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Memory Example!
• In the first part of week 05 you’re going 

to be displaying popcat on your FPGA 
over video.
• We need to store popcat
• Popcat is a 256X256 24 bit color image.

• How to encode with memories?
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Popcat
• We could build a 24bit-wide memory that has 

256x256 (65,536) entries (deep) in it (one for each 
pixel)
• Math: 256x256x24 = 1,572,864 bits
• That’s greater than >50% of our memory on the 

S50 FPGA.
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red,green,blue – 24 bit
24Image

memory
24 bit image

16

24 bit –  16M colors



Strategy
• Images are large and take up lots of memory

• Want to save space, and store image using less 
memory
• Many images don’t express every one of the 224 

“true” colors. 
• Why waste the space storing an unused possibility?
• So pick the N most popular and only display them:
• You can store them using ceil log! 𝑁  bits (save space)
• Then use a color table to look up what full color (24 bit 

value) that corresponds to!
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• So use two memories:
• 8-wide memory with 65536 entries for each pixel 

encoding one of 256 colors
• 24-wide memory with 256 entries entries encoding 

those colors
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Color Lookup Table

rgb 
color 
map 

memory

red,
green,
blue – 24 bit

8 24Image
memory
8 bit image

16

8 bit – 256 colors

Colors are still 24 bit, but the pixels are 
encoded using only 8 bits



Storage Savings
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8 bit – 256 colors

24 bit –  16M colors

256 X 256 image @ 24 bits per pixel is:
256 X 256 X 24 bits = 1.572 Mbits 
(196.6 kBytes)

256 X 256 image with 8 bit color map:
256 X 256 X 8 bits + 256 X 24 = 0.530432 Mbits
(66.304 kBytes)



Keep Going As Needed
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4 bit – 16 colors

8 bit – 256 colors24 bit –  16M colors 6 bit – 16 colors

2 bit – 4 colors 1 bit – 2 colors



Additional Tricks Can be Played

• Dithering, in particular can help with this problem, 
but we’ll go into that in a future week.
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What about Latency?

• Yes What about latency.
• These things we just built are memories! 
• Memory of any scale usually has latency involved 

with it
• Xilinx BRAM has how many cycles latency on a 

read?
• 2 cycles
• Lab/Week 5 will investigate
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FSM Modularity
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Toward FSM Modularity
• Consider the following abstract FSM:

S0

a1

b1 c1

d1

S1 S2 S3 S4 S5 S6 S7 S8 S9

a2

b2 c2

d2 a3

b3 c3

d3

• Suppose that each set of states ax...dx is a “sub-FSM” that produces exactly the same 
outputs.

• Can we simplify the FSM by removing equivalent states?
        No!  The outputs may be the same, but the 
        next-state transitions are not.

• This situation closely resembles a procedure call or function call in software...how can we 
apply this concept to FSMs?

Acknowledgements: Rex Min
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The Major/Minor FSM Abstraction

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYBCLK

RESET RESET

CLK

• Subtasks are encapsulated in minor FSMs with common 
reset and clock

• Simple communication abstraction:
• START:  tells the minor FSM to begin operation (the call)
• BUSY:  tells the major FSM whether the minor is done (the return)

• The major/minor abstraction is great for...
• Modular designs (always a good thing)
• Tasks that occur often but in different contexts
• Tasks that require a variable/unknown period of time
• Event-driven systems
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Inside the Major FSM

S1
S2

START
S3 S4...

BUSYBUSY

BUSY

BUSY

BUSY BUSY

1. Wait until the 
minor FSM is 

ready

2. Trigger the 
minor FSM (and 

make sure it’s 
started)

3. Wait until the 
minor FSM is 

done

START

BUSY

Major FSM 
State S1 S2 S2 S3 S3 S3 S4

CLK

Variations:
• Usually don’t need both Step 1 and Step 3
• One cycle “done” signal instead of multi-cycle “busy”
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Inside the Minor FSM

T2
BUSY

T3
 BUSY

T4
 BUSY

1. Wait for a trigger 
from the major FSM

2. Do some useful work

T1

 BUSY

START

START

START

BUSY

Major FSM 
State S1 S2 S2 S3 S3 S3 S4

CLK
Minor FSM 

State T1 T1 T2 T3 T4 T1 T1

3. Signal to the 
major FSM that 

work is done

can we 
speed this 

up?
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Optimizing the Minor FSM

T2
BUSY

T3
 BUSY

T4

 BUSY
T1

 BUSY

START

START

Good idea: de-assert BUSY one cycle early

Bad idea #1:

T4 may not immediately return to T1

T2
BUSY

T3
 BUSY

T1

 BUSY

START

START
T4

 BUSY

Bad idea #2:
BUSY never asserts!

T1

 BUSY

START

START T2

 BUSY

So make sure you if you do this, that last state always happens and always happens for one 
cycle 



10/3/24 https://fpga.mit.edu/6205/F24 16

A Four-FSM Example

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC

BUSYC

TICK

IDLE
STAB

STARTA

STARTB

WTAB

TICK BUSYA and BUSYB

TICK BUSYA or BUSYB BUSYA orBUSYB

STC
 STARTC

BUSYA and BUSYB

BUSYC

WTC BUSYC

BUSYC

BUSYC

Operating Scenario:
• Major FSM is triggered by TICK
• Minors A and B are started 

simultaneously
• Minor C is started once both A 

and B complete
• TICKs arriving before the 

completion of C are ignored

MAJOR FSM
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Four-FSM Sample Waveform

IDLE IDLE STAB STAB WTAB WTAB WTAB STC STC WTC WTC WTC IDLE IDLE STAB
state

tick

STARTA

BUSYA

STARTB

BUSYB

STARTC

BUSYC

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC
BUSYC

TICK



Alternative to Busy Signals
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• As an alternative to busy signals sometimes just having a 
single-cycle “valid” signals is sufficient.  
• If the downstream systems involved are stateful enough to be 

able to keep track of various system’s this can work
• Or you can do both. Depends on your design
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Alternative to Busy Signals 
(Single-cycle asserts)

IDLE IDLE STAB STAB WTAB WTAB WTAB STC STC WTC WTC WTC IDLE IDLE STAB
state

tick

VALID_INA

VALID_OUTA

VALID_INB

VALID_OUTB

VALID_INC

VALID_OUTC

Major FSM

Minor FSM A

Minor FSM B

VALID_INA

VALID_INB

VALID_OUTA

VALID_OUTB

Minor FSM C
VALID_INC

VALID_OUTC

TICK



A Divider
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• The Divider from when we 
first talked about FSMs is an 
example of an system which 
might be a minor FSM in part 
of a larger major’s algorithm
• Many things need division, 

but it would suck to have to 
rewrite it repeatedly.
• We want you to get practice 

with that in Week 5’s lab



Center of Mass Calculation in 
Lab05
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• You will write a center-of-mass calculator that is best thought 
of as an FSM.
• For each frame of video:

• Sum the x location and y location of every active pixel you come across
• Keep track of how many pixels you’ve encountered
• At end of frame (or beginning of next one, divide the two sums by the number 

of active pixels
• This will give an average X,Y

• Division takes time! 
• Need to create a major/minor FSM system



10/3/24 https://fpga.mit.edu/6205/F24 22

Lab 05 Center of Mass

Center of 
Mass Calculation

‘COM’

Divider 1
(x dimension)

Divider 2
(y dimension)

STARTA

STARTB

BUSYA

BUSYBCLK

RESET RESET

CLK

• C.O.M. will be in a “data collection state” during the active portion of a video frame

• When the frame’s active part is done, it needs to calculate the average x,y position 
of the “hot” pixels it has observed.

• To divide, the C.O.M. module hands the values it needs divided off to  two separate 
dividers. 

• C.O.M. waits on them monitoring their BUSY signals

• They can do division separately (in parallel)

• When done, they report back to the C.O.M with their result

• C.O.M. reports to outside world its calculation



Pipelining
How to make sure signals are balanced going through a 
sequence of operations.
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Performance Metrics

• Latency (L): 
• time between arrival of new input and generation of 

corresponding output.
• For purely combinational circuits this is just tPD.

• Throughput (T):
• Rate at which new outputs appear.
• For purely combinational circuits this is just 1/tPD or 1/L.
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Finput output



Performance of Combinational 
Logic
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H

G

F P(X)X

For combinational logic:

   L = tPD, 
   T = 1/tPD.  

We can’t get the answer faster, but are 
we making effective use of our 
hardware at all times?

G(X)
F(X)

P(X)

X

F & G are “idle”, just holding their outputs stable 
while H performs its computation



Retiming: A useful transform
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25

20

15
P(X)X

L = 45
T = 1/45

Propagation delays indicated by numbers:



Retiming: A useful transform
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25

20

15
P(X)X

tclk = 25
L = 50
T = 1/25

Assuming ideal registers:
i.e., tPD = 0, tSETUP = 0

Slightly higher Latency L. Improved Throughput J !



Pipeline Diagrams
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Input

F Reg

G Reg

H Reg

i i+1 i+2 i+3

Xi Xi+1

F(Xi)

G(Xi)

Xi+2

F(Xi+1)

G(Xi+1)

H(Xi)

Xi+3

F(Xi+2)

G(Xi+2)

H(Xi+1)

Clock cycle
Pi

pe
lin

e 
st

ag
es

The results associated with a particular set of input data moves 
diagonally through the diagram, progressing through one 
pipeline stage each clock cycle.

H(Xi+2)

…

…



Pipeline Conventions

• a K-Stage Pipeline (“K-pipeline”) is an acyclic circuit 
having exactly K registers on every path from an 
input to an output.
• a COMBINATIONAL CIRCUIT is thus a 0-stage 

pipeline.
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Pipeline Conventions
• CONVENTION:
• Every pipeline stage, hence every K-Stage pipeline, has a 

register on its OUTPUT (not on its input).

• ALWAYS:
• The CLOCK common to all registers must have a period 

sufficient to cover propagation over combinational paths 
PLUS (input) register tPD PLUS (output) register tSETUP.
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The LATENCY of a K-pipeline is K times the period of the clock 
common to all registers.

The THROUGHPUT of a K-pipeline is the frequency of the 
clock.

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK



ILL-formed Pipeline
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C
AX

BY

Problem:

Successive inputs get mixed: e.g., B(A(Xi+1), Yi).  This happened 
because some paths from inputs to outputs have 2 registers, and 
some have only 1!

This CAN’T HAPPEN on a well-formed K pipeline!

noneFor what value of K is the following circuit a K-Pipeline? ________



Pipelining
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A
4 nS

B
3 nS

C
8 nS

D
4 nS

E
2 nS

F
5 nS

Let’s say we want tclk to be 8ns



Another Thing to Pipeline
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A
4 nS

B
3 nS

C
8 nS

D
4 nS

E
2 nS

F
5 nS

Let’s say we want tclk to be 8ns
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A
4 nS

B
3 nS

C
8 nS

D
4 nS

E
2 nS

F
5 nS

T = 1/8ns
L = 24ns

Step 1:
Add a register on the output.

Step 2:
From register.  Draw a contour 
backwards that includes as much of 
the circuit that will fit inside required 
period. Add registers

Repeat until satisfied with T. Look for 
redundant registers

STRATEGY:
 Focus your attention on placing 

pipelining registers around the 
slowest circuit elements 
(BOTTLENECKS).

Assuming this interfaces with other modules that have registered outputs the input will chain 
will be ok (<= 8ns)



Another Pipeline Example
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A

B

CX

Y

2ns

1ns

1ns

0-pipe:
LATENCY THROUGHPUT

4ns 1/4ns

OBSERVATIONS:

• 1-pipeline improves neither L 
or T.

• T improved by breaking long 
combinational paths, 
allowing faster clock.

• Too many stages cost L, don’t 
improve T.

• Back-to-back registers are 
often required to keep 
pipeline well-formed.

1-pipe: 4ns 1/4ns

1

2-pipe: 4ns 1/2ns

2

2

3-pipe: 1/2ns6ns

3

3

Better throughput here 
means we can run at 
higher clock rate 



Pipelining in Verilog
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Gd_in d_out Fd_in d_outx
y z

5ns 8ns

Gd_in d_out Fd_in d_outx
y1 z1

5ns 8ns

y2 z2



How often should you be adding 
FlipFlops in your FPGA?
• This comes with experience and getting to know 

your system.
• Most of what you want to do really is some form of 

math.
• So knowing how much math you can do in a clock 

cycle is useful
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The Complexity of Math 
Operations
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Let’s look at some basic math circuits:
+, -, *, /



“Full Adder” building block

A B CI S CO

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

The “half adder” 
circuit has only the A 
and B inputs (no carry)
Full adders handle 
carry bits
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Adder: a circuit that does addition
Hereʼs an example of binary addition as one might do it by “hand”:

1101
+ 0101
10010

1011
Carries from previous column

Adding two N-bit 
numbers produces an 
(N+1)-bit result

If we build a circuit that implements one column:

we can quickly build a circuit to add two 4-bit numbers…

“Ripple- 
 carry  
 adder”
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Subtraction: A-B = A + (-B)
Using 2ʼs complement representation: –B = ~B + 1

~ = bit-wise complement

So letʼs build an arithmetic unit that does both addition and subtraction.  
Operation selected by control input:

10/3/24 41https://fpga.mit.edu/6205/F24

When SUBTRACT is 1:
• Invert each bit
• Start with a Carry of 1

(same as adding 1)



“Full Adder” building block
A B CI S CO

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

The “half adder” 
circuit has only the A 
and B inputs
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tpd dictated by carry path!

Can also rewrite the carry path as: 𝑐!"# = 𝑎	&	𝑐$% | 𝑏	&	𝑐$%  | 𝑎	&	𝑏



Speed: tPD of Ripple-carry Adder

Worst-case path: carry propagation from LSB to MSB, e.g., when 
adding 11…111 to 00…001.

CI to CO CIN-1 to SN-1

Q(N) is read 
“order N” : means 
that the latency of 
our adder grows at 
worst in 
proportion to the 
number of bits in 
the operands.

tPD = (N-1)*(tPD,OR + tPD,AND) + tPD,XOR   » Q(N)
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CO = AB +ACI + BCI



The Carry Path Becomes Limiting
• Solution is the Carry-Look-ahead Adder:
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https://www.ece.uvic.ca/~fayez/courses/ceng465/lab_465/project1/adders.pdf

Can do some 
factoring/redesign and cut-
down on tpd of the carry path



Logic Slices Can Add/Subtract
• Can synthesize the 

addition of two 4 bit 
numbers with fast carry
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Series 7 Logic Slice

A0
B0

A1
B1

A2
B2

A3
B3

A3A2A1A0
+B3B2B1B0

Fast Carry-Chain



Add/Subtract on the FPGA

• + and – can be done combinationally very quickly:
• 32 bit add can be done in a clock cycle (<10 ns) pretty 

easily
• Several smaller adds (A+B+C+D) can be done in clock 

cycle as well  (10 ns)

• CLBs (the generic function generators, of which we 
have a lot) are capable of being chained together to 
allow large adds.

10/3/24 https://fpga.mit.edu/6205/F24 46



Slices can stack to 
give more bits
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A0
B0

A1
B1

A2
B2

A3
B3

A4
B4

A5
B5

A6
B6

A7
B7

A8
B8

A9
B9

A10
B10

A11
B11

A11A10A9A8A7A6A5A4A3A2A1A0

+B11B10B9B8B7B6B5B4B3B2B1B0

Ca
rr

y 
Ch

ai
n



+ or - in Verilog
• Generally + or – on its own will get synthesized 

using logic slices unless specified
• Very large additions or subtractions may start to 

take too long!*

• But doing a couple 32 bit adds in a 10 ns cycle 
should be possible…
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*too is really with respect to a clock. If you’re running on a 10 MHz clock, 
then things are different! 



But also the stuff around it 
matters too!
• Keep track of the stuff before and after your math.
• If you have a ton of if/else/ifs…or if you have a 

super-deeply nested if/if/if/ chain, all that stuff 
requires logic too.
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Also Case Statements are Good
• If/elses and even parallel if’s as shown on the 

previous page get encoded as priority logic
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https://www.kevnugent.com/2020/10/22/verilog-blogpost_002/

q  

IDLEFIRSTSECOND

y  

z  

zz  

zzz  

long combinational path



Also Case Statements are Good
• If logic can be structured without priority, then do 

it!  Can yield simpler underlying logic.
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https://www.kevnugent.com/2020/10/22/verilog-blogpost_002/

q  

IDLE

FIRST

SECOND

y

z 

zz 

zzz

shorter combinational path

else

state  



The stuff around it matters too!

• Keep track of the stuff before and after your math.
• If you have a ton of if/else/ifs…or if you have a 

super-deeply nested if/if/if/ chain, all that stuff 
requires logic too.
• Also think about the stuff being used to calculate 

the if/else stuff.
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Example…
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logic [31:0] a,b,y,z,q,s,t,r;

always_ff @(posedge clk)begin
  if (b >q;)begin
    a <= y+z;
  end
end

always_comb begin
  q = s + t;
end

II violate timing!

always_comb begin
  t = r>98?r+100:a+11;
end

Path that needs to be calculated 



Multiplication on the FPGA
• Multiplication can be done on the FPGA on 2’s 

complement numbers
• Takes more time:
• Depending on size of operands may/may not be doable 

in one clock cycle

• Where possible try to get away with bit shifts and 
adds.
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Multiplications with shifts
• <<1 is multiply by 2
• >>1 is divide by 2
• Can do a lot with this if get creative

• Vivado can be pretty good at figuring these things 
out for you, but largely only for constants.
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Generic Digital Multiplication
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*Lecture on Multiplier architectures: https://inst.eecs.berkeley.edu/~eecs151/sp18/files/Lecture21.pdf

In base 2 multiplication these are all very simple calculations done with XOR

Some really cool factoring can be done to make the overall propagation delay of a 
multiplier relatively short, though there’s a lot of logic in it*



DSP Blocks
• Add-then-multiply is a common operation chain in many 

things, particularly Digital Signal Processing
• FPGA has dedicated hardware multiplier modules called 

DSP48 blocks on it
• 150 of them on Urbana FPGA
• Capable of single-cycle multiplies

• Can get inferred from using * in your Verilog that isn’t a 
power of 2:
• x*y, for example, will likely will result in DSP getting used
• May take a full clock cycle so would need to budget tiing 

accordingly
• Can infer multiple for larger multiplies

10/3/24 https://fpga.mit.edu/6205/F24 57



DSP48 Slice (High Level)
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https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

Much of the benefit/speed of this module comes from the hardwired internal routing, 
keeping it very fast. This device is not as generalized as a LUT/logic cell. It can only do a 
subset of math operations



How much multiply can do?

• At 100 MHz on these boards, I’d aim for one 32 bit 
multiply per clock cycle (it’ll use several DSP blocks 
to achieve that)
• Anything more is pushing it
• If you run out of DSP blocks, it’ll revert to using the 

generic logic…and this will become a harder 
problem to satisfy
• Smaller multiply-adds you can maybe get away with 

in one clock cycle.
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Division
• The outlier in the + - * / set…
• Division is a significantly harder math operation to 

do compared to multiplication
• Where possible try to avoid
• Try to divide by powers of 2 (use right shift)! 

• If you can’t avoid we must do it. (week 05)
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Lab 05 Center of Mass

Center of 
Mass Calculation

‘COM’

Divider 1
(x dimension)

Divider 2
(y dimension)

STARTA

STARTB

BUSYA

BUSYBCLK

RESET RESET

CLK

• C.O.M. will be in a “data collection state” during the active portion of a video frame

• When the frame’s active part is done, it needs to calculate the average x,y position 
of the “hot” pixels it has observed.

• To divide, the C.O.M. module hands the values it needs divided off to  two separate 
dividers. 

• C.O.M. waits on them monitoring their BUSY signals

• They can do division separately (in parallel)

• When done, they report back to the C.O.M with their result

• C.O.M. reports to outside world its calculation



One “Bad” Attempt at Division
• In previous lecture looked 

at *what* this actually 
builds
• We can ask Vivado to 

synthesize division logic 
for us, and it actually will 
do it.
• This code constrains the 

act of division to having to 
exist between two clock 
edges.:
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module top_level(
 input wire clk_100mhz, //clock @ 100 mhz
 input wire [15:0] sw, //switches
 input wire btnc, //btnc (used for reset)
 input wire btnu, //btnc (used for reset)
 input wire btnl, //btnc (used for reset)
 output logic [15:0] led //just here for the funs
 );
  logic old_btnl;
  logic old_btnu;
  logic old_btnc;
  logic [15:0] quotient;
  logic [15:0] dividend;
  logic [15:0] divisor;
  assign led = quotient;
  always_ff @(posedge clk_100mhz)begin
    old_btnl <= btnl;
    old_btnu <= btnu;
    old_btnc <= btnc;
  end

  always_ff @(posedge clk_100mhz)begin
    if (btnu & ~old_btnu)begin
      quotient<= dividend/divisor; //divide
    end
    if (btnc & ~old_btnc)begin
      dividend <= sw; //divide //load dividend
    end
    if (btnl & ~old_btnl)begin
      divisor <= sw; //divide //load divisor
    end
  end
endmodule



Circuit Built:
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D Q
dividend[15:0]

sw[15:0]
btnc
btnl
btnu

D Q
divisor[15:0]

quotient[15:0]

D Q
led[15:0]

÷



Build the Stupid Divider
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+--------------------------------------------+------+-------+------------+-----------+-------+
|                  Site Type                 | Used | Fixed | Prohibited | Available | Util% |
+--------------------------------------------+------+-------+------------+-----------+-------+
| Slice                                      |  100 |     0 |          0 |     15850 |  0.63 |
|   SLICEL                                   |   89 |     0 |            |           |       |
|   SLICEM                                   |   11 |     0 |            |           |       |
| LUT as Logic                               |  274 |     0 |          0 |     63400 |  0.43 |
|   using O5 output only                     |    0 |       |            |           |       |
|   using O6 output only                     |  274 |       |            |           |       |
|   using O5 and O6                          |    0 |       |            |           |       |
| LUT as Memory                              |    0 |     0 |          0 |     19000 |  0.00 |
|   LUT as Distributed RAM                   |    0 |     0 |            |           |       |
|   LUT as Shift Register                    |    0 |     0 |            |           |       |
| Slice Registers                            |   55 |     0 |          0 |    126800 |  0.04 |
|   Register driven from within the Slice    |   16 |       |            |           |       |
|   Register driven from outside the Slice   |   39 |       |            |           |       |
|     LUT in front of the register is unused |   26 |       |            |           |       |
|     LUT in front of the register is used   |   13 |       |            |           |       |
| Unique Control Sets                        |    4 |       |          0 |     15850 |  0.03 |
+--------------------------------------------+------+-------+------------+-----------+-------+

Phase 22 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-21.399| TNS=-129.552| WHS=0.090  | 
THS=0.000  |

Violates timing!



Now Do same Thing With 32 bits:
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D Q
dividend[31:0]

sw[15:0]
btnc
btnl
btnu

D Q
divisor[31:0]

quotient[31:0]

D Q
Seven segment

÷

if (pmod_pin & ~old_pmod_pin) begin
  quotient <= dividend/divisor;
end

*See lecture code for full implementation and build. (divider0)



Build the Stupider Divider
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2. Slice Logic Distribution
---------------------------

+--------------------------------------------+------+-------+------------+-----------+-------+
|                  Site Type                 | Used | Fixed | Prohibited | Available | Util% |
+--------------------------------------------+------+-------+------------+-----------+-------+
| Slice                                      |  301 |     0 |          0 |      8150 |  3.69 |
|   SLICEL                                   |  225 |     0 |            |           |       |
|   SLICEM                                   |   76 |     0 |            |           |       |
| LUT as Logic                               |  944 |     0 |          0 |     32600 |  2.90 |
|   using O5 output only                     |    0 |       |            |           |       |
|   using O6 output only                     |  922 |       |            |           |       |
|   using O5 and O6                          |   22 |       |            |           |       |
| LUT as Memory                              |    0 |     0 |          0 |      9600 |  0.00 |
|   LUT as Distributed RAM                   |    0 |     0 |            |           |       |
|   LUT as Shift Register                    |    0 |     0 |            |           |       |
| Slice Registers                            |  131 |     0 |          0 |     65200 |  0.20 |
|   Register driven from within the Slice    |   67 |       |            |           |       |
|   Register driven from outside the Slice   |   64 |       |            |           |       |
|     LUT in front of the register is unused |   28 |       |            |           |       |
|     LUT in front of the register is used   |   36 |       |            |           |       |
| Unique Control Sets                        |    7 |       |          0 |      8150 |  0.09 |
+--------------------------------------------+------+-------+------------+-----------+-------+

Phase 20 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-72.004| TNS=-1004.354| WHS=0.227  | THS=0.000  |

Phase 20 Post Router Timing | Checksum: 1d10fc4d8



A Better Divider?
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D Q
dividend[31:0]

sw[15:0]
btnc
btnl
btnu

D Q
divisor[31:0]

quotient[31:0]

D Q
Seven segment

÷

*See lecture code for full implementation and build. (divider0)

Put Something Better In Here:



So conclusions

• +, -, * can be done in a clock cycle with exceptions
• Watch out for flow-control logic…that can start to 

stack up
• / will never happen in one clock cycle. Accept that.
• Similar other things like square root, cosine, 

etc…those need clock cycles…or if you absolutely 
need those in one/two cycles, you do a lookup 
table of pre-computed values (takes huge amounts 
of memory)
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Back on pipelining…

• If we have time…
• In lab 05, early on you may see 

an artifact on popcat 
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A white blip



(Two registers coming from delay in 
memory access/read)
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Im C
Image ROM BRAM Color ROM BRAM

pixel_out

hsync
vsync
blank

Video
Sig
gen

• Monitor drawing based on vsync, hsync, blank, 
• But what image rom is giving it is 5 clock cycles 

behind 
• At start of Death Star nothing in the “pipeline” yet
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Im C
Image ROM BRAM Color ROM BRAM

pixel_out

phsync
pvsync
pblank

Video
Sig
gen



How to Fix?
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Im C
Image ROM Color ROM

pixel_out

hsync
vsync
blank

xvga

• Delay the other signals so everybody is the same

Turn the whole thing into a 5-stage pipeline!



Pipelining
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logic hs_pip[4:0];
logic vs_pip[4:0];
logic b_pip[4:0];

always_ff@(posedge clk_in)begin
  hs_pip[0] <= hsync_in;
  vs_pip[0] <= vsync_in;
  b_pip[0] <= blank_in;
  for (int i=1; i<5; i = i+1)begin
    hs_pip[i] <= hs_pip[i-1];
    vs_pip[i] <= vs_pip[i-1];
    b_pip[i] <= b_pip[i-1];
  end
end
assign hsync_out = hs_pip[4];
assign vsync_out = vs_pip[4];
assign blank_out = b_pip[4];

• Pipeline in Verilog!
• Make sure other things are protected too!



Final Project Ideas

• Things with video and/or related topics are very 
“relevant” to FPGAs
• You have to move and process very large amounts 

of data with demanding timing.  
• This is something software often cannot on its own.
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Live Pong
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Glow Trails
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DigiEyes

10/3/24 https://fpga.mit.edu/6205/F24 77



Final Project Info released by 
tomorrow
• Start Teaming!  
• Teams of 2 or 3!
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