The FPGA, AXI, Etc...

10/10/24

o)

4.7 nfto uf X 4

Al Images Videos Forums Web News

Shopping

Calculator Capacitor Circuit

< AlOverview

4.7 nanofarads (nF) is equal to 0.00047 microfarads (uF): ¢

Unit Value
nF 4.7
uF 0.00047

Here are some other common conversions between nanofarads and
microfarads: 1 nF = 0.001 uF and 0.1 uF =100 nF. ¢

A microfarad is a unit of capacitance that is equivalent to 10-6 farads (F). It is a
moderate unit of capacitance that is commonly used in audio frequency
circuits and utility alternating current (AC). ¢

A nanofarad is one billionth (10-9) of a farad.

Generative Al is experimental. i) on

i More Tools

Learn more

Capacitor uF - nF - pF Conversion Chart - Modelling
Electronics

* uF/ MFD. nF. ... * 0.00TuF / MFD. 1nF. ... * 0.00082uF / MFD.
0.82nF. ... * 0.0008uF / MFD. 0.8nF. ... * 0.0007uF / MFD. 0.7nF.

@) Modelling Electronics

Capacitor uF-nF-pF Conversion Chart - Sarnikon
For example; 0.1uf can be expressed as 100nf or 0.01nF can be
used as 10pf. There are many examples of this type of...

© sarnikon

Farad - Wikipedia
1 nF (nanofarad, one billionth (10-9) of a farad) = 0.000 000
001 F = 0.001 pF = 1000 pF.

W Wikipedia

Show all

https://fpga.mit.edu/6205/F24

Google 4.7 pF tonF x 4 @

Al Images Shopping Videos Forums Web News i More

Calculator Equivalent Capacitor

< AlOverview

4.7 nanofarads (nF) is equal to 4,700 picofarads (pF):

Unit Value
Nanofarads (nF) 4.7
Picofarads (pF) 4,700

To convert nanofarads to picofarads, you can use the formula:

Show more v

Capacitor uF - nF - pF Conversion

uF/ MFD nF pF/ MMFD
0.0000047uF / MFD 0.0047nF 4.7pF (MMFD)
0.000004uF / MFD 0.004nF 4pF (MMFD)
0.0000039uF / MFD 0.0039nF 3.9pF (MMFD)

Tools

Learn more

JustRadios Capacitor uF - nF - pF Conversion Chart
0.0056nF 5.6pF (MMFD) 0.005uF / MFD. 5nF. 5000pF (MMFD)
0.000005uF / MFD. 0.005nF 5pF (MMFD) 0.0047uF / MFD....

4 Ecole de foresterie de Duchesnay

Capacitor uF - nF - pF Conversion Chart - Farnell
Osterreich
@ Farnell Osterreich

10/10/24 https://fpga.mit.edu/6205/F24

Cc 25 google.com

Google 68pFtonF X & @ Q a =@

Al Images Shopping Videos Forums Web News i More Tools

Calculator Equivalent Capacitor
< An Al Overview is not available for this search

Capacitor uF - nF - pF Conversion

uF/ MFD nF pF/ MMFD
0.0000068uF / MFD 0.0068nF 6.8pF (MMFD)
0.000006uF / MFD 0.006nF 6pF (MMFD)
0.0000056uF / MFD 0.0056nF 5.6pF (MMFD)
0.000005uF / MFD 0.005nF 5pF (MMFD)

57 more rows

@ Newark Electronics
https://www.newark.com » uf-nf-pf-capacitor-conversio...

Capacitor uF - nF - pF Conversion Chart | Newark

@ About featured snippets + B Feedback

People also ask

How to convert pF to nF? v

10/10/24 https://fpga.mit.edu/6205/F24 4

Administration

* Week 05 due last night

* Week 06 out after class today (might be delayed by
a couple hours)...it is short.

e two pages

* Week 07 (next week) will involve some
convolution/image processing (regular length)

 Week 08 will be short after that, look at soft
processing cores™

* Then final project time

*that’s the plan anyways

What to do for a Final Project?

* Something that an FPGA would Actually get used
for...
e Codec (mp4, mp3, jpeg, and many others!)
* Accelerators (do some task efficiently)
e Real-time audio processing (today is simple example)
e Graphics
 Signal Processing (graphical or audio)
* Vision (object detection, tracking)
* Prototype CPU, TPU, GPU architectures
* Cryptography
* High Speed Controller
« Communication (ethernet...)
Inference/detection
* Decisions

What to do for a Final Project?

* Something an FPGA would not get used for in real
life:
* Video game...
* Video game...

However if you want to do a video game...

* If you want to do a game, go hard with it:

* Try to explore more FPGA-relevant topics such as:
* 3D graphics?
* Ray-casting
* Video Processing?
* Inference

* Or if you want to make a simple game, then you
really need push it the limits.

Excellent “simple” game

Pacman Extreme

* Used basically all the resources on that FPGA
 Partially through poor planning on their part
 Partially through over-pipelining and over-parallelization

* But the attention to detail and overall depth, was
extreme

* And some poor choices with utilization resulted in
them having to be very clever with how a lot of
aspects of their higher-level design worked out

* Team built supplemental tools to aid in design:

e Kim wrote a javascript app that would make .mem files
of all their custom sprites since she got so sick of making
them manually, for example

Complexity

* The complexity must come from stuff you do!

* You cannot take week 05’s stuff and week 07’s stuff
and glue them together and have an A-level
project.

e Using UART to talk to a device that "does wifi” does
not actually have much technical merit...and does

not mean you made a wifi system.

* The final project will be graded on what you did
and contributed.

Chip 8 Emulator

10/10/24 https://fpga.mit.edu/6205/F24 12

Chip 8 Emulator

* Chip8is like 50 years old/early attempt at a virtual
machine/game engine

* Has a large online following because it is weird and
is a great first emulator to write since the
instruction set is very tiny (and because once you
get it working you have tons of stuff to test on it)

* Many people write emulators and write games for
it.

* This team built an emulator and then did all the
emulator tuning stuff and then ran a bunch of them
in parallel (FPGA strength)...something most people
can’t do with a software simulation/emulation

More Advanced Pipelining

This is the Great Tradeoff!

More resources,
X — > Better Throughput
A A A Same Latency

OR
FSM that does Fewer resources,
X Fon °V°:e > |, Worse Throughput
on cycle 2,
F on cycle 3 A Same Latency
Outputs X after

* Base on what you need for the design!

Pipelining Il

* As we make larger-level systems

) 4 \ [)
—| 6 |+ =~ >
—— . / \\ J

* As we make larger-level systems we need to
pipeline data through systems which might take
varying amounts of time

* And the cycles of latency can become 1000’s of
cycles

Pipelining Il
* Mixing our Major/Minor FSMs with Pipelining!

* Need a way to send data downstream, but also
convey preparedness upstream

N bits N bits DATA N bits

CIOCK source

10/10/24 https://fpga.mit.edu/6205/F24 17

What is IP?

e Often times you’ll hear people call a module they made
“IP”...short for “intellectual property”

* These basically let you specify an extremely parameterizable
module

* |In Vivado there are IP which you can instantiate.

* There’s a ton of effort that goes into enabling a particular
circuit in a modifiable way

* Some companies actually do this:
* Create a particular design-development platform
* Example: a pipelined algorithm implementation
* Sell/lease to Xilinx

 When people use your design process in their products they give
you licensing fees.

What are some attributes of
extensible modules?

* Well documented, or at least some attempt at
documentation, or at least the ability to read the
source code

e Speak a common language...
* Accept inputs in a commonly accepted way
* Generate results in a commonly accepted way

 \We need standards!

* There’s lot of neat IP (FFT, more

AX| Eve rywhere complicated math, etc...)

e Xilinx IP and many others
generally use an AXI
communication protocol

Search:
F AXI4-Stream Data width Comenrnr
F AX|4-Stream Interconnect
¥ AXI4-Stream Protocol Che¢ p X 0 :
¥ AXI4-Stream Register Slice e e, M_AXIS_DATA — [
AXI 7+ AX14-Stream Subset Conve = R m_axis_data_tdata[31:0] p =
= p s axis_data tdata[31:0] e
8 AX|4'Stream SW|tCh AXI - S_axis_data_uast m'éx'Z't: U‘ adSt : &
m_axis_da ea -
¥ AXI4-Stream to Video Out < s_axis_data_tready sl
. . . P s_axis_data_tvalid = 7 =
AX|4-Stream Verification IP : S-A):S—CONEIE event frame started m= AX|
B : ; e event_tlast_unexpected =
¥ AX| AHBLite Bridge = P s_axis_config_tdata[15:0] - T p. ;
= : - i event_tlast_missing =
AXl APB Bridge 7] 2 contg. treecly event_status_channel_halt
ven u nn o
= AXI BRAM Controll - P s_axis_config_tvalid % A0S 7
ontroller Ik_ = = event_data in_channel halt =
- ac
ENTER to select, ESC to cance ™

. 7

Fast Fourier Transform

10/10/24 https://fpga.mit.edu/6205/F24 20

Advanced Microcontroller Bus
Architecture (AMBA)

* \Version 1 released in 1996 by ARM

e 2003 saw release of Advanced eXtensible Interface
(AXI3)

e 2011 saw release of AXI4

* There are no royalties affiliated with AMBA/AXI so
they’re used a lot.

* [t is a general, flexible, and relatively free*
communication protocol for development

https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture

AXI Life

* A lot of modules written for FPGA or ASIC
application build towards AXI interfaces

* Doing this allows things to be more plug-and-play
than if you rolled your own

* So we should go over how it works!

Three General Flavors of AXl4

e AXI4 (Full AXI): For memory-mapped links.
Provides highest performance.

1. Address is supplied
2. Then a data burst transfer of up to 256 data words

* AXI4 Lite: A memory-mapped simplified link

supporting only one data transfer per connection
(no bursts). (also restricted to 32 bit addr/data)

1. Address is supplied
2. One data transfer

* AXI4 Stream: Meant for high-speed streaming data
e Can do burst transfers of unrestricted size
* No addressing

* Meant to stream data from one device to another
quickly on its own direct connection

From the Zyng Book

Nave.

e one device labeled the "Master” and

* one labeled the “Slave”

* the Master controls the Slave(s) in these settings.

Note on Terminology

* |n device-to-device communication, it is common to

* Trace history of this naming terminology back to 1940s

* There has been successful transition to Controller and

Peripheral in some areas
e Lab 2!!!

Controller

data_out
data_in
dclk

cs

Peripheral

COPT
CIPO

DCLK

CS

data_in
data_out
dclk

cs

Note on Terminology

* The Xilinx AXI protocol uses this Master/Slave
terminology

 And continues to do so into 2024.

* In 6.205 I'm going to just use Main/Secondary or just
“M” and “S”, but the docs and even some port names
distinctly use Master/Slave.

* This way we can keep using the datasheets.
* And then continue to push AMD/Xilinx to change it.

Others than AXI|?

* There are other generalized bus protocols out
there:
* Wishbone, some Open cores use this
e Avalon: used in some Altera sets (proprietary)

* AXl is a good one to be familiar with, not just
because it is used in Xilinx stuff a lot....so that’s
what we’ll look at.

So the AXI Protocol!

* Made up of wires
* These wires serve specific purposes.

e Some are universal to all AXI4S channels, and
others are specific

AXI Clock

ACLK
From clock source

* Everything in system will run off of AXI clock usually
called ACLK in documentation

* No combinatorial paths between inputs and outputs.
Everything must be registered.

* All signals are sampled on rising edge

AXI Clock

ACLK

From ClOCK SOUICE e

From synchronous reset source ARSTn

* Everything in system will run off of AXI clock usually
called ACLK in documentation

* No combinatorial paths between inputs and outputs.
Everything must be registered.

* All signals are sampled on rising edge

* AXI modules should also have Reset pins. AXI| work
ACTIVE LOW so the Reset pin is usually called ARSTn or
ARESETn (meaning it is normally high)

Valid and Ready VALID

ACLK
From ClOCK SOUICE e

From synchronous reset source ARSTn

 All of AXI uses the same handshake procedure:
* The creator of a data “M” generates a VALID signal

* The destination of data “S” generates a READY signal

* Transfer of data only occurs when both are high

e Both M and S Devices can therefore control the flow of
their data as needed

<-INFO->

Everything Else...

ACLK
From cloCk SOUICE emmm——

ARSTn

From synchronous reset source

* Everything else is information and depends on what is
needed in situation. Could be:
e Address
* Data
 Metadata

* Other specialized wires/sets of wires like:

* STRB (used to specify which bytes in current data step are valid, sent
by Main along with data payload to Secondary)

e RESP (sort of like a status)
» LAST (sent to indicate the final data clock cycle of data in a burst)

10/10/24 https://fpga.mit.edu/6205/F24 31

Generalized Transaction

* All Channel Interactions follow same high-level
structure

e Data is handed off IF AND ONLY IF VALID and READY
are high on the rising edge of the clock

* If that happens, both parties must realize that data
transfer has happened

Keep in mind this could
be 64 parallel wires of

1’s and O’s of info or 8 A 5
bytes for example... ek L [L. I 1L T 1 |
Or it could be X ¥
. INFORMATION
something else VALID JF— \
READY Z/ QS

Figure A3-4 VALID with READY handshake

VALID then READY

* Valid can be high first
* Then ready can show up later
* Only when both are high is data exchanged

Data transferred on this edge

T T2 T/
ACLK | |
INFORMATION X)
VALID /i \\
READY I \\

Figure A3-2 VALID before READY handshake

10/10/24 https://fpga.mit.edu/6205/F24 33

READY then VALID

* Ready can be high first
* Then Valid can show up later
* Only when both are high is data exchanged

Data transferred on this edge

T1 T2 T3
ACLK | |
INFORMATION X)
VALID I \
READY /i \

Figure A3-3 READY before VALID handshake

10/10/24 https://fpga.mit.edu/6205/F24 34

READY WITH VALID

* Ready and Valid come high at the same time

* Totally allowed
* Data is exchanged on that clock edge

Data transferred on this edge

ACLK | |
INFORMATION X X
VALID ﬂ “
READY ﬂ “

Figure A3-4 VALID with READY handshake

10/10/24 https://fpga.mit.edu/6205/F24 35

Generalized Transaction

Table A3-1 Transaction channel handshake pairs

° Can have mu|t|p|e Channels Transaction channel Handshake pair

° Th ey a | | fol IOW t h e same Write address channel AWVALID, AWREADY
S peC t h ou g h Write data channel WVALID, WREADY

i Write response channel BVALID, BREADY
* All Channel Interactions fite response chann

follow same high-level
St ru Ct ure Read data channel RVALID, RREADY

Read address channel ARVALID, ARREADY

10/10/24 https://fpga.mit.edu/6205/F24 36

Other Things to Keep in Mind

* the VALID signal of the AXI interface sending
information must not be dependent on the READY
signal of the AXI interface receiving that information

e an AXl interface that is receiving information may wait
until it detects a VALID signal before it asserts its
corresponding READY signal.

* |n other words READY can depend on VALID, but not
the other way around.

e Failure to adhere to this can lead to what’s known as
“dead-lock”

* Fail to Follow these rules and could have devices wait
infinitely.
* Like when two people keep going “no, after you” at a door.

Three General Flavors of AXl4

ﬁAXI4 (Full AXI): For memory-mapped links. \
Provides highest performance.

1. Address is supplied
2. Then a data burst transfer of up to 256 data words

* AXI4 Lite: A memory-mapped simplified link

supporting only one data transfer per connection
(no bursts). (also restricted to 32 bit addr/data)

1. Addressis supplied
2. One data transfer /

* AXI4 Stream: Meant for high-speed streaming data
e Can do burst transfers of unrestricted size
* No addressing

* Meant to stream data from one device to another
quickly on its own direct connection

10/10/24 https://fpga.mit.edu/6205/F24 From the Zynq Book 38

Full AXI and AXI Lite

* Meant for back-and-forth communication
* Request-response type communication

* Memory-mapped interfaces Ok Wil do”

“Run this command”

From cloCk SOUICE emmmmmm——

ARSTn

From synchronous reset source

10/10/24 https://fpga.mit.edu/6205/F24 39

Full AXI and AXI Lite

* Meant for back-and-forth communication
* Request-response type communication

* Memory-mapped interfaces 1986"

“What is the value at
Addres 0x123457?”

From cloCk SOUICE emmmmmm——

ARSTn

From synchronous reset source

10/10/24 https://fpga.mit.edu/6205/F24 40

Full AXl and AXI Lite Read

* Will involve multiple channels (Each with their own
ready, valid, clock, data path, etc...)

A Read interface will have two AXI channels:

* One that transfers address info from Master to Slave
* One that transfers response data from Slave to Master

Read address channel

Address
and control

—_—
Master Slave

interface interface
Read data channel

Read Read Read Read
data data data data

“——— —— —— —

Full AXI and AXI Lite Write

* Will involve multiple channels (Each with their own
ready, valid, clock, data path, etc...)

* A Write interface will have three AXI channels:
* One that transfers address info from Master to Slave
* One that transfers data to write from Master to Slave
* One that transfers response data from Slave to Master

Write address channel

Address
and control

—

Write data channel

Master Write Write Write Write Slave
interface data data data data interface

Write response channel

Write
response

«—

All Channels are AXI

* Then for specific tasks, they can have specific
additional signals

* Think of generic AXI as a root class

|H

e The “read address channel” is a subclass of

standard AXI

Full AXl and AXI Lite Read

* Will involve multiple channels (Each with their own
ready, valid, clock, data path, etc...)

A Read interface will have two AXI channels:

* One that transfers address info from Master to Slave
* One that transfers response data from Slave to Master

Read address channel

Address
and control

—_—
Master Slave

interface interface
Read data channel

Read Read Read Read
data data data data

“——— —— —— —

Read Address Chanel

Table A2-5 Read address channel signals

Signal Source Description

ARID Master Read address ID. This signal is the identification tag for the read address group of
signals. See Transaction ID on page A5-77.

Payload

ARLEN Master Burst length. This signal indicates the exact number of transfers in a burst. This
changes between AXI3 and AXI4. See Burst length on page A3-44.

ARSIZE Master Burst size. This signal indicates the size of each transfer in the burst. See Burst size on
page A3-45.

ARBURST Master Burst type. The burst type and the size information determine how the address for each
transfer within the burst is calculated. See Burst type on page A3-45.

ARLOCK Master Lock type. This signal provides additional information about the atomic characteristics
of the transfer. This changes between AXI3 and AXI4. See Locked accesses on
page A7-95.

ARCACHE Master Memory type. This signal indicates how transactions are required to progress through
a system. See Memory types on page A4-65.

ARPROT Master Protection type. This signal indicates the privilege and security level of the transaction,
and whether the transaction is a data access or an instruction access. See 4Access
permissions on page A4-71.

ARQOS Master Quality of Service, QoS. QoS identifier sent for each read transaction. Implemented
only in AXI4. See QoS signaling on page A8-98.

ARREGION Master Region identifier. Permits a single physical interface on a slave to be used for multiple
logical interfaces. Implemented only in AXI4. See Multiple region signaling on
page A8-99.

ARUSER Master User signal. Optional User-defined signal in the read address ch:

........ n_A i

annel.

ARVALID Master Read address valid. This signal indicates that the channel is signaling valid read
c O R E address and control information. See Channel handshake signals on page A3-38.

ARREADY Slave Read address ready. This signal indicates that the slave is ready to accept an address
and associated control signals. See Channel handshake signals on page A3-38.

10/10/24

45

The Read Data Channel:

Table A2-6 Read data channel signals

Signal Source Description

RID Slave Read ID tag. This signal is the identification tag for the read data group of signals
oenerated by the slave. See Transaction ID on page A5-77.

Payl oad RDATA Slave Read data.

RRESP Slave Read response. This signal indicates the status of the read transfer. See Read and write
response structure on page A3-54.

Supplemental
RLAST Slave Read last. This signal indicates the last transfer in a read burst. See Read data channel on Stu f_f
page A3-39.

RUSER Slave User signal. Optional User-defined signal in the read data channel.

DDOTIEd On N AXI4 er-delined Onagling On Nago

RVALID Slave Read valid. This signal indicates that the channel is signaling the required read data. See
Channel handshake signals on page A3-38.

CORE

RREADY Master Read ready. This signal indicates that the master can accept the read data and response
information. See Channel handshake signals on page A3-38.

10/10/24 https://fpga.mit.edu/6205/F24 46

Full AXI and AXI Lite Write

* Will involve multiple channels (Each with their own
ready, valid, clock, data path, etc...)

* A Write interface will have three AXI channels:
* One that transfers address info from Master to Slave
* One that transfers data to write from Master to Slave
* One that transfers response data from Slave to Master

Write address channel

Address
and control

—

Write data channel

Master Write Write Write Write Slave
interface data data data data interface

Write response channel

Write
response

«—

EFach channel has its own subset of

“stuft” that goes along with those
core signals shared by all

For example, the Write Data Channel ("W” channel)

Signal Source Description

WID Master Write ID tag. This signal is the ID tag of the write data transfer. Supported only in AXI3.
See Transaction ID on page AS-77.

Payload Jwpata Maser Write data.

WSTRB Master Write strobes. This signal indicates which byte lanes hold valid data. There is one write
strobe bit for each eight bits of the write data bus. See Write strobes on page A3-49.

Supplemental

WLAST Master Write last. This signal indicates the last transfer in a write burst. See Write data channel Sth_f
on page A3-39.

WUSER Master User signal. Optional User-defined signal in the write data channel.

........ n A A

WVALID Master Write valid. This signal indicates that valid write data and strobes are available. See
CORE Channel handshake signals on page A3-38.

WREADY Slave Write ready. This signal indicates that the slave can accept the write data. See Channel
handshake signals on page A3-38.

10/10/24 https://fpga.mit.edu/6205/F24 48

Write Address Channel

Payload

CORE

10/10/24

Table A2-2 Write address channel signals

Signal

Source

Description

AWID

Master

Write address ID. This signal is the identification tag for the write address group
of signals. See Transaction ID on page A5-77.

Master

Burst length. The burst length gives the exact number of transfers in a burst. This
information determines the number of data transfers associated with the address.

This changes between AXI3 and AX14. See Burst length on page A3-44.

AWSIZE

Master

Burst size. This signal indicates the size of each transfer in the burst. See Burst size
on page A3-45.

AWBURST

Master

Burst type. The burst type and the size information, determine how the address for
each transfer within the burst is calculated. See Burst type on page A3-45.

AWLOCK

Master

Lock type. Provides additional information about the atomic characteristics of the
transfer. This changes between AXI3 and AXI4.

See Locked accesses on page A7-95.

AWCACHE

Master

Memory type. This signal indicates how transactions are required to progress
through a system. See Memory types on page A4-65.

AWPROT

Master

Protection type. This signal indicates the privilege and security level of the
transaction, and whether the transaction is a data access or an instruction access.
See Access permissions on page A4-71.

AWQOS

Master

Quality of Service, QoS. The QoS identifier sent for each write transaction.
Implemented only in AXI4. See QoS signaling on page A8-98.

AWREGION

Master

Region identifier. Permits a single physical interface on a slave to be used for
multiple logical interfaces.

Implemented only in AXI4. See Multiple region signaling on page A8-99.

AWUSER

Master

Master

User signal. Optional User-defined signal in the write address channel.
Supported only in AXI4. See User-defined signaling on page A8-100.

Write address valid. This signal indicates that the channel is signaling valid write
address and control information. See Channel handshake signals on page A3-38.

Slave

Write address ready. This signal indicates that the slave is ready to accept an
address and associated control signals. See Channel handshake signals on
page A3-38.

49

Write Response

Table A2-4 Write response channel signals

Signal Source Description
BID Slave Response ID tag. This signal is the ID tag of the write response. See Transaction ID on
page A5-77.

Payload

BUSER Slave User signal. Optional User-defined signal in the write response channel. Supported only

Slave Write response valid. This signal indicates that the channel is signaling a valid write
response. See Channel handshake signals on page A3-38.

CORE

Master Response ready. This signal indicates that the master can accept a write response. See
Channel handshake signals on page A3-38.

10/10/24 https://fpga.mit.edu/6205/F24

Three General Flavors of AXl4

e AXI4 (Full AXI): For memory-mapped links.
Provides highest performance.

1. Address is supplied
2. Then a data burst transfer of up to 256 data words

* AXI4 Lite: A memory-mapped simplified link

supporting only one data transfer per connection
(no bursts). (also restricted to 32 bit addr/data)
1. Addressis supplied
2. One data transfer

/"« AXI4 Stream: Meant for high-speed streaming data)
e Can do burst transfers of unrestricted size
* No addressing

* Meant to stream data from one device to another
\ quickly on its own direct connection

J

51

10/10/24 https://fpga.mit.edu/6205/F24 From the Zynq Book

In a AXI Streaming Situation

e Uni-Directional Movement of data
* No call-response

* No memory-mapped N bits
DATA

* Just streaming data

ACLK

From clock SOUrCe s

From synchronous reset source ARSTn

10/10/24 https://fpga.mit.edu/6205/F24

52

AX| Stream

* Mixing our Major/Minor FSMs with Pipelining!

* Need a way to send data downstream, but also
convey preparedness upstream

N bits N bits DATA N bits
DATA DATA
F VALID G VALID H
CLK CLK CLK
From
clock source CLK

From synchronous reset source ARSTn

10/10/24 https://fpga.mit.edu/6205/F24 53

Complexity

* |n terms of wires and options, Full-AXI
is the most complex Full-AX|4

e AXI-LITE has a lot less options (single 1
data beat so all the supplemental stuff
that specifies burst characteristics gets Ax|-L|TE

skipped)

* AXI-STREAM has even less...basically a 1

high-speed write channel (Few]
options), but often needs that extra AXI-STREAM

TLAST signal

()

Microphone

. J

* Let’s do an example!!l

FFT

\
Re/Im

Split
Square
Sum

Real-time Audio Spectrograph

Square
Root

Real-time Audio Spectrograph

* Collect audio from microphone (use Analog-to-
digital Converter)

* Convert time-series data to frequency series
* Take Magnitude of it

* Store it in memory

* Render it on screen as a bargraph

* RESULT:

* Render the energy of the frequency spectrum in real
time

Real-time Audio Spectrograph

r N\ N\ 7 N\ 7
Re/Im
Microphone |ep FFT e Split e Square
Square Root
\. J __J LWBum J
* On-board PDM microphone

* We used off-board one this year, but works
somewhat similarly

()

Microphone

\. J

)

FFT

\.

N
Re/Im

Split
Square
Sum

J

Real-time Audio Spectrograph

(

Square
Root

* Computer the Fourier Transform of a Time Series of
audio measurements and do so in real time

Fourier Transform

* Convert a time-domain signal:

>
W
N
f

amplitude

* Into its frequency domain representation:

frequency (Hz)

>

amplitude

f

Fast Fourier Transform

* A computationally efficient means of generating the Fourier
Transform

* We’ll do a 2048 point Fourier Transform (pretty small)

* The bigger the N, the “better” the Fourier transform, but the
number of multlply adds you need to will scale with N2, .this
becomes problematic very quickly

* A Fast Fourier Transform is a class of algorithm that takes
advantage of symmetries/periodicities in all of the
multiplications that you do in order to simplify the overall
work.

* These simplifications allow the work to scale with Nlog(N)

* Further pipelining and parallel structures in hardware allow
you to stream into an FFT. Lots of repetition in FFT...great for
pipelining vs. Blocking FSM debate/choice

Fast Fourier Transform

xfft_0

. ™

M AXIS DATA +

+ S AXIS DATA event frame started

4+ S AXIS CONFIG
P s axis config tvalid

event tlast unexpected
event _tlast _missing

| L

Ik event status channel halt
ac
event data in_channel halt

event data out channel halt

Fast Fourier Transform

10/10/24 https://fpga.mit.edu/6205/F24

i Re-customize IP x

| Fast Fourier Transform (9.1) /
© Documentation IP Location

IP Symbol Implementation Ded » = Component Name xfft_0

Show disabled ports
Configuration Implementation | Detailed Implementation

]
Number of Channels

Transform Length 1024 v

Architecture Configuration
Target Clock Frequency (MHz) 250 [1-1000]

Target Data Throughput (MSPS) |50 [1-1000]

Architecture Choice

M_AXIS_DATA 4+
event_frame_started
4 S_AXIS_DATA event_tlast_unexpected
Z|4 S_AXIS_CONFIG event_tlast_missing
aclk event_status_channel_halt
event_data_in_channel_halt

Automatically Select
® Pipelined, Streaming I/O

Radix-4, Burst /0

event_data_out_channel_halt

Radix-2, Burst /0

t Radix-2 Lite, Burst /O

Run Time Configurable Transform Length

0K | ‘ Cancel

All the way up to 65536 point FFT (theoretically)...never
built one myself, but it should be possible

10/10/24 https://fpga.mit.edu/6205/F24

FET

Configuration Implementation | Detailed Ir

Number of Channels

Transform Length 1024 v

Architecture Configuration
Target Clock Frequency (MHz) 250

Target Data Throughput (MSPS) |50

Architecture Choice

Automatically Select
*) Pipelined, Streaming I/0
Radix-4, Burst 1/0

Radix-2, Burst I/0

Radix-2 Lite, Burst /O

e Pipelined, Streaming I/O — Allows continuous data processing.

e Radix-4, Burst I/O - Loads and processes data separately, using an iterative approach. It is smaller in size than
the pipelined solution, but has a longer transform time.

¢ Radix-2, Burst I/O - Uses the same iterative approach as Radix-4, but the butterfly is smaller. This means it is
smaller in size than the Radix-4 solution, but the transform time is longer.

¢ Radix-2 Lite, Burst I/O - Based on the Radix-2 architecture, this variant uses a time-multiplexed approach to
the butterfly for an even smaller core, at the cost of longer transform time.

Figure 2 illustrates the trade-off of throughput versus resource use for the four architectures. As a rule of thumb,
each architecture offers a factor of 2 difference in resource from the next architecture. The example is for an even
power of 2 point size. This does not require the Radix-4 architecture to have an additional Radix-2 stage.

All four architectures may be configured to use a fixed-point interface with one of three fixed-point arithmetic
methods (unscaled, scaled or block floating-point) or may instead use a floating-point interface.

Resource

Radix-2
" Burstli0

" Radix-2ite
Burst II0

Radix-4
Burst IO

Streaming
architecture

Figure 2: Resource versus Throughput for Architecture Options

https://www.xilinx.com/support/documentation/ip_documentation/xfft_ds260.pdf

10/10/24

https://fpga.mit.edu/6205/F24

Throughput

63

F FT Late N Cy R 1024 FFT on 100 MHz clock...

Latency

Transform Length Transform Cycles Latency(ps)
1024 2191 21.910

* For this year...

e At the clock | ran it: 148.5MHz that is:
e 6273 clock cycles @ 148.5MHz (42.25 ps)

* Needs all 2048 input samples before it starts outputting

TLAST

* Since we're sending 2048 samples one after the
other (serially) we need a way to tell the FFT we’re
at the end of a frame!

* Use a LAST signal (tells FFT we’re on last sample)
N bits

Audio

Sampler

From clock source

10/10/24 https://fpga.mit.edu/6205/F24 65

TLAST Is iImportant

 Since data is sent serially, TLAST allows us to know
where to place data with respect to other data

TDATA

Pixel 921595 RGB

Pixel 921596 RGB
Pixel 921597 RGB
Pixel 921598 RGB
Pixel 921599 RGB
Pixel 000000 RGB
Pixel 000001 RGB

Pixel 000002 RGB

>— Data from frame n

1

A\

Progression of time

clefel-folele] of ruast

> Data from frame n+1

F FT | n p Ut 7 always_ff @(posedge axi_clk)begin

if (audio_sample_valid)begin
fft_valid = 1;
fft_data = {audio_data,8'b0};

If audio sample ready, fft_data_counter <= fft_data_counter +1;

give it a sample, fft_last <= fft_data_counter==2047;
i ’ end else begin
Otherwise don’t Fft valid = o;
end
\'end

FFT Instance:

xfft_0 my_fft (.aclk(clk_100mhz), .s_axis_data_tdata(fft_data),
.S_axis_data_tvalid(fft_valid),

.S_axis_data_tlast(fft_last), .s_axis_data_tready(fft_ready),
.S_axis_config_tdata(0),

.Ss_axis_config_tvalid(Q),

.Ss_axis_config_tready(),

.m_axis_data_tdata(fft_out_data), .m_axis_data_tvalid(fft_out_valid)
.m_axis_data_tlast(fft_out_last), .m_axis_data_tready(fft_out_ready)

)

10/10/24 https://fpga.mit.edu/6205/F24 67

Already “breaking” AXI|

always_ff @(posedge axi_clk)begin
° Th|S Code is not iff;iudi({__(sjamp}e_valid)begin
_valid = 1;
monitoring whether the FFtdata_counter = Fri. dats. counter +1;
FFT iS READY engf’;ézs’ge;nfft_data_counter==2®47,
o fft_valid = 0;
* Realistically we are &nd
generating data so

slowly that this will
never actually matter
(discuss at end)

* Also we’re not storing
this data anywhere

FET

* Because of how an FFT is calculated the first known
values are not the lowest frequency values

* | blow an extra 1200 cycles to have FFT organize its
outputs in order of frequency (“Natural Order”)

rrrrrrrrrrrrrrrrrrrr (9.1)

ccccccccccccccccccccccccc

Component Name xfft_0

aaaaaaaaaaaaaaaaaa

* Having individual labels

Scaling Options | Scaled

for each data sample | _———
could let me do this. V

nnnnnnnnnnn

ACLKEN LRESETN (active low)

eeeeeeeeeeeeeeeeeeeeeeeee

nnnnnnnnnnnnnnnnnnnnnnnnnnn

Output Ordering Options

Output Ordering | Natural Order

Optional Output Fields =~ Throttle Scheme

Real-time Audio Spectrograph

* FFT outputs 32 bits of a complex number:

e 16 bits real component
e 16 bits imaginary component

2) 4 A4
Re/Im
Microphone FFT |— Split |_,| Square
Square Root
_ y \ Sum) S

For spectrograph | only care about the
magnitude of the frequency components
(not phase) so | need to do:

JVRe(X)? + Im(X)?2

Split=>Square=>Sum " s

AXI_tvalid AXI_tvalid

AXI_tlast

AXI_tlast

[31:16]

AXI_tdata[31:0] AXI_tdata[31:0]

1> 1p
Gala

[15:0]
Probably didn’t need
this register here, but
good practice

AXI_tready < AXI_tready

Skt

10/10/24 https://fpga.mit.edu/6205/F24 71

Split>Square—>Sum

51 . reg s00_axis_tready_req;
52 ¢ reg signed [31:0] real_square;
53 reg signed [31:0] imag_square;
54 : [J L4 L
55: wire signed [15:0] resl in; — Split the real imaginary parts
56 . wire signed [15:0] imag_in;
57 . assign real_in = s00_axis_tdata[31:16];
58 E assign imag_in = sO0_axis_tdata[15:0];
59
50 E assign mO0_axis_tvalid = m0O_axis_tvalid_req:
61 | assign mOO0_axis_tlast = mOO_axis_tlast_req;
assign mOO_axis_tdata = mOO_axis_tdata_req:

1 O
i N

assign s00_axis_tready = s00_axis_tready_req:

always @(posedge s00_axis_aclk)begin
if (s500_axis_aresetn==0)begin
s00_axis_tready_reg == 0;
end else begin
s00_axis_tready_req == m@0_axis_tready: //17 what you're feeding data fo 15 ready, then you

v Plpelme

read

end

end Two- Cycle Latenc

always @(posedge mOO_axis_aclk)begin

if (mOO_axis_aresetn==0)begin
moo_axis_tvalid_req == O;
moo_axis_tlast_reg == 0O;
moo0_axis_tdata_reg == O;

end else begin
moO0_axis_tvalid_reg_pre <= s@0_axis_tv
me0_axis_tlast_reg_pre <= s00_axis
real_square <= real_in¥real_in;
imag_square == imag_in*imag_in;

Square the real, imag parts on one cycle

mO0_axis_tvalid_reg == mOO_axis_tvalid_reg_pre;
mo0_axis_tlast_reg <= mO0_axis_tlast_reg_pre; //
mo0_axis_tdata_reg == real_square + imag_square;

"~ Sum them on next cycle

10/10/24 https://fpga.mit.edu/6205/F24

Real-time Audio Spectrograph

* FFT outputs 32 bits of a complex number:

e 16 bits real component
e 16 bits imaginary component

4 N) 4) 4
Re/Im
Mi Split
icrophone |jr——p FFT — —
Square
S J \) L')

Square
Root

For spectrograph | only care about the
magnitude of the frequency components
(not phase) so | need to do:

JRe(X)? + Im(X)?2

CORDIC

* Generalized Mathematical operations (mostly trig
and hyperbolics, but square roots too), done using
only adds, subtracts, shifts, and some lookups

 Basically works by guessing and checking in
iteratively smaller leaps to arrive at answer!

* |s really cool: https://en.wikipedia.org/wiki/CORDIC

cordic_0

== 4 S5 AXIS_CARTESIAN
. M_AXIS_DOUT 4 [
ar

CORDIC
10/10/24 https://fpga.mit.edu/6205/F24 74

https://en.wikipedia.org/wiki/CORDIC

CORDIC Configure...specity
input/output size

CORDIC (6.0) *
IP Symbol

Implementation Details

@ Documentation IP Location))
Implementation Details
. . Latency 19
IP Symbol Implementation Details Component Name | cordic_0 -
a BRAM NfA
Show disabled ports
. : . D e XtremeDSP N/A
Configuration Options AXI4 Stream Options
Configuration Parameters AXlI4-Stream Port Structure
Functional Selection Square Root v S AXIS CARTESIAN - TDATA
Architectural Configuration | Parallel Transaction Field Type
Pipelining Mode Maximum v 0 REAL(31:0) uint32
Data Format Unsignedinteger v
M_AXIS_DOUT - TDATA
Phase Format Radians
Transaction Field Type
e — Input/Output Options 0 REAL(16:0) uintl7
A M_AXIS_DOUT 4
= Input Width 48 [- 48]
Output Width 25 [5 - 48]
Round Mode | Truncate v

Advanced Configuration Parameters
lterations 0 [0 -48]

Precision 0 [0 -48]

Compensation Scaling = No Scale Compensation

0K | ‘ Cancel

10/10/24 https://fpga.mit.edu/6205/F24 75

Real-time Audio Spectrograph

Re/Im
Microphone [r——p FFT I Split e Square
Square Root
Sum
\. J/ —— \\ J U J

* What happens if one part can’t process data as
quickly as another one generates it? L

* Hopefully the backpropagation of READY over an
AXI| bus should help with this, but might be good to
add some breathing room

First-In-First-Out (F

* An ordered temporary ho

FO)

ding tank of data

* Made of Two-port BRAM with a few pointers (like

C-style pointers) variables

Step 1. data
. FIFO 3
Upstream provides s . Downstream reads
data_in data_out
J
Step 2: _data builds up (but not lost)
. FIFO 3[
Upstream provides & > Downstream busy
data_,n @ecccccscccccsccccscne J Can’t read out
data out
Step 2: . Downstream catches up
Upstream provides FIFO al” g Downstream busy
data in T} | [sseeees > Can read out
J

data_out

FIFOs

* If upstream produces measurements at 100 MHz
and downstream processes at 50 MHz, FIFOs will
not help!

* They only help to resolve momentary buildups of
data!

* The FFT doesn’t periodically generate output:

* Much of runtime its output is silent and THEN it
generates a burst of data

FFT Data Output

ILA Status: Idle
Name Value
0OO30017

|
QORO021a

- M fft_out_data[31:0] 000b0O00G
- M sqsum_data[31:0 0000006a

g fifo_data[31:0 |

|
0EEEE14d
|

- M sgrt_data[23:0] 000012

Qooo1z2

10/10/24 https://fpga.mit.edu/6205/F24 79

AXI4S FIFO

axis_data fifo 0

- M AXIS 4+
m—— = S AXIS) -
- i axis data count[31:0]
—Q 5 axis aresetn)
) axis wr _data count[31:0]
—= 5 axis aclk

axis rd data count[31:0]

AX|4-Stream Data FIFO

10/10/24 https://fpga.mit.edu/6205/F24

axis_data fifo 0

M _AXIS +

4+ S AXIS _
axis data count[31:0]

s axis aresetn)
axis wr _data count[31:0]

axis_rd data_count[31:0]

 Added in between AX14-Stream Data FIFO
because my original —
square version was e
blocking and not

AXI4S FIFO

L4l

s axis aclk

FIFO Depth 1024 v
] (]
I e I n e Enable Packet Mode No v
p p Asynchronous Clocks No v
hroni g Clock g

Syn tion Stages across Cro omain Logic | 2
° b h d f | I oooooooooooooooooo de None v
SWItC e tO u y Signal Properties
. . e s S A @0 TDATA Width (bytes) |4 [0-512]
pipelined mode

W) Auto) Enable TSTRE
") Enable TKEEP

Enable TLAST

TID Width (bits) 0 [0-32]
) TDEST Width (bits) |0 [0-32]

TUSER Width (bits) 0 [0 - 4096]

10/10/24 https://fpga.mit.edu/6205/F24 81

Real-time Audio Spectrograph

4 N\ SR 4 N\ [N\ N\ N\
Re/Im
Microphone |——p- FFT — Split =» FIFO > Square —»| Memory
Square Root
\ y Sum
"/ \ J \\ J \\ J \U , J

square_and_sum_v1_0 mysq(.s@0_axis_aclk(clk_100mhz), .s00_axis_aresetn(1'bl),
.S00_axis_tready(fft_out_ready), N\
.S00_axis_tdata(fft_out_data),.s00_axis_tlast(fft_out_last),
.S00_axis_tvalid(fft_out_valid),.m@0_axis_aclk(clk_100mhz),

.m00_axis_aresetn(1'bl),. m@0_axis_tvalid(sqsum_valid), ()Utr)Ut
.m00_axis_tdata(sqsum_data),.m00_axis_tlast(sqsum_last), Dlsplay
.mO0_axis_tready(sqsum_ready));

J

axis_data_fifo_@ myfifo (.s_axis_aclk(clk_100mhz), .s_axis_aresetn(1'bl),
.S_axis_tvalid(sqsum_valid), .s_axis_tready(sqsum_ready),
.S_axis_tdata(sqsum_data), .s_axis_tlast(sqsum_last),
.m_axis_tvalid(fifo_valid), .m_axis_tdata(fifo_data),
.m_axis_tready(fifo_ready), .m_axis_tlast(fifo_last));

piop fo moj4

4.............‘...‘.........

cordic_@ mysqrt (.aclk(clk_100mhz), .s_axis_cartesian_tdata(fifo_data),
.S_axis_cartesian_tvalid(fifo_valid), .s_axis_cartesian_tlast(fifo_last),
.S_axis_cartesian_tready(fifo_ready),.m_axis_dout_tdata(sqrt_data),
.m_axis_dout_tvalid(sqrt_valid), .m_axis_dout_tlast(sqrt_last));

10/10/24 https://fpga.mit.edu/6205/F24 82

Do we need a FIFO here?

ORDIC (6.0)

* No. Our Square root is e G—

ooooooooooooooooo
Configuration Options

maximally pipelined so it —

Functional Selection

can accept data on eve ry O

Pipelining Mode

clock cycle. | LI

* | putitinas example
nere.

* If running low on resources and made CORDIC
minimal hardware footprint (so worse throughput)
a FIFO could help data buildup from FFT burst.

Real-time Audio Spectrograph

4 ~\ .\ [N\ [N\ [N\ B
Re/Im
Microphone [—p| FFT — Split =» FIFO > Square —»| Memory
Square Root
Sum
. J \ J \ J \\ J \\ J \\ J
always_ff @(posedge clk_100mhz)begin
if (sqrt_valid)begin
if (sqrt_last)begin
addr_count <= 'd1023; //allign é R
end else begin
addr_count <= addr_count + 1'b1; O.Utpu.t
end Display
end
end \. J

value_bram mvb (.addra(addr_count+3), .clka(clk_100mhz), .dina({8'b0,sqrt_data}),
.douta(), .ena(1'bl), .wea(sqrt_valid),.dinb(@),
.addrb(draw_addr), .clkb(pixel_clk), .doutb(amp_out),
.web(1'b@), .enb(1'bl));

10/10/24 https://fpga.mit.edu/6205/F24 84

| WO PO rt B RA I\/l xilinx_true_dual_port_read_first_2_clock_ram #(
.RAM_WIDTH(32),

.RAM_DEPTH(2048))
frame_buffer (
//Write Side (148.5 MHz)

e Calculations Written In as addraladdr count) .

.clka(axi_clk),

they are Created .wea(sqrt_valid),

.dina({8'b0,sqrt_data}),
.ena(1'bl),

e Calculations Read Out as ety
.doutal(),

needed for video display //Read Side (74.25 WHz)

.addrb(draw_addr+3), //lazy pipelining
.dinb(16'b0),

* Example of a frame-buffer clnipixel Lo,
enb(1'b1) !

* Avoids having to synchronize .rstb(btnd),

.regceb(1'b1),

FFT generation too tightly), doutblamp_out)
with video drawing week 05)

2048 X 32 bit Memory

Why 20487 There’s 2048 FFT values to store!
Why 32 bit? Each magnitude is 32 bits

Use AXI if you need a bus

* There’s some somewhat decent critiques of the AXI
protocol...

e But usually most boil down to incomplete
compliance of particular modules...

e Evenin 6.5965 (6.205++) we found some AMD/Xilinx IP
is not actually AXI compliant

* It is pretty well thought out tbh, so don’t
necessarily assume you can do better, especially in
this class.

Video Memory

e Two Port Block RAM:

* Each side separately clocked!

. Don’lt have to worry about running upstream at video clock
rate!

148.5 MHz clock domain 74.25 MHz clock domain
(

addra e—

clk_axi — BRAM

data_out =

10/10/24 https://fpga.mit.edu/6205/F24 87

Real-time Audio Spectrograph

* The last step!

4 N\ ~ N\ [\ \ [)
Re/Im
Microphone p=——p| FFT }=> Split | FIFO P> Square
Square Root
\ y \) Sum R)\)

always_ff @(posedge pixel_clk)begin

draw_addr <= hcount/2; //draw lower 512 samples (top redundant)

//draw bargraphs:

//height based on amplitude scaled,

//color based on switch settings

rgb <= ((amp_out>>sw[3:0])>="'d768-vcount)?sw[15:4]:12'b0000_0000_0000;
end

Memory

Output
Display

Display Output

always_ff @(posedge pixel_clk)begin

draw_addr <= hcount/2; //draw lower 512 samples (top redundant)

//draw bargraphs:

//height based on amplitude scaled,

//color based on switch settings

rgb <= ((amp_out>>sw[3:0])>="'d768-vcount)?sw[15:4]:12'b0000_0000_0000;
end

1024

89L

Sine Waves In

*The square waves in later

amplitude

Cat

Ignore that line...I had a pipelining issue

i

Beyonce

20t Century Fox

Celine Dion

Are we good on timing?

* Report say, “yes”

From post_route_timing.rpt

Timing Report

Slack (MET) :

1.005ns

(required time - arrival time)

Re S O U rce U S a ge ? From post_place_util.rpt
* Quite a bit

2. Slice Logic Distribution

Site Type	Used	Fixed	Prohibited	Available	Utils
Slice	1304	0	0	8150	16.00
SLICEL	828	0			
SLICEM	476	0			
LUT as Logic	2524	0	0	32600	7.74
using 05 output only	7				
using 06 output only	1719				
using 05 and 06	798				
LUT as Memory	584	0	0	9600	6.08
LUT as Distributed RAM	0	0			
LUT as Shift Register	584	0			
using 05 output only	29				
using 06 output only	199				
using 05 and 06	356				
Slice Registers	5356	0	0	65200	8.21
Register driven from within the Slice	3574				
Register driven from outside the Slice	1782				
LUT in front of the register is unused	1128				
LUT in front of the register is used	654				
Unique Control Sets	51		0	8150	0.63
* * Note: Available Control Sets calculated as Slice * 1, Review the Control Sets Report for more
information regarding control sets.

Resource Usage?

e Not much!

From post_place_util.rpt

3. Memory

| Site Type | Used | Fixed | Prohibited | Available | Utils |

| Block RAM Tile | 8 | 0 | 0 | 75 | 10.67 |

| RAMB36/FIFOx* | 2 | 0 | 0 | 75 | 2.67 |

| RAMB36E1 only | 2 | | | | |

| RAMB18 | 12 | 0 | 0 | 150 | 8.00 |

| RAMB18E1l only | 12 | | | | |
4. DSP
Site Type	Used	Fixed	Prohibited	Available	Utils
DSPs	17	0	0	120	14.17
DSP48E1 only	17				

Make it much better

* This was a 2048 point FFT at 19 kHz

* It is a very poorly designed pipeline
* There’s a FIFO for no reason.
* We use lots of extra bits because | was lazy

* The FFT is so ridiculously over-performant that it isn’t
even funny

* We could likely get same or better performance out
of system that uses far fewer resources on almost
all fronts.

How Quick to calculate FFT?

* Collect 2048 audio measurements :
* @~19 KHz. Every 52 microseconds (so ~107 milliseconds total)

* Compute 2048 point FFT:
e 6273 clock cycles @ 148.5MHz (42.25 ps)

e Square and Sum:
e 2 cycles @ 148.5MHz (13.48 ns)

* FIFO:
e 3 cycles @ 148.5MHz overhead latency (20 ns)

* Root:
e 26 cycles @ 148.5 MHz (175 ns)

How Quick?...Uselessly Quick

. ﬁ\gt(;r audio clip captured, FFT generated and ready to render in
.5 s

* Our audio samples are measured every 52 ys and and a full
frame of samples is captured every 100 milliseconds.

* This is a differential of like 2000x
* \We can calculate our entire FFT in between individual audio
samples,

Audio Collection

\

/

Calculations

Task

(not to scale...it is even better)

time

No need to have fully-pipelined FFT for
this application

* Let’s say we need to compute F(F(F(X))). Do we
build our hardware like this?:

¥]

Latency: 3*T

L)

e Or like this:?

Foncycle 1,

FSM that does
X

Outputs X afte

F on cycle 2,
F on cycle 3

ja

Throughput: 1/ T,
Uses more resources

>

-

Latency: 3*T
Throughput: 1/ (3*T,)
Likely uses fewer resources

Where Could We Go From Here?

e Cut the FIFO (Il put it in just for fun)

* Size the IP for the actual data we’re handling:

* a lot of the systems are set at 16 bits but our audio
samples are only 7 bits originally

* The CORDIC is uselessly large
* Pick a better FFT:

* Meaning...

This is the Great Tradeoff!

More resources,
X — > Better Throughput
A A A Same Latency

OR
FSM that does Fewer resources,
X Fon °V°:e > |, Worse Throughput
on cycle 2,
F on cycle 3 A Same Latency
Outputs X after

* Base on what you need for the design!

Pick Better FFT Implementation

° We can get 16 Architecture Options

The FFT core provides four architecture options to offer a trade-off between core size and transform time.

t I I I l e S t h e e Pipelined, Streaming I/O — Allows continuous data processing.

e Radix-4, Burst I/O - Loads and processes data separately, using an iterative approach. It is smaller in size than

fr e q u e n Cy] the pipelined solution, but has a longer transform time.

Radix-2, Burst I/O - Uses the same iterative approach as Radix-4, but the butterfly is smaller. This means it is
smaller in size than the Radix-4 solution, but the transform time is longer.

re S O I u t I O n e Radix-2 Lite, Burst I/O - Based on the Radix-2 architecture, this variant uses a time-multiplexed approach to
the butterfly for an even smaller core, at the cost of longer transform time.

Figure 2 illustrates the trade-off of throughput versus resource use for the four architectures. As a rule of thumb,
[] F O r t h e S a m e each architecture offers a factor of 2 difference in resource from the next architecture. The example is for an even
power of 2 point size. This does not require the Radix-4 architecture to have an additional Radix-2 stage.

PO S OUNCE LS o e ot o e
If We mOd Ify Resource
|
things to take srseg,
advantage of :
Radix-4
slow data
Radix-2
" Burstli0

p rO d U Ct i O n ® Radix-2-lite

Burst 110

Throughput

Figure 2: Resource versus Throughput for Architecture Options

10/10/24 https://fpga.mit.edu/6205/F24 105

ick Better FFT Implementation

* We can get 16 times the frequency resolution and
use % the DSP blocks at the expense of:

e Using 3X the BRAM, (still fine)
* Having a latency of 3.764 ms (still totally fine)

Architecture Options
The FFT core provides four architecture options to offer a trade-off between core size and transform time.

e Pipelined, Streaming I/O — Allows continuous data processing.

¢ Radix-4, Burst I/O - Loads and processes data separately, using an iterative approach. It is smaller in size than
the pipelined solution, but has a longer transform time.

¢ Radix-2, Burst I/O - Uses the same iterative approach as Radix-4, but the butterfly is smaller. This means it is
smaller in size than the Radix-4 solution, but the transform time is longer.

¢ Radix-2 Lite, Burst I/O - Based on the Radix-2 architecture, this variant uses a time-multiplexed approach to
the butterfly for an even smaller core, at the cost of longer transform time.

Figure 2 illustrates the trade-off of throughput versus resource use for the four architectures. As a rule of thumb,

each architecture offers a factor of 2 difference in resource from the next architecture. The example is for an even

power of 2 point size. This does not require the Radix-4 architecture to have an additional Radix-2 stage.

All four architectures may be configured to use a fixed-point interface with one of three fixed-point arithmetic
methods (unscaled, scaled or block floating-point) or may instead use a floating-point interface.

Resource
-
Streaming

And tons of other optimizations!!!

-
Radix-4
Burst /0

Radix-2
® Burstlio
® Radix-2-lite
Burst /0

10/10/24 https://fpga.mit.ed oot

Figure 2: Resource versus Throughput for Architecture Options

Different Directions

e Data Propagates downstream:

Data, VALID, metadata (TLAST)

e ~\ e N\ 7 \ 7/ N\ 7 N\ 7 N\ 7
Re/Im
Microphone f=——»| ADC | FFT — Split =»1 FIFO [Square =»| Memory
Square Root
_) \L Yy _ J — J U J J l
-
¢ Ready propagates UpStream: g}‘tli”t
isplay
 “Back Pressure” L

e Allow a backup downstream to potentially pause the
entire system at the start to prevent traffic jams!

10/10/24 https://fpga.mit.edu/6205/F24 107

Usefulness of Metadata or markers

* If data takes a really long time you can also activate a

USER field to send along with DATA

e USER values will be unchanged but will get pipelined
properly along with the corresponding data they’re sent

in with

DATA, USER

4 \ N\ ()

USER, DATA, goin | ====s=eer I
— F —» G = H

Some time later, USER; and

_t F(G(H(DATA,))) appear. Use

the USER data to interpret
the function output

Next Week

* No class on Tuesday (holiday):

* Thursday we’ll do some signal processing concepts
and that will likely bleed into the following Tuesday

* Then one or two more lectures and we’re done.

Final Project TAs from 2022

10/10/24 https://fpga.mit.edu/6205/F24 110

Sources

 “AMBA® AXITM and ACETM Protocol Specification”, ARM 2011

* “The Zynq Book”, L.H. Crockett, R.A. Elliot, M.A. Enderwitz, and R.W.
Stewart, University of Glasgow

» “Building Zynqg Accelerators with Vivado High Level Synthesis” Xilinx
Technical Note

* Some material from ECE699 Spring 2016
https://ece.gmu.edu/coursewebpages/ECE/ECE699 SW_HW/S16/

Crack open the AXI spec sheet with a few data
sheets for some Xilinx IP cores (like the CORDIC,
FFT, etc...) and you should be able to start making
sense of it.

