
Memory II, FSMs,
Pipelining

6.205 Fall 2024

10/3/24 https://fpga.mit.edu/6205/F24 1

Memory Example!
• In the first part of week 05 you’re going

to be displaying popcat on your FPGA
over video.
• We need to store popcat
• Popcat is a 256X256 24 bit color image.

• How to encode with memories?

10/3/24 https://fpga.mit.edu/6205/F24 2

Popcat
• We could build a 24bit-wide memory that has

256x256 (65,536) entries (deep) in it (one for each
pixel)
• Math: 256x256x24 = 1,572,864 bits
• That’s greater than >50% of our memory on the

S50 FPGA.

10/3/24 https://fpga.mit.edu/6205/F24 3

red,green,blue – 24 bit
24Image

memory
24 bit image

16

24 bit – 16M colors

Strategy
• Images are large and take up lots of memory

• Want to save space, and store image using less
memory
• Many images don’t express every one of the 224

“true” colors.
• Why waste the space storing an unused possibility?
• So pick the N most popular and only display them:
• You can store them using ceil log! 𝑁 bits (save space)
• Then use a color table to look up what full color (24 bit

value) that corresponds to!

10/3/24 https://fpga.mit.edu/6205/F24 4

• So use two memories:
• 8-wide memory with 65536 entries for each pixel

encoding one of 256 colors
• 24-wide memory with 256 entries entries encoding

those colors

10/3/24 https://fpga.mit.edu/6205/F24 5

Color Lookup Table

rgb
color
map

memory

red,
green,
blue – 24 bit

8 24Image
memory
8 bit image

16

8 bit – 256 colors

Colors are still 24 bit, but the pixels are
encoded using only 8 bits

Storage Savings

10/3/24 https://fpga.mit.edu/6205/F24 6

8 bit – 256 colors

24 bit – 16M colors

256 X 256 image @ 24 bits per pixel is:
256 X 256 X 24 bits = 1.572 Mbits
(196.6 kBytes)

256 X 256 image with 8 bit color map:
256 X 256 X 8 bits + 256 X 24 = 0.530432 Mbits
(66.304 kBytes)

Keep Going As Needed

10/3/24 https://fpga.mit.edu/6205/F24 7

4 bit – 16 colors

8 bit – 256 colors24 bit – 16M colors 6 bit – 16 colors

2 bit – 4 colors 1 bit – 2 colors

Additional Tricks Can be Played

• Dithering, in particular can help with this problem,
but we’ll go into that in a future week.

10/3/24 https://fpga.mit.edu/6205/F24 8

What about Latency?

• Yes What about latency.
• These things we just built are memories!
• Memory of any scale usually has latency involved

with it
• Xilinx BRAM has how many cycles latency on a

read?
• 2 cycles
• Lab/Week 5 will investigate

10/3/24 https://fpga.mit.edu/6205/F24 9

FSM Modularity

10/3/24 https://fpga.mit.edu/6205/F24 10

10/3/24 https://fpga.mit.edu/6205/F24 11

Toward FSM Modularity
• Consider the following abstract FSM:

S0

a1

b1 c1

d1

S1 S2 S3 S4 S5 S6 S7 S8 S9

a2

b2 c2

d2 a3

b3 c3

d3

• Suppose that each set of states ax...dx is a “sub-FSM” that produces exactly the same
outputs.

• Can we simplify the FSM by removing equivalent states?
 No! The outputs may be the same, but the
 next-state transitions are not.

• This situation closely resembles a procedure call or function call in software...how can we
apply this concept to FSMs?

Acknowledgements: Rex Min

10/3/24 https://fpga.mit.edu/6205/F24 12

The Major/Minor FSM Abstraction

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYBCLK

RESET RESET

CLK

• Subtasks are encapsulated in minor FSMs with common
reset and clock

• Simple communication abstraction:
• START: tells the minor FSM to begin operation (the call)
• BUSY: tells the major FSM whether the minor is done (the return)

• The major/minor abstraction is great for...
• Modular designs (always a good thing)
• Tasks that occur often but in different contexts
• Tasks that require a variable/unknown period of time
• Event-driven systems

10/3/24 https://fpga.mit.edu/6205/F24 13

Inside the Major FSM

S1
S2

START
S3 S4...

BUSYBUSY

BUSY

BUSY

BUSY BUSY

1. Wait until the
minor FSM is

ready

2. Trigger the
minor FSM (and

make sure it’s
started)

3. Wait until the
minor FSM is

done

START

BUSY

Major FSM
State S1 S2 S2 S3 S3 S3 S4

CLK

Variations:
• Usually don’t need both Step 1 and Step 3
• One cycle “done” signal instead of multi-cycle “busy”

10/3/24 https://fpga.mit.edu/6205/F24 14

Inside the Minor FSM

T2
BUSY

T3
 BUSY

T4
 BUSY

1. Wait for a trigger
from the major FSM

2. Do some useful work

T1

 BUSY

START

START

START

BUSY

Major FSM
State S1 S2 S2 S3 S3 S3 S4

CLK
Minor FSM

State T1 T1 T2 T3 T4 T1 T1

3. Signal to the
major FSM that

work is done

can we
speed this

up?

10/3/24 https://fpga.mit.edu/6205/F24 15

Optimizing the Minor FSM

T2
BUSY

T3
 BUSY

T4

 BUSY
T1

 BUSY

START

START

Good idea: de-assert BUSY one cycle early

Bad idea #1:

T4 may not immediately return to T1

T2
BUSY

T3
 BUSY

T1

 BUSY

START

START
T4

 BUSY

Bad idea #2:
BUSY never asserts!

T1

 BUSY

START

START T2

 BUSY

So make sure you if you do this, that last state always happens and always happens for one
cycle

10/3/24 https://fpga.mit.edu/6205/F24 16

A Four-FSM Example

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC

BUSYC

TICK

IDLE
STAB

STARTA

STARTB

WTAB

TICK BUSYA and BUSYB

TICK BUSYA or BUSYB BUSYA orBUSYB

STC
 STARTC

BUSYA and BUSYB

BUSYC

WTC BUSYC

BUSYC

BUSYC

Operating Scenario:
• Major FSM is triggered by TICK
• Minors A and B are started

simultaneously
• Minor C is started once both A

and B complete
• TICKs arriving before the

completion of C are ignored

MAJOR FSM

10/3/24 https://fpga.mit.edu/6205/F24 17

Four-FSM Sample Waveform

IDLE IDLE STAB STAB WTAB WTAB WTAB STC STC WTC WTC WTC IDLE IDLE STAB
state

tick

STARTA

BUSYA

STARTB

BUSYB

STARTC

BUSYC

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC
BUSYC

TICK

Alternative to Busy Signals

10/3/24 https://fpga.mit.edu/6205/F24 18

• As an alternative to busy signals sometimes just having a
single-cycle “valid” signals is sufficient.
• If the downstream systems involved are stateful enough to be

able to keep track of various system’s this can work
• Or you can do both. Depends on your design

10/3/24 https://fpga.mit.edu/6205/F24 19

Alternative to Busy Signals
(Single-cycle asserts)

IDLE IDLE STAB STAB WTAB WTAB WTAB STC STC WTC WTC WTC IDLE IDLE STAB
state

tick

VALID_INA

VALID_OUTA

VALID_INB

VALID_OUTB

VALID_INC

VALID_OUTC

Major FSM

Minor FSM A

Minor FSM B

VALID_INA

VALID_INB

VALID_OUTA

VALID_OUTB

Minor FSM C
VALID_INC

VALID_OUTC

TICK

A Divider

10/3/24 https://fpga.mit.edu/6205/F24 20

• The Divider from when we
first talked about FSMs is an
example of an system which
might be a minor FSM in part
of a larger major’s algorithm
• Many things need division,

but it would suck to have to
rewrite it repeatedly.
• We want you to get practice

with that in Week 5’s lab

Center of Mass Calculation in
Lab05

10/3/24 https://fpga.mit.edu/6205/F24 21

• You will write a center-of-mass calculator that is best thought
of as an FSM.
• For each frame of video:

• Sum the x location and y location of every active pixel you come across
• Keep track of how many pixels you’ve encountered
• At end of frame (or beginning of next one, divide the two sums by the number

of active pixels
• This will give an average X,Y

• Division takes time!
• Need to create a major/minor FSM system

10/3/24 https://fpga.mit.edu/6205/F24 22

Lab 05 Center of Mass

Center of
Mass Calculation

‘COM’

Divider 1
(x dimension)

Divider 2
(y dimension)

STARTA

STARTB

BUSYA

BUSYBCLK

RESET RESET

CLK

• C.O.M. will be in a “data collection state” during the active portion of a video frame

• When the frame’s active part is done, it needs to calculate the average x,y position
of the “hot” pixels it has observed.

• To divide, the C.O.M. module hands the values it needs divided off to two separate
dividers.

• C.O.M. waits on them monitoring their BUSY signals

• They can do division separately (in parallel)

• When done, they report back to the C.O.M with their result

• C.O.M. reports to outside world its calculation

Pipelining
How to make sure signals are balanced going through a
sequence of operations.

10/3/24 https://fpga.mit.edu/6205/F24 23

Performance Metrics

• Latency (L):
• time between arrival of new input and generation of

corresponding output.
• For purely combinational circuits this is just tPD.

• Throughput (T):
• Rate at which new outputs appear.
• For purely combinational circuits this is just 1/tPD or 1/L.

10/3/24 https://fpga.mit.edu/6205/F24 24

Finput output

Performance of Combinational
Logic

10/3/24 https://fpga.mit.edu/6205/F24 25

H

G

F P(X)X

For combinational logic:

 L = tPD,
 T = 1/tPD.

We can’t get the answer faster, but are
we making effective use of our
hardware at all times?

G(X)
F(X)

P(X)

X

F & G are “idle”, just holding their outputs stable
while H performs its computation

Retiming: A useful transform

10/3/24 https://fpga.mit.edu/6205/F24 26

25

20

15
P(X)X

L = 45
T = 1/45

Propagation delays indicated by numbers:

Retiming: A useful transform

10/3/24 https://fpga.mit.edu/6205/F24 27

25

20

15
P(X)X

tclk = 25
L = 50
T = 1/25

Assuming ideal registers:
i.e., tPD = 0, tSETUP = 0

Slightly higher Latency L. Improved Throughput J !

Pipeline Diagrams

10/3/24 https://fpga.mit.edu/6205/F24 28

Input

F Reg

G Reg

H Reg

i i+1 i+2 i+3

Xi Xi+1

F(Xi)

G(Xi)

Xi+2

F(Xi+1)

G(Xi+1)

H(Xi)

Xi+3

F(Xi+2)

G(Xi+2)

H(Xi+1)

Clock cycle
Pi

pe
lin

e
st

ag
es

The results associated with a particular set of input data moves
diagonally through the diagram, progressing through one
pipeline stage each clock cycle.

H(Xi+2)

…

…

Pipeline Conventions

• a K-Stage Pipeline (“K-pipeline”) is an acyclic circuit
having exactly K registers on every path from an
input to an output.
• a COMBINATIONAL CIRCUIT is thus a 0-stage

pipeline.

10/3/24 https://fpga.mit.edu/6205/F24 29

Pipeline Conventions
• CONVENTION:
• Every pipeline stage, hence every K-Stage pipeline, has a

register on its OUTPUT (not on its input).

• ALWAYS:
• The CLOCK common to all registers must have a period

sufficient to cover propagation over combinational paths
PLUS (input) register tPD PLUS (output) register tSETUP.

10/3/24 https://fpga.mit.edu/6205/F24 30

The LATENCY of a K-pipeline is K times the period of the clock
common to all registers.

The THROUGHPUT of a K-pipeline is the frequency of the
clock.

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

ILL-formed Pipeline

10/3/24 https://fpga.mit.edu/6205/F24 31

C
AX

BY

Problem:

Successive inputs get mixed: e.g., B(A(Xi+1), Yi). This happened
because some paths from inputs to outputs have 2 registers, and
some have only 1!

This CAN’T HAPPEN on a well-formed K pipeline!

noneFor what value of K is the following circuit a K-Pipeline? ________

Pipelining

10/3/24 https://fpga.mit.edu/6205/F24 32

A
4 nS

B
3 nS

C
8 nS

D
4 nS

E
2 nS

F
5 nS

Let’s say we want tclk to be 8ns

Another Thing to Pipeline

10/3/24 https://fpga.mit.edu/6205/F24 33

A
4 nS

B
3 nS

C
8 nS

D
4 nS

E
2 nS

F
5 nS

Let’s say we want tclk to be 8ns

10/3/24 https://fpga.mit.edu/6205/F24 34

A
4 nS

B
3 nS

C
8 nS

D
4 nS

E
2 nS

F
5 nS

T = 1/8ns
L = 24ns

Step 1:
Add a register on the output.

Step 2:
From register. Draw a contour
backwards that includes as much of
the circuit that will fit inside required
period. Add registers

Repeat until satisfied with T. Look for
redundant registers

STRATEGY:
 Focus your attention on placing

pipelining registers around the
slowest circuit elements
(BOTTLENECKS).

Assuming this interfaces with other modules that have registered outputs the input will chain
will be ok (<= 8ns)

Another Pipeline Example

10/3/24 https://fpga.mit.edu/6205/F24 35

A

B

CX

Y

2ns

1ns

1ns

0-pipe:
LATENCY THROUGHPUT

4ns 1/4ns

OBSERVATIONS:

• 1-pipeline improves neither L
or T.

• T improved by breaking long
combinational paths,
allowing faster clock.

• Too many stages cost L, don’t
improve T.

• Back-to-back registers are
often required to keep
pipeline well-formed.

1-pipe: 4ns 1/4ns

1

2-pipe: 4ns 1/2ns

2

2

3-pipe: 1/2ns6ns

3

3

Better throughput here
means we can run at
higher clock rate

Pipelining in Verilog

10/3/24 https://fpga.mit.edu/6205/F24 36

Gd_in d_out Fd_in d_outx
y z

5ns 8ns

Gd_in d_out Fd_in d_outx
y1 z1

5ns 8ns

y2 z2

How often should you be adding
FlipFlops in your FPGA?
• This comes with experience and getting to know

your system.
• Most of what you want to do really is some form of

math.
• So knowing how much math you can do in a clock

cycle is useful

10/3/24 https://fpga.mit.edu/6205/F24 37

The Complexity of Math
Operations

10/3/24 https://fpga.mit.edu/6205/F24 38

Let’s look at some basic math circuits:
+, -, *, /

“Full Adder” building block

A B CI S CO

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

The “half adder”
circuit has only the A
and B inputs (no carry)
Full adders handle
carry bits

10/3/24 39https://fpga.mit.edu/6205/F24

Adder: a circuit that does addition
Hereʼs an example of binary addition as one might do it by “hand”:

1101
+ 0101
10010

1011
Carries from previous column

Adding two N-bit
numbers produces an
(N+1)-bit result

If we build a circuit that implements one column:

we can quickly build a circuit to add two 4-bit numbers…

“Ripple-
 carry
 adder”

10/3/24 40https://fpga.mit.edu/6205/F24

Subtraction: A-B = A + (-B)
Using 2ʼs complement representation: –B = ~B + 1

~ = bit-wise complement

So letʼs build an arithmetic unit that does both addition and subtraction.
Operation selected by control input:

10/3/24 41https://fpga.mit.edu/6205/F24

When SUBTRACT is 1:
• Invert each bit
• Start with a Carry of 1

(same as adding 1)

“Full Adder” building block
A B CI S CO

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

The “half adder”
circuit has only the A
and B inputs

10/3/24 42https://fpga.mit.edu/6205/F24

tpd dictated by carry path!

Can also rewrite the carry path as: 𝑐!"# = 𝑎	&	𝑐$% | 𝑏	&	𝑐$% | 𝑎	&	𝑏

Speed: tPD of Ripple-carry Adder

Worst-case path: carry propagation from LSB to MSB, e.g., when
adding 11…111 to 00…001.

CI to CO CIN-1 to SN-1

Q(N) is read
“order N” : means
that the latency of
our adder grows at
worst in
proportion to the
number of bits in
the operands.

tPD = (N-1)*(tPD,OR + tPD,AND) + tPD,XOR » Q(N)

10/3/24 43https://fpga.mit.edu/6205/F24

CO = AB +ACI + BCI

The Carry Path Becomes Limiting
• Solution is the Carry-Look-ahead Adder:

10/3/24 https://fpga.mit.edu/6205/F24 44

https://www.ece.uvic.ca/~fayez/courses/ceng465/lab_465/project1/adders.pdf

Can do some
factoring/redesign and cut-
down on tpd of the carry path

Logic Slices Can Add/Subtract
• Can synthesize the

addition of two 4 bit
numbers with fast carry

10/3/24 https://fpga.mit.edu/6205/F24 45

Series 7 Logic Slice

A0
B0

A1
B1

A2
B2

A3
B3

A3A2A1A0
+B3B2B1B0

Fast Carry-Chain

Add/Subtract on the FPGA

• + and – can be done combinationally very quickly:
• 32 bit add can be done in a clock cycle (<10 ns) pretty

easily
• Several smaller adds (A+B+C+D) can be done in clock

cycle as well (10 ns)

• CLBs (the generic function generators, of which we
have a lot) are capable of being chained together to
allow large adds.

10/3/24 https://fpga.mit.edu/6205/F24 46

Slices can stack to
give more bits

10/3/24 https://fpga.mit.edu/6205/F24 47

A0
B0

A1
B1

A2
B2

A3
B3

A4
B4

A5
B5

A6
B6

A7
B7

A8
B8

A9
B9

A10
B10

A11
B11

A11A10A9A8A7A6A5A4A3A2A1A0

+B11B10B9B8B7B6B5B4B3B2B1B0

Ca
rr

y
Ch

ai
n

+ or - in Verilog
• Generally + or – on its own will get synthesized

using logic slices unless specified
• Very large additions or subtractions may start to

take too long!*

• But doing a couple 32 bit adds in a 10 ns cycle
should be possible…

10/3/24 https://fpga.mit.edu/6205/F24 48

*too is really with respect to a clock. If you’re running on a 10 MHz clock,
then things are different!

But also the stuff around it
matters too!
• Keep track of the stuff before and after your math.
• If you have a ton of if/else/ifs…or if you have a

super-deeply nested if/if/if/ chain, all that stuff
requires logic too.

10/3/24 https://fpga.mit.edu/6205/F24 49

Also Case Statements are Good
• If/elses and even parallel if’s as shown on the

previous page get encoded as priority logic

10/3/24 https://fpga.mit.edu/6205/F24 50

https://www.kevnugent.com/2020/10/22/verilog-blogpost_002/

q

IDLEFIRSTSECOND

y

z

zz

zzz

long combinational path

Also Case Statements are Good
• If logic can be structured without priority, then do

it! Can yield simpler underlying logic.

10/3/24 https://fpga.mit.edu/6205/F24 51

https://www.kevnugent.com/2020/10/22/verilog-blogpost_002/

q

IDLE

FIRST

SECOND

y

z

zz

zzz

shorter combinational path

else

state

The stuff around it matters too!

• Keep track of the stuff before and after your math.
• If you have a ton of if/else/ifs…or if you have a

super-deeply nested if/if/if/ chain, all that stuff
requires logic too.
• Also think about the stuff being used to calculate

the if/else stuff.

10/3/24 https://fpga.mit.edu/6205/F24 52

Example…

10/3/24 https://fpga.mit.edu/6205/F24 53

logic [31:0] a,b,y,z,q,s,t,r;

always_ff @(posedge clk)begin
 if (b >q;)begin
 a <= y+z;
 end
end

always_comb begin
 q = s + t;
end

II violate timing!

always_comb begin
 t = r>98?r+100:a+11;
end

Path that needs to be calculated

Multiplication on the FPGA
• Multiplication can be done on the FPGA on 2’s

complement numbers
• Takes more time:
• Depending on size of operands may/may not be doable

in one clock cycle

• Where possible try to get away with bit shifts and
adds.

10/3/24 https://fpga.mit.edu/6205/F24 54

Multiplications with shifts
• <<1 is multiply by 2
• >>1 is divide by 2
• Can do a lot with this if get creative

• Vivado can be pretty good at figuring these things
out for you, but largely only for constants.

10/3/24 https://fpga.mit.edu/6205/F24 55

Generic Digital Multiplication

10/3/24 https://fpga.mit.edu/6205/F24 56

*Lecture on Multiplier architectures: https://inst.eecs.berkeley.edu/~eecs151/sp18/files/Lecture21.pdf

In base 2 multiplication these are all very simple calculations done with XOR

Some really cool factoring can be done to make the overall propagation delay of a
multiplier relatively short, though there’s a lot of logic in it*

DSP Blocks
• Add-then-multiply is a common operation chain in many

things, particularly Digital Signal Processing
• FPGA has dedicated hardware multiplier modules called

DSP48 blocks on it
• 150 of them on Urbana FPGA
• Capable of single-cycle multiplies

• Can get inferred from using * in your Verilog that isn’t a
power of 2:
• x*y, for example, will likely will result in DSP getting used
• May take a full clock cycle so would need to budget tiing

accordingly
• Can infer multiple for larger multiplies

10/3/24 https://fpga.mit.edu/6205/F24 57

DSP48 Slice (High Level)

10/3/24 https://fpga.mit.edu/6205/F24 58

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

Much of the benefit/speed of this module comes from the hardwired internal routing,
keeping it very fast. This device is not as generalized as a LUT/logic cell. It can only do a
subset of math operations

How much multiply can do?

• At 100 MHz on these boards, I’d aim for one 32 bit
multiply per clock cycle (it’ll use several DSP blocks
to achieve that)
• Anything more is pushing it
• If you run out of DSP blocks, it’ll revert to using the

generic logic…and this will become a harder
problem to satisfy
• Smaller multiply-adds you can maybe get away with

in one clock cycle.

10/3/24 https://fpga.mit.edu/6205/F24 59

Division
• The outlier in the + - * / set…
• Division is a significantly harder math operation to

do compared to multiplication
• Where possible try to avoid
• Try to divide by powers of 2 (use right shift)!

• If you can’t avoid we must do it. (week 05)

10/3/24 https://fpga.mit.edu/6205/F24 60

10/3/24 https://fpga.mit.edu/6205/F24 61

Lab 05 Center of Mass

Center of
Mass Calculation

‘COM’

Divider 1
(x dimension)

Divider 2
(y dimension)

STARTA

STARTB

BUSYA

BUSYBCLK

RESET RESET

CLK

• C.O.M. will be in a “data collection state” during the active portion of a video frame

• When the frame’s active part is done, it needs to calculate the average x,y position
of the “hot” pixels it has observed.

• To divide, the C.O.M. module hands the values it needs divided off to two separate
dividers.

• C.O.M. waits on them monitoring their BUSY signals

• They can do division separately (in parallel)

• When done, they report back to the C.O.M with their result

• C.O.M. reports to outside world its calculation

One “Bad” Attempt at Division
• In previous lecture looked

at *what* this actually
builds
• We can ask Vivado to

synthesize division logic
for us, and it actually will
do it.
• This code constrains the

act of division to having to
exist between two clock
edges.:

10/3/24 https://fpga.mit.edu/6205/F24 62

module top_level(
 input wire clk_100mhz, //clock @ 100 mhz
 input wire [15:0] sw, //switches
 input wire btnc, //btnc (used for reset)
 input wire btnu, //btnc (used for reset)
 input wire btnl, //btnc (used for reset)
 output logic [15:0] led //just here for the funs
);
 logic old_btnl;
 logic old_btnu;
 logic old_btnc;
 logic [15:0] quotient;
 logic [15:0] dividend;
 logic [15:0] divisor;
 assign led = quotient;
 always_ff @(posedge clk_100mhz)begin
 old_btnl <= btnl;
 old_btnu <= btnu;
 old_btnc <= btnc;
 end

 always_ff @(posedge clk_100mhz)begin
 if (btnu & ~old_btnu)begin
 quotient<= dividend/divisor; //divide
 end
 if (btnc & ~old_btnc)begin
 dividend <= sw; //divide //load dividend
 end
 if (btnl & ~old_btnl)begin
 divisor <= sw; //divide //load divisor
 end
 end
endmodule

Circuit Built:

10/3/24 https://fpga.mit.edu/6205/F24 63

D Q
dividend[15:0]

sw[15:0]
btnc
btnl
btnu

D Q
divisor[15:0]

quotient[15:0]

D Q
led[15:0]

÷

Build the Stupid Divider

10/3/24 https://fpga.mit.edu/6205/F24 64

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	100	0	0	15850	0.63
SLICEL	89	0			
SLICEM	11	0			
LUT as Logic	274	0	0	63400	0.43
using O5 output only	0				
using O6 output only	274				
using O5 and O6	0				
LUT as Memory	0	0	0	19000	0.00
LUT as Distributed RAM	0	0			
LUT as Shift Register	0	0			
Slice Registers	55	0	0	126800	0.04
Register driven from within the Slice	16				
Register driven from outside the Slice	39				
LUT in front of the register is unused	26				
LUT in front of the register is used	13				
Unique Control Sets	4		0	15850	0.03
+--+------+-------+------------+-----------+-------+

Phase 22 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-21.399| TNS=-129.552| WHS=0.090 |
THS=0.000 |

Violates timing!

Now Do same Thing With 32 bits:

10/3/24 https://fpga.mit.edu/6205/F24 65

D Q
dividend[31:0]

sw[15:0]
btnc
btnl
btnu

D Q
divisor[31:0]

quotient[31:0]

D Q
Seven segment

÷

if (pmod_pin & ~old_pmod_pin) begin
 quotient <= dividend/divisor;
end

*See lecture code for full implementation and build. (divider0)

Build the Stupider Divider

10/3/24 https://fpga.mit.edu/6205/F24 66

2. Slice Logic Distribution

+--+------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+--+------+-------+------------+-----------+-------+
Slice	301	0	0	8150	3.69
SLICEL	225	0			
SLICEM	76	0			
LUT as Logic	944	0	0	32600	2.90
using O5 output only	0				
using O6 output only	922				
using O5 and O6	22				
LUT as Memory	0	0	0	9600	0.00
LUT as Distributed RAM	0	0			
LUT as Shift Register	0	0			
Slice Registers	131	0	0	65200	0.20
Register driven from within the Slice	67				
Register driven from outside the Slice	64				
LUT in front of the register is unused	28				
LUT in front of the register is used	36				
Unique Control Sets	7		0	8150	0.09
+--+------+-------+------------+-----------+-------+

Phase 20 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-72.004| TNS=-1004.354| WHS=0.227 | THS=0.000 |

Phase 20 Post Router Timing | Checksum: 1d10fc4d8

A Better Divider?

10/3/24 https://fpga.mit.edu/6205/F24 67

D Q
dividend[31:0]

sw[15:0]
btnc
btnl
btnu

D Q
divisor[31:0]

quotient[31:0]

D Q
Seven segment

÷

*See lecture code for full implementation and build. (divider0)

Put Something Better In Here:

So conclusions

• +, -, * can be done in a clock cycle with exceptions
• Watch out for flow-control logic…that can start to

stack up
• / will never happen in one clock cycle. Accept that.
• Similar other things like square root, cosine,

etc…those need clock cycles…or if you absolutely
need those in one/two cycles, you do a lookup
table of pre-computed values (takes huge amounts
of memory)

10/3/24 https://fpga.mit.edu/6205/F24 68

Back on pipelining…

• If we have time…
• In lab 05, early on you may see

an artifact on popcat

10/3/24 https://fpga.mit.edu/6205/F24 69

A white blip

(Two registers coming from delay in
memory access/read)

10/3/24 https://fpga.mit.edu/6205/F24 70

Im C
Image ROM BRAM Color ROM BRAM

pixel_out

hsync
vsync
blank

Video
Sig
gen

• Monitor drawing based on vsync, hsync, blank,
• But what image rom is giving it is 5 clock cycles

behind
• At start of Death Star nothing in the “pipeline” yet

10/3/24 https://fpga.mit.edu/6205/F24 71

Im C
Image ROM BRAM Color ROM BRAM

pixel_out

phsync
pvsync
pblank

Video
Sig
gen

How to Fix?

10/3/24 https://fpga.mit.edu/6205/F24 72

Im C
Image ROM Color ROM

pixel_out

hsync
vsync
blank

xvga

• Delay the other signals so everybody is the same

Turn the whole thing into a 5-stage pipeline!

Pipelining

10/3/24 https://fpga.mit.edu/6205/F24 73

logic hs_pip[4:0];
logic vs_pip[4:0];
logic b_pip[4:0];

always_ff@(posedge clk_in)begin
 hs_pip[0] <= hsync_in;
 vs_pip[0] <= vsync_in;
 b_pip[0] <= blank_in;
 for (int i=1; i<5; i = i+1)begin
 hs_pip[i] <= hs_pip[i-1];
 vs_pip[i] <= vs_pip[i-1];
 b_pip[i] <= b_pip[i-1];
 end
end
assign hsync_out = hs_pip[4];
assign vsync_out = vs_pip[4];
assign blank_out = b_pip[4];

• Pipeline in Verilog!
• Make sure other things are protected too!

Final Project Ideas

• Things with video and/or related topics are very
“relevant” to FPGAs
• You have to move and process very large amounts

of data with demanding timing.
• This is something software often cannot on its own.

10/3/24 https://fpga.mit.edu/6205/F24 74

Live Pong

10/3/24 https://fpga.mit.edu/6205/F24 75

Glow Trails

10/3/24 https://fpga.mit.edu/6205/F24 76

DigiEyes

10/3/24 https://fpga.mit.edu/6205/F24 77

Final Project Info released by
tomorrow
• Start Teaming!
• Teams of 2 or 3!

10/3/24 https://fpga.mit.edu/6205/F24 78

