
Video
6.205

September 26, 2024 https://fpga.mit.edu/6205/F24 1

Admin

• Week 03 was due last night
• Week 04 out after class: Video, babiiiiieeeeeee

September 26, 2024 https://fpga.mit.edu/6205/F24 2

Order, if’s else’s

• All three of these are the same:

• If you need to use one of these, I’d
recommend the latter two
• In particularly long code, they force

you to think about their priority,
exclusivity correctly I’ve found

September 26, 2024 https://fpga.mit.edu/6205/F24 3

When Writing Stateful Logic…

• Try to group tasks/events that happen on the same
state together…
• If you have lots of parallel tasks all on these

separate if/else if/else chains that are themselves
disconnected, lots of weird bugs can come out
because you have to scroll back and forth a bunch
follow the logic…
• Then you think a thing is happening on a certain

cycle when maybe it isn’t because it is getting
overrode by a condition specified in some other
loop somewhere.

September 26, 2024 https://fpga.mit.edu/6205/F24 4

Also Case Statements are Good
• If/elses and even parallel if’s as shown on the

previous page get encoded as priority logic

September 26, 2024 https://fpga.mit.edu/6205/F24 5

https://www.kevnugent.com/2020/10/22/verilog-blogpost_002/

q

IDLEFIRSTSECOND

y

z

zz

zzz

long combinational path

Also Case Statements are Good
• If logic can be structured without priority, then do

it! Can yield simpler underlying logic.

September 26, 2024 https://fpga.mit.edu/6205/F24 6

https://www.kevnugent.com/2020/10/22/verilog-blogpost_002/

q

IDLE

FIRST

SECOND

y

z

zz

zzz

shorter combinational path

else

state

Priority-Encoding

• Priority-encoding is another one of those luxuries
from software land, like indexable arrays,
representing things with numbers, classes, etc…
• It feels good because it is familiar and it “worked in

python”
• But unless you absolutely need it (and you often

will!), it can come at a cost.

September 26, 2024 https://fpga.mit.edu/6205/F24 7

Video

September 26, 2024 https://fpga.mit.edu/6205/F24 8

Displays are for Eyes

September 26, 2024 https://fpga.mit.edu/6205/F24 9

• Human color perception comes from three types of
cone cells in the center of the eye. Each type generally
has an abundance of one photoreceptive protein
(which causes electrical stimulation):
• S cones with protein from OPN2 gene
• M cones with protein from OPN1MW gene
• L cones with protein from OPN1LW gene

• A human eye therefore has
three independent inputs
regarding visual EM radiation
• Called ”trichromatic”

Color Space
• Human trichromatic vision is comprised of three

inputs, therefore the most general way to describe
these inputs is in a 3-dimensional space
• Because the L, M, and S cones “roughly” line up

with Red, Green, and Blue, respectively a RGB
space is often the most natural to us
• There are others, though

September 26, 2024 https://fpga.mit.edu/6205/F24 10
https://engineering.purdue.edu/~abe305/HTMLS/rgbspace.htm

One form of RGB space
(not the only way to
display it)

https://engineering.purdue.edu/~abe305/HTMLS/rgbspace.htm

Opponent Process Color Theory
• It actually isn’t as simple as trichromatic vision

September 26, 2024 https://fpga.mit.edu/6205/F24 11

https://en.wikipedia.org/wiki/Color_vision#:~:text=Two%20complementary%20theorie
s%20of%20color,green%2C%20and%20red%2C%20respectively.

Worst Case Scenario
• If a person has all color receptors working…
• because of noise limitations in our naturally-

evolved encoding scheme that communicates from
the cone cells up to the brain…
• we can perceive about 7-10 million unique colors

depending on your research source…
• How many bits do we need to encode all possible

colors for this worst case?
• log! 10_000_000 = 23.25 	bits
• Round up to 24

September 26, 2024 https://fpga.mit.edu/6205/F24 12

Image or Frame
• An image/frame can be thought of as a 2-dimensional

array of 3-tuples:
• 2 spatial dimensions
• 3 color dimensions

September 26, 2024 https://fpga.mit.edu/6205/F24 13

• Each color tuple is a
“pixel”

Video (just draw a bunch of frames quickly)
• Rely on the poor RC time constants of our eye’s to

”fake” motion.

September 26, 2024 https://fpga.mit.edu/6205/F24 14

Frame 0
Frame 1

Frame 2

Frame 3

progressio
n of tim

e

How to Transmit 5/6-dimensional
data?
• Ideally need to convey enough 5D values quickly

enough to render images fast enough that they
show up as one…
• AND we also need to do the above fast enough so

that fresh images appear quickly enough

September 26, 2024 https://fpga.mit.edu/6205/F24 15

How to Draw: The Raster Scan

September 26, 2024 https://fpga.mit.edu/6205/F24 16

• Spread the drawing out over time
• Images are drawn on a display almost invariably in

a “raster” pattern.
• The sequence starts in the upper left, and pixels

are drawn:

• Leftà Right
• Down a line/back
• Leftà Right
• Down a line/back
• Etc…
• End at bottom right
• Return to top left

Rastrum, used
for drawing
musical staff

Raster Scan Became Norm because of
Early Tech (Cathode Ray Tube)

September 26, 2024 https://fpga.mit.edu/6205/F24 17

• Electron beam of varying intensity would be quickly
rastered on a fluorescent screen making image

Raster Pattern of Drawing
• Allows time ßàposition!
• Takes care of two of the dimensions of info we need to

convey!

September 26, 2024 https://fpga.mit.edu/6205/F24 18

Intensity

time

(x0,y0) (x1,y1) etc…

First Video (Black and White)

September 26, 2024 https://fpga.mit.edu/6205/F24 19

• Early technologies prevented
ability to detect and display
color.
• Instead only brightness

(Luminance) of the image was
transmitted/rendered since
color couldn’t be rendered
anyways
• So transmitting an image only

involved 3 dimensions of
information
• Two dimensions were conveyed

in time
• One dimension in amplitude

http://www.circuitstoday.com/crt-cathode-ray-tube

http://www.circuitstoday.com/crt-cathode-ray-tube

Quiet period for
Amplitude
reference

Black and White Video signal
• An analog signal conveying luminance (brightness) and

synchronization controls (end of line, end of frame)

September 26, 2024 https://fpga.mit.edu/6205/F24 20

…

Visual Information
for one line provided
left to right

hs
yn

c

vsync

hs
yn

c

hs
yn

c

hs
yn

c

hs
yn

c

hs
yn

c

hs
yn

c

hs
yn

c

…

hsync towards end of lineAmplitude conveyed
brightness

~52 microseconds for a line vsync end of image

Blanking
period

Quiet period for
Amplitude
reference

Controls in Action

September 26, 2024 https://fpga.mit.edu/6205/F24 21

• Signal completely controls beam location and intensity!

BEAM OFF
(NO DRAW)

BEAM ON
(DRAW TIME)

“Active Draw” “Blanking”

“front porch”

Black and White Video signal
• An analog signal conveying luminance (brightness) and

synchronization controls (end of line, end of frame)

September 26, 2024 https://fpga.mit.edu/6205/F24 22

…

Visual Information
for one line provided
left to right

hs
yn

c

vsync

hs
yn

c

hs
yn

c

hs
yn

c

hs
yn

c

hs
yn

c

hs
yn

c

hs
yn

c

…

hsync towards end of lineAmplitude conveyed
brightness

~52 microseconds for a line vsync end of image

Blanking
period

“back porch”

Frame
• So when a “frame” of video was sent it was just a

raster pattern of only visual information:

September 26, 2024 https://fpga.mit.edu/6205/F24 23

Frame

September 26, 2024 https://fpga.mit.edu/6205/F24 24

• Putting it all together…when a frame is sent, only a
portion of it is actually the “image” The rest of the
frame is control data living on the edges.

“Location” of Regions of Frame
• Sometimes people will put parts of the blanking

region on different sides:

September 26, 2024 https://fpga.mit.edu/6205/F24 25

https://electronics.stackexchange.com/questions/614207/correct-order-of-monitor-display-
timing

http://www.voja.rs/PROJECTS/GAME_HTM/3.%20VGA.htm

• It really doesn’t matter. We’re sending a serial stream of
data. However you want to visualize it (within reason) is
fine. For our class we’re doing it the way we show!

Frame

September 26, 2024 https://fpga.mit.edu/6205/F24 26

• Putting it all together…when a frame is sent, only a
portion of it is actually the “image” The rest of the
frame is control data living on the edges.

Original Video
• With one analog signal using different amplitudes

and timings to completely:
• Specify the grayscale intensity of a pixel,
• Specify its position on a screen
• Do so fast enough that enough frames could be drawn in

sequence to give the illusion of motion.

• But what about…

September 26, 2024 https://fpga.mit.edu/6205/F24 27

September 26, 2024 https://fpga.mit.edu/6205/F24 28
Source: PixTech

Three different phosphor screens Anode

Cathode: separate
beams for R, G and B

Shadow mask: ensures R
beam only illuminates R
pixels, etc.

One shared set of deflection coils to sweep all three beams together

Color Cathode Ray Tubes Appear

Shadow Mask

September 26, 2024 https://fpga.mit.edu/6205/F24 29

http://www.hawestv.com/etv-crts/crt-flechsig/flechsig_1st_color_crt.htm

How to Upgrade video standards, but
let black and white displays still work?

• Color TV invented in 40’s but took
until 70’s for color TV to surpass
B&W TV in sales
• How do you do it? Can’t send out

R, G, and B signals since old TVs
won’t know what that is
• Still must send out old signal
• Remap our 3D RGB color space

into something else!

September 26, 2024 https://fpga.mit.edu/6205/F24 30

YCrCb (sometimes YUV)
• Color space composed of three

values:
• Y: Luminance
• Cr: Red Chrominance
• Cb: Blue Chrominance

• Together they can represent the
full color space

September 26, 2024 https://fpga.mit.edu/6205/F24 31

Y

Cb

Cr

Full color

https://en.wikipedia.org/wiki/YCbCr

YCrCb ßà RGB

September 26, 2024 https://fpga.mit.edu/6205/F24 32

• Just one 3-tuple to another (linear algebra)

September 26, 2024 https://fpga.mit.edu/6205/F24 33

• 8-bit data
• R = 1.164(Y – 16) + 1.596(Cr – 128)
• G = 1.164(Y – 16) – 0.813(Cr – 128) – 0.392(Cb – 128)
• B = 1.164(Y – 16) + 2.017(Cb – 128)

• 10-bit data
• R = 1.164(Y – 64) + 1.596(Cr – 512)
• G = 1.164(Y – 64) – 0.813(Cr – 512) – 0.392(Cb – 512)
• B = 1.164(Y – 64) + 2.017(Cb – 512)

• Implement using
• Integer arithmetic operators (scale constants/answer by 211)
• 5 BRAMs (1024x16) as lookup tables for multiplications

YCrCb ßà RGB

Color Analog Video signal
• Keep signal the same as before but add other stuff to

it!

September 26, 2024 https://fpga.mit.edu/6205/F24 34

Blanking
periodY value (Luminance) encoded in base signal

hsync end of line

Quiet period for
Y reference

Amplitude of
low frequency
signal conveyed
brightness

Superimpose two slightly different sine waves on
top of Luminance signal that encode Cr and Cb
data (not to scale) in amplitude modulation:

Cr

Cb

Add a Cr/Cb “color burst” to
region of blanking period to
calibrate for Cr/Cb
Amplitude Demodulation

Composite Video Encoding:

September 26, 2024 https://fpga.mit.edu/6205/F24 35

Use colorburst to remind receiver frequency and
amplitudes for interpreting luminance and
chrominance signal correctly

Used for most color TV transmissions and component
video up until early 2000’s

Encoding Color

September 26, 2024 https://fpga.mit.edu/6205/F24 36

https://www.eetimes.com/document.asp?doc_id=1272387#

• If you do math out, the two chrominance signals
construct/deconstruct to form a signal where:

• Amplitude is Saturation
• Phase is Hue
• Luminance is low-freq

original value

• Hue, Saturation,
Luminance (HSL) is a
cylindrical color space
that is used a lot!

https://www.eetimes.com/document.asp?doc_id=1272387

September 26, 2024 https://fpga.mit.edu/6205/F24 37

NTSC*: Composite Video Encoding

Captures on a Scope

Line 1

Line 2

Line 1 Line 2

Old old Labkits work with Cameras
that produce composite video out

September 26, 2024 https://fpga.mit.edu/6205/F24 38

Two conductors:
• Shield (ground)
• Middle thing (signal)

Component Video Sockets on
Virgin Air airplane in 2019

September 26, 2024 https://fpga.mit.edu/6205/F24 39

this

Is slightly smaller than

this
Poor engineering.

VGA (Video Graphics Array)
• Development of personal computers

motivated a rethink of video display!
• IBM (late 1980s)
• Data conveyed primarily analog
• Did not have to be reverse compatible with

B/W (chose to use RGB as a result)
• Used separate wires for different signals

(easier)
• Still had to deal with CRTs!
• Need blanking!
• Need sync signals!

September 26, 2024 https://fpga.mit.edu/6205/F24 40

DB15 Connector

https://electronics.stackexchange.com/questions/93078/soldering-a-vga-cable-number-of-wires-doesnt-match

VGA Signals
• Similar as Before, but split analog signals (easier to

interpret as human)

September 26, 2024 https://fpga.mit.edu/6205/F24 41

Red Signal

Hsync Signal

Green Signal

Blue Signal

Vsync Signal

Blank Blank Blank BlankDraw Draw Draw Draw

N
ew

 Line

N
ew

 Line

N
ew

 Fram
e

N
ew

 Line

Figure out Display Resolution

September 26, 2024 https://fpga.mit.edu/6205/F24 42

Resolution Pixels Aspect Ratio Products

VGA 640x480 4:3

SVGA 800x600 4:3

XGA 1024x768 4:3 iPad, iPad Mini

SXGA 1280x1024 4:3

Crappy HD TV 1280x720 16:9 6.205 F24
HD TV 1920x1080 16:9

iPhone 6 Plus 1920x1080 16:9

iPad Retina 2048x1536 4:3 iPad Air, iPad Mini Retina

Macbook Retina 2560x1600 16:10 13” Macbook Pro

Kindle Fire 1920x1200 HDX 7” (3rd Generation)

4K HD TV 3840x2160 16:9

8K HD TV 7680x4320 16:9 Really expensive TVs

Generally need to draw 60 frames per second regardless of
resolution(can go faster):

720p
• In lab this week we’re going to create 720p video.
• The images are 1280 x 720 pixels in size (where

720p comes from)…not full story though…
• We still have to draw like this:

September 26, 2024 https://fpga.mit.edu/6205/F24 43

720p
• In lab this week we’re going to create 720p video.
• The images are 1280 x 720 pixels in size (where

720p comes from)…not full story though…
• All video standards have particular sizes associated

with all their parts (not just the active drawing
area!)

September 26, 2024 https://fpga.mit.edu/6205/F24 44

720p Timing
• The dimensions of a 720p frame are shown below

including blanking and sync periods

September 26, 2024 https://fpga.mit.edu/6205/F24 45

How Big is this Frame?
• 1650 pixels wide
• 750 lines tall
• So 1.2375 million pixels per frame.
• About 75% is meant for drawing… the rest is

blanking/sync

September 26, 2024 https://fpga.mit.edu/6205/F24 46

How Many pixels per second?
• We’ll be generating 60 fps 720p video. That means

we need to deliver 60 full frames per second.
• If 1.2375 million pixels per frame
• 60 frames per second…
• We need to deliver 74.25 Million pixels per second.

September 26, 2024 https://fpga.mit.edu/6205/F24 47

• The clock we drive our entire system at then is
based off of this frequency.
• We’ll use a MMCM/PLL to generate a 74.25 MHz

clock from 100 MHz.

Week 04 Part 1

September 26, 2024 https://fpga.mit.edu/6205/F24 48

Drive with a pixel clock of
74.25 MHz

• You’ll generate the
full raster pattern
control signal for
720p

Modern Displays and
Technologies
VGA is dead, Joe. Also nobody uses CRTs anymore. My
computer only has HDMI and a Display Port and I use an OLED
display because I’m nasty like that. All this stuff is irrelevant.

September 26, 2024 https://fpga.mit.edu/6205/F24 49

History

• Display technologies and all the associated
protocols are a classic example where obsessions
with backwards compatibility have really affected
decisions going forward.
• We still use the same general pattern of digital

transmission mainly because lots of things assume
that pattern and nobody wanted to break old stuff.

September 26, 2024 https://fpga.mit.edu/6205/F24 50

September 26, 2024 https://fpga.mit.edu/6205/F24 51

Display Types
• Emissive Display

• Organic Light Emitting Diode (OLED) Displays
• Liquid Crystal Display (LCD)

• requires backlight source,
• constant power

• Cathode Ray Tube (CRT)

• Reflective Display
• Electrophoretic Display (E-Ink)*

• Ultra Low Power – displays are bi-stable, drawing power
only when updating the display.

• Viewable in sunlight – ambient light reflected from
display

• Liquid Crystal Display (LCD)
• I’m talking old-school calculator style here

*Prof Joseph Jacbson, MIT

Back in
Time

Back in
Time

September 26, 2024 https://fpga.mit.edu/6205/F24 52

liquid crystal display: active-matrix TFT liquid crystal display. Art.
Encyclopædia Britannica Online. Web.

TFT LCD
Used to be Cold Cathode
Now almost always white LEDs

TFT (Thin-Film Transistors)
• Older Technology:
• Make a display:

1. Gigantic white backlight (polarized)
2. Gigundous array of voltage-variable polarizers (TFTs

with Liquid Crystals) (let light through at rest)
3. One TFT for each color (RGB), three per pixel

• Want black pixel? Turn TFT fully on to block light
getting through

September 26, 2024 https://fpga.mit.edu/6205/F24 53

Organic Light Emitting Diodes

• Newest Technology
• Conceptually maybe the

simplest/ideal way to do a
display

1. Gigundous array of RGB LEDs
2. Control RGB amt. at each point
3. Profit

1. Want black pixel? Just don’t
turn on LED

September 26, 2024 https://fpga.mit.edu/6205/F24 54

red
green

blue

*Green saturated in this image

All Color Displays use RGB Pixels

September 26, 2024 https://fpga.mit.edu/6205/F24 55

CRT pixels

CRT pixels

OLED pixels

TFT LCD pixels

Slo-Mo Guys

• Video Locations:
• CRT @2:13
• TFT LCD @ 7:58
• OLED @ 10:50

• Whole video is a good watch

September 26, 2024 https://fpga.mit.edu/6205/F24 56

https://www.youtube.com/watch?v=3BJU2drrtCM

DVI (Digital Video Interface)
• 1998ish
• Backwards compatible with VGA to

an extent (supposed to support
analog)
• Sends data digitally over twisted

pairs in high-level structure similar
to VGA

September 26, 2024 https://fpga.mit.edu/6205/F24 57

DB15 Connector

Twisted pairs for data,
power, sensing

Analog channels

HDMI

September 26, 2024 https://fpga.mit.edu/6205/F24 58

• It all starts with the cable
and connector

https://www.maximintegrated.com/en/app-notes/index.mvp/id/4306

• You’ve got three pairs* of
wires that carry color
• Channel 0: Blue
• Channel 1: Green
• Channel 2: Red

• Clock Channel
• Few other wires:

• Resolution info
• CEC (control things)
• Power

*each group is a differential signal pair and shield

Color Information
• Sent as serialized data in 10-bit frames using TMDS (week 04)
• One color per pair of wires (red, green, blue wires)
• The blue channel also carries blanking/hsync/vsync info:

• Encodes those using four 10 bit reserved values:
• (H = 0, V = 0): 1101010100
• (H = 1, V = 0): 0010101011
• (H = 1, V = 0): 0101010100
• (H = 1, V = 1): 1010101011

September 26, 2024 https://fpga.mit.edu/6205/F24 59

One pixel of information per clock cycle (clock is 1/10 bit rate)

Audio Information
• During blanking period (when no color needs to be

conveyed), there’s unused clock cycles on the color lines.
• Shove audio into that region
• Blanking region works out to be about 64 pixels worth of

time (64 clock cycles) per line

September 26, 2024 https://fpga.mit.edu/6205/F24 60

Traditional Video
HDM

I

Audio
• With a screen refresh rate of 60Hz…
• 1080 lines per screen…
• 64 pixels per line (blanking time we have to play with)…
• and 8 bits (of info) per pixel for an HDTV signal…
• The maximum audio information bit rate we could send is:

= 60 × 1080 × 64 × 8 = 33.1776Mbps

This data rate is more than sufficient to carry any multichannel
high-quality audio signals
• (Stereo CD-quality Audio needs 1.411Mbps as a reference)
• Plenty of leftover bandwidth for spyware, malware, etc

September 26, 2024 https://fpga.mit.edu/6205/F24 61

https://www.maximintegrated.com/en/app-notes/index.mvp/id/4306

HDMI Data Transfer
• Modern displays are built around sending the red,

green, and blue signals on their own channels.
• Each channel sends that portion of a pixel’s

information serially.
• For 720p we’re sending 74.25 million pixels per

second.
• If we were to do the 8 bits of serially that means

the red, green, and blue channels would be sending
594 million bits per second.
• And that’s for 720p (pretty “bad” HD TV now)
• This is potentially too much data

September 26, 2024 https://fpga.mit.edu/6205/F24 62

High Speeds
• Sending 1’s and 0’s down a line at 594 MHz will

produce a ton of electrical noise.
• Every 0à1à0 transition is a charge/discharge and

released electromagnetic noise…this can cause
interference and prevent the red, green, blue and
other things from working all at once.
• You can’t do it. You need to figure out a way to send

the same bits of information but without so many bit
transitions. Must have Transitions Minimized

September 26, 2024 https://fpga.mit.edu/6205/F24 63

Long Distances
• Sending large volumes of data over long cables is also very

very prone to noise.
• A common return path to ground for multiple signals

usually results in a lot of interference causing red bits to
influence blue bits.

September 26, 2024 https://fpga.mit.edu/6205/F24 64

Video
transmitter

red bits

green bits

blue bits

Video
receiver

Realistic
ground wire

Long Distances
• Instead each data channel gets sent on its own sub

circuit comprised of two wires.
• We call this Differential Signaling

September 26, 2024 https://fpga.mit.edu/6205/F24 65

Video
transmitter

red bits +

green bits +

blue bits +

Video
receiver

red bits -

green bits -

blue bits -

HDMI and TMDS
• Transition Minimized Differential

Signaling (TMDS) is used to send all
data in HDMI
• Instead of sending 8 bits of pixel

information we send 10 bits.
• The two extra bits:
• Minimize transitions (using XOR or

XNOR encoding)
• Keep the DC-average voltage on a pair

of wires to be about 50% 1’s and 0’s.
Allows recovery circuitry to work on
receiver side.

September 26, 2024 https://fpga.mit.edu/6205/F24 66

TMDS Encoding
• There’s an easy-to-

implement* algorithm to
encode using TMDS
• You’ll do this in Lab this

week

September 26, 2024 https://fpga.mit.edu/6205/F24 67

TMDS system

September 26, 2024 https://fpga.mit.edu/6205/F24 68

https://en.wikipedia.org/wiki/Transition-minimized_differential_signaling#/media/File:Schematic_TMDS_link.svg

You’re making this in week 04

Conclusion
• HDMI is heavily based off of VGA and is therefore

easy to convert.
• Designing for VGA is directly portable (and

oftentimes will work without change) for modern
video processing (lab kit)
• LeftàRight, TopàBottom Raster pattern
• RGB specification of each pixel
• Blanking (pause periods) where you don’t draw and can

potentially do heavier calculations if needed!

• Just use different interface circuits and watch your
timing!

September 26, 2024 https://fpga.mit.edu/6205/F24 69

Generating Video on the
FPGA

September 26, 2024 https://fpga.mit.edu/6205/F24 70

Two General Ways to Produce Video:

September 26, 2024 https://fpga.mit.edu/6205/F24 71

Graphics/game
Computation

Frame Buffer
(Memory)

Puts drawing info

into frame buffer

Video Timing Signals

• Way One: Frame Buffer:
• Separate computation of drawing from actual rendering

of graphics. Use an intermediary memory

X

Display

More modern way of doing it (need lots of memory though!)

Two General Ways to Produce Video:

September 26, 2024 https://fpga.mit.edu/6205/F24 72

Graphics/game
ComputationVideo Timing Signals

• Way Two: “Racing the Beam”:
• Have everything run off of the video timing signals and

compute the value of the pixel just in time when needed!

Display

• How a lot of early video games and other things were done (and other niche
applications today).

• All computation (game logic and render logic) must be done on the clock cycle
that it is needed

September 26, 2024 https://fpga.mit.edu/6205/F24 73

Lab 04 Setup (Racing the Beam)

September 26, 2024 https://fpga.mit.edu/6205/F24 74

Examples of pixel logic:
Whole Screen is White:

Draw green vertical line at horizontal spot 500:

Draw white crosshair at (500,500)

assign red = 8'hFF;
assign green = 8'hFF;
assign blue = 8'hFF;

always_comb begin
 green = (hcount==500)? 8'hFF:8'h00;
 red = 8'h00;
 blue = 8'h00;
end

always_comb begin
 if (hcount==500 || vcount==500)begin
 green = 8'hFF;
 red = 8'hFF;
 blue = 8'hFF;
 end else begin
 green = 8'h00;
 red = 8'h00;
 blue = 8'h00;
 end
end

Examples of Pixel Logic
• From Lab 04:
• Draw a white pixel if within a set of rectangular bounds!

September 26, 2024 https://fpga.mit.edu/6205/F24 75

module block_sprite #(
 parameter WIDTH=128, HEIGHT=128, COLOR=24'hFF_FF_FF)(
 input wire [10:0] hcount_in,
 input wire [9:0] vcount_in,
 input wire [10:0] x_in,
 input wire [9:0] y_in,
 output logic [7:0] red_out,
 output logic [7:0] green_out,
 output logic [7:0] blue_out);
 logic in_sprite;
 assign in_sprite = ((hcount_in >= x_in && hcount_in < (x_in + WIDTH))

 &&(vcount_in >= y_in && vcount_in < (y_in + HEIGHT)));
 always_comb begin
 if (in_sprite)begin
 red_out = COLOR[23:16];
 green_out = COLOR[15:8];
 blue_out = COLOR[7:0];
 end else begin
 red_out = 0;
 green_out = 0;
 blue_out <= 0;
 end
 end
endmodule

How can a drawing start to work?

September 26, 2024 https://fpga.mit.edu/6205/F24 76

Video
Sig
gen

hcount
vcount

74.25 MHz clock sprite
1

Have each sprite module
calculate its contribution
to the current pixel

hsync
vsync
blank

sprite
2

sprite
3

How can a drawing start to work?

September 26, 2024 https://fpga.mit.edu/6205/F24 77

Video
Sig
gen

hcount
vcount

74.25 MHz clock sprite
1

hsync
vsync
blank

sprite
2

sprite
3

total_pixel = sprite1_pixel_val |
 sprite2_pixel_val |
 sprite3_pixel_val;

Merge pixels

Processed
Pixel Info!

How can a drawing start to work?

September 26, 2024 https://fpga.mit.edu/6205/F24 78

Video
Sig
gen

hcount
vcount

74.25 MHz clock sprite
1

hsync
vsync
blank

sprite
2

sprite
3

Processed
Pixel Info!

Movement
logic:
e.g.:

Oh! Sprite1 is overlapping with
sprite2…that’s a point

Or
sprite2 is intersecting with

sprite 3! That means sprite 2
should start moving

backwards!
Or:

Once per frame, update
sprite2’s position!

Drawing logic:
e.g.:

Oh sprite1 is “behind” sprite 2 so
make sure sprite2 pixels have

higher priority than 1!

Sprite1 and sprite 3 should be
mixed 50/50 since 3 is

transparent

