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Planning Stuff

• Week 03 Due Tomorrow
• Week 04 Released Thursday (video)
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Notes on UART RX

• I went and from the computer decided to send 
down 0, then 1, then 2, then 3…to 255 over UART.
• This was the trace on the UART_RXD line
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UART Packet

• In the UART standard there is no guarantee in 
regards to inter-byte spacing between bytes sent 
down.
• It can vary (and often does)
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Packet 1
10 bits

Packet 2
10 bits

Packet 3
10 bits

…… Dead-time 
Dead-
time 



Robustness in Measuring UART  

• General recommendation is to not just verify the 
start bit is low once and the stop bit is high once.
• Instead recommend to verify start bit is low up until 

0.5*BAUD
• And recommend to verify stop bit is high from 

0.5*BAUD to 1*BAUD
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However…the FT2232 chip on our 
board that handles the UART…
• Packs the UART packets very tightly
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However…the FT2232 chip on our 
board that handles the UART…
• Packs the UART packets very tightly
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2 3 4 5

Basically no inter-byte spacing



As a result…
• Recommend to verify stop bit is high from 

0.5*BAUD to 1*BAUD could cause issues.
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Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

Verify low for half BAUD Verify high from 0.5BAUD to 1 BAUD

Could fall off cliff into next start bit… :/



Solution…
• Verify value remains 1 from 0.5 BAUD to 0.75BAUD
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Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

Verify low for half BAUD Verify high from 0.5BAUD to 0.75BAUD



Quality Difference Demo I
• Just Verifying once at start and stop
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Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

Verify low at half BAUD Verify high at 0.5BAUD



Quality Difference Demo II
• Verifying continuously in two shown regions
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Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

Verify low for half BAUD Verify high from 0.5BAUD to 0.75BAUD



FSMs in History
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Car Alarm FSM
• Up until 2021 the 

“FSM” lab in 6.111 
was making a car 
alarm
• FSM design was 

and still can be a 
very common 
approach to digital 
circuit design
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Car Alarm FSM
• When Gim graduated 

from MIT he got a job 
with DEC (Digital 
Equipment Corporation) 
that made the PDP-1 
among other computers 
and then TI
• Got big signing bonus and 

bought a nice convertible
• Parked Convertible went 

into apartment.
• Convertible was not there 

came out
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Gim Hom
Took 6.111 in 1969..graduated in 1970

6.111 Instructor 2013-2021
Now retired



Car Theft FSMs
• 2016, MA: ~7 million people, 6,600 car thefts for year
• 1975, MA: 5.8 million people, 91,000 car thefts for year (peak)
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#1 state for car theft for 1965-1987

~5% of cars were stolen per year in MA



Car Alarm FSM
• Gim built a car alarm for 

his car.
• Designed it using an FSM-

based approach.
• Had ~11 states
• Built it just like we talked 

about last week (bubble-
diagram…developed 
logic, implemented…)
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Fuel pump relayCloaking 
device

Gim’s FSM-based car alarm for his car
Built using 4000-series CMOS chips 

(top of the line at the time)



Magnavox Odyssey (1972)
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• First commercially available 
game system
• Completely FSM-based

https://www.pong-story.com/odyssey.htm



• Implemented completely with discrete transistors: 
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https://www.pong-story.com/odyssey.htm



Was just a large finite state machine
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stateinputs state-transition logic output logic “clock”

https://www.pong-story.com/odyssey.htm



Magnavox Odyssey Game System
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http://odysim.blogspot.com/2020/



Magnavox Odyssey Game System
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https://www.youtube.com/watch?app=desktop&v=NsluZfTMRno&ab_channel=OdysseyNow

https://youtube.com/playlist?list=PLtApm-Ri5WTIAEV1ClufPrca2MTj4uSvT&feature=shared

Hockey

Basketball

Cat and Mouse



Early 1970s

• Most arcade systems were just FSMs implemented 
in discrete logic, including:

• Pong
• Breakout

• Space Invaders was first arcade machine to move 
some game logic to a Intel 8080 microprocessor.
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Evolution of FSM-based Games

• http://www.pong-story.com/gi.htm
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AY-3-8500 “Ball-and-Paddle” chip

https://commons.wikimedia.org/wiki/File:AY-3-8500.jpg

• As 1970s rolled on, entire 
game systems would get put 
on single chips
• “Ball-and-Paddle” Chips would 

be sold by companies and then 
other companies would buy 
them and put their own “skin” 
on them and sell them as their 
own. Many times it was the 
same game underneath
• Atari 2600 was first 

microprocessor-based home 
video game system



TV Fun

• Runs off a AY-3-8500
• Made by APF who started out importing Japanese 

8-track players
• Company went bankrupt in the great video game 

crash of 1983.
• Have one set up in “lounge” area of lab in case 

anybody wants to play.  If you need help setting it 
up, let me know. 
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Tiger Electronics Games
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https://oladaniel.com/pica-pic



Tiger Electronics Games
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• Tiger Electronics had 100’s of 
versions of these in the 1980s 
and 1990s
• Almost all of them were based 

on three or four common finite 
state machine game chips
• They’d slap a different LCD skin 

and game art onto the same 
chip and resell



Modern Games
• Modern games are far too complex to be 

implemented with an FSM in any productive way 
(though it is still generally possible)
• However well-characterized chunks of game 

software is still used and re-used/skinned (for 
example game engines)
• But also stuff gets reskinned all the time
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Candy Crush Saga
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Pet Rescue Saga
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Soda Saga
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Bubble Witch 3 Saga
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Farm Heroes Saga
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Finite State Machines Relevant

• Designing systems as finite state machines is still 
very common in digital design.  
• Doing it in a structured way can make your HDL 

very transparent so you know what you’re getting!
• You’ll see data sheets and other places with FSM 

diagrams and many protocols express their 
functionality with FSMs.
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Clocks and Time
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Clocking and Synchronous Communication
Module M1 Module M2

CLK

Ideal world:

CLKM1

CLKM2

M1 and M2 clock edges aligned in time

Signal 1

Signal 1



Delay Estimation: Simple RC Networks
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vout

vin C

R

tp = ln (2) t = 0.69 RC

review

Low-to-High High-to-Low

Simple CMOS Circuit



RC Equation
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So Signals Experience Delays

• ”Signals” generally have their delays expressed 
with:

• Contamination Delay
• Propagation Delay

• But the clock experiences Delay too!
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time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

jeeze, this diagram again!? 

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2 

≥tHOLD,reg2

Two Requirements/
Conclusions:
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Clock Skew
Module M1 Module M2

CLK

Real world has clock skew:

CLKM1

CLKM2

M2 clock delayed with respect to M1 clock

delay

Oops! Skew has caused a hold 
time problem!

1. Wire delay
2. Different clocks!

Signal 1

Signal 1



Clocks are Not Perfect: Clock Skew
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D

clk1

QIn Combinational
Logic

D

clk2

Q

Wire delay

clk1

clk2

δ>0

CLout

tclk2 – tclk1tskew  =
Based off of times of rising edges.

Not periods!
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Positive and Negative Skew

R1
In

(a) Positive skew

Combinational
LogicD Q

tCLK1CLK

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay

R1
In

(b) Negative skew

Combinational
LogicD Q

tCLK1

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay CLK

CLK1

CLK2

TCLK

d

TCLK + d

+ thd

2

1

4

3

R1
In

(a) Positive skew

Combinational
LogicD Q

tCLK1CLK

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay

R1
In

(b) Negative skew

Combinational
LogicD Q

tCLK1

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay CLK

CLK1

CLK2

TCLK

d

TCLK + d

2

1

4

3

Receiving edge arrives before the launching edge (negative skew)

Launching edge arrives before the receiving edge (positive skew)

ØAdapted from J. Rabaey, A. Chandrakasan, B. Nikolic, 
   “Digital Integrated Circuits: A Design Perspective” Copyright 2003 Prentice Hall/Pearson.
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time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

Timing

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2 

≥tHOLD,reg2

Two Requirements/
Conclusions:



• Setup equation 
• was actually short-hand for:

How does Skew Affect Things? 
• Originally in our model circuit, we assume all 

devices experience the clock edges at the same 
time
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CLK
@ 

everywhere

tCLK

tedge1 tedge2

tCLK  = tedge2 - tedge1

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tedge1 +tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tedge2
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CLK
@
reg1

tCLK

With Skew

CLK
@
reg2

±skew

tskew

tedge1 tedge2

• The equation turns into:

• Or since 
tedge1 +tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tedge2 + tskew 

tCLK  = tedge2 - tedge1

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tclk + tskew 
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With Skew
±skew

• If that’s now our modified setup equation…
• Positive skew is easier to satisfy
• Negative skew is harder to satisfy

• But you still have degree of freedom with tPD,logic 
…maybe you can change that? 

• And you could also increase tclk as well.

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tclk + tskew 



What about Hold 
Time?

• If the second register is getting its clock edge tskew 
after the first register that means it needs hold the 
values at the input of reg2 for tskew longer :/
• Hold Equation gets modified to be:
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±skew

tCD,reg1 + tCD,logic ≥ tHOLD,reg2 + tskew 



What about Hold 
Time?
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±skew

tCD,reg1 + tCD,logic ≥ tHOLD,reg2 + tskew 

• The “growth” from skew is not on low side of 
inequality so…
• Positive skew makes eq harder to satisfy. 

• Further there’s nothing you can do since contamination 
delays are usually very low and beyond our control

• Negative skew makes eq easier to satisfy.



Conclusions

• Positive clock skew improves the minimum cycle 
time of our design but makes it harder to meet 
register hold times.
• Negative clock skew hurts the minimum cycle time 

of our design but makes it easier to meet register 
hold times.
• Positive skew is tougher to deal with
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±skew

tCD,reg1 + tCD,logic ≥ tHOLD,reg2 + tskew 

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tclk + tskew 
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Low-skew Clocking in FPGAs

Figures from Xilinx App Notes

• When Vivado is doing 
place-and-route it  tries 
to position logic so that 
skew is minimized 
wherever possible
• Special clock paths and 

buffers exist throughout 
the chip to distribute 
the clock as effectively 
as possible.



Other Problems…

• Stable Clock:

• Jittery Clock:
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Clocks Are Not Perfectly Periodic either: 
Jitter
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Typical crystal oscillator
100mhz (10ns)
Jitter: 1ps

• Jitter is an approximation of how much the clock 
period can increase/decrease cycle to cycle: 
• Can make it harder to meet timing since it effectively 

shortens tclk …and that affects the setup equation…

tPD,reg1+tPD,logic+ tSETUP,reg2 ≤ tCLK  - 2tjitter 



Other Problems…

• 50% Duty Cycle Clock

• Not 50% Duty Cycle Clock
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Duty Cycle

• Another reason we try avoid using neg-edge of 
clocks is it makes timing a lot easier
• Clocks will tend to deviate from 50/50 duty cycle 

due to variations/asymmetries in p-channel/n-
channel transistor behavior
• Clock Buffers and things will try to clean this up, 

but it can be tough
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Goal: use as few clock domains as possible
Suppose we wanted signals at f/2, f/4, f/8, etc.:

logic clk2,clk4,clk8,clk16;
always_ff @(posedge clk) clk2 <= ~clk2;
always_ff @(posedge clk2) clk4 <= ~clk4;
always_ff @(posedge clk4) clk8 <= ~clk16;
always_ff @(posedge clk8) clk16 <= ~clk16;

CLK

CLK2

CLK4

CLK8

CLK16

Very hard to have synchronous communication between clk 
and clk16 domains… Can lead to lots of timing violations!

No! don’t do
it this way
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Solution: One clock, Many enables
Use one (high speed) clock, but create enable signals to select a subset of the edges 
to use for a particular piece of sequential logic (much easier on timing requirements)

logic [3:0] count;
always_ff @(posedge clk) count <= count + 1;   // counts 0..15
logic enb2, enb4, enb8, enb16;
assign enb2 = (count[0] == 1’b1);
assign enb4 = (count[1:0] == 2’b11);
assign enb8 = (count[2:0] == 3’b111);
assign enb16 = (count[3:0] == 4’b1111);

CLK

ENB2

ENB4

ENB8

ENB16

count 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1414

= clock edge selected by enable signal

always_ff @(posedge clk)
  if (enb2) begin
    // get here every 2nd cycle
  end



How to Make 
Frequencies and Clocks
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Where do we get frequencies?

https://en.wikipedia.org/wiki/Ring_oscillator

• Particular combinational circuits that are fed back 
onto themselves  so that they cannot be stable can 
be made to form oscillators.
• The ring oscillator above is a classic example.
• There is no stable set of output states so this circuit 

perpetually oscillates. 
• Period of oscillation is based on the delay of each 

element
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Where do we get frequencies?

• Most frequencies come from Crystal Oscillators made of 
quartz

• Equivalent to very High-Q LRC tank circuits
• https://en.wikipedia.org/wiki/Crystal_oscillator_frequencies

• Incorporate into circuit like that below and boom, 
you’ve got a square wave of some specified frequency 
dependent largely on the crystal

https://en.wikipedia.org/wiki/Crystal_oscillator

16MHz Crystal

http://www.z80.info/uexosc.htm
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https://en.wikipedia.org/wiki/Crystal_oscillator_frequencies


High Frequencies
• Very hard to get a crystal oscillator to operate 

above ~200 MHz (7th harmonic of resonance of 
crystal itself, which usually is limited to about 30 
MHz due to fabrication limitations)

• Where does the 2.33 GHz clock of my iPhone come 
from then?

• Frequency Multipliers!
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Voltage Controlled Oscillator

http://www.electronicshub.org/voltage-controlled-oscillators-vco/

• It is very easy to make voltage-controlled 
oscillators that run up to 1GHz or more.
• Low voltage circuit oscillates at low frequency
• Higher voltageàhigher frequency oscillation

• Block Diagram

A simple VCO (not type 
found in FPGA)

VCO𝑉! 𝑓"
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Voltage Controlled Oscillator

http://www.electronicshub.org/voltage-controlled-oscillators-vco/

• It is very easy to make voltage-controlled oscillators 
that run up to 1GHz or more.

• Why don’t we just:

• Pick the voltage 𝑉! that is needed to get the 
frequency we want 𝑓"?  

• That’s gotta be specified right?
• Same reason we don’t see op amps in open loop 

out in the wild…they are too unstable…gotta place 
them in negative feedback

A simple VCO (not type 
found in FPGA)

VCO𝑉! 𝑓"
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Phase Locked Loop

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

• Place the unstable, but capable VCO in a feedback loop.
• This type of circuit is a phase-locked loop variant
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Phase Locked Loop

Phase,
Frequency	
Detector

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

• Circuit that can track an input phase of a system and reproduce it at 
the output 
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Phase, Frequency Detector

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector
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Phase Detector
• Can be a simple XOR, XNOR gate

• Low-pass the output

• If near the desired frequency already this can work…if it 
is too far out, it won’t and can be very unreliable since 
phase and frequency are related but not quite the same 
thing, it will lock onto harmonics, etc…

• For frequency we instead use a PFD:
• Phase/Frequency Detector:
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Phase-Frequency Detection
• Detects both change and which 

clock signal is consistently leading 
the other one 
• Using MOSFETs you 

charge/discharge a capacitor 
accordingly which also with some 
resistors low-pass filters the signal
• The output voltage is then 

roughly proportional to the 
frequency error!

http://www.globalspec.com/reference/72819/203279/2-7-phase-detectors-with-charge-pump-output
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The R input is the Reset of the flipflop
When this is asserted, it sets Q back to 
0 IMMEDIATELY



Phase Frequency Detection
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• Clock 1 and clock 2 are constantly 
competing with one another to 
generate up and down signals

• The up signals charge up a capacitors 
through a pair of transistors…the 
down signal discharges the capacitor 

1.pallen.ece.gatech.edu/Academic/ECE_6440/Summer_2003/L070-DPLL(2UP).pdf



Phase-Frequency Detection
• If you’re in State I:

• Increase voltage on 
capacitor

• If you’re in State II:   
• Decrease voltage on 

capacitor

• The voltage that builds 
up will be tightly related 
to how different these 
two circuits are

PFD LPFCharge 
Pump

http://www.globalspec.com/reference/72819/203279/2-7-phase-detectors-with-charge-pump-output
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PFD, Charge Pump, LP Filter

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

• So this circuit can make 𝑓2 = 𝑓345   That doesn’t help us!
• How can we make a higher frequency?
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+

-

R2

Vo
VI

R1

V-

𝑉* = 𝑉#
𝑅+

𝑅+ + 𝑅,

V+ • A voltage divider in feedback path gives us 
voltage gain!

Use Resistors in Voltage Divider in Feedback Path!

𝐾 =
1

1 − 𝑝 + 𝐺
𝑝 ≈ 0.9999 means 𝐾 =

1
𝐺

𝐺 =
𝑅+

𝑅+ + 𝑅,
The gain 𝐴- of this circuit is therefore:

𝐴- =
𝑅+ + 𝑅,
𝑅+

The gain of a “non-inverting amplifier”
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Same Idea with Phase Locked Loops!



Use a Clock Divider in Feedback 
Path! 

• A clock divider in feedback path gives us clock gain!

𝑓#𝑓$%&

“𝑓'%()”

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

÷ 𝑛We ”lie” to the PFD so that 
it pushes the system more
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Use a Clock Divider in Feedback 
Path! 

𝑓# = 400	MHz

𝑓$%& = 100	MHz
LP	Filter

VCO
Charge	
Pump

Phase,
Frequency	
Detector

÷ 4
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logic clk2,clk4,clk8,clk16;
always_ff @(posedge clk) clk2 <= ~clk2;
always_ff @(posedge clk2) clk4 <= ~clk4;
always_ff @(posedge clk4) clk8 <= ~clk16;
always_ff @(posedge clk8) clk16 <= ~clk16;



Add a Pre- and Post- Divider for Flex
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÷ 𝑛6 ÷ 𝑛7



So to Make 65 MHz?

• How to make 65 MHz from 100 MHz?
• Divide down (not too low)
• Multiply up (not too high)
• Divide down for final product
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So to Make 65 MHz?
• How to make 65 MHz from 100 MHz?
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MMCME2_ADV
#(.BANDWIDTH ("OPTIMIZED"),
.CLKOUT4_CASCADE ("FALSE"),
.COMPENSATION ("ZHOLD"),
.STARTUP_WAIT ("FALSE"),
.DIVCLK_DIVIDE (5),
.CLKFBOUT_MULT_F (50.375),
.CLKFBOUT_PHASE (0.000),
.CLKFBOUT_USE_FINE_PS ("FALSE"),
.CLKOUT0_DIVIDE_F (15.500),
.CLKOUT0_PHASE (0.000),
.CLKOUT0_DUTY_CYCLE (0.500),
.CLKOUT0_USE_FINE_PS ("FALSE"),
.CLKIN1_PERIOD (10.0))
mmcm_adv_inst
// Output clocks
(
.CLKFBOUT (clkfbout_clk_wiz_0),
.CLKFBOUTB (clkfboutb_unused),



Add a Pre- and Post- Divider for Flex
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÷ 𝑛6 ÷ 𝑛7

n8 and n7 can generally be fractions by switching between several 
dividers with a weighted average
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Generating Other 
Clock Frequencies (again)

The Nexys4 board has a 100MHz crystal (10ns period).  Use “clock wizard” to generate 
other frequencies  e.g., 65MHz to generate 1024x768 VGA video.

Clock Wizard can also synthesize certain 
multiples/fractions of the CLKIN frequency (100 
MHz):

CLKINCLKFX f
D
Mf ÷
ø
ö

ç
è
æ=



In Week 04

• We’ll build HDMI video from scratch.
• For 720p we’ll need:
•  a clock at 74.25 MHz (for the pixels)
• A clock at 371.25 MHz (for the bits of the pixels to 

be sent serially)
• We’ll use this clock along with a device that is built to 

run using always @(posedge clk or negedge clk) to get 
742.25 MHz of data out to drive the 720p data.
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Timing in Vivado
Starting to Look
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Let’s Look at Some Code:

• Very Simple top_level:
• Use sw[15:0] and 

buttons to seed two 
values into 16 bit 
registers:
• Dividend
• Divisor

• When btn[0] is pushed:
• DIVIDE the 16 bit 

numbers
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`timescale 1ns / 1ps
`default_nettype none

module top_level(
 input wire clk_100mhz, //clock @ 100 mhz
 input wire [15:0] sw, //switches
 input wire [3:0] btn, //all four momentary button switches
 output logic [15:0] led //just here for the funs
);

  logic [3:0] old_btn;
  logic [15:0] quotient;
  logic [15:0] dividend;
  logic [15:0] divisor;
  assign led = quotient;

  always_ff @(posedge clk_100mhz)begin
    for (int i=0; i<4; i=i+1)begin
      old_btn[i] <= btn[i];
    end
  end
  always_ff @(posedge clk_100mhz)begin
    if (btn[0] & ~old_btn[0])begin
      quotient <= dividend/divisor; //divide
    end
    if (btn[1] & ~old_btn[1])begin
      dividend <= sw; //divide //load dividend
    end
    if (btn[2] & ~old_btn[2])begin
      divisor <= sw; //divide //load dividend
    end
  end
endmodule

`default_nettype wire
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D Q
dividend[15:0]

sw[15:0]
btn[2:0]

D Q
divisor[15:0]

quotient[15:0]
D Q

led[15:0]“/”
aka 

divide



Let’s Build it. 
• Terminal Output:
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jodalyst@Josephs-MBP lec06 % ./remote/r.py build.py build.tcl hdl/* xdc/* obj

...

...

...

Writing bitstream obj/final.bit...
INFO: [Vivado 12-1842] Bitgen Completed Successfully.
INFO: [Project 1-1876] WebTalk data collection is mandatory when using a ULT device. 
To see the specific WebTalk data collected for your design, open the 
usage_statistics_webtalk.html or usage_statistics_webtalk.xml file in the 
implementation directory.
INFO: [Common 17-83] Releasing license: Implementation
7 Infos, 0 Warnings, 0 Critical Warnings and 0 Errors encountered.
write_bitstream completed successfully
write_bitstream: Time (s): cpu = 00:00:04 ; elapsed = 00:00:14 . Memory (MB): peak = 
2729.707 ; gain = 206.934 ; free physical = 2837 ; free virtual = 8407

”Hmmm Looks good.”



“Jeeze when I deploy this in a high-throughput system 
where I have a new pair of numbers to divide every 
10ns, the division results are trash. What’s going 
on?”…
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You look through the output from 
the build…
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Verification completed successfully
Phase 20 Verifying routed nets | Checksum: 12923a084

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free 
physical = 3116 ; free virtual = 8674

Phase 21 Depositing Routes
Phase 21 Depositing Routes | Checksum: 14a6fdc22

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free 
physical = 3116 ; free virtual = 8674

Phase 22 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-21.399| TNS=-129.552| WHS=0.090  | THS=0.000  |

Phase 22 Post Router Timing | Checksum: 1a0e6c79b

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free 
physical = 3116 ; free virtual = 8674
CRITICAL WARNING: [Route 35-39] The design did not meet timing requirements. Please run 
report_timing_summary for detailed reports.
Resolution: Verify that the timing was met or had small violations at all previous steps (synthesis, 
placement, power_opt, and phys_opt). Run report_timing_summary and analyze individual timing paths.
INFO: [Route 35-253] TNS is the sum of the worst slack violation on every endpoint in the design. Review 
the paths with the biggest WNS violations in the timing reports and modify your constraints or your 
design to improve both WNS and TNS.
INFO: [Route 35-16] Router Completed Successfully

Phase 23 Post-Route Event Processing
Phase 23 Post-Route Event Processing | Checksum: 3725a886

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free 
physical = 3116 ; free virtual = 8674

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free 
physical = 3116 ; free virtual = 8674

Routing Is Done.

Starting at line 1322:



Look at 
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post_route_timing.rpt

Timing Report

Slack (VIOLATED) :        -21.399ns  (required time - arrival time)
  Source:                 dividend_reg[15]/C
                            (rising edge-triggered cell FDRE clocked by gclk  {rise@0.000ns fall@4.000ns period=10.000ns})
  Destination:            quotient_reg[0]/D
                            (rising edge-triggered cell FDRE clocked by gclk  {rise@0.000ns fall@4.000ns period=10.000ns})
  Path Group:             gclk
  Path Type:              Setup (Max at Slow Process Corner)
Requirement:            10.000ns  (gclk rise@10.000ns - gclk rise@0.000ns)
Data Path Delay:        31.483ns  (logic 21.642ns (68.742%)  route 9.841ns (31.258%))

  Logic Levels:           82  (CARRY4=80 LUT2=1 LUT3=1)
  Clock Path Skew:        0.026ns (DCD - SCD + CPR)
    Destination Clock Delay (DCD):    4.926ns = ( 14.926 - 10.000 ) 
    Source Clock Delay      (SCD):    5.079ns
    Clock Pessimism Removal (CPR):    0.179ns
  Clock Uncertainty:      0.035ns  ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
    Total System Jitter     (TSJ):    0.071ns
    Total Input Jitter      (TIJ):    0.000ns
    Discrete Jitter          (DJ):    0.000ns
    Phase Error              (PE):    0.000ns



What is Slack?
• Slack: measure of how safe your timing is
• The two big timing constraints we worry about are 

related to setup and hold
• Therefore there are two Slack values:
• Setup slack: trequired – tactual

• Hold slack: tactual – trequired
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These are defined such that Positive is GOOD, Negative is BAD for both
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time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

Timing Diagram

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2 

≥tHOLD,reg2

Two Requirements/
Conclusions:
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time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

tSETUP,reg2

Add in Slack

tPD,reg1 + tPD,logic + tSETUP,reg2 + tSETUP,Slack = tCLK

tCD,reg1 + tCD,logic = tHOLD,reg2 + tHOLD,Slack 

tHOLD,reg2

Equations*

tSETUP,Slack

tHOLD,Slack

tSETUP,Slack = tCLK-(tPD,reg1 + tPD,logic + tSETUP,reg2 )
tHOLD,Slack = tCD,reg1 + tCD,logic - tHOLD,reg2 

*not inequalities



Conclusion

• Positive Slack is GOOD
• Negative Slack is BAD
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Timing Report

Slack (VIOLATED) :        -21.399ns  (required time - arrival time)
  Source:                 dividend_reg[15]/C
                            (rising edge-triggered cell FDRE clocked by gclk  {rise@0.000ns fall@4.000ns period=10.000ns})
  Destination:            quotient_reg[0]/D
                            (rising edge-triggered cell FDRE clocked by gclk  {rise@0.000ns fall@4.000ns period=10.000ns})
  Path Group:             gclk
  Path Type:              Setup (Max at Slow Process Corner)
Requirement:            10.000ns  (gclk rise@10.000ns - gclk rise@0.000ns)
Data Path Delay:        31.483ns  (logic 21.642ns (68.742%)  route 9.841ns (31.258%))

  Logic Levels:           82  (CARRY4=80 LUT2=1 LUT3=1)
  Clock Path Skew:        0.026ns (DCD - SCD + CPR)
    Destination Clock Delay (DCD):    4.926ns = ( 14.926 - 10.000 ) 
    Source Clock Delay      (SCD):    5.079ns
    Clock Pessimism Removal (CPR):    0.179ns
  Clock Uncertainty:      0.035ns  ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
    Total System Jitter     (TSJ):    0.071ns
    Total Input Jitter      (TIJ):    0.000ns
    Discrete Jitter          (DJ):    0.000ns
    Phase Error              (PE):    0.000ns

Look at 
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routerpt_report_timing.rpt

1/3 from routing
2/3 from routing

This is not good Negative Slack



Results
• By default Vivado only gives you a few offending 

paths (our default is one) and it provides them in 
order of worst to best
• You can ask for more paths using different 

arguments;
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https://docs.xilinx.com/r/2020.2-English/ug835-vivado-tcl-commands/report_timing



Final Projects Coming Up
• In another ~week or so, we have to start thinking 

about planning on starting to get going on final 
projects. 

• First part of that is teaming and teams benefit from 
targeting shared goals

• On the site, we’ll put up an archive of final projects
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Past Project (with Microphone)
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Sudoku Solver
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