Timing and
Clocking

6.205




Planning Stuff

 Week 03 Due Tomorrow
* Week 04 Released Thursday (video)



Notes on UART RX

* | went and from the computer decided to send
down O, then 1, then 2, then 3...to 255 over UART.

* This was the trace on the UART_RXD line
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UART Packet

* In the UART standard there is no guarantee in
regards to inter-byte spacing between bytes sent
down.

* [t can vary (and often does)

Packet 1 Packet 2 Packet 3
10 bits 10 bits 10 bits

9/24/24 https://fpga.mit.edu/6205/F24



Robustness in Measuring UART

* General recommendation is to not just verify the
start bit is low once and the stop bit is high once.

* Instead recommend to verify start bit is low up until
0.5*BAUD

* And recommend to verify stop bit is high from
0.5*BAUD to 1*BAUD



However...the FT2232 chip on our
noard that handles the UART...

e Packs the UART packets very tightly
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AS a re S u |t Cee Could fall off cliff into next start bit... :/

« Recommend to verify stop bit is high from
0.5*BAUD to 1*BAUD could cause issues.

Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

T

Verify low for half BAUD Verify high from 0.5BAUD to 1 BAUD

9/24/24 https://fpga.mit.edu/6205/F24 8



Solution...
* Verify value remains 1 from 0.5 BAUD to 0.75BAUD

Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

T I

Verify low for half BAUD Verify high from 0.5BAUD to 0.75BAUD
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Quality Difference Demo |

e Just Verifying once at start and stop

Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

Verify low at half BAUD Verify high at 0.5BAUD

9/24/24 https://fpga.mit.edu/6205/F24 10



Quality Difference Demo |

* Verifying continuously in two shown regions

Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

T I

Verify low for half BAUD Verify high from 0.5BAUD to 0.75BAUD

9/24/24 https://fpga.mit.edu/6205/F24 11



FSMs In History



Description of Anti-Theft System

Since your client is completely focused on her start-up, she wants an anti-theft system that's highly automated. The system is armed automatically after she turns off the i
passenger and both the driver's door and passenger’s doors are open, the system arms itself after all the doors have been closed and T_ARM_DELAY has passed; that del

Fall 2019 Once the system has been armed, opening the driver’s door the system begins a countdown. If the ignition is not turned on within the countdown interval (T_DRIVER_D!

(T_ALARM_ON) after the door closes, at which time the system resets to the armed but silent state. If the ignition is turned on within the countdown interval, the system|

. H
. Announcements Always a paragon of politeness, your client opens the passenger door first if she's transporting a guest. When the passenger door is opened first, a separate, presumably 1o}
driver's door and insert the key in the ignition to disarm the system.
Labkit
Nexys4 DDR There is a status indicator LED on the dash. It blinks with a two-second period when the system is armed. It is constantly illuminated either the system is in the countdow|
HI S M " | b . 6 1 1 1
a I n L]

So far this all is ordinary alarm functionality. But you're worried that a knowledgable thief might disable the siren and then just drive off with the car. So you've added an
Power is only restored when first the ignition is turned on and then the driver presses both a hidden switch and the brake pedal simultaneously. Power is then latched on u

The diagram below lists all the sensors (inputs) and actuators (outputs) connected to the system.

Final Projects
»Projectinfo Inputs:

[
T R — :
»Past projects - all « driver door switch \ h

»Schedule * ignition switch

_ * hidden switch
o Ger s |« brake pedal switch
*Submit PDFs
+Submit FDE
'Msnmmz Hoan .
Course info
Ciis able /
e ( Outputs:

[}
. Tools. N « fuel pump power
Piazza (new tab) N « status indicator
———— +siren
Figure 1: System diagram showing sensors (inputs) and actuators (outputs)

The system timings are based on four parameters (in seconds): the delay between exiting the car and the arming of the alarm (T_ARM_DELAY), the length of the countd|
(T_PASSENGER_DELAY), and the length of time the siren sounds (T_ALARM_ON). The default value for each parameter is listed in the table below, but each may be
Time_Parameter_Selector switches specify the parameter number of the parameter to be changed. Time_Value switches are a 4-bit value representing the value to be prog:

selected parameter to Time_Value. Note that your system should behave correctly even if one or more of the parameters is set to 0.

e M Default Timing Parameters
a r O a ' O I I a Interval Name Symbol Parameter Number Default Time (sec) Time Value
Arming delay T_ARM_DELAY 00 6 0110

Countdown, driver's door = T_DRIVER_DELAY 01 8 1000

M e . Countdown, passenger door T_PASSENGER_DELAY 10 15 1
‘ I r‘ u I eS I gl l Siren ON time T_ALARM_ON 1 10 1010

Block Descriptions/Implementation

The ing diagram i a possible ization of your design into modules.

i

9/24/24 https://fpga.mit.edu/6205/F24 13



Car Alarm FSM

* When Gim graduated
from MIT he got a job
with DEC (Digital

that made the PDP-1
among other computers
and then Ti

* Got big signing bonus and
bought a nice convertible

* Parked Convertible went
Into apartment.

 Convertible was not there
came out

9/24/24 https://fpga.mit.edu/6205/F24

Gim Hom

Equipment Corporation) Took 6.111 in 1969..graduated in 1970

6.111 Instructor 2013-2021
Now retired
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Car Theft FSMs

e 2016, MA: ~7 million people, 6,600 car thefts for year
e 1975, MA: 5.8 million people, 91,000 car thefts for year (peak)

Massachusetts Population and Rate of Crime Rank Compared to other States ~5 % Of cars were s tO/ en p er y ear I n MA

State Year Population Index Violent Property Murder Rape Robbery Assault Burglary Larceny Vehicle
Massachusetts 1960 8 35 36 33 41 38 32 36 34 38 11
Massachusetts 1961 8 29 35 28 42 35 31 34 29 32 7
Massachusetts 1962 9 26 33 24 40 37 25 31 26 31
Massachusetts 1963 9 28 33 27 40 39 27 33 27 33
Massachusetts 1964 9 26 33 25 37 37 24 38 25 34
Massachusetts 1965 10 23 33 22 36 39 21 36 23 35
Massachusetts 1966 10 24 32 23 38 41 19 36 21 37
Massachusetts 1967 10 25 34 25 38 37 23 37 25 38
Massachusetts 1968 10 21 31 20 35 35 21 35 19 35
Massachusetts 1969 10 19 29 18 35 38 19 35 15 34 1

State Year Population Index Violent Property Murder Rape Robbery Assault Burglary Larceny Vehicle
Massachusetts 1970 10 20 31 18 38 33 19 35 14 35 1 State
Massachusetts 1971 10 16 27 16 36 38 13 33 13 32
Massachusetts 1972 10 17 26 16 38 39 11 29 13 35
Massachusetts 1973 10 15 20 14 36 34 10 29 12 33
Massachusetts 1974 10 12 20 11 37 37 10 29 12 32
Massachusetts 1975 10 11 16 12 39 29 9 26 13 34
Massachusetts 1976 10 13 18 12 40 37 11 22 11 36
Massachusetts 1977 10 15 17 16 43 31 12 19 13 37
Massachusetts 1978 10 16 16 17 40 31 13 19 12 38

#1 state for car theft for 1965-1987

e B N ]

Year Population Index Violent Property Murder Rape Robbery Assault Burglary Larceny Vehicle
Massachusetts 2000 i3 42 21 44 41 36 27 14 41 49 16
Massachusetts 2001 13 41 20 43 42 29 25 15 40 47 18
Massachusetts 2002 13 39 18 42 38 34 24 17 39 46 18
Massachusetts 2003 13 28 17 40 42 30 19 18 36 46 18
Massachusetts 2004 13 39 18 42 37 33 20 18 38 47 22
Massachusetts 2005 13 42 19 45 37 36 20 18 35 48 30
Massachusetts 2006 13 41 20 44 35 37 21 19 34 45 33
Massachusetts 1979 10 16 15 15 41 32 12 16 11 36 1 Massachusetts 2007  14: 42 22 M2 3 38 2 18 B3 4 3B
State Year Population Index Violent Property Murder Rape Robbery Assault Burglary Larceny Vehicle Massachusetts 2008 14 37 20 44 4 39 24 14 32 45 35
Massachusetts 1980 1 16 13 17 39 31 9 13 13 39 1 Massachusetts 2009 15 37 17 43 38 38 23 14 33 45 33
Massachusetts 1981 11 20 12 21 40 30 8 15 17 40 State Year Population Index Violent Property Murder Rape Robbery Assault Burglary Larceny Vehicle
Massachusetts 1982 11 18 14 21 37 31 10 13 19 40 Massachusetts 2010 14 32 13 38 31 35 18 11 29 41 34
Massachusetts 1983 11 20 12 22 40 28 9 10 20 41 Massachusetts 2011 14 36 14 42 37 37 20 12 32 43 34
Massachusetts 1984 12 25 13 24 36 25 12 12 25 41 Massachusetts 2012 14 40 19 44 46 39 20 14 33 48 39
Massachusetts 1985 12 23 16 25 39 23 12 14 24 40 Massachusetts 2013 14 36 16 45 43 16 18 15 35 46 39
Massachusetts 1986 12 26 18 27 38 26 14 17 28 43 Massachusetts 2014 14 39 18 46 43 35 20 14 38 47 40
Massachusetts 1987 13 26 14 28 42 26 15 14 31 45 Massachusetts 2015 15 42 18 47 45 38 27 14 42 48 42
Massachusetts 1988 13 23 13 25 38 25 14 11 29 41 Massachusetts 2016 15 45 23 47 47 42 26 20 45 49 44

e

W o = = N e
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Car Alarm FSM

e Gim built a car alarm for
his car.

* Designed it using an FSM-
Gim’s FSM-based car alarm for his car
based a pproach : Built using 4000-series CMOS chips

e Had ~11 states (top of the line at the time)

* Built it just like we talked
about last week (bubble-
diagram...developed
logic, implemented...)

:
|
.
31N
¥

9/24/24 https://fpga.mit.edu/6205/F24 16



Magnavox Odyssey (1972

* First commercially available

1TL200 BLAK & BK12 ODYSSEY GAME SIMULATOR

PLAYER 25POT
PLAVER 15P0T comPosITE
VID
HORIZ SYNC SUMMER ]
VERT SYNC
(] 3
o | CoAvER [ ] mayeR Plawe M 7P vl T
L L SPOT SPOT o—|
UNIT HORIZ| GENERATOR GENERATOR 4. | OSCILLATOR
5c ]
CHANNEL
SWITCH
MODULATED
SPEED VHF
ENGLISH S
oc i BAI
ENGLISH svolrl [ GATE
enuisw [ FLIPFLOP | 1] Genenaton [ MATRIX HE
oc FILTER
S
G,
BALL VERTICAL g le— &no
FLIP-FLOP =1 SyNe 2
RESET — GENERATOR H
—— °
[ S— ANTENNA
asis it | GAME
SWITCH
PLAYER 2 C3 PLAYER 2 HORIZONTAL ! g:?EWYBAR |
CONTROL SPOT
ENoLis UNIT womiz|  GENERATOR GENERATOR . adinpd !
B | ]
| S 0 |

T
VERTICAL HORIZONTAL

Figure 1 -- Odyssey Block Diagram

9/24/24

TO TELEVISION
VHF TERMINALS

game system
* Completely FSM-based

CROWBAR CIRCUIT

Causes Ball and GATE MATRIX
PLAYER 1SPOT or Player to dis- RF FILTER ENGLISH FLIP-FLOP  Determines coincidence
GENERATOR appear at coincidence.  Eliminatesun-  Changes Ball’s of Players and Ball or
Generates video  R39 RF OSCILLATOR  Circuit soldered on desirable fre- direction and Ball and Wall to
for Player 1 VERT Generates RF Master Board quencies from control when it trigger flip-flops.
spot FREQ  TP1  carrier (HIDDEN) RF signal. touches Player or crowbar circuit.

Q1 REGULATOR
Provides voltage
to all transistor
circuits

VERT. SYNC GEN.

Produces § V y ’ ¥y
BOY yerties! ) 5 BALL FLIP-FLOP
e pulses ‘ Makes Ball
7 bounce when it
SENERATOR 7 7 J touches Wall
Generates video
for Wall spot
W1 BATTIN
W2 GROUND HORIZ. SYNC GEN. BALLSPOT R PLAYER2SPOT  R31
Mixes video  Produces 5 V, GENERATOR  BALL GENERATOR PLAYER
e 15,734 Hz. Generates HEIGHT Generatesvideo 2 HEIGHT
(BK 12 Onlv) horizontal video for for Player 2
sync pulses. Ball spot. spot.

Figurs 3 Master Board Module Location

https://fpga.mit.edu/6205/Ib§E!°S://WWW'pong-Story'com/Odyssey'htm 17



* Implemented completely with discrete transistors:

MAGNAVOX ODYSSEY 1TL200BLAK SCHEMATIC DIAGRAM
Scanned from original service manual by David WINTER
http://www.pong-story.com

HANO CONTROL NO. 1 703488-2 WANG CONTROL NO. 2 7034882
' —Y vear

T RE FLTER
7034982

“

i HORIZ SYNC GENERATOR

ne

0w 1o wosuiare

—— e ___

RIFLE TRONIX 703520-1
3 e reny o]

BASE DIAGRAMS

MASTER PC 80 703490-4

https://www.pong-story.com/odyssey.htm
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Was just a large finite state machine

PLAYER 2 SPOT k| 1 i r
PLAYER 1SPOT COMPOSITE [} 1!
VIDEO Y
HORIZ SYNC SUMMER 08
VERT SYNC
VERTICAL HORIZONTAL
= —EEEE  -| o
VERT, _[ > SE il
PLAYER 1 DC PLAYER1 | WALL RE
ENGLISH CONTROL SPOT SPOT o—1 BSCILLATOR
UNIT HORIZ|  GENERATOR GENERATOR 4
DC CHANNEL
S SWITCH
MODULATED
ENGLISH SAdEy et
De >
ENGLISH g:&TL GATE
ENGLISH FLIP-FLOP {o GENERATOR MATRIX RE
Be FILTER
[ ]
w
RESET ‘ZJ GAME
Y VERTICAL g ¢ CORD
FLIP-FLOP ¢+ SYNC S
RESET GENERATOR 5
(=]
A ANTENNA
__J r——-Y¥4 GAME
VERT SWITCH
PLAYER2  [bc | PLAYER 2 HORIZONTAL L iy oag |
CONTROL SPOT SYNC 4 |
ENGLISH T voriz| GENERATOR GENERATOR [~ {ow sty
L3 | oard) |
DC
[ |
n
VERTICAL HORIZONTAL TO TELEVISION
VHF TERMINALS

Figure 1 -- Odyssey Block Diagram

inputs  state state-transition logic output logic “clock”

https://www.pong-story.com/odyssey.htm
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Magnavox Odyssey Game System

9/24/24
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http://odysim.blogspot.com/2020/
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Magnavox Odyssey Game System

Hockey

Kim Rachael

Cat and Mouse

' Jake Patrick
2

https://youtube.com/playlist?list=PLtApm-Ri5SWTIAEV1ClufPrca2MTj4uSvT&feature=shared
https://www.youtube.com/watch?app=desktop&v=NsluZfTMRno&ab channel=0dysseyNow
9/24/24 https://fpga.mit.edu/6205/F24 21



Early 1970s

* Most arcade systems were just FSMs implemented
in discrete logic, including:
* Pong
e Breakout

* Space Invaders was first arcade machine to move
some game logic to a Intel 8080 microprocessor.



Evolution of FSM-based Games

* As 1970s rolled on, entire
game systems would get put
on single chips

* “Ball-and-Paddle” Chips would
be sold by companies and then
other companies would buy
them and put their own “skin”
on them and sell them as their
own. Many times it was the
same game underneath

* Atari 2600 was first G g
microprocessor-based home B
video game system e e i g

AY-3-8500

AY-3-8500 “Ball-and-Paddle” chip

* http://www.pong-story.com/gi.htm https://commons.wikimedia.org/wiki/File:AY-3-8500.jpg

9/24/24 https://fpga.mit.edu/6205/F24 23



TV Fun

* Runs off a AY-3-8500

* Made by APF who started out importing Japanese
8-track players

 Company went bankrupt in the great video game
crash of 1983.

* Have one set up in “lounge” area of lab in case

anybody wants to play. If you need help setting it
up, let me know.

9/24/24 https://fpga.mit.edu/6205/F24 24



Tiger Electronics Games

ELECTRONIC ELECTRONIC

ri

MAX o]}
OFF SOUND SCORE START ACL

MAX ON TM and © 1984 Cinema '84

SOUND SCORE START ACL

\ \ \ L
T™ and 1984 Cinema ‘84 K

rine

WEAPON

OFF

WEAPON

https://oladaniel.com/pica-pic
9/24/24 https://fpga.mit.edu/6205/F24 25



Tiger Electronics Games

* Tiger Electronics had 100’s of
versions of these in the 1980s
and 1990s

e Almost all of them were based
on three or four common finite
state machine game chips

* They’d slap a different LCD skin — —
and game art onto the same
chip and resell

9/24/24 https://fpga.mit.edu/6205/F24 26



Modern Games

 Modern games are far too complex to be
implemented with an FSM in any productive way
(though it is still generally possible)

* However well-characterized chunks of game
software is still used and re-used/skinned (for
example game engines)

* But also stuff gets reskinned all the time
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Pet Rescue Saga

23
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Soda Saga

9/24/24
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Bubble Witch 3 Saga

i
o

https://fpga.mit.edu/6
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Farm Heroes Saga

9/24/24 https://fpga.mit.edu/6205/F24
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Finite State Machines Relevant

* Designing systems as finite state machines is still
very common in digital design.

* Doing it in a structured way can make your HDL
very transparent so you know what you’re getting!

* You'll see data sheets and other places with FSM
diagrams and many protocols express their
functionality with FSMs.



Clocks and Time



Clocking and Synchronous Communication

Module M1 i i Module M2
I Signal 1 I
—> —>
> >
CLK
Ideal world:

CLKM]_ -
Signal 1 X >< X

CLKMZ -

v

M1 and M2 clock edges aligned in time



Delay Estlmatlon Simple RC Networks

Simple CMOS Circuit T v,
l: 50%
Vou I |
Vin o——9 _ | |
° : : t
_I T“ Vout
Low-to-High High-to-Low
Vaa Yaa
review
o
Rn$ o
Vin
— +
T Vou
T v out(t) - (1 _ e_t/T) V
L LT~
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RC Equation

VS:5V

i

|
|
)
<
a

V,=5V
Switch is closed t<0

Switch opens t>0

Vi=Vp+ V,
V, =i R+ V. ig= cdVe
= RC%H/C .
dt
_t
V. =V,|1-e



So Signhals Experience Delays

* “Signals” generally have their delays expressed
with:
e Contamination Delay
* Propagation Delay

e But the clock experiences Delay too!



jeeze, this diagram again!? S

CLK

reg

1

D

JAN

Q

sig1
—>

reg 2

sig2
G D

JAN

Q

: =determined state

A tek
< N _
) g & =undetermined state
CLK g tPD,regl I
tep,reg1*” ) 2tsETUP reg2 -
sigl §
e tPD,Iogic
sig2 ZtHOLD,regZ m N
tCD logic e
' >
time
t + t .+t <t
Two Requirements/ PD,regl PD,logic SETUP,reg2 CLK
Conclusions:
tep,regt t e, logic 2 tHOLD reg2
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Clock Skew

Module M1 Module M2
I Signal 1 :
—_— > —
> >
--------------------------- 1. Wire delay
2. Different clocks! Oops! Skew has caused a hold

Real world has clock skew: time problem!

o, 7L -
Signal 1 { X X
CLK \ S

v

M2 clock delayed with respect to M1 clock
9/24/24 https://fpga.mit.edu/6205/F24 40



Clocks are Not Perfect: Clock Skew

, \Cl-out
n Iy o Combinational l D Ql—
Logic
+ \- J La—
| > Wire delay clk2
clk1 ol
clk1 [ | | |
dk2 i | | | |
- esS-
P n\s'\“%ed%
6>0 e
taew = takz — teia 04 OF 0&\
e Qe('\ods'



Positive and Negative Skew

o [R A R2 R3 T+ 0
n ombinationa Combinational T,
—> . — ... CLK
b a Logic ba Logic b q CLK1 @ ©
JAN JAN JAN 5 —

CLK A tcikq N toike A toiks g
— — e

delay delay Clkz @ @
(a) Positive skew TRt

Launching edge arrives before the receiving edge (positive skew)

In R Combinational Re C R3 fou?
ombinationa ombinational
b Q Logic b a Logic b a @ ax ®
A A A CLK1

t torkt tciko tciks

delay delay CLK CLK2 @ [« @
(b) Negative skew

Receiving edge arrives before the launching edge (negative skew)

» Adapted from J. Rabaey, A. Chandrakasan, B. Nikolic,
“Digital Integrated Circuits: A Design Perspective” Copyright 2003 Prentice Hall/Pearson.
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reg

1

reg 2

JAN

Q

" " From sig1 sig2
TI I I . I n g somewhere b Q_’ b
JAN
CLK
: =determined state
A tek
< , .
) g & =undetermined state
CLK tPD,regl I
tep,reg1*” ) 2tsETUP reg2 -
sigl §
e tPD,Iogic
sig2 ZtHOLD,regZ m N
tCD logic e
' >
time
t + t .+t <t
Two Requirements/ PD,regl PD,logic SETUP,reg2 CLK
Conclusions:
tep,regt t e, logic 2 tHOLD reg2
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How does Skew Affect Things?

* Originally in our model circuit, we assume all
devices experience the clock edges at the same

tlme reg1 ] sig reg 2
From sig | . .
somewhere D Q— m D Q}— Tosomewhere
JAN A
* CLK | |
; tewk
:‘ ------------------------------------------------------------------ >
CLK
@
everywhere _
' tCLK - tedgeZ' tedgel

tedgel tedge2

* Setup equation  tppregr + trp,iogic T tseTupreg2 < ok
e was actually short-hand for:

tedgel +tPD,reg1 + tPD,Iogic + tSETUP,regZ < tedge2



reg 1 . reg 2

. From ____ | sigi sig2 To somewhere
With Skew == F&T,F

A .
54 .................................................................. p.
Lok
CLK I I I
@ : :
. Tamunn >
regl tskew:
o | B
@ E I
reg2 — ->
tedgel tedge2

* The equation turns into:

tedge1 TUpp reg1 T tep,logic T TseTupreg2 < Tedge2 I-

¢ Or Slnce tCLK = tedge2' tedgel

tep,regt T pp logic T tseTUPreg2 < ek -
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reg 1

With Skew ==

sig1
—>

@ =

reg 2

D Q

A\

> To somewhere

e Gskew >~

tpp,reg1 T tpp,logic T TseTUPreg2 < taik -

* If that’s now our modified setup equation...
* Positive skew is easier to satisfy
* Negative skew is harder to satisfy

* But you still have degree of freedom with tpp i
...maybe you can change that?

* And you could also increase t, as well.



What about Hold
Time?

* If the second register is getting its clock edge t

somewhere

reg 1

reg 2

D Q

JAN

sig1 sig
_} Cl

D Q

JAN

N To somewhere

L roew >

skew

after the first register that means it needs hold the
values at the input of reg2 for t, ., longer :/

* Hold Equation gets modified to be:

tep,regt T ep,logic 2 tHOLD,regz-



somewhere

' A A
Time? W v Y
tep regt t e logic 2 tHOLD,regZ-

* The “growth” from skew is not on low side of
inequality so...

What about Hold R P YO

* Positive skew makes eq harder to satisfy.

* Further there’s nothing you can do since contamination
delays are usually very low and beyond our control

* Negative skew makes eq easier to satisfy.



reg 1

. From sigi sig To somewhere
COﬂClUSIOnS e D

A\ /\

s
tpp,regt T pp logic T tseTUPreg2 < ek -

tep regt t e logic 2 tHOLD,regZ-

* Positive clock skew improves the minimum cycle
time of our design but makes it harder to meet
register hold times.

reg 2

* Negative clock skew hurts the minimum cycle time
of our design but makes it easier to meet register
hold times.

* Positive skew is tougher to deal with
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Low-skew Clocking in FPGASs

* When Vivado is doing 1 U | e
place-and-route it tries I
to position logic so that = ;}
skew is minimized X oousLE
wherever possible L ton
* Special clock paths and L
buffers exist throughout 1] T
the chip to distribute (ETF
the clock as effectively -
as possible. & :
I
<o¢ooo%p%; %, ;o% jo;"v; 04»%) dgo%
o

Figures from Xilinx App Notes
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Other Problems...

e Stable Clock:

S [ A A I N O

e Jittery Clock:

B . S I I S
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Clocks Are Not Perfectly Periodic either:
Jltter §_® Tak @

clk @ i“l@ ® 3‘* G L

/ifet

REGS Combinational
L ; Logic
N\

F Y

CLK |

e Jitter is an approximation of how much the clock
period can increase/decrease cycle to cycle:

e Can make it harder to meet timing since it effectively
shortens t_, ...and that affects the setup equation...

Typical crystal oscillator
tPD,reg1+tPD,Iogic+ tSETUP,regZ < tow - 2tjitter 100mhz (10ns)
Jitter: 1ps



Other Problems...

* 50% Duty Cycle Clock

S [ A A I N O

* Not 50% Duty Cycle Clock

M mn_rn _mn - Ti
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Duty Cycle

* Another reason we try avoid using neg-edge of
clocks is it makes timing a lot easier

* Clocks will tend to deviate from 50/50 duty cycle
due to variations/asymmetries in p-channel/n-
channel transistor behavior

* Clock Buffers and things will try to clean this up,
but it can be tough



Goal: use as few clock domains as possible

Suppose we wanted signals at f/2, f/4, f/8, etc.:

CLK

CLK2

CLK4

CLK8

No! don’t do

) it this way
logic clk2,clk4,clk8,clklo;
always_ff @(posedge clk) clk2 <= ~clk2; —

always_ff @(posedge clk2) clk4 <= ~clk4;
always_ff @(posedge clk4) clk8 <= ~clklo;
always_ff @(posedge clk8) clkle <= ~clklo;

Very hard to have synchronous communication between clk
and clk16 domains... Can lead to lots of timing violations!
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Solution: One clock, Many enables

Use one (high speed) clock, but create enable signals to select a subset of the edges
to use for a particular piece of sequential logic (much easier on timing requirements)

logic [3:0] count;

always_ff @(posedge clk) count <= count + 1;
logic enb2, enb4, enb8, enbl6;

assign enb2
assign enb4
assign enb8

(count[1:0]
(count[2:0]

assign enble = (count[3:0] == 4’b1111);

(count[0Q] ==

1’b1);

// counts 0..15

== 2°bll);
== 3’bl111);

end

always_ff @(posedge clk)
1f (enb2) begin
// get here every 2nd cycle

10

11

12

13

14

= clock edge selected by enable signal

CLK -
count 141515 0] 1] 2] 3
vz 11 }
ENB4 ]
ENBS I
ENB16 ]
9/24/24
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How to Make
Frequencies and Clocks



Where do we get frequencies?

o> P!
e Particular combinational circuits that are fed back

onto themselves so that they cannot be stable can
be made to form oscillators.

* The ring oscillator above is a classic example.

* There is no stable set of output states so this circuit
perpetually oscillates.

* Period of oscillation is based on the delay of each
element

https://en.wikipedia.org/wiki/Ring_osciliator



Where do we get frequencies?

16MHz Crystal
* Most frequencies come from Crystal Oscillators made of
quartz

e Equivalent to very High-Q LRC tank circuits

* https://en.wikipedia.org/wiki/Crystal oscillator frequencies

* Incorporate into circuit like that below and boom,

you’ve got a square wave of some specified frequency
dependent largely on the crystal

+5
~ g
L L74LS00 L
1 4 3
3 ) 6 ) 11
2 5 12 e
100n

)
330 330

http://www.z80.info/uexosc.htm

4MHz

120pt SERIES RESONANT OSCILLATOR CIRCUIT

https://en.wikipedia.org/wiki/Crystal_oscillator
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https://en.wikipedia.org/wiki/Crystal_oscillator_frequencies

igh Frequencies

* VVery hard to get a crystal oscillator to operate
above ~200 MHz (7t harmonic of resonance of
crystal itself, which usually is limited to about 30
MHz due to fabrication limitations)

* Where does the 2.33 GHz clock of my iPhone come
from then?

* Frequency Multipliers!



Voltage Controlled Oscillator

* |t is very easy to make voltage-controlled
oscillators that run up to 1GHz or more.
* Low voltage circuit oscillates at low frequency vade e
* Higher voltage—>higher frequency oscillation

+30V

1k §
10n

—

BC 107

A simple VCO (not type
found in FPGA)

e Block Diagram

Vi VCO fo

http://www.electronicshub.org/voltage-controlled-oscillators-vco/



Voltage Controlled Oscillator

It is very easy to make voltage-controlled oscillators
that run up to 1GHz or more. oo

contr
+2Vto 0+6V
+30V

1k §
Vi VC O f 0 BC 107 <

Why don’t we just:

Pick the voltage V; that is needed to get the A simple VCO (not type
frequency we want f,? found in FPGA)

That’s gotta be specified right?

http://www.electronicshub.org/voltage-controlled-oscillators-vco/



Phase Locked Loop

* Place the unstable, but capable VCO in a feedback loop.

* This type of circuit is a phase-locked loop variant

Phase,
frefH Frequency

_,|

Detector

. Y

fmeas

Charge
Pump

LP Filter
N\

VCO

— ,




Phase Locked Loop

e Circuit that can track an input phase of a system and reproduce it at

the output
Phase, Charge
frefH Frequency P 5
Detector ump
—

fmeas

LP Filter

VCO

—




Phase, Frequency Detector

Phase,
fre fH Frequency

Detector

_.|

Y. Y

fmeas

Charge
Pump

LP Filter
N\

VCO

—e f,




Phase
detector

Phase Detector o] ... o,
* Can be a simple XOR, XNOR gate— ° “/2/5\ Phase

/2 m difference

* Low-pass the output

Phase detector
range =Tt

* If near the desired frequency already this can work...if it
is too far out, it won’t and can be very unreliable since
phase and frequency are related but not quite the same
thing, it will lock onto harmonics, etc...

* For frequency we instead use a PFD:
* Phase/Frequency Detector:



Phase-Frequency Detection

VbD
* Detects both change and which
clock signal is consistently leading D pry o[ Up
the other one vi —TClk R .
* Using MOSFETs you — QB( x .
charge/discharge a capacitor by — | ey B Q e

accordingly which also with some
resistors low-pass filters the signal

e The output voltage is then The R input is the Reset of the flipflop
. When this is asserted, it sets Q back to
roughly proportional to the 0 IMMEDIATELY
frequency error!

http.//www.globalspec.com/reference/72819/203279/2-7-phase-detectors-with-charge-pump-output



Phase Frequency Detection

VbD
* Clock 1 and clock 2 are constantly

D Ou Up competing with one another to
ClkFEA Q g generate up and down signals

| < - * The up signals charge up a capacitors

D R Op Dn through a pair of transistors...the

Q > : : .
v — s cid B e G015 down signal discharges the capacitor

Y

V]

PFD State Diagram:

State II BT State 0 A T State I

1.pallen.ece.gatech.edu/Academic/ECE_6440/Summer_2003/L070-DPLL(2UP).pdf
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Phase-Frequency Detection

saell B} saeo AT sael

* If you’'re in State I:
* Increase voltage on

capacitor mmmm =
* [f you're in State II: M ey L 4>._;Ei;
* Decrease voltage on w e——cp FF
capacitor Co

* The voltage that builds —
up will be tightly related |,
to how different these rodn  af
two circuits are b T )

PFD Charge LPF

http.//www.globalspec.com/reference/72819/203279/2-7-phase-detectors-with-charge-pump-output
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PFD, Charge Pump, LP Filter

fref._>

Phase,
Frequency
Detector

fmeas

_,|

Y. Y

Charge
Pump

LP Filter
N\

VCO

* So this circuit can make f, = fr.s That doesn’t help us!

* How can we make a higher frequency?

® fo



Use Resistors in Voltage Divider in Feedback Path!

V.

Vie + * A voltage divider in feedback path gives us
] ® Vo voltage gain!
—-
R. 1 1
AN K = ~ 0.9999 means I
l1-p+aG P K G
R1 G = R,
Ry +R,
= The gain A, of this circuit is therefore:
_Ri+R,
— Ry The gain of a “non-inverting amplifier”
V=1
Ry +R,

Same Idea with Phase Locked Loops!
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Jse a Clock Divider in Feedback
Path!

* Aclock divider in feedback path gives us clock gain!

Phase, Charge LP Filter
fro fo—> Fr])ee%gs'?ocl},_’l Pump — — VCO

. Y

”fmeas g

We ”lie” to the PFD so that ~-n
it pushes the system more




Jse a Clock Divider in Feedback

Path!
Phase, i f, = 400 MHz
&—P| Frequency Charge ) LP Filter VCO
frer = 100 MHz Detector Pump —\ —
V'S

9/24/24

=~ 4

logic clk2,clk4,clk8,clklo;

always_ff @(posedge clk) clkZ2 <= ~clkZ;
always_ff @(posedge clk2) clk4 <= ~clk4;
always_ff @(posedge clk4) clk8 <= ~clkl6;
always_ff @(posedge clk8) clkle <= ~clkl6;
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Add a Pre- and Post- Divider for Flex

fref

Phase,
—) Frequency

Detector

. Y

”fmeas g

LP Filter
N\

VCO

fo



So to Make 65 MHz?

* How to make 65 MHz from 100 MHz?
e Divide down (not too low)
e Multiply up (not too high)
 Divide down for final product



So to Make 65 MHz?

e How to make 65 MHz from 100 MHz?

MMCME2_ADV

#(.BANDWIDTH ("OPTIMIZED"),

. CLKOUT4_CASCADE ("FALSE"),

. COMPENSATION ('"ZHOLD"),

. STARTUP_WAIT ("FALSE"),
.DIVCLK_DIVIDE (5),

. CLKFBOUT_MULT_F (50.375),

. CLKFBOUT_PHASE (0.000),

. CLKFBOUT_USE_FINE_PS ("FALSE"),
.CLKOUTQ_DIVIDE_F (15.500),

. CLKOUTQ_PHASE (0.000),

. CLKOUTQ_DUTY_CYCLE (0.500),
.CLKOUTQ_USE_FINE_PS ("FALSE"),
.CLKIN1_PERIOD (10.0))
mmcm_adv_inst

// Output clocks

(

.CLKFBOUT (clkfbout_clk _wiz_0),
.CLKFBOUTB (clkfboutb_unused),




Add a Pre- and Post- Divider for Flex

fref

—

Phase,
Frequency
Detector

ng and n, can generally be fractions by switching between several

”fmeas g

_,|

. Y

Charge
Pump

LP Filter
N\

VCO

dividers with a weighted average

fo



Generating Other
Clock Frequencies (again)

The Nexys4 board has a 100MHz crystal (10ns period). Use “clock wizard” to generate
other frequencies e.g., 65MHz to generate 1024x768 VGA video.

Clock Wizard can also synthesize certain
multiples/fractions of the CLKIN frequency (100
MHz):

aaaaaaaaaaaa

M

} Jekrx =| == Sk

D




In Week 04

* We'll build HDMI video from scratch.
* For 720p we’ll need:
* aclock at 74.25 MHz (for the pixels)

* A clock at 371.25 MHz (for the bits of the pixels to
be sent serially)
* We'll use this clock along with a device that is built to

run using always @(posedge clk or negedge clk) to get
742.25 MHz of data out to drive the 720p data.



Timing in Vivado

Starting to Look




Let’s Look at Some Code:

“timescale 1ns / 1ps
“default_nettype none

module top_level(
input wire clk_100mhz, //clock @ 100 mhz

° l . input wire [15:0] sw, //switch
Ve ry Slmple top_level' izgﬂt ﬁ?: [3:0] b‘i\r,:, //Z\Ilv{ 1C°03|S" momentary button switches
output logic [15:0] led //just here for the funs
);

e Use sw([15:0] and |

logic [3:0] old_btn;

logic [15:0] tient;

buttons to seed two logic 11310] deotdend;

logic [15:0] divisor;

values into 16 bit 20%iqn 1ed = quotient;

always_ff @(posedge clk_100mhz)begin

registers: et Lt

end
® V7] end
[)I\/I(jEEr1(j always_ff @(posedge clk_10@mhz)begin
.. if (btn[0] & ~old_btn[0])begin o
° D|V|Sor enguotlen‘c <= dividend/divisor; //divide

if (btn[1] & ~old_btn[1])begin

P When btn [O] iS pUShed: engividend <= sw; //divide //load dividend

if (btn[2] & ~old_btn[2])begin
divisor <= sw; //divide //load dividend

* DIVIDE the 16 bit end

end

numbe r‘S endmodule

“default_nettype wire
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sw[15:0]
btn[2:0] cmm—p

dividend[15:0]

divisor[15:0]

>

>

ll/"

quotient[15:0]

aka
divide

——

—

led[15:0]
ﬁ




Let’s Build it.

* Terminal Output:

jodalyst@Josephs-MBP lec06 % ./remote/r.py build.py build.tcl hdl/*x xdc/*x obj

Writing bitstream obj/final.bit...
INFO: [Vivado 12-1842] Bitgen Completed Successfully.

INFO: [Project 1-1876] WebTalk data collection is mandatory when using a ULT device.

To see the specific WebTalk data collected for your design, open the
usage_statistics_webtalk.html or usage_statistics_webtalk.xml file in the
implementation directory.

INFO: [Common 17-83] Releasing license: Implementation

7 Infos, @ Warnings, @ Critical Warnings and @ Errors encountered.
write_bitstream completed successfully

write_bitstream: Time (s): cpu = 00:00:04 ; elapsed = 00:00:14 . Memory (MB):
2729.707 ; gain = 206.934 ; free physical = 2837 ; free virtual = 8407

peak =

"Hmmm Looks good.”




“Jeeze when | deploy this in a high-throughput system
where | have a new pair of numbers to divide every
10ns, the division results are trash. What’s going

on?”...
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You look through the output from
the build...

Starting at line 1322:

Verification completed successfully
Phase 20 Verifying routed nets | Checksum: 129230084

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674

Phase 21 Depositing Routes

Phase 21 Depositing Routes | Checksum: 1l4a6fdc22

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free

physical = 3116 ; free virtual = 8674

Phase 22 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-21.399| TNS=-129.552| WHS=0.090 | THS=0.000 |

Phase 22 Post Router Timing | Checksum: la@e6c79b

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674

CRITICAL WARNING: [Route 35-39] The design did not meet timing requirements. Please run
report_timing_summary for detailed reports.

Resolution: Verify that the timing was met or had small violations at all previous steps (synthesis,
placement, power_opt, and phys_opt). Run report_timing_summary and analyze individual timing paths.
INFO: [Route 35-253] TNS is the sum of the worst slack violation on every endpoint in the design. Review
the paths with the biggest WNS violations in the timing reports and modify your constraints or your
design to improve both WNS and TNS.

INFO: [Route 35-16] Router Completed Successfully

Phase 23 Post-Route Event Processing

Phase 23 Post-Route Event Processing | Checksum: 37250886
Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
phyg{i 2L 3116 ; free virtual = 8674 ﬂﬂps/ﬂbgamn%edu/%zd% F24 85



Look at

post_route_timing.rpt

Timing Report

Slack (VIOLATED) : -21.399ns (required time - arrival time)
Source: dividend_reg[15]/C
(rising edge-triggered cell FDRE clocked by gclk {rise@®@.000ns fall@4.000ns period=10.000ns})
Destination: quotient_reg[@]/D
(rising edge-triggered cell FDRE clocked by gclk {rise@®@.000ns fall@4.000ns period=10.000ns})

Path Group: gclk
Path Type: Setup (Max at Slow Process Corner)
Requirement: 10.000ns (gclk rise@10.000ns - gclk rise@d.000ns)
Data Path Delay: 31.483ns (logic 21.642ns (68.742%) route 9.841ns (31.258%))
Logic Levels: 82 (CARRY4=80 LUT2=1 LUT3=1)
Clock Path Skew: @.920ons (DCD - SCD + CPR)
Destination Clock Delay (DCD): 4.920ns = ( 14.926 - 10.000 )
Source Clock Delay (SCD): 5.079ns
Clock Pessimism Removal (CPR): 0.179ns
Clock Uncertainty: 0.035ns  ((TSIA2 + TIJA2)A1/2 + D)) / 2 + PE
Total System Jitter (TS): 0.071ns
Total Input Jitter (T1)): 0.000ns
Discrete Jitter (D1): 0.000ns
Phase Error (PE): 0.000ns
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What is Slack?

* Slack: measure of how safe your timing is

* The two big timing constraints we worry about are
related to setup and hold

* Therefore there are two Slack values:
* Setup slack: trequired — Lactual
* Hold slack: tactuaI - trequired

These are defined such that Positive is GOOD, Negative is BAD for both



Timing Diagram o

CLK

reg

1

D

JAN

Q

sig1
—>

reg 2

sig2
G D

JAN

Q

: =determined state

A tek
< N _
) g & =undetermined state
CLK tPD,regl I
tep,reg1*” ) 2tsETUP reg2 -
sigl §
e tPD,Iogic
sig2 ZtHOLD,regZ m N
tCD logic e
' >
time
t + t .+t <t
Two Requirements/ PD,regl PD,logic SETUP,reg2 CLK
Conclusions:
tep,regt t e, logic 2 tHOLD reg2
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Add |n SlaCk : =determined state
A

tewk
< a ‘
b & =undetermined state
CLK tPD,regl I
Tep,regi*™ tseTupslack  LSETUPreg2
sigl k §
< 'tPD,Iogic
tCD,Iogic “©
. >
_ time
tHOLD,regZ <
-~ tHoup,slack
tpp,reg1 T tpp,logic T TseTuPreg2 T tseTuPSlack = teik
tep,regt t e logic = tHolp,reg2 T tHoLb, slack
- _ .
Equations tserupsiack = ok (tpp,regt + thp,jogic T tseTURreg2 )

tHOLD,SIack = tCD,regl + tCD,Iogic - tHOLD,regZ
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Conclusion

* Positive Slack is GOOD
* Negative Slack is BAD



This is not good Negative Slack

Look at

routerpt_report_timing.rpt

Timing Report ‘(””’,—

Slack (VIOLATED) : -21.399ns (required time - arrival time)
Source: dividend_reg[15]/C
(rising edge-triggered cell FDRE clocked by gclk {rise@@.000ns fall@4.000ns period=10.000ns})
Destination: quotient_reg[@]/D
(rising edge-triggered cell FDRE clocked by gclk {rise@@.000ns fall@4.000ns period=10.000ns})
Path Group: gclk
Path Type: Setup (Max at Slow Process Corner)
Requirement: 10.000ns (gclk rise@10.000ns - gclk rise@@.000ns)
Data Path Delay: 31.483ns (logic 21.642ns (68.742%) route 9.841ns (31.258%))
Logic Levels: 82 N(CARRY4=80 LUT2=1 LUT3=1)
Clock Path Skew: 0.02%ns (DCD - SCD + CPR)
Destination Clock Delay (DQD): 4.920ns = ( 14.926 - 10.000 )
Source Clock Delay s 5.079ns
Clock Pessimism Removal (CPR): 0.179ns
Clock Uncertainty: 0.035ny ((TSIAZ2 + TIJA2)AM1/2 + D)) / 2 + PE
Total System Jitter (TS 0.071ns
Total Input Jitter (T11) 0.000ns
Discrete Jitter (OBDE 0.000ns
Phase Error (PE): 0.000ns

1/3 from routing
2/3 from routing
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Results

* By default Vivado only gives you a few offending
paths (our default is one) and it provides them in
order of worst to best

* You can ask for more paths using different
arguments;

https://docs.xilinx.com/r/2020.2-English/ug835-vivado-tcl-commands/report_timing



Final Projects Coming Up

* In another ~“week or so, we have to start thinking
about planning on starting to get going on final
projects.

* First part of that is teaming and teams benefit from
targeting shared goals

* On the site, we'll put up an archive of final projects



Past Project (with Microphone)




Sudoku Solver




