
The FPGA, AXI, Etc…

10/10/24 https://fpga.mit.edu/6205/F24 1

10/10/24 https://fpga.mit.edu/6205/F24 2

10/10/24 https://fpga.mit.edu/6205/F24 3

10/10/24 https://fpga.mit.edu/6205/F24 4

Administration

• Week 05 due last night
• Week 06 out after class today (might be delayed by

a couple hours)…it is short.
• two pages

• Week 07 (next week) will involve some
convolution/image processing (regular length)
• Week 08 will be short after that, look at soft

processing cores*
• Then final project time

10/10/24 https://fpga.mit.edu/6205/F24 5
*that’s the plan anyways

What to do for a Final Project?
• Something that an FPGA would Actually get used

for…
• Codec (mp4, mp3, jpeg, and many others!)
• Accelerators (do some task efficiently)
• Real-time audio processing (today is simple example)
• Graphics
• Signal Processing (graphical or audio)
• Vision (object detection, tracking)
• Prototype CPU, TPU, GPU architectures
• Cryptography
• High Speed Controller
• Communication (ethernet…)
• Inference/detection
• Decisions

10/10/24 https://fpga.mit.edu/6205/F24 6

What to do for a Final Project?

• Something an FPGA would not get used for in real
life:
• Video game…
• Video game…

10/10/24 https://fpga.mit.edu/6205/F24 7

However if you want to do a video game…
• If you want to do a game, go hard with it:
• Try to explore more FPGA-relevant topics such as:
• 3D graphics?
• Ray-casting
• Video Processing?
• Inference

• Or if you want to make a simple game, then you
really need push it the limits.

10/10/24 https://fpga.mit.edu/6205/F24 8

Excellent “simple” game

10/10/24 https://fpga.mit.edu/6205/F24 9

Pacman Extreme
• Used basically all the resources on that FPGA
• Partially through poor planning on their part
• Partially through over-pipelining and over-parallelization

• But the attention to detail and overall depth, was
extreme
• And some poor choices with utilization resulted in

them having to be very clever with how a lot of
aspects of their higher-level design worked out
• Team built supplemental tools to aid in design:
• Kim wrote a javascript app that would make .mem files

of all their custom sprites since she got so sick of making
them manually, for example

10/10/24 https://fpga.mit.edu/6205/F24 10

Complexity

• The complexity must come from stuff you do!
• You cannot take week 05’s stuff and week 07’s stuff

and glue them together and have an A-level
project.
• Using UART to talk to a device that ”does wifi” does

not actually have much technical merit…and does
not mean you made a wifi system.
• The final project will be graded on what you did

and contributed.

10/10/24 https://fpga.mit.edu/6205/F24 11

Chip 8 Emulator

10/10/24 https://fpga.mit.edu/6205/F24 12

Chip 8 Emulator
• Chip8 is like 50 years old/early attempt at a virtual

machine/game engine
• Has a large online following because it is weird and

is a great first emulator to write since the
instruction set is very tiny (and because once you
get it working you have tons of stuff to test on it)
• Many people write emulators and write games for

it.
• This team built an emulator and then did all the

emulator tuning stuff and then ran a bunch of them
in parallel (FPGA strength)…something most people
can’t do with a software simulation/emulation

10/10/24 https://fpga.mit.edu/6205/F24 13

More Advanced Pipelining

10/10/24 https://fpga.mit.edu/6205/F24 14

This is the Great Tradeoff!

10/10/24 https://fpga.mit.edu/6205/F24 15

F F FX
More resources,
Better Throughput
Same Latency

FSM that does
F on cycle 1,
F on cycle 2,
F on cycle 3

Outputs X after

X

OR

Fewer resources,
Worse Throughput
Same Latency

• Base on what you need for the design!

Pipelining II
• As we make larger-level systems

10/10/24 https://fpga.mit.edu/6205/F24 16

HGF

• As we make larger-level systems we need to
pipeline data through systems which might take
varying amounts of time
• And the cycles of latency can become 1000’s of

cycles

HVALID

READY

DATA
N bits

Pipelining II
• Mixing our Major/Minor FSMs with Pipelining!
• Need a way to send data downstream, but also

convey preparedness upstream

10/10/24 https://fpga.mit.edu/6205/F24 17

F G

CLKFrom
 clock source

VALID

READY

DATA
N bits

VALID

DATA N bits

CLK CLK CLK

X

N bits

What is IP?
• Often times you’ll hear people call a module they made

“IP”…short for “intellectual property”
• These basically let you specify an extremely parameterizable

module
• In Vivado there are IP which you can instantiate.
• There’s a ton of effort that goes into enabling a particular

circuit in a modifiable way
• Some companies actually do this:

• Create a particular design-development platform
• Example: a pipelined algorithm implementation

• Sell/lease to Xilinx
• When people use your design process in their products they give

you licensing fees.

10/10/24 https://fpga.mit.edu/6205/F24 18

What are some attributes of
extensible modules?
• Well documented, or at least some attempt at

documentation, or at least the ability to read the
source code
• Speak a common language…
• Accept inputs in a commonly accepted way
• Generate results in a commonly accepted way

• We need standards!

10/10/24 https://fpga.mit.edu/6205/F24 19

AXI Everywhere

10/10/24 https://fpga.mit.edu/6205/F24 20

• There’s lot of neat IP (FFT, more
complicated math, etc…)
• Xilinx IP and many others

generally use an AXI
communication protocol

AXI

AXI
AXI

AXI

Advanced Microcontroller Bus
Architecture (AMBA)
• Version 1 released in 1996 by ARM
• 2003 saw release of Advanced eXtensible Interface

(AXI3)
• 2011 saw release of AXI4
• There are no royalties affiliated with AMBA/AXI so

they’re used a lot.
• It is a general, flexible, and relatively free*

communication protocol for development

https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture

10/10/24 https://fpga.mit.edu/6205/F24 21

AXI Life

• A lot of modules written for FPGA or ASIC
application build towards AXI interfaces
• Doing this allows things to be more plug-and-play

than if you rolled your own
• So we should go over how it works!

10/10/24 https://fpga.mit.edu/6205/F24 22

Three General Flavors of AXI4
• AXI4 (Full AXI): For memory-mapped links.

Provides highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

• AXI4 Lite: A memory-mapped simplified link
supporting only one data transfer per connection
(no bursts). (also restricted to 32 bit addr/data)

1. Address is supplied
2. One data transfer

• AXI4 Stream: Meant for high-speed streaming data
• Can do burst transfers of unrestricted size
• No addressing
• Meant to stream data from one device to another

quickly on its own direct connection

10/10/24 https://fpga.mit.edu/6205/F24 23From the Zynq Book

Note on Terminology
• In device-to-device communication, it is common to

have:
• one device labeled the ”Master” and
• one labeled the “Slave”
• the Master controls the Slave(s) in these settings.

• Trace history of this naming terminology back to 1940s
• There has been successful transition to Controller and

Peripheral in some areas
• Lab 2!!!

https://fpga.mit.edu/6205/F24 2410/10/24

Note on Terminology
• The Xilinx AXI protocol uses this Master/Slave

terminology
• And continues to do so into 2024.
• In 6.205 I’m going to just use Main/Secondary or just

“M” and “S”, but the docs and even some port names
distinctly use Master/Slave.
• This way we can keep using the datasheets.
• And then continue to push AMD/Xilinx to change it.

https://fpga.mit.edu/6205/F24 2510/10/24

Others than AXI?

• There are other generalized bus protocols out
there:
• Wishbone, some Open cores use this
• Avalon: used in some Altera sets (proprietary)

• AXI is a good one to be familiar with, not just
because it is used in Xilinx stuff a lot….so that’s
what we’ll look at.

10/10/24 https://fpga.mit.edu/6205/F24 26

So the AXI Protocol!

• Made up of wires
• These wires serve specific purposes.
• Some are universal to all AXI4S channels, and

others are specific

10/10/24 https://fpga.mit.edu/6205/F24 27

AXI Clock

• Everything in system will run off of AXI clock usually
called ACLK in documentation
• No combinatorial paths between inputs and outputs.

Everything must be registered.
• All signals are sampled on rising edge

10/10/24 https://fpga.mit.edu/6205/F24 28

M S
ACLK

From clock source

AXI Clock

• Everything in system will run off of AXI clock usually
called ACLK in documentation
• No combinatorial paths between inputs and outputs.

Everything must be registered.
• All signals are sampled on rising edge
• AXI modules should also have Reset pins. AXI work

ACTIVE LOW so the Reset pin is usually called ARSTn or
ARESETn (meaning it is normally high)

10/10/24 https://fpga.mit.edu/6205/F24 29

M S
ACLK

From clock source

From synchronous reset source ARSTn

Valid and Ready

• All of AXI uses the same handshake procedure:
• The creator of a data “M” generates a VALID signal
• The destination of data “S” generates a READY signal
• Transfer of data only occurs when both are high
• Both M and S Devices can therefore control the flow of

their data as needed

10/10/24 https://fpga.mit.edu/6205/F24 30

VALID

READYM S
ACLK

From clock source

From synchronous reset source ARSTn

Everything Else…

• Everything else is information and depends on what is
needed in situation. Could be:
• Address
• Data
• Metadata
• Other specialized wires/sets of wires like:

• STRB (used to specify which bytes in current data step are valid, sent
by Main along with data payload to Secondary)

• RESP (sort of like a status)
• LAST (sent to indicate the final data clock cycle of data in a burst)

10/10/24 https://fpga.mit.edu/6205/F24 31

M S
ACLK

VALID

READY

<-INFO->

From clock source

From synchronous reset source ARSTn

Generalized Transaction
• All Channel Interactions follow same high-level

structure
• Data is handed off IF AND ONLY IF VALID and READY

are high on the rising edge of the clock
• If that happens, both parties must realize that data

transfer has happened

10/10/24 https://fpga.mit.edu/6205/F24 32

Keep in mind this could
be 64 parallel wires of
1’s and 0’s of info or 8
bytes for example…
Or it could be
something else

VALID then READY
• Valid can be high first
• Then ready can show up later
• Only when both are high is data exchanged

10/10/24 https://fpga.mit.edu/6205/F24 33

Data transferred on this edge

READY then VALID
• Ready can be high first
• Then Valid can show up later
• Only when both are high is data exchanged

10/10/24 https://fpga.mit.edu/6205/F24 34

Data transferred on this edge

READY WITH VALID
• Ready and Valid come high at the same time
• Totally allowed
• Data is exchanged on that clock edge

10/10/24 https://fpga.mit.edu/6205/F24 35

Data transferred on this edge

Generalized Transaction

• Can have multiple channels
• They all follow the same

spec though
• All Channel Interactions

follow same high-level
structure

10/10/24 https://fpga.mit.edu/6205/F24 36

Other Things to Keep in Mind
• the VALID signal of the AXI interface sending

information must not be dependent on the READY
signal of the AXI interface receiving that information
• an AXI interface that is receiving information may wait

until it detects a VALID signal before it asserts its
corresponding READY signal.
• In other words READY can depend on VALID, but not

the other way around.
• Failure to adhere to this can lead to what’s known as
“dead-lock”
• Fail to Follow these rules and could have devices wait

infinitely.
• Like when two people keep going “no, after you” at a door.

10/10/24 https://fpga.mit.edu/6205/F24 37

Three General Flavors of AXI4
• AXI4 (Full AXI): For memory-mapped links.

Provides highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

• AXI4 Lite: A memory-mapped simplified link
supporting only one data transfer per connection
(no bursts). (also restricted to 32 bit addr/data)

1. Address is supplied
2. One data transfer

• AXI4 Stream: Meant for high-speed streaming data
• Can do burst transfers of unrestricted size
• No addressing
• Meant to stream data from one device to another

quickly on its own direct connection

10/10/24 https://fpga.mit.edu/6205/F24 38From the Zynq Book

Full AXI and AXI Lite
• Meant for back-and-forth communication
• Request-response type communication
• Memory-mapped interfaces

10/10/24 https://fpga.mit.edu/6205/F24 39

M S
ACLK

From clock source

From synchronous reset source ARSTn

“OK Will do”

“Run this command”

Full AXI and AXI Lite
• Meant for back-and-forth communication
• Request-response type communication
• Memory-mapped interfaces

10/10/24 https://fpga.mit.edu/6205/F24 40

M S
ACLK

From clock source

From synchronous reset source ARSTn

“1986”

“What is the value at
Addres 0x12345?”

Full AXI and AXI Lite Read
• Will involve multiple channels (Each with their own

ready, valid, clock, data path, etc…)
• A Read interface will have two AXI channels:
• One that transfers address info from Master to Slave
• One that transfers response data from Slave to Master

10/10/24 https://fpga.mit.edu/6205/F24 41

Full AXI and AXI Lite Write
• Will involve multiple channels (Each with their own

ready, valid, clock, data path, etc…)
• A Write interface will have three AXI channels:
• One that transfers address info from Master to Slave
• One that transfers data to write from Master to Slave
• One that transfers response data from Slave to Master

10/10/24 https://fpga.mit.edu/6205/F24 42

All Channels are AXI

• Then for specific tasks, they can have specific
additional signals

• Think of generic AXI as a root class
• The “read address channel” is a subclass of

standard AXI

10/10/24 https://fpga.mit.edu/6205/F24 43

Full AXI and AXI Lite Read
• Will involve multiple channels (Each with their own

ready, valid, clock, data path, etc…)
• A Read interface will have two AXI channels:
• One that transfers address info from Master to Slave
• One that transfers response data from Slave to Master

10/10/24 https://fpga.mit.edu/6205/F24 44

10/10/24 https://fpga.mit.edu/6205/F24 45

Read Address Chanel

CORE

Payload

The Read Data Channel:

10/10/24 https://fpga.mit.edu/6205/F24 46

CORE

Payload

Supplemental
Stuff

Full AXI and AXI Lite Write
• Will involve multiple channels (Each with their own

ready, valid, clock, data path, etc…)
• A Write interface will have three AXI channels:
• One that transfers address info from Master to Slave
• One that transfers data to write from Master to Slave
• One that transfers response data from Slave to Master

10/10/24 https://fpga.mit.edu/6205/F24 47

Each channel has its own subset of
“stuff” that goes along with those
core signals shared by all

10/10/24 https://fpga.mit.edu/6205/F24 48

Payload

Supplemental
Stuff

CORE

For example, the Write Data Channel (”W” channel)

10/10/24 https://fpga.mit.edu/6205/F24 49

CORE

Payload

Write Address Channel

Write Response

10/10/24 https://fpga.mit.edu/6205/F24 50

CORE

Payload

Three General Flavors of AXI4
• AXI4 (Full AXI): For memory-mapped links.

Provides highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

• AXI4 Lite: A memory-mapped simplified link
supporting only one data transfer per connection
(no bursts). (also restricted to 32 bit addr/data)

1. Address is supplied
2. One data transfer

• AXI4 Stream: Meant for high-speed streaming data
• Can do burst transfers of unrestricted size
• No addressing
• Meant to stream data from one device to another

quickly on its own direct connection

10/10/24 https://fpga.mit.edu/6205/F24 51From the Zynq Book

In a AXI Streaming Situation

10/10/24 https://fpga.mit.edu/6205/F24 52

M S
ACLK

VALID

READY

DATA
N bits

From clock source

From synchronous reset source ARSTn

• Uni-Directional Movement of data
• No call-response
• No memory-mapped
• Just streaming data

HVALID

READY

DATA
N bits

AXI Stream
• Mixing our Major/Minor FSMs with Pipelining!
• Need a way to send data downstream, but also

convey preparedness upstream

10/10/24 https://fpga.mit.edu/6205/F24 53

F G

CLK
From

 clock source

VALID

READY

DATA
N bits

VALID

DATA N bits

CLK CLK CLK

X

N bits

From synchronous reset source ARSTn

Complexity

Full-AXI4

AXI-LITE

AXI-STREAM

10/10/24 https://fpga.mit.edu/6205/F24 54

• In terms of wires and options, Full-AXI
is the most complex

• AXI-LITE has a lot less options (single
data beat so all the supplemental stuff
that specifies burst characteristics gets
skipped)

• AXI-STREAM has even less…basically a
high-speed write channel (Few
options), but often needs that extra
TLAST signal

Real-time Audio Spectrograph

10/10/24 https://fpga.mit.edu/6205/F24 55

FFT
Re/Im
Split

Square
Sum

Square
Root

Microphone Memory

Output
Display

• Let’s do an example!!!

Real-time Audio Spectrograph
• Collect audio from microphone (use Analog-to-

digital Converter)
• Convert time-series data to frequency series
• Take Magnitude of it
• Store it in memory
• Render it on screen as a bargraph
• RESULT:
• Render the energy of the frequency spectrum in real

time

10/10/24 https://fpga.mit.edu/6205/F24 56

Real-time Audio Spectrograph

10/10/24 https://fpga.mit.edu/6205/F24 57

FFT
Re/Im
Split

Square
Sum

Square
Root

Microphone Memory

Output
Display

• On-board PDM microphone
• We used off-board one this year, but works

somewhat similarly

Real-time Audio Spectrograph

• Computer the Fourier Transform of a Time Series of
audio measurements and do so in real time

10/10/24 https://fpga.mit.edu/6205/F24 58

FFT
Re/Im
Split

Square
Sum

Square
Root

Microphone Memory

Output
Display

Fourier Transform
• Convert a time-domain signal:

• Into its frequency domain representation:

10/10/24 https://fpga.mit.edu/6205/F24 59

time (s)

am
pl

itu
de

frequency (Hz)

am
pl

itu
de

T=1/f

f

Fast Fourier Transform
• A computationally efficient means of generating the Fourier

Transform
• We’ll do a 2048 point Fourier Transform (pretty small)
• The bigger the N, the “better” the Fourier transform, but the

number of multiply adds you need to will scale with 𝑵𝟐…this
becomes problematic very quickly
• A Fast Fourier Transform is a class of algorithm that takes

advantage of symmetries/periodicities in all of the
multiplications that you do in order to simplify the overall
work.
• These simplifications allow the work to scale with 𝑵𝐥𝐨𝐠 𝑵
• Further pipelining and parallel structures in hardware allow

you to stream into an FFT. Lots of repetition in FFT…great for
pipelining vs. Blocking FSM debate/choice

10/10/24 https://fpga.mit.edu/6205/F24 60

Fast Fourier Transform

10/10/24 https://fpga.mit.edu/6205/F24 61

FFT

10/10/24 https://fpga.mit.edu/6205/F24 62

All the way up to 65536 point FFT (theoretically)…never
built one myself, but it should be possible

FFT

10/10/24 https://fpga.mit.edu/6205/F24 63

https://www.xilinx.com/support/documentation/ip_documentation/xfft_ds260.pdf

FFT Latency

10/10/24 https://fpga.mit.edu/6205/F24 64

• For this year…

• At the clock I ran it: 148.5MHz that is:
• 6273 clock cycles @ 148.5MHz (42.25 μs)

• Needs all 2048 input samples before it starts outputting

1024 FFT on 100 MHz clock…

TLAST
• Since we’re sending 2048 samples one after the

other (serially) we need a way to tell the FFT we’re
at the end of a frame!
• Use a LAST signal (tells FFT we’re on last sample)

10/10/24 https://fpga.mit.edu/6205/F24 65

Audio
Sampler

FFT

ACLK
From clock source

VALID

READY

DATA
N bits

LAST

TLAST is important
• Since data is sent serially, TLAST allows us to know

where to place data with respect to other data

10/10/24 https://fpga.mit.edu/6205/F24 66

Pixel 921595 RGB 0

Pixel 921596 RGB 0

TDATA

TL
AS

T

Pixel 921597 RGB 0
Pixel 921598 RGB 0
Pixel 921599 RGB 1
Pixel 000000 RGB 0
Pixel 000001 RGB 0
Pixel 000002 RGB 0

…

Pr
og

re
ss

io
n

of
 ti

m
e Data from frame n

Data from frame n+1

…

FFT Input

10/10/24 https://fpga.mit.edu/6205/F24 67

If audio sample ready,
give it a sample,
Otherwise don’t

FFT Instance:

always_ff @(posedge axi_clk)begin
 if (audio_sample_valid)begin
 fft_valid = 1;
 fft_data = {audio_data,8'b0};
 fft_data_counter <= fft_data_counter +1;
 fft_last <= fft_data_counter==2047;
 end else begin
 fft_valid = 0;
 end
end

Already “breaking” AXI

• This code is not
monitoring whether the
FFT is READY.
• Realistically we are

generating data so
slowly that this will
never actually matter
(discuss at end)
• Also we’re not storing

this data anywhere

10/10/24 https://fpga.mit.edu/6205/F24 68

always_ff @(posedge axi_clk)begin
 if (audio_sample_valid)begin
 fft_valid = 1;
 fft_data = {audio_data,8'b0};
 fft_data_counter <= fft_data_counter +1;
 fft_last <= fft_data_counter==2047;
 end else begin
 fft_valid = 0;
 end
end

FFT

10/10/24 https://fpga.mit.edu/6205/F24 69

• Because of how an FFT is calculated the first known
values are not the lowest frequency values

• I blow an extra 1200 cycles to have FFT organize its
outputs in order of frequency (“Natural Order”)

• Having individual labels
for each data sample
could let me do this.

Real-time Audio Spectrograph
• FFT outputs 32 bits of a complex number:
• 16 bits real component
• 16 bits imaginary component

10/10/24 https://fpga.mit.edu/6205/F24 70

FFT
Re/Im
Split

Square
Sum

Square
Root

Microphone Memory

Output
Display

For spectrograph I only care about the
magnitude of the frequency components
(not phase) so I need to do:

𝐑𝐞 𝑿 𝟐 + 𝐈𝐦 𝑿 𝟐

SplitàSquareàSum

10/10/24 https://fpga.mit.edu/6205/F24 71

AXI_tvalid

AXI_tdata[31:0]
𝑛"

𝑛"

[31:16]

[15:0]

+

AXI_tlast

AXI_tvalid

AXI_tlast

AXI_tdata[31:0]

AXI_treadyAXI_tready

M S
M S

Probably didn’t need
this register here, but
good practice

SplitàSquareàSum

10/10/24 https://fpga.mit.edu/6205/F24 72

Split the real imaginary parts

Square the real, imag parts on one cycle

Sum them on next cycle

Two-Cycle Latency Pipeline

Real-time Audio Spectrograph
• FFT outputs 32 bits of a complex number:
• 16 bits real component
• 16 bits imaginary component

10/10/24 https://fpga.mit.edu/6205/F24 73

FFT
Re/Im
Split

Square
Sum

Square
Root

Microphone Memory

Output
Display

For spectrograph I only care about the
magnitude of the frequency components
(not phase) so I need to do:

𝑹𝒆 𝑿 𝟐 + 𝐈𝐦 𝑿 𝟐

CORDIC

10/10/24 https://fpga.mit.edu/6205/F24 74

• Generalized Mathematical operations (mostly trig
and hyperbolics, but square roots too), done using
only adds, subtracts, shifts, and some lookups

• Basically works by guessing and checking in
iteratively smaller leaps to arrive at answer!

• Is really cool: https://en.wikipedia.org/wiki/CORDIC

https://en.wikipedia.org/wiki/CORDIC

CORDIC Configure…specify
input/output size

10/10/24 https://fpga.mit.edu/6205/F24 75

Real-time Audio Spectrograph

10/10/24 https://fpga.mit.edu/6205/F24 76

FFT
Re/Im
Split

Square
Sum

Square
Root

Microphone Memory

Output
Display• What happens if one part can’t process data as

quickly as another one generates it?
• Hopefully the backpropagation of READY over an

AXI bus should help with this, but might be good to
add some breathing room

First-In-First-Out (FIFO)
• An ordered temporary holding tank of data
• Made of Two-port BRAM with a few pointers (like

C-style pointers) variables

10/10/24 https://fpga.mit.edu/6205/F24 77

FIFOUpstream provides
data_in

Downstream reads
data_out

data

FIFOUpstream provides
data_in

Downstream busy
Can’t read out
data_out

data builds up (but not lost)

Step 1:

Step 2:

Step 2:
FIFOUpstream provides

data_in
Downstream busy
Can read out
data_out

Downstream catches up

FIFOs

• If upstream produces measurements at 100 MHz
and downstream processes at 50 MHz, FIFOs will
not help!
• They only help to resolve momentary buildups of

data!
• The FFT doesn’t periodically generate output:
• Much of runtime its output is silent and THEN it

generates a burst of data

10/10/24 https://fpga.mit.edu/6205/F24 78

FFT Data Output

10/10/24 https://fpga.mit.edu/6205/F24 79

silent data burst

AXI4S FIFO

10/10/24 https://fpga.mit.edu/6205/F24 80

10/10/24 https://fpga.mit.edu/6205/F24 81

AXI4S FIFO
• Added in between

because my original
square version was
blocking and not
pipelined
• Switched to fully

pipelined mode

Real-time Audio Spectrograph

10/10/24 https://fpga.mit.edu/6205/F24 82

FFT
Re/Im
Split

Square
Sum

Square
Root

Microphone Memory

Output
Display

FIFO
Flow

 of data

Do we need a FIFO here?

• No. Our Square root is
maximally pipelined so it
can accept data on every
clock cycle.
• I put it in as example

here.

10/10/24 https://fpga.mit.edu/6205/F24 83

• If running low on resources and made CORDIC
minimal hardware footprint (so worse throughput)
a FIFO could help data buildup from FFT burst.

Real-time Audio Spectrograph

10/10/24 https://fpga.mit.edu/6205/F24 84

FFT
Re/Im
Split

Square
Sum

Square
Root

Microphone Memory

Output
Display

FIFO

Two Port BRAM
• Calculations Written In as

they are created
• Calculations Read Out as

needed for video display
• Example of a frame-buffer
• Avoids having to synchronize

FFT generation too tightly
with video drawing week 05)

10/10/24 https://fpga.mit.edu/6205/F24 85

2048 X 32 bit Memory

Why 2048? There’s 2048 FFT values to store!
Why 32 bit? Each magnitude is 32 bits

xilinx_true_dual_port_read_first_2_clock_ram #(
 .RAM_WIDTH(32),
 .RAM_DEPTH(2048))
 frame_buffer (
 //Write Side (148.5 MHz)
 .addra(addr_count),
 .clka(axi_clk),
 .wea(sqrt_valid),
 .dina({8'b0,sqrt_data}),
 .ena(1'b1),
 .regcea(1'b1),
 .rsta(btnd),
 .douta(),
 //Read Side (74.25 MHz)
 .addrb(draw_addr+3), //lazy pipelining
 .dinb(16'b0),
 .clkb(pixel_clk),
 .web(1'b0),
 .enb(1'b1),
 .rstb(btnd),
 .regceb(1'b1),
 .doutb(amp_out)
);

Use AXI if you need a bus

• There’s some somewhat decent critiques of the AXI
protocol…
• But usually most boil down to incomplete

compliance of particular modules…
• Even in 6.S965 (6.205++) we found some AMD/Xilinx IP

is not actually AXI compliant

• It is pretty well thought out tbh, so don’t
necessarily assume you can do better, especially in
this class.

10/10/24 https://fpga.mit.edu/6205/F24 86

74.25 MHz clock domain

Video Memory
• Two Port Block RAM:

• Each side separately clocked!
• Don’t have to worry about running upstream at video clock

rate!

10/10/24 https://fpga.mit.edu/6205/F24 87

BRAM

addrb
clk_pixel

data_out

addra

clk_axi

data_out

148.5 MHz clock domain

Real-time Audio Spectrograph
• The last step!

10/10/24 https://fpga.mit.edu/6205/F24 88

FFT
Re/Im
Split

Square
Sum

Square
Root

Microphone Memory

Output
Display

FIFO

Display Output

10/10/24 https://fpga.mit.edu/6205/F24 89

hcount

vcount

1024

768

Sine Waves In

10/10/24 https://fpga.mit.edu/6205/F24 90

time (s)

am
pl

itu
de

T=1/f

*The square waves in later

Cat

10/10/24 https://fpga.mit.edu/6205/F24 91

Ignore that line…I had a pipelining issue

Me

10/10/24 https://fpga.mit.edu/6205/F24 92

Beyoncé

10/10/24 https://fpga.mit.edu/6205/F24 93

20th Century Fox

10/10/24 https://fpga.mit.edu/6205/F24 94

Celine Dion

10/10/24 https://fpga.mit.edu/6205/F24 95

Are we good on timing?

• Report say, “yes”

Timing Report

Slack (MET) : 1.005ns (required time - arrival time)

10/10/24 https://fpga.mit.edu/6205/F24 96

From post_route_timing.rpt

Resource Usage?
• Quite a bit
2. Slice Logic Distribution

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	1304	0	0	8150	16.00
SLICEL	828	0			
SLICEM	476	0			
LUT as Logic	2524	0	0	32600	7.74
using O5 output only	7				
using O6 output only	1719				
using O5 and O6	798				
LUT as Memory	584	0	0	9600	6.08
LUT as Distributed RAM	0	0			
LUT as Shift Register	584	0			
using O5 output only	29				
using O6 output only	199				
using O5 and O6	356				
Slice Registers	5356	0	0	65200	8.21
Register driven from within the Slice	3574				
Register driven from outside the Slice	1782				
LUT in front of the register is unused	1128				
LUT in front of the register is used	654				
Unique Control Sets	51		0	8150	0.63
+--+------+-------+------------+-----------+-------+
* * Note: Available Control Sets calculated as Slice * 1, Review the Control Sets Report for more
information regarding control sets.

10/10/24 https://fpga.mit.edu/6205/F24 97

From post_place_util.rpt

3. Memory

+-------------------+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+-------------------+------+-------+------------+-----------+-------+
Block RAM Tile	8	0	0	75	10.67
RAMB36/FIFO*	2	0	0	75	2.67
RAMB36E1 only	2				
RAMB18	12	0	0	150	8.00
RAMB18E1 only	12				
+-------------------+------+-------+------------+-----------+-------+

4. DSP

+----------------+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+----------------+------+-------+------------+-----------+-------+
| DSPs | 17 | 0 | 0 | 120 | 14.17 |
| DSP48E1 only | 17 | | | | |
+----------------+------+-------+------------+-----------+-------+

10/10/24 https://fpga.mit.edu/6205/F24 98

Resource Usage?
• Not much!

From post_place_util.rpt

Make it much better

• This was a 2048 point FFT at 19 kHz
• It is a very poorly designed pipeline
• There’s a FIFO for no reason.
• We use lots of extra bits because I was lazy
• The FFT is so ridiculously over-performant that it isn’t

even funny

• We could likely get same or better performance out
of system that uses far fewer resources on almost
all fronts.

10/10/24 https://fpga.mit.edu/6205/F24 99

How Quick to calculate FFT?
• Collect 2048 audio measurements :
• @~19 KHz. Every 52 microseconds (so ~107 milliseconds total)

• Compute 2048 point FFT:
• 6273 clock cycles @ 148.5MHz (42.25 μs)

• Square and Sum:
• 2 cycles @ 148.5MHz (13.48 ns)

• FIFO:
• 3 cycles @ 148.5MHz overhead latency (20 ns)

• Root:
• 26 cycles @ 148.5 MHz (175 ns)

10/10/24 https://fpga.mit.edu/6205/F24 100

How Quick?...Uselessly Quick
• After audio clip captured, FFT generated and ready to render in

42.5 μs
• Our audio samples are measured every 52 μs and and a full

frame of samples is captured every 100 milliseconds.
• This is a differential of like 2000x
• We can calculate our entire FFT in between individual audio

samples,

10/10/24 https://fpga.mit.edu/6205/F24 101

time

Ta
sk

Audio Collection

Calculations
(not to scale…it is even better)

No need to have fully-pipelined FFT for
this application

10/10/24 https://fpga.mit.edu/6205/F24 102

• Let’s say we need to compute F(F(F(X))). Do we
build our hardware like this?:

• Or like this:?

F F FX

FSM that does
F on cycle 1,
F on cycle 2,
F on cycle 3

Outputs X after

X

Latency: 3*Tclk
Throughput: 1/ Tclk
Uses more resources

Latency: 3*Tclk
Throughput: 1/ (3*Tclk)
Likely uses fewer resources

Where Could We Go From Here?
• Cut the FIFO (I put it in just for fun)
• Size the IP for the actual data we’re handling:
• a lot of the systems are set at 16 bits but our audio

samples are only 7 bits originally
• The CORDIC is uselessly large

• Pick a better FFT:
• Meaning…

10/10/24 https://fpga.mit.edu/6205/F24 103

This is the Great Tradeoff!

10/10/24 https://fpga.mit.edu/6205/F24 104

F F FX
More resources,
Better Throughput
Same Latency

FSM that does
F on cycle 1,
F on cycle 2,
F on cycle 3

Outputs X after

X

OR

Fewer resources,
Worse Throughput
Same Latency

• Base on what you need for the design!

Pick Better FFT Implementation
• We can get 16

times the
frequency
resolution
• For the same

resource usage
if we modify
things to take
advantage of
slow data
production

10/10/24 https://fpga.mit.edu/6205/F24 105

Pick Better FFT Implementation
• We can get 16 times the frequency resolution and

use ¼ the DSP blocks at the expense of:
• Using 3X the BRAM, (still fine)
• Having a latency of 3.764 ms (still totally fine)

10/10/24 https://fpga.mit.edu/6205/F24 106

And tons of other optimizations!!!

Different Directions
• Data Propagates downstream:

• Ready propagates upstream:
• “Back Pressure”
• Allow a backup downstream to potentially pause the

entire system at the start to prevent traffic jams!

10/10/24 https://fpga.mit.edu/6205/F24 107

FFT
Re/Im
Split

Square
Sum

Square
Root

Microphone ADC Memory

Output
Display

FIFO

READY

Data, VALID, metadata (TLAST)

Usefulness of Metadata or markers
• If data takes a really long time you can also activate a

USER field to send along with DATA
• USER values will be unchanged but will get pipelined

properly along with the corresponding data they’re sent
in with

10/10/24 https://fpga.mit.edu/6205/F24 108

G HF

DATA, USER
Some time later, USER1 and
F(G(H(DATA1))) appear. Use
the USER data to interpret
the function output

USER1 DATA1 go in

Next Week

• No class on Tuesday (holiday):
• Thursday we’ll do some signal processing concepts

and that will likely bleed into the following Tuesday
• Then one or two more lectures and we’re done.

10/10/24 https://fpga.mit.edu/6205/F24 109

Final Project TAs from 2022

10/10/24 https://fpga.mit.edu/6205/F24 110

Sources

• “AMBA® AXITM and ACETM Protocol Specification”, ARM 2011
• “The Zynq Book”, L.H. Crockett, R.A. Elliot, M.A. Enderwitz, and R.W.

Stewart, University of Glasgow
• “Building Zynq Accelerators with Vivado High Level Synthesis” Xilinx

Technical Note
• Some material from ECE699 Spring 2016

https://ece.gmu.edu/coursewebpages/ECE/ECE699_SW_HW/S16/

10/10/24 https://fpga.mit.edu/6205/F24 111

This is the thing right here…the

spec sheet/manual is

surprisingly good!!

Crack open the AXI spec sheet with a few data
sheets for some Xilinx IP cores (like the CORDIC,
FFT, etc…) and you should be able to start making
sense of it.

