
Pipelining
6.205

10/7/24 https://fpga.mit.edu/6205/F24 1

All happy popcats are alike; each unhappy
popcat is unhappy in its own way

 -Leo Tolstoy
 Anna Karenina (1877)

Admin

• Week 05: due tomorrow

• Week 06 out on Thursday

• Final project teaming preferences due tonight! See
piazza. No extensions

10/7/24 https://fpga.mit.edu/6205/F24 2

Performance Metrics

• Latency (L):
• time between arrival of new input and generation of

corresponding output.
• For purely combinational circuits this is just tPD.
• For sequential circuits, it is the number of flops you travel

through times the clock period
• Throughput (T):

• Rate at which new outputs appear.
• For purely combinational circuits this is just 1/tPD or 1/L.
• For fully-pipelined circuits it is 1/1

10/7/24 https://fpga.mit.edu/6205/F24 3

Finput output

Division

• The outlier in the + - * / set…
• Division is a significantly harder math operation to

do compared to multiplication
• Where possible try to avoid
• Try to divide by powers of 2 (use right shift)!

• If you can’t avoid we must do it.

10/7/24 https://fpga.mit.edu/6205/F24 4

One “Bad” Attempt at Division
• In previous lectures

looked at *what* this
actually builds
• We can ask Vivado to

synthesize division logic
for us, and it actually will
do it.
• This code constrains the

act of division to having to
exist between two clock
edges.:

10/7/24 https://fpga.mit.edu/6205/F24 5

module top_level(
 input wire clk_100mhz, //clock @ 100 mhz
 input wire [15:0] sw, //switches
 input wire btnc, //btnc (used for reset)
 input wire btnu, //btnc (used for reset)
 input wire btnl, //btnc (used for reset)
 output logic [15:0] led //just here for the funs
);
 logic old_btnl;
 logic old_btnu;
 logic old_btnc;
 logic [15:0] quotient;
 logic [15:0] dividend;
 logic [15:0] divisor;
 assign led = quotient;
 always_ff @(posedge clk_100mhz)begin
 old_btnl <= btnl;
 old_btnu <= btnu;
 old_btnc <= btnc;
 end

 always_ff @(posedge clk_100mhz)begin
 if (btnu & ~old_btnu)begin
 quotient<= dividend/divisor; //divide
 end
 if (btnc & ~old_btnc)begin
 dividend <= sw; //divide //load dividend
 end
 if (btnl & ~old_btnl)begin
 divisor <= sw; //divide //load divisor
 end
 end
endmodule

Circuit Built:

10/7/24 https://fpga.mit.edu/6205/F24 6

D Q
dividend[15:0]

sw[15:0]
btnc
btnl
btnu

D Q
divisor[15:0]

quotient[15:0]

D Q
led[15:0]

÷

Build the Stupid Divider

10/7/24 https://fpga.mit.edu/6205/F24 7

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	100	0	0	15850	0.63
SLICEL	89	0			
SLICEM	11	0			
LUT as Logic	274	0	0	63400	0.43
using O5 output only	0				
using O6 output only	274				
using O5 and O6	0				
LUT as Memory	0	0	0	19000	0.00
LUT as Distributed RAM	0	0			
LUT as Shift Register	0	0			
Slice Registers	55	0	0	126800	0.04
Register driven from within the Slice	16				
Register driven from outside the Slice	39				
LUT in front of the register is unused	26				
LUT in front of the register is used	13				
Unique Control Sets	4		0	15850	0.03
+--+------+-------+------------+-----------+-------+

Phase 22 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-21.399| TNS=-129.552| WHS=0.090 |
THS=0.000 |

Violates timing!

Now Do same Thing With 32 bits:

10/7/24 https://fpga.mit.edu/6205/F24 8

D Q
dividend[31:0]

sw[15:0]
btnc
btnl
btnu

D Q
divisor[31:0]

quotient[31:0]

D Q
Seven segment

÷

if (pmod_pin & ~old_pmod_pin) begin
 quotient <= dividend/divisor;
end

*See lecture code for full implementation and build. (divider0)

Build the Stupider Divider

10/8/24 https://fpga.mit.edu/6205/F24 9

2. Slice Logic Distribution. (from post_place_util.rpt)

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	303	0	0	8150	3.72
SLICEL	202	0			
SLICEM	101	0			
LUT as Logic	941	0	0	32600	2.89
using O5 output only	0				
using O6 output only	919				
using O5 and O6	22				
LUT as Memory	0	0	0	9600	0.00
LUT as Distributed RAM	0	0			
using O5 output only	0				
using O6 output only	0				
using O5 and O6	0				
LUT as Shift Register	0	0			
using O5 output only	0				
using O6 output only	0				
using O5 and O6	0				
Slice Registers	126	0	0	65200	0.19
Register driven from within the Slice	51				
Register driven from outside the Slice	75				
LUT in front of the register is unused	42				
LUT in front of the register is used	33				
Unique Control Sets	7		0	8150	0.09
+--+------+-------+------------+-----------+-------+

Phase 23 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-72.962| TNS=-1017.985| WHS=0.166 | THS=0.000 |

Phase 23 Post Router Timing | Checksum: 23fd227b7

A Better Divider?

10/7/24 https://fpga.mit.edu/6205/F24 10

D Q
dividend[31:0]

sw[15:0]
btnc
btnl
btnu

D Q
divisor[31:0]

quotient[31:0]

D Q
Seven segment

÷

*See lecture code for full implementation and build. (divider0)

Put Something Better In Here:

Division (an example of an algorithm that
takes an unknown amount of time)

10/7/24 https://fpga.mit.edu/6205/F24 11

Super efficient divider \s

def divider (dividend, divisor):
 count = 0
 if divisor==0:
 return -1
 while dividend>=divisor:
 dividend -= divisor
 count += 1
 return (count, dividend)

A Divider (#1)

10/7/24 https://fpga.mit.edu/6205/F24 12

• This is a Verilog FSM example of the division
algorithm above which will run an unknown
number of times given a set of inputs

• This is how the functionality of a while loop
could be developed in your modules

• Will not handle negative, or 0 or other things

• Give you this 32 bit one in week05

def divider (dividend, divisor):
 count = 0
 if dividend <=0:
 return (0,divisor)
 if divisor==0:
 return -1
 while dividend>=divisor:
 dividend -= divisor
 count += 1
 return (count, dividend)

Build divider1

10/7/24 https://fpga.mit.edu/6205/F24 13

2. Slice Logic Distribution

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	52	0	0	8150	0.64
SLICEL	39	0			
SLICEM	13	0			
LUT as Logic	140	0	0	32600	0.43
using O5 output only	0				
using O6 output only	107				
using O5 and O6	33				
LUT as Memory	0	0	0	9600	0.00
LUT as Distributed RAM	0	0			
using O5 output only	0				
using O6 output only	0				
using O5 and O6	0				
LUT as Shift Register	0	0			
using O5 output only	0				
using O6 output only	0				
using O5 and O6	0				
Slice Registers	192	0	0	65200	0.29
Register driven from within the Slice	85				
Register driven from outside the Slice	107				
LUT in front of the register is unused	49				
LUT in front of the register is used	58				
Unique Control Sets	9		0	8150	0.11
+--+------+-------+------------+-----------+-------+

Phase 12 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=4.533 | TNS=0.000 | WHS=0.164 | THS=0.000 |

For divider1, what is the Good, the
Bad, the Ugly?
• What are some nice features?
• What are some not-nice

features?

10/8/24 https://fpga.mit.edu/6205/F24 14

Aside…

10/8/24 15

Original Italian poster 1967

Americanized poster with the
Ugly and the Bad characters

swapped

American DVD menu with the
artwork appropriately

reordered to match American
name of movie

For divider1, though…what are
good and bad?
• Good:
• …
• Meets timing
• Resource usage is maybe small?

• Bad:
• …
• Blocking Implementation (low-throughput)
• Variable throughput

10/8/24 https://fpga.mit.edu/6205/F24 16

So How to Fix…?

10/8/24 https://fpga.mit.edu/6205/F24 17

A Better Algorithm?

• This can’t be how computers actually do division in
real-life right?

• No there are actual algorithms that are base-2 friendly
that we can use instead.

• Further more, there are algorithms that operate in a
fixed number of cycles.

10/7/24 https://fpga.mit.edu/6205/F24 18

Divider (Fixed # of Steps)

https://fpga.mit.edu/6205/F24 19

• Assume the Dividend (A) and the
divisor (B) have N bits.

• Build a sequential circuit that
processes a single subtraction at
a time and then cycle the circuit
N times.

• This circuit works on unsigned
operands; for signed operands
one can remember the signs,
make operands positive, then
correct sign of result.

Init: P¬0
Load A and B

Repeat N times {
 shift P,A left one bit
 temp = P-B
 if (temp >= 0){
 P¬temp
 ALSB¬1
 }else{
 ALSB¬0
 }
}

Done: Q in A, R in P

10/7/24

Divider (Fixed # of Steps)

https://fpga.mit.edu/6205/F24 20

Assume the Dividend (A) and the divisor (B) have N bits. we can build a
sequential circuit that processes a single subtraction at a time and then
cycle the circuit N times. This circuit works on unsigned operands; for
signed operands one can remember the signs, make operands positive, then
correct sign of result.

BP A

-

S

N+1N+1

N+1

N bits

LSB

0

>0? S

S0 1

10/8/24

Init: P¬0
Load A and B

Repeat N times {
 shift P,A left one bit
 temp = P-B
 if (temp >= 0){
 P¬temp
 ALSB¬1
 }else{
 ALSB¬0
 }
}

Done: Q in A, R in P

Divider

https://fpga.mit.edu/6205/F24 2110/8/24

! " !#$ %%%%%&'(%%%%)***'**%%$+))**
!!!! !""" #$%&%'()*'(+,
!!!! """! -.%I&
!!!! 01 -+2&3'4&
!!!! """! 5,6&73,8)6,&)9(62):)!
!!!" ""!! -.%I&
!!!" 0; -+2&3'4&
!!!" ""!! 5,6&73,8)6,&)9(62):)!
!!"" "!!! -.%I&
!!"" ! -+2&3'4&
!!!! "!!" -+2&'4&8)6,&)9(62):)"
!!!" !!"! -.%I&
!!!" 0; -+2&3'4&
!!!" !!"! 5,6&73,8)6,&)9(62):)!
5 <

Init: P¬0
Load A and B

Repeat N times {
 shift P,A left one bit
 temp = P-B
 if (temp >= 0){
 P¬temp
 ALSB¬1
 }else{
 ALSB¬0
 }
}

Done: Q in A, R in P

divider2

10/7/24 https://fpga.mit.edu/6205/F24 22

• This is an FSM implementation of
the “smarter” algorithm just shown:
• Latency:

• 32 clock cycles (one for each bit)

• Throughput:
• 1/32 clock cycles

• This is “blocking” implementation,
meaning that when it is running it
cannot accept new inputs.
• Even with some sort of FIFO, this will

never process more than 1 division
per 32 cycles.
• Simulate to verify it works.

Build divider2:

10/8/24 https://fpga.mit.edu/6205/F24 23

2. Slice Logic Distribution

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	55	0	0	8150	0.67
SLICEL	40	0			
SLICEM	15	0			
LUT as Logic	125	0	0	32600	0.38
using O5 output only	0				
using O6 output only	67				
using O5 and O6	58				
LUT as Memory	0	0	0	9600	0.00
LUT as Distributed RAM	0	0			
using O5 output only	0				
using O6 output only	0				
using O5 and O6	0				
LUT as Shift Register	0	0			
using O5 output only	0				
using O6 output only	0				
using O5 and O6	0				
Slice Registers	197	0	0	65200	0.30
Register driven from within the Slice	94				
Register driven from outside the Slice	103				
LUT in front of the register is unused	46				
LUT in front of the register is used	57				
Unique Control Sets	10		0	8150	0.12
+--+------+-------+------------+-----------+-------+

Phase 12 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=5.214 | TNS=0.000 | WHS=0.167 | THS=0.000 |

For divider2, …what are good and
bad?
• Good:
• …
• Meets timing
• Nominally the same resource usage as before
• Runs in fixed number of cycles!

• Bad:
• …
• Blocking Implementation (low-throughput)

10/8/24 https://fpga.mit.edu/6205/F24 24

Can We Make it Better?

10/8/24 https://fpga.mit.edu/6205/F24 25

• We have a lot of slack with this current design.
• Currently kinda doing something like this (but 32

cycles rather than 4 cycles):

Phase 12 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=5.214 | TNS=0.000 | WHS=0.167 | THS=0.000 |

FSM that does
 F on cycle 1,
F on cycle 2,
F on cycle 3
F on cycle 4

Outputs X after

X
Latency: 4*Tclk
Throughput: 1/ (4*Tclk)
MIGHT use less logic,flops

Could We Instead…
• Instead of this:

• Do this:

10/8/24 https://fpga.mit.edu/6205/F24 26

FSM that does
 F on cycle 1,
F on cycle 2,
F on cycle 3
F on cycle 4

Outputs X after

X
Latency: 4*Tclk
Throughput: 1/ (4*Tclk)

FSM that does
 F, F on cycle 1,
F, F on cycle 2,

Outputs X after
X

Latency: 2*Tclk
Throughput: 1/ (2*Tclk)

Divider2b: Wedge a second
iteration into each clock cycle:
• Did not mix-n-match

blocking/non-blocking in my
always_ff because I
realize that to err is human
and this will lead to my
downfall, if not today, then
tomorrow
• Instead made an
always_comb with some
“temp” variables to hold the
result of the first iteration

10/8/24 https://fpga.mit.edu/6205/F24 27

Build divider2b:

10/8/24 https://fpga.mit.edu/6205/F24 28

2. Slice Logic Distribution

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	67	0	0	8150	0.82
SLICEL	44	0			
SLICEM	23	0			
LUT as Logic	185	0	0	32600	0.57
using O5 output only	0				
using O6 output only	125				
using O5 and O6	60				
LUT as Memory	0	0	0	9600	0.00
LUT as Distributed RAM	0	0			
using O5 output only	0				
using O6 output only	0				
using O5 and O6	0				
LUT as Shift Register	0	0			
using O5 output only	0				
using O6 output only	0				
using O5 and O6	0				
Slice Registers	197	0	0	65200	0.30
Register driven from within the Slice	92				
Register driven from outside the Slice	105				
LUT in front of the register is unused	35				
LUT in front of the register is used	70				
Unique Control Sets	9		0	8150	0.11
+--+------+-------+------------+-----------+-------+

Phase 12 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=1.561 | TNS=0.000 | WHS=0.160 | THS=0.000 |

For divider2b, …what are good
and bad?
• Good:
• …
• Meets timing
• Improved, fixed throughput (2X)
• Latency improved (1/2X)

• Bad:
• …
• Blocking Implementation (low-throughput)
• Resource usage a little bit higher

10/8/24 https://fpga.mit.edu/6205/F24 29

Make it Better?

• Easiest thing to try is to shove three steps or four
steps of the algorithm into one clock cycle?

• Maybe?
• Iunno
• Maybe?

10/8/24 https://fpga.mit.edu/6205/F24 30

Attempt at divider2c…try to do three
layers of the algorithm on one clock
cycle
• Used some more poorly

named variables to act as
intermediaries
• But should work “in

theory”*

10/8/24 https://fpga.mit.edu/6205/F24 31

*to use the terminology of a student trying to
convince me that they achieved what they set out
to do on their final project when they did not.

Build divider2c:

10/8/24 https://fpga.mit.edu/6205/F24 32

2. Slice Logic Distribution

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	88	0	0	8150	1.08
SLICEL	66	0			
SLICEM	22	0			
LUT as Logic	234	0	0	32600	0.72
using O5 output only	0				
using O6 output only	160				
using O5 and O6	74				
LUT as Memory	0	0	0	9600	0.00
LUT as Distributed RAM	0	0			
using O5 output only	0				
using O6 output only	0				
using O5 and O6	0				
LUT as Shift Register	0	0			
using O5 output only	0				
using O6 output only	0				
using O5 and O6	0				
Slice Registers	197	0	0	65200	0.30
Register driven from within the Slice	96				
Register driven from outside the Slice	101				
LUT in front of the register is unused	31				
LUT in front of the register is used	70				
Unique Control Sets	9		0	8150	0.11
+--+------+-------+------------+-----------+-------+

Phase 25 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-2.343 | TNS=-66.953| WHS=0.159 | THS=0.000 |

Timing Failed…got greedy…tried to fly too close to the sun, Icarus

Another interesting feature
• Notice this number:

• Whereas a design that worked earlier is this:

• Designs which fit timing easily will go through
fewer phases of optimization
• Vivado will give up after too many phases and can’t

achieve
10/8/24 https://fpga.mit.edu/6205/F24 33

Phase 25 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-2.343 | TNS=-66.953| WHS=0.159 | THS=0.000 |

Phase 12 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=1.561 | TNS=0.000 | WHS=0.160 | THS=0.000 |

Summary so far…

• So we’ve made some gains by:
• picking a better algorithm (something suited to base 2)
• Shoving more iterations of the cycle between the clock

edges…

• Latency still bad though :/

10/8/24 https://fpga.mit.edu/6205/F24 34

FSM that does
 F, F on cycle 1,
F, F on cycle 2,

…
Outputs X after

X
Latency: 16*Tclk
Throughput: 1/ (16*Tclk)

Can We Make it Better?

10/8/24 https://fpga.mit.edu/6205/F24 35

• We have an algorithm that takes a fixed amount of
cycles per divide (32 in our case)

• Because of this we know exactly how many
calculations we need to do.

• This allows us to set up a fully-pipelined system
(can’t easily do in a variable-run-time algorithm)

What?

10/7/24 https://fpga.mit.edu/6205/F24 36

• Currently we’re doing something like this:

• What if we instead did this (“unwrap the loop”):

FSM that does
 F on cycle 1,
F on cycle 2,
F on cycle 3,

Outputs X after

X

F F FX

Latency: 3*Tclk
Throughput: 1/ Tclk
Uses more logic,flops

Latency: 3*Tclk
Throughput: 1/ (3*Tclk)
MIGHT use less logic,flops

divider3

10/7/24 https://fpga.mit.edu/6205/F24 37

• Fully pipelined 32 step division
• Each step is carried out and

results placed in registers which
are used by next step in pipeline
• Latency still 32 cycles
• Throughput is now 1/1 cycle

• Assembly line! Stage 0 can always
have something to do

• Simulate it (it works)

• Now build…

How to “Unwrap/Unroll”?

10/7/24 https://fpga.mit.edu/6205/F24 38

Variables at each point
on an algorithm’s
iteration are now
separate

Compare to the FSM-
based approach before
where there was one p
variable, for example

Init: P¬0
Load A and B

Repeat N times {
 shift P,A left one bit
 temp = P-B
 if (temp >= 0){
 P¬temp
 ALSB¬1
 }else{
 ALSB¬0
 }
}

Done: Q in A, R in P

How to “Unroll”?

10/7/24 https://fpga.mit.edu/6205/F24 39

Use index variables to refer
backwards in “history” of the
algorithm…not in time, but space

Have your initial stage of variables
being processed

Previously in FSM, p referred to itself!

Nice…fully unrolled

10/7/24 https://fpga.mit.edu/6205/F24 40

• Were previously doing this:

• Now instead do this (“unwrap the loop”):

F F FX

FSM that does
 F on cycle 1,
F on cycle 2,

…
F on 32

Outputs X after

X

Latency: 32*Tclk
Throughput: 1/ Tclk
Uses more logic,flops

Latency: 32*Tclk
Throughput: 1/ (32*Tclk)
MIGHT use less logic,flops

…

Build divider3

10/8/24 https://fpga.mit.edu/6205/F24 41

Phase 12 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=3.738 | TNS=0.000 | WHS=0.054 | THS=0.000 |

2. Slice Logic Distribution

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	492	0	0	8150	6.04
SLICEL	336	0			
SLICEM	156	0			
LUT as Logic	1504	0	0	32600	4.61
using O5 output only	0				
using O6 output only	999				
using O5 and O6	505				
LUT as Memory	58	0	0	9600	0.60
LUT as Distributed RAM	0	0			
using O5 output only	0				
using O6 output only	0				
using O5 and O6	0				
LUT as Shift Register	58	0			
using O5 output only	17				
using O6 output only	41				
using O5 and O6	0				
Slice Registers	1632	0	0	65200	2.50
Register driven from within the Slice	1052				
Register driven from outside the Slice	580				
LUT in front of the register is unused	194				
LUT in front of the register is used	386				
Unique Control Sets	7		0	8150	0.09

Resource
usage went
way up!
Why?

We should expect increased
resource usage!!
• We’ve traded resources for throughput

• Now can do 100 million divisions per second as
opposed to ~3 million per second from before

10/8/24 https://fpga.mit.edu/6205/F24 42

For divider3, …what are good and
bad?
• Good:
• …
• Meets timing
• Improved, fixed throughput (32X) compared to v2
• Latency the same (compared to v2)

• Bad:
• …
• Resource usage significantly higher

10/8/24 https://fpga.mit.edu/6205/F24 43

Do it Better?
• Can I get my result faster?

10/7/24 https://fpga.mit.edu/6205/F24 44

Iteration
#0

Iteration
#1

Iteration
#2

Iteration
#N-1

…

Init: P¬0
Load A and B

Repeat N times {
 shift P,A left one bit
 temp = P-B
 if (temp >= 0){
 P¬temp
 ALSB¬1
 }else{
 ALSB¬0
 }
}
Done: Q in A, R in PL = N*tclk , T = 1/tclk

Iteration
#0

Iteration
#1

Iteration
#2

Iteration
#N-1…

L = 0.5*N*tclk , T = 1/tclk And maybe use fewer registers!!!:

Iteration
#3

divider4

10/7/24 https://fpga.mit.edu/6205/F24 45

• Improved Pipeline
• Shove two stages of our algorithm

between each register pair.
• Therefore this should allow the

same throughput of division but a
halving of latency!
• In theory anyways.
• Simulate it (it works)

• Now build…

Build divider4

10/7/24 https://fpga.mit.edu/6205/F24 46

Phase 12 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=0.173 | TNS=0.000 | WHS=0.057 | THS=0.000 |

2. Slice Logic Distribution

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	460	0	0	8150	5.64
SLICEL	321	0			
SLICEM	139	0			
LUT as Logic	1504	0	0	32600	4.61
using O5 output only	0				
using O6 output only	999				
using O5 and O6	505				
LUT as Memory	54	0	0	9600	0.56
LUT as Distributed RAM	0	0			
using O5 output only	0				
using O6 output only	0				
using O5 and O6	0				
LUT as Shift Register	54	0			
using O5 output only	0				
using O6 output only	54				
using O5 and O6	0				
Slice Registers	919	0	0	65200	1.41
Register driven from within the Slice	574				
Register driven from outside the Slice	345				
LUT in front of the register is unused	113				
LUT in front of the register is used	232				
Unique Control Sets	7		0	8150	0.09

Pass timing by 143 picoseconds

Flip flop usage dropped by a lot! (prev 2.50%) Why?

Fewer Flip Flops

10/8/24 https://fpga.mit.edu/6205/F24 47

Iteration
#0

Iteration
#1

Iteration
#2

Iteration
#N-1

…
Previously:

Iteration
#0

Iteration
#1

Iteration
#2

Iteration
#N-1…

Currently:

Iteration
#3

• Should be expected!

Summary of the Journey

Divider Resource Usage
%LUT/%FF

Latency Throughput

32 bit / 3.72/0.29 FAIL (-72.004 ns) FAIL (1/L)

divider 1 (lec06/week5) 0.64/0.29 Variable Variable

divider 2 0.67/0.30 32 1/32

divider 2b 0.82/0.30 16 1/16

divider 2c 1.08/0.30 FAIL (-2.3ns) FAIL (1/L)

divider 3 6.04/2.50 32 1/1

divider 4 5.64/1.41 16 1/1

10/7/24 https://fpga.mit.edu/6205/F24 48

which to use?

Conclusions
• First: Use a good algorithm!
• Doing things stupidly can only work out so well (not well)

• Second:
• Figure out what we (you, customer) actually need…
• Need to divide every clock cycle?
• Need to divide every million clock cycles?

10/7/24 https://fpga.mit.edu/6205/F24 49

More Conclusions
• Some tasks can be parallelized:
• (adding an array up…See Lecture 02 with big_adder)

• Some tasks cannot be parallelized and steps must
be done sequentially:
• 10 violinists cannot play a violin solo ten times as fast
• Division is an iterative process inherently

• If must be done sequentially:
• Variable-length or Fixed-length Algorithm?

10/7/24 https://fpga.mit.edu/6205/F24 50

Algorithms

• Variable-length algorithm are generally
implemented as type of state machine

• Fixed-length algorithms can be more flexible:
• FSM (blocking)
• Fully pipeline (assembly-line)
• Mixture in between

10/7/24 https://fpga.mit.edu/6205/F24 51

Optimize for Need!
• All those options allow one to vary

between amounts of pipelining
and iterative behavior

10/7/24 https://fpga.mit.edu/6205/F24 52

Iteration
#0

Iteration
#1

Iteration
#2

Iteration
#N-1

…

Init: P¬0, load A and B
Repeat N times {
 shift P,A left one bit
 temp = P-B
 if (temp >= 0){
 P¬temp
 ALSB¬1
 }else{
 ALSB¬0
 }
}
Done: Q in A, R in P

L = N*tclk , T = 1/tclk At small tclk But use lots of resources:

Iteration
#0

Iteration
#1

Iteration
#2

Iteration
#N-1…

L = 0.5*N*tclk , T = 1/tclk At larger tclk But uses slightly fewer of resources:

ß

Honestly minimal benefit to this at least for divider since it now
barely passes timing

Optimize for Need!
• All those options allow one to vary

between amounts of pipelining
and iterative behavior

10/7/24 https://fpga.mit.edu/6205/F24 53

Iterating
FSM

Init: P¬0, load A and B
Repeat N times {
 shift P,A left one bit
 temp = P-B
 if (temp >= 0){
 P¬temp
 ALSB¬1
 }else{
 ALSB¬0
 }
}
Done: Q in A, R in P

L = N*tclk , T = 1/(N*tclk) At small tclk But use very few resources:

…
L = N*tclk T = 1/(N/M*tclk) At small tclk But uses more of resources:

Iterating
FSM#1

Iterating
FSM#2

Iterating
FSM#M

ß Takes N cycles to divide and
can’t accept new inputs
during that time

Takes N cycles to divide but
can take a new input every
N/M cyclesß

A lot of Algorithms are Repetition-
Based though

10/7/24 https://fpga.mit.edu/6205/F24 54

• Let’s say we need to compute F(F(F(X))). Do we
build our hardware like this?:

• Or like this:?

F F FX

FSM that does
F on cycle 1,
F on cycle 2,
F on cycle 3

Outputs X after

X

Latency: 3*Tclk
Throughput: 1/ Tclk
Uses more resources

Latency: 3*Tclk
Throughput: 1/ (3*Tclk)
Likely uses fewer resources

This is the Great Tradeoff!

10/7/24 https://fpga.mit.edu/6205/F24 55

F F FX
More resources,
Better Throughput
Same Latency

FSM that does
F on cycle 1,
F on cycle 2,
F on cycle 3

Outputs X after

X

OR

Fewer resources,
Worse Throughput
Same Latency

• Base on what you need for the design!

Most of what you may need to do
can be framed in this way
• What about the “other” math operations?
• Square root?
• Trig functions?
• Exponents?
• Anything else?
• There’s usually a “smart” way to do it.

10/7/24 https://fpga.mit.edu/6205/F24 56

CORDIC

• Coordinate Rotation Digital
Computer
• Super versatile class of iterative

algorithms that are used widely
in hardware because they are
relatively simple to implement
(mostly just shifts and adds and
compares)
• Can operate quite efficiently

using a minimal amount of
resources

10/7/24 6.S965 Fall 2024 57

https://www.remcycles.net/blog/cordic.html

Generalized CORDIC
• The three equations are iterated

10/7/24 6.S965 Fall 2024 58

𝑥!"# = 𝑥! − 𝜇𝑑!𝑦!2$!

𝑦!"# = 𝑦! + 𝑑!𝑥!2$!

𝑧!"# = 𝑧! + 𝑑!𝑥!2$!

𝜇 is settable
constant

𝑑! is our
control/feedback
function for locking
into a target

sgn(𝜃) in our
walkthrough
example

𝑧 is our angle
accumulator

2"! are the
tan 𝛼! 	from our
original example

Different Modes

10/7/24 6.S965 Fall 2024 59

CORDIC
• What can you compute with CORDIC?

10/7/24 6.S965 Fall 2024 60

Often Use more “Primitive”
algorithms on an FPGA
• Along with things like srli or add, modern

processors will often have:
• 32-bit integer multiply instructions
• Floating-point instructions
• Etc…

• If both srli and mult cost the same in terms of
instructions, then you might as well use a mult if it
gets you more performance
• And many algorithms for certain things can be done

more quickly using mult than just srli

10/8/24 https://fpga.mit.edu/6205/F24 61

In an FPGA, accelerator, etc…

• If you have the freedom to not use mult, and it
has a benefit (perhaps in terms of resource usage)…
• Then you should consider it as another degree in

which to optimize.

10/8/24 https://fpga.mit.edu/6205/F24 62

• Have finite number of
multiplier blocks on FPGA…
• Spending some on an

algorithm that doesn’t need
it could hurt you elsewhere

So make sure you explore your
algorithms
• Don’t necessarily do it the software way or even

the “C-way” since those are often optimized to a
different set of constraints.

10/8/24 https://fpga.mit.edu/6205/F24 63

Data Type Sizes

• In a traditional processor, instructions are
optimized for particular data type sizes:
• 32 or 64 bit integers
• 32 or 64 bit floats

• Don’t need to do that necessarily anymore
• Can be the difference between making timing and

not making timing

10/8/24 https://fpga.mit.edu/6205/F24 64

The Ongoing 8-bit debate in the
ML field

10/8/24 https://fpga.mit.edu/6205/F24 65

And of course…remember memory
is often a limiting factor!

• Few years ago…team built
a fully-pipelined search
implementation.
• Could search 1024

elements 100 million
times per second.
• But we couldn’t give it

data fast enough to take
advantage of it.

10/8/24 https://fpga.mit.edu/6205/F24 66

… … …
1024 long array of som

ething

Project Video

10/8/24 https://fpga.mit.edu/6205/F24 67

Project Video

10/8/24 https://fpga.mit.edu/6205/F24 68

Final Project Teams/prefernces by
tonight
• Must submit tonight
• Do it
• See Piazza announcement

10/8/24 https://fpga.mit.edu/6205/F24 69

