Signal

Frequencies of Error Signal Become more uniform with higher bit depth

Pandey, Nitesh & Hennelly, Bryan. (2011). Quantization noise and its reduction in lensless Fourier digital holography. Applied optics. 50. B58-70. 10.1364/AO.50.000B58.

10/17/24

Can't Distinguish Signal From Error

- Once you've lost information, you can never regain it. There is no "enhance" button in real-life
- Motivation to **not** skimp out on quantizing (pick enough bits)
- But if you have to go low in bits...what can you do?

Quantization Error in Audio

https://www.youtube.com/watch?v=UaKho805vCE&ab_channel=MarkAndersonAudio

10/17/24

https://fpga.mit.edu/6205/F24

Quantization* A Graphical Example

How many bits are needed to represent 256 shades of gray (from white to black)?

Bits	Range
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256

* Acknowledgement: Quantization slides and photos by Prof Denny Freemen 6.003

Quantization: Images

Converting an image from a continuous representation to a discrete representation involves the same sort of issues as with 1D signals (audio)

This image has 280 × 280 pixels, with brightness quantized to 8 bits.

7 bit image

8 bit image

8 bit image

4 bit image

8 bit image

2 bit image

8 bit image

Quantizing Colors

256 (8bit) color kitteh

True color (24 bit) kitteh

16 color (4 bit) kitteh

https://en.wikipedia.org/wiki/Dither

Error Diffusion

- If you find yourself with an error signal that has structure* to it, there are ways to spread out the error.
- You'll never get rid of the error (which would involve making information from nothing), but you can "diffuse" it in the image in the frequency domain
- Consumers are often less sensitive to random noise than structured noise (eyes/ears tend to filter that out better)

*structure refers to non-uniform frequency composition...so like sharp frequency spikes

Dithering

 The solution is to add more noise when we quantize, but do it so it spreads the frequency composition out to be more uniform

When quantizing in the first place and random noise in: Quantization: y = Q(x)

3 Bits Quantization

3 bits

dither

2 Bits Quantization + Noise

2 bits

dither

10/17/24

1 Bit Quantization + Noise

10/17/24

Dithering: Lots of Options/Algos

ORIGINAL 8bit Greyscale

Every other example on page...1 bit quantization

Ordered (Bayer)

Ordered (void-and-cluster)

Halftone

https://en.wikipedia.org/wiki/Dither

10/17/24

https://fpga.mit.edu/6205/F24

Color Dithering

True color (24 bit) kitteh

16 color (4 bit) kitteh

https://en.wikipedia.org/wiki/Dither

16 color (4 bit) dithered kitteh (Floyd-Steinberg)

10/17/24

Cool Student Project from Last year

Dithering

- In early computer/video games, space was at a premium, so if you could store your graphics at low (i.e one bit), then great!
- Lucas Pope (of *Papers Please!* fame) more recently created game *Return of the Obra Dinn* recreates the graphics of early games

Dithering in Audio

https://www.youtube.com/watch?v=h59LwyJbfzs&ab_channel=loopitstreamed