
The FPGA, AXI, Etc…
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Administration

• Week 05 due last night
• Week 06 out after class today (might be delayed by 

a couple hours)…it is short.
• two pages

• Week 07 (next week) will involve some 
convolution/image processing (regular length)
• Week 08 will be short after that, look at soft 

processing cores*
• Then final project time
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What to do for a Final Project?
• Something that an FPGA would Actually get used 

for…
• Codec (mp4, mp3, jpeg, and many others!)
• Accelerators (do some task efficiently)
• Real-time audio processing (today is simple example)
• Graphics
• Signal Processing (graphical or audio)
• Vision (object detection, tracking)
• Prototype CPU, TPU, GPU architectures
• Cryptography
• High Speed Controller
• Communication (ethernet…)
• Inference/detection
• Decisions
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What to do for a Final Project?

• Something an FPGA would not get used for in real 
life:
• Video game…
• Video game…
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However if you want to do a video game…
• If you want to do a game, go hard with it:
• Try to explore more FPGA-relevant topics such as:
• 3D graphics?
• Ray-casting
• Video Processing?
• Inference

• Or if you want to make a simple game, then you 
really need push it the limits.
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Excellent “simple” game
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Pacman Extreme
• Used basically all the resources on that FPGA
• Partially through poor planning on their part
• Partially through over-pipelining and over-parallelization

• But the attention to detail and overall depth, was 
extreme
• And some poor choices with utilization resulted in 

them having to be very clever with how a lot of 
aspects of their higher-level design worked out
• Team built supplemental tools to aid in design:
• Kim wrote a javascript app that would make .mem files 

of all their custom sprites since she got so sick of making 
them manually, for example
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Complexity

• The complexity must come from stuff you do!
• You cannot take week 05’s stuff and week 07’s stuff 

and glue them together and have an A-level 
project.
• Using UART to talk to a device that ”does wifi” does 

not actually have much technical merit…and does 
not mean you made a wifi system.
• The final project will be graded on what you did 

and contributed.
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Chip 8 Emulator
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Chip 8 Emulator
• Chip8 is like 50 years old/early attempt at a virtual 

machine/game engine
• Has a large online following because it is weird and 

is a great first emulator to write since the 
instruction set is very tiny (and because once you 
get it working you have tons of stuff to test on it) 
• Many people write emulators and write games for 

it.
• This team built an emulator and then did all the 

emulator tuning stuff and then ran a bunch of them 
in parallel (FPGA strength)…something most people 
can’t do with a software simulation/emulation
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More Advanced Pipelining
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This is the Great Tradeoff!
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F F FX
More resources,
Better Throughput
Same Latency

FSM that does 
F on cycle 1, 
F on cycle 2, 
F on cycle 3

Outputs X after

X

OR

Fewer resources,
Worse Throughput
Same Latency

• Base on what you need for the design!



Pipelining II
• As we make larger-level systems 
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HGF

• As we make larger-level systems we need to 
pipeline data through systems which might take 
varying amounts of time
•  And the cycles of latency can become 1000’s of 

cycles



HVALID

READY

DATA
N bits

Pipelining II
• Mixing our Major/Minor FSMs with Pipelining!
• Need a way to send data downstream, but also 

convey preparedness upstream
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What is IP?
• Often times you’ll hear people call a module they made 

“IP”…short for “intellectual property”
• These basically let you specify an extremely parameterizable 

module
• In Vivado there are IP which you can instantiate.
• There’s a ton of effort that goes into enabling a particular 

circuit in a modifiable way
• Some companies actually do this:

• Create a particular design-development platform
• Example: a pipelined algorithm implementation

• Sell/lease to Xilinx
• When people use your design process in their products they give 

you licensing fees.
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What are some attributes of 
extensible modules? 
• Well documented, or at least some attempt at 

documentation, or at least the ability to read the 
source code
• Speak a common language…
• Accept inputs in a commonly accepted way
• Generate results in a commonly accepted way

• We need standards!
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AXI Everywhere

10/10/24 https://fpga.mit.edu/6205/F24 20

• There’s lot of neat IP (FFT, more 
complicated math, etc…)
• Xilinx IP and many others 

generally use an AXI 
communication protocol

AXI

AXI
AXI

AXI



Advanced Microcontroller Bus 
Architecture (AMBA)
• Version 1 released in 1996 by ARM
• 2003 saw release of Advanced eXtensible Interface 

(AXI3)
• 2011 saw release of AXI4 
• There are no royalties affiliated with AMBA/AXI so 

they’re used a lot. 
• It is a general, flexible, and relatively free* 

communication protocol for development

https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture
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AXI Life

• A lot of modules written for FPGA or ASIC 
application build towards AXI interfaces
• Doing this allows things to be more plug-and-play 

than if you rolled your own
• So we should go over how it works!
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Three General Flavors of AXI4
• AXI4 (Full AXI): For memory-mapped links. 

Provides highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

• AXI4 Lite: A memory-mapped simplified link 
supporting only one data transfer per connection 
(no bursts). (also restricted to 32 bit addr/data)

1. Address is supplied
2. One data transfer

• AXI4 Stream: Meant for high-speed streaming data
• Can do burst transfers of unrestricted size
• No addressing 
• Meant to stream data from one device to another 

quickly on its own direct connection
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Note on Terminology
• In device-to-device communication, it is common to 

have:
•  one device labeled the ”Master” and 
• one labeled the “Slave”
• the Master controls the Slave(s) in these settings.

• Trace history of this naming terminology back to 1940s
• There has been successful transition to Controller and 

Peripheral in some areas
• Lab 2!!!
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Note on Terminology
• The Xilinx AXI protocol uses this Master/Slave 

terminology
• And continues to do so into 2024.
• In 6.205 I’m going to just use Main/Secondary or just 

“M” and “S”, but the docs and even some port names 
distinctly use Master/Slave.
• This way we can keep using the datasheets.
• And then continue to push AMD/Xilinx to change it.
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Others than AXI?

• There are other generalized bus protocols out 
there:
• Wishbone, some Open cores use this
• Avalon: used in some Altera sets (proprietary)

• AXI is a good one to be familiar with, not just 
because it is used in Xilinx stuff a lot….so that’s 
what we’ll look at.
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So the AXI Protocol!

• Made up of wires
• These wires serve specific purposes.
• Some are universal to all AXI4S channels, and 

others are specific
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AXI Clock

• Everything in system will run off of AXI clock usually 
called ACLK in documentation
• No combinatorial paths between inputs and outputs. 

Everything must be registered.
• All signals are sampled on rising edge
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M S
ACLK

From clock source



AXI Clock

• Everything in system will run off of AXI clock usually 
called ACLK in documentation
• No combinatorial paths between inputs and outputs. 

Everything must be registered.
• All signals are sampled on rising edge
• AXI modules should also have Reset pins.  AXI work 

ACTIVE LOW so the Reset pin is usually called ARSTn or 
ARESETn  (meaning it is normally high)
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M S
ACLK

From clock source

From synchronous reset source ARSTn



Valid and Ready

• All of AXI uses the same handshake procedure:
• The creator of a data “M” generates a VALID signal
• The destination of data “S” generates a READY signal
• Transfer of data only occurs when both are high
• Both M and S Devices can therefore control the flow of 

their data as needed
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VALID

READYM S
ACLK

From clock source

From synchronous reset source ARSTn



Everything Else…

• Everything else is information and depends on what is 
needed in situation. Could be:
• Address 
• Data 
• Metadata
• Other specialized wires/sets of wires like:

• STRB (used to specify which bytes in current data step are valid, sent 
by Main along with data payload to Secondary)

• RESP (sort of like a status)
• LAST (sent to indicate the final data clock cycle of data in a burst)
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M S
ACLK

VALID

READY

<-INFO->

From clock source

From synchronous reset source ARSTn



Generalized Transaction
• All Channel Interactions follow same high-level 

structure
• Data is handed off IF AND ONLY IF VALID and READY 

are high on the rising edge of the clock
• If that happens, both parties must realize that data 

transfer has happened
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Keep in mind this could 
be 64 parallel wires of 
1’s and 0’s of info or 8 
bytes for example…
Or it could be 
something else



VALID then READY
• Valid can be high first
• Then ready can show up later
• Only when both are high is data exchanged
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Data transferred on this edge



READY then VALID
• Ready can be high first
• Then Valid can show up later
• Only when both are high is data exchanged
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Data transferred on this edge



READY WITH VALID
• Ready and Valid come high at the same time
• Totally allowed
• Data is exchanged on that clock edge
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Data transferred on this edge



Generalized Transaction

• Can have multiple channels
• They all follow the same 

spec though
• All Channel Interactions 

follow same high-level 
structure
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Other Things to Keep in Mind
• the VALID signal of the AXI interface sending 

information must not be dependent on the READY 
signal of the AXI interface receiving that information
• an AXI interface that is receiving information may wait 

until it detects a VALID signal before it asserts its 
corresponding READY signal.
• In other words READY can depend on VALID, but not 

the other way around.
• Failure to adhere to this can lead to what’s known as 
“dead-lock”
• Fail to Follow these rules and could have devices wait 

infinitely.
• Like when two people keep going “no, after you” at a door.
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Three General Flavors of AXI4
• AXI4 (Full AXI): For memory-mapped links. 

Provides highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

• AXI4 Lite: A memory-mapped simplified link 
supporting only one data transfer per connection 
(no bursts). (also restricted to 32 bit addr/data)

1. Address is supplied
2. One data transfer

• AXI4 Stream: Meant for high-speed streaming data
• Can do burst transfers of unrestricted size
• No addressing 
• Meant to stream data from one device to another 

quickly on its own direct connection
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Full AXI and AXI Lite
• Meant for back-and-forth communication
• Request-response type communication
• Memory-mapped interfaces
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M S
ACLK

From clock source

From synchronous reset source ARSTn

“OK Will do”

“Run this command”



Full AXI and AXI Lite
• Meant for back-and-forth communication
• Request-response type communication
• Memory-mapped interfaces
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M S
ACLK

From clock source

From synchronous reset source ARSTn

“1986”

“What is the value at
Addres 0x12345?”



Full AXI and AXI Lite Read
• Will involve multiple channels (Each with their own 

ready, valid, clock, data path, etc…)
• A Read interface will have two AXI channels:
• One that transfers address info from Master to Slave
• One that transfers response data from Slave to Master
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Full AXI and AXI Lite Write
• Will involve multiple channels (Each with their own 

ready, valid, clock, data path, etc…)
• A Write interface will have three AXI channels:
• One that transfers address info from Master to Slave
• One that transfers data to write from Master to Slave
• One that transfers response data from Slave to Master
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All Channels are AXI

• Then for specific tasks, they can have specific 
additional signals

• Think of generic AXI as a root class
• The “read address channel” is a subclass of 

standard AXI
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Full AXI and AXI Lite Read
• Will involve multiple channels (Each with their own 

ready, valid, clock, data path, etc…)
• A Read interface will have two AXI channels:
• One that transfers address info from Master to Slave
• One that transfers response data from Slave to Master

10/10/24 https://fpga.mit.edu/6205/F24 44



10/10/24 https://fpga.mit.edu/6205/F24 45

Read Address Chanel

CORE

Payload



The Read Data Channel:
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CORE

Payload

Supplemental 
Stuff



Full AXI and AXI Lite Write
• Will involve multiple channels (Each with their own 

ready, valid, clock, data path, etc…)
• A Write interface will have three AXI channels:
• One that transfers address info from Master to Slave
• One that transfers data to write from Master to Slave
• One that transfers response data from Slave to Master
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Each channel has its own subset of 
“stuff” that goes along with those 
core signals shared by all
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Payload

Supplemental 
Stuff

CORE

For example, the Write Data Channel (”W” channel)
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CORE

Payload

Write Address Channel



Write Response
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Payload



Three General Flavors of AXI4
• AXI4 (Full AXI): For memory-mapped links. 

Provides highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

• AXI4 Lite: A memory-mapped simplified link 
supporting only one data transfer per connection 
(no bursts). (also restricted to 32 bit addr/data)

1. Address is supplied
2. One data transfer

• AXI4 Stream: Meant for high-speed streaming data
• Can do burst transfers of unrestricted size
• No addressing 
• Meant to stream data from one device to another 

quickly on its own direct connection
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In a AXI Streaming Situation
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M S
ACLK

VALID

READY

DATA
N bits

From clock source

From synchronous reset source ARSTn

• Uni-Directional Movement of data
• No call-response
• No memory-mapped
• Just streaming data



HVALID

READY

DATA
N bits

AXI Stream
• Mixing our Major/Minor FSMs with Pipelining!
• Need a way to send data downstream, but also 

convey preparedness upstream
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VALID
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X
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Complexity

Full-AXI4

AXI-LITE

AXI-STREAM
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• In terms of wires and options, Full-AXI 
is the most complex 

• AXI-LITE has a lot less options (single 
data beat so all the supplemental stuff 
that specifies burst characteristics gets 
skipped)

• AXI-STREAM has even less…basically a 
high-speed write channel (Few 
options), but often needs that extra 
TLAST signal



Real-time Audio Spectrograph
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FFT
Re/Im
Split

Square
Sum

Square 
Root

Microphone Memory

Output 
Display

• Let’s do an example!!!



Real-time Audio Spectrograph
• Collect audio from microphone (use Analog-to-

digital Converter)
• Convert time-series data to frequency series
• Take Magnitude of it
• Store it in memory
• Render it on screen as a bargraph
• RESULT:
• Render the energy of the frequency spectrum in real 

time
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Real-time Audio Spectrograph
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FFT
Re/Im
Split

Square
Sum

Square 
Root

Microphone Memory

Output 
Display

• On-board PDM microphone
• We used off-board one this year, but works 

somewhat similarly



Real-time Audio Spectrograph

• Computer the Fourier Transform of a Time Series of 
audio measurements and do so in real time
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Fourier Transform
• Convert a time-domain signal:

• Into its frequency domain representation:
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Fast Fourier Transform
• A computationally efficient means of generating the Fourier 

Transform
• We’ll do a 2048 point Fourier Transform (pretty small)
• The bigger the N, the “better” the Fourier transform, but the 

number of multiply adds you need to will scale with 𝑵𝟐…this 
becomes problematic very quickly
• A Fast Fourier Transform is a class of algorithm that takes 

advantage of symmetries/periodicities in all of the 
multiplications that you do in order to simplify the overall 
work. 
• These simplifications allow the work to scale with 𝑵𝐥𝐨𝐠 𝑵
• Further pipelining and parallel structures in hardware allow 

you to stream into an FFT. Lots of repetition in FFT…great for 
pipelining vs. Blocking FSM debate/choice
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Fast Fourier Transform
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FFT
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All the way up to 65536 point FFT (theoretically)…never 
built one myself, but it should be possible 



FFT

10/10/24 https://fpga.mit.edu/6205/F24 63

https://www.xilinx.com/support/documentation/ip_documentation/xfft_ds260.pdf



FFT Latency
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• For this year…

• At the clock I ran it: 148.5MHz that is:
• 6273 clock cycles @ 148.5MHz (42.25 μs )

• Needs all 2048 input samples before it starts outputting

1024 FFT on 100 MHz clock…



TLAST
• Since we’re sending 2048 samples one after the 

other (serially) we need a way to tell the FFT we’re 
at the end of a frame!
• Use a LAST signal (tells FFT we’re on last sample)
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TLAST is important
• Since data is sent serially, TLAST allows us to know 

where to place data with respect to other data
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FFT Input
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If audio sample ready, 
give it a sample,
Otherwise don’t

FFT Instance:

always_ff @(posedge axi_clk)begin
  if (audio_sample_valid)begin
    fft_valid = 1;
    fft_data = {audio_data,8'b0};
    fft_data_counter <= fft_data_counter +1;
    fft_last <= fft_data_counter==2047;
  end else begin
    fft_valid = 0;
  end
end



Already “breaking” AXI

• This code is not 
monitoring whether the 
FFT is READY.
• Realistically we are 

generating data so 
slowly that this will 
never actually matter 
(discuss at end)
• Also we’re not storing 

this data anywhere
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always_ff @(posedge axi_clk)begin
  if (audio_sample_valid)begin
    fft_valid = 1;
    fft_data = {audio_data,8'b0};
    fft_data_counter <= fft_data_counter +1;
    fft_last <= fft_data_counter==2047;
  end else begin
    fft_valid = 0;
  end
end



FFT
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• Because of how an FFT is calculated the first known 
values are not the lowest frequency values 

• I blow an extra 1200 cycles to have FFT organize its 
outputs in order of frequency (“Natural Order”)

• Having individual labels 
for each data sample 
could let me do this.



Real-time Audio Spectrograph
• FFT outputs 32 bits of a complex number:
• 16 bits real component
• 16 bits imaginary component
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FFT
Re/Im
Split

Square
Sum

Square 
Root

Microphone Memory

Output 
Display

For spectrograph I only care about the 
magnitude of the frequency components 
(not phase) so I need to do:

𝐑𝐞 𝑿 𝟐 + 𝐈𝐦 𝑿 𝟐



SplitàSquareàSum
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AXI_tvalid

AXI_tdata[31:0]
𝑛"

𝑛"

[31:16]

[15:0]

+

AXI_tlast

AXI_tvalid

AXI_tlast

AXI_tdata[31:0]

AXI_treadyAXI_tready

M S
M S

Probably didn’t need 
this register here, but 
good practice 



SplitàSquareàSum
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Split the real imaginary parts

Square the real, imag parts on one cycle

Sum them on next cycle

Two-Cycle Latency Pipeline



Real-time Audio Spectrograph
• FFT outputs 32 bits of a complex number:
• 16 bits real component
• 16 bits imaginary component
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FFT
Re/Im
Split

Square
Sum

Square 
Root

Microphone Memory

Output 
Display

For spectrograph I only care about the 
magnitude of the frequency components 
(not phase) so I need to do:

𝑹𝒆 𝑿 𝟐 + 𝐈𝐦 𝑿 𝟐



CORDIC
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• Generalized Mathematical operations (mostly trig 
and hyperbolics, but square roots too), done using 
only adds, subtracts, shifts, and some lookups

• Basically works by guessing and checking in 
iteratively smaller leaps to arrive at answer!

• Is really cool: https://en.wikipedia.org/wiki/CORDIC

https://en.wikipedia.org/wiki/CORDIC


CORDIC Configure…specify 
input/output size
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Real-time Audio Spectrograph
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FFT
Re/Im
Split

Square
Sum

Square 
Root

Microphone Memory

Output 
Display• What happens if one part can’t process data as 

quickly as another one generates it?  
• Hopefully the backpropagation of READY over an 

AXI bus should help with this, but might be good to 
add some breathing room 



First-In-First-Out (FIFO)
• An ordered temporary holding tank of data
• Made of Two-port BRAM with a few pointers (like 

C-style pointers) variables
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FIFOUpstream provides
data_in

Downstream reads
data_out

data

FIFOUpstream provides
data_in

Downstream busy
Can’t read out
data_out

data builds up (but not lost)

Step 1:

Step 2:

Step 2:
FIFOUpstream provides

data_in
Downstream busy
Can read out
data_out

Downstream catches up



FIFOs

• If upstream produces measurements at 100 MHz 
and downstream processes at 50 MHz, FIFOs will 
not help!
• They only help to resolve momentary buildups of 

data!
• The FFT doesn’t periodically generate output:
• Much of runtime its output is silent and THEN it 

generates a burst of data
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FFT Data Output
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silent data burst



AXI4S FIFO
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AXI4S FIFO
• Added in between 

because my original 
square version was 
blocking and not 
pipelined
• Switched to fully 

pipelined mode



Real-time Audio Spectrograph
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Do we need a FIFO here?

• No. Our Square root is 
maximally pipelined so it 
can accept data on every 
clock cycle.
• I put it in as example 

here. 
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• If running low on resources and made CORDIC 
minimal hardware footprint (so worse throughput) 
a FIFO could help data buildup from FFT burst.



Real-time Audio Spectrograph
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Two Port BRAM
• Calculations Written In as 

they are created
• Calculations Read Out as 

needed for video display
• Example of a frame-buffer
• Avoids having to synchronize 

FFT generation too tightly 
with video drawing week 05)
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2048 X 32 bit Memory

Why 2048?  There’s 2048 FFT values to store!
Why 32 bit?  Each magnitude is 32 bits

xilinx_true_dual_port_read_first_2_clock_ram #(
  .RAM_WIDTH(32),
  .RAM_DEPTH(2048))
  frame_buffer (
  //Write Side (148.5 MHz)
  .addra(addr_count),
  .clka(axi_clk), 
  .wea(sqrt_valid),
  .dina({8'b0,sqrt_data}),
  .ena(1'b1),
  .regcea(1'b1),
  .rsta(btnd),
  .douta(),
  //Read Side (74.25 MHz)
  .addrb(draw_addr+3), //lazy pipelining
  .dinb(16'b0),
  .clkb(pixel_clk),
  .web(1'b0),
  .enb(1'b1),
  .rstb(btnd),
  .regceb(1'b1),
  .doutb(amp_out)
);



Use AXI if you need a bus

• There’s some somewhat decent critiques of the AXI 
protocol…
• But usually most boil down to incomplete 

compliance of particular modules…
• Even in 6.S965 (6.205++) we found some AMD/Xilinx IP 

is not actually AXI compliant

• It is pretty well thought out tbh, so don’t 
necessarily assume you can do better, especially in 
this class.
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74.25 MHz clock domain

Video Memory
• Two Port Block RAM:

• Each side separately clocked!
• Don’t have to worry about running upstream at video clock 

rate!
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BRAM

addrb
clk_pixel

data_out

addra

clk_axi

data_out

148.5 MHz clock domain



Real-time Audio Spectrograph
• The last step!
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Display Output
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hcount

vcount

1024

768



Sine Waves In
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time (s)

am
pl

itu
de

T=1/f

*The square waves in later



Cat
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Ignore that line…I had a pipelining issue



Me
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Beyoncé
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20th Century Fox
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Celine Dion
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Are we good on timing?

• Report say, “yes”

Timing Report

Slack (MET) :             1.005ns  (required time - arrival time)
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From post_route_timing.rpt



Resource Usage?
• Quite a bit
2. Slice Logic Distribution
---------------------------

+--------------------------------------------+------+-------+------------+-----------+-------+
|                  Site Type                 | Used | Fixed | Prohibited | Available | Util% |
+--------------------------------------------+------+-------+------------+-----------+-------+
| Slice                                      | 1304 |     0 |          0 |      8150 | 16.00 |
|   SLICEL                                   |  828 |     0 |            |           |       |
|   SLICEM                                   |  476 |     0 |            |           |       |
| LUT as Logic                               | 2524 |     0 |          0 |     32600 |  7.74 |
|   using O5 output only                     |    7 |       |            |           |       |
|   using O6 output only                     | 1719 |       |            |           |       |
|   using O5 and O6                          |  798 |       |            |           |       |
| LUT as Memory                              |  584 |     0 |          0 |      9600 |  6.08 |
|   LUT as Distributed RAM                   |    0 |     0 |            |           |       |
|   LUT as Shift Register                    |  584 |     0 |            |           |       |
|     using O5 output only                   |   29 |       |            |           |       |
|     using O6 output only                   |  199 |       |            |           |       |
|     using O5 and O6                        |  356 |       |            |           |       |
| Slice Registers                            | 5356 |     0 |          0 |     65200 |  8.21 |
|   Register driven from within the Slice    | 3574 |       |            |           |       |
|   Register driven from outside the Slice   | 1782 |       |            |           |       |
|     LUT in front of the register is unused | 1128 |       |            |           |       |
|     LUT in front of the register is used   |  654 |       |            |           |       |
| Unique Control Sets                        |   51 |       |          0 |      8150 |  0.63 |
+--------------------------------------------+------+-------+------------+-----------+-------+
* * Note: Available Control Sets calculated as Slice * 1, Review the Control Sets Report for more 
information regarding control sets.
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From post_place_util.rpt



3. Memory
---------

+-------------------+------+-------+------------+-----------+-------+
|     Site Type     | Used | Fixed | Prohibited | Available | Util% |
+-------------------+------+-------+------------+-----------+-------+
| Block RAM Tile    |    8 |     0 |          0 |        75 | 10.67 |
|   RAMB36/FIFO*    |    2 |     0 |          0 |        75 |  2.67 |
|     RAMB36E1 only |    2 |       |            |           |       |
|   RAMB18          |   12 |     0 |          0 |       150 |  8.00 |
|     RAMB18E1 only |   12 |       |            |           |       |
+-------------------+------+-------+------------+-----------+-------+

4. DSP
------

+----------------+------+-------+------------+-----------+-------+
|    Site Type   | Used | Fixed | Prohibited | Available | Util% |
+----------------+------+-------+------------+-----------+-------+
| DSPs           |   17 |     0 |          0 |       120 | 14.17 |
|   DSP48E1 only |   17 |       |            |           |       |
+----------------+------+-------+------------+-----------+-------+
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Resource Usage?
• Not much!

From post_place_util.rpt



Make it much better

• This was a 2048 point FFT at 19 kHz
• It is a very poorly designed pipeline
• There’s a FIFO for no reason.
• We use lots of extra bits because I was lazy
• The FFT is so ridiculously over-performant that it isn’t 

even funny

• We could likely get same or better performance out 
of system that uses far fewer resources on almost 
all fronts.
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How Quick to calculate FFT?
• Collect 2048 audio measurements :
• @~19 KHz. Every 52 microseconds (so ~107 milliseconds total)

• Compute 2048 point FFT:
• 6273 clock cycles @ 148.5MHz (42.25 μs )

• Square and Sum:
• 2 cycles @ 148.5MHz (13.48 ns)

• FIFO:
• 3 cycles @ 148.5MHz overhead latency (20 ns)

• Root:
• 26 cycles @ 148.5 MHz (175 ns)
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How Quick?...Uselessly Quick
• After audio clip captured, FFT generated and ready to render in 

42.5 μs
• Our audio samples are measured every 52 μs and and a full 

frame of samples is captured every 100 milliseconds.
• This is a differential of like 2000x
• We can calculate our entire FFT in between individual audio 

samples, 
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time

Ta
sk

Audio Collection

Calculations
(not to scale…it is even better)



No need to have fully-pipelined FFT for 
this application
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• Let’s say we need to compute F(F(F(X))). Do we 
build our hardware like this?:

• Or like this:?

F F FX

FSM that does 
F on cycle 1, 
F on cycle 2, 
F on cycle 3

Outputs X after

X

Latency: 3*Tclk
Throughput: 1/ Tclk
Uses more resources

Latency: 3*Tclk
Throughput: 1/ (3*Tclk)
Likely uses fewer resources



Where Could We Go From Here?
• Cut the FIFO (I put it in just for fun)
• Size the IP for the actual data we’re handling:
• a lot of the systems are set at 16 bits but our audio 

samples are only 7 bits originally
• The CORDIC is uselessly large

• Pick a better FFT:
• Meaning…
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This is the Great Tradeoff!
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F F FX
More resources,
Better Throughput
Same Latency

FSM that does 
F on cycle 1, 
F on cycle 2, 
F on cycle 3

Outputs X after

X

OR

Fewer resources,
Worse Throughput
Same Latency

• Base on what you need for the design!



Pick Better FFT Implementation
• We can get 16 

times the 
frequency 
resolution
• For the same 

resource usage 
if we modify 
things to take 
advantage of 
slow data 
production 
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Pick Better FFT Implementation
• We can get 16 times the frequency resolution and 

use ¼ the DSP blocks at the expense of:
• Using 3X the BRAM, (still fine)
• Having a latency of 3.764 ms (still totally fine)
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And tons of other optimizations!!!



Different Directions
• Data Propagates downstream:

• Ready propagates upstream:
• “Back Pressure”
• Allow a backup downstream to potentially pause the 

entire system at the start to prevent traffic jams!
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Usefulness of Metadata or markers
• If data takes a really long time you can also activate a 

USER field to send along with DATA
• USER values will be unchanged but will get pipelined 

properly along with the corresponding data they’re sent 
in with
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G HF

DATA, USER
Some time later, USER1 and 
F(G(H(DATA1))) appear.  Use 
the USER data to interpret 
the function output

USER1 DATA1 go in



Next Week

• No class on Tuesday (holiday):
• Thursday we’ll do some signal processing concepts 

and that will likely bleed into the following Tuesday
• Then one or two more lectures and we’re done. 

   

10/10/24 https://fpga.mit.edu/6205/F24 109



Final Project TAs from 2022
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Sources

• “AMBA® AXITM and ACETM Protocol Specification”, ARM 2011
• “The Zynq Book”, L.H. Crockett, R.A. Elliot, M.A. Enderwitz, and R.W. 

Stewart, University of Glasgow
• “Building Zynq Accelerators with Vivado High Level Synthesis” Xilinx 

Technical Note
• Some material from ECE699 Spring 2016 

https://ece.gmu.edu/coursewebpages/ECE/ECE699_SW_HW/S16/
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This is the thing right here…the 

spec sheet/manual is 

surprisingly good!!

Crack open the AXI spec sheet with a few data 
sheets for some Xilinx IP cores (like the CORDIC, 
FFT, etc…) and you should be able to start making 
sense of it. 


