
Timing and
Clocking

6.205

9/24/24 https://fpga.mit.edu/6205/F24 1

Planning Stuff

• Week 03 Due Tomorrow
• Week 04 Released Thursday (video)

9/24/24 https://fpga.mit.edu/6205/F24 2

Notes on UART RX

• I went and from the computer decided to send
down 0, then 1, then 2, then 3…to 255 over UART.
• This was the trace on the UART_RXD line

9/24/24 https://fpga.mit.edu/6205/F24 3

0 1 2 3 4 5 6 7 8 9 A

UART Packet

• In the UART standard there is no guarantee in
regards to inter-byte spacing between bytes sent
down.
• It can vary (and often does)

9/24/24 https://fpga.mit.edu/6205/F24 4

Packet 1
10 bits

Packet 2
10 bits

Packet 3
10 bits

…… Dead-time
Dead-
time

Robustness in Measuring UART

• General recommendation is to not just verify the
start bit is low once and the stop bit is high once.
• Instead recommend to verify start bit is low up until

0.5*BAUD
• And recommend to verify stop bit is high from

0.5*BAUD to 1*BAUD

9/24/24 https://fpga.mit.edu/6205/F24 5

However…the FT2232 chip on our
board that handles the UART…
• Packs the UART packets very tightly

9/24/24 https://fpga.mit.edu/6205/F24 6

0 1 2 3 4 5 6 7 8 9 A

However…the FT2232 chip on our
board that handles the UART…
• Packs the UART packets very tightly

9/24/24 https://fpga.mit.edu/6205/F24 7

2 3 4 5

Basically no inter-byte spacing

As a result…
• Recommend to verify stop bit is high from

0.5*BAUD to 1*BAUD could cause issues.

9/24/24 https://fpga.mit.edu/6205/F24 8

Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

Verify low for half BAUD Verify high from 0.5BAUD to 1 BAUD

Could fall off cliff into next start bit… :/

Solution…
• Verify value remains 1 from 0.5 BAUD to 0.75BAUD

9/24/24 https://fpga.mit.edu/6205/F24 9

Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

Verify low for half BAUD Verify high from 0.5BAUD to 0.75BAUD

Quality Difference Demo I
• Just Verifying once at start and stop

9/24/24 https://fpga.mit.edu/6205/F24 10

Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

Verify low at half BAUD Verify high at 0.5BAUD

Quality Difference Demo II
• Verifying continuously in two shown regions

9/24/24 https://fpga.mit.edu/6205/F24 11

Start(0) Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bit[7] Start(1)

Verify low for half BAUD Verify high from 0.5BAUD to 0.75BAUD

FSMs in History

9/24/24 https://fpga.mit.edu/6205/F24 12

Car Alarm FSM
• Up until 2021 the

“FSM” lab in 6.111
was making a car
alarm
• FSM design was

and still can be a
very common
approach to digital
circuit design

9/24/24 https://fpga.mit.edu/6205/F24 13

Car Alarm FSM
• When Gim graduated

from MIT he got a job
with DEC (Digital
Equipment Corporation)
that made the PDP-1
among other computers
and then TI
• Got big signing bonus and

bought a nice convertible
• Parked Convertible went

into apartment.
• Convertible was not there

came out

9/24/24 https://fpga.mit.edu/6205/F24 14

Gim Hom
Took 6.111 in 1969..graduated in 1970

6.111 Instructor 2013-2021
Now retired

Car Theft FSMs
• 2016, MA: ~7 million people, 6,600 car thefts for year
• 1975, MA: 5.8 million people, 91,000 car thefts for year (peak)

9/24/24 https://fpga.mit.edu/6205/F24 15

#1 state for car theft for 1965-1987

~5% of cars were stolen per year in MA

Car Alarm FSM
• Gim built a car alarm for

his car.
• Designed it using an FSM-

based approach.
• Had ~11 states
• Built it just like we talked

about last week (bubble-
diagram…developed
logic, implemented…)

9/24/24 https://fpga.mit.edu/6205/F24 16

Fuel pump relayCloaking
device

Gim’s FSM-based car alarm for his car
Built using 4000-series CMOS chips

(top of the line at the time)

Magnavox Odyssey (1972)

9/24/24 https://fpga.mit.edu/6205/F24 17

• First commercially available
game system
• Completely FSM-based

https://www.pong-story.com/odyssey.htm

• Implemented completely with discrete transistors:

9/24/24 https://fpga.mit.edu/6205/F24 18
https://www.pong-story.com/odyssey.htm

Was just a large finite state machine

9/24/24 https://fpga.mit.edu/6205/F24 19

stateinputs state-transition logic output logic “clock”

https://www.pong-story.com/odyssey.htm

Magnavox Odyssey Game System

9/24/24 https://fpga.mit.edu/6205/F24 20

http://odysim.blogspot.com/2020/

Magnavox Odyssey Game System

9/24/24 https://fpga.mit.edu/6205/F24 21
https://www.youtube.com/watch?app=desktop&v=NsluZfTMRno&ab_channel=OdysseyNow

https://youtube.com/playlist?list=PLtApm-Ri5WTIAEV1ClufPrca2MTj4uSvT&feature=shared

Hockey

Basketball

Cat and Mouse

Early 1970s

• Most arcade systems were just FSMs implemented
in discrete logic, including:

• Pong
• Breakout

• Space Invaders was first arcade machine to move
some game logic to a Intel 8080 microprocessor.

9/24/24 https://fpga.mit.edu/6205/F24 22

Evolution of FSM-based Games

• http://www.pong-story.com/gi.htm

9/24/24 https://fpga.mit.edu/6205/F24 23

AY-3-8500 “Ball-and-Paddle” chip

https://commons.wikimedia.org/wiki/File:AY-3-8500.jpg

• As 1970s rolled on, entire
game systems would get put
on single chips
• “Ball-and-Paddle” Chips would

be sold by companies and then
other companies would buy
them and put their own “skin”
on them and sell them as their
own. Many times it was the
same game underneath
• Atari 2600 was first

microprocessor-based home
video game system

TV Fun

• Runs off a AY-3-8500
• Made by APF who started out importing Japanese

8-track players
• Company went bankrupt in the great video game

crash of 1983.
• Have one set up in “lounge” area of lab in case

anybody wants to play. If you need help setting it
up, let me know.

9/24/24 https://fpga.mit.edu/6205/F24 24

Tiger Electronics Games

9/24/24 https://fpga.mit.edu/6205/F24 25
https://oladaniel.com/pica-pic

Tiger Electronics Games

9/24/24 https://fpga.mit.edu/6205/F24 26

• Tiger Electronics had 100’s of
versions of these in the 1980s
and 1990s
• Almost all of them were based

on three or four common finite
state machine game chips
• They’d slap a different LCD skin

and game art onto the same
chip and resell

Modern Games
• Modern games are far too complex to be

implemented with an FSM in any productive way
(though it is still generally possible)
• However well-characterized chunks of game

software is still used and re-used/skinned (for
example game engines)
• But also stuff gets reskinned all the time

9/24/24 https://fpga.mit.edu/6205/F24 27

Candy Crush Saga

9/24/24 https://fpga.mit.edu/6205/F24 28

Pet Rescue Saga

9/24/24 https://fpga.mit.edu/6205/F24 29

Soda Saga

9/24/24 https://fpga.mit.edu/6205/F24 30

Bubble Witch 3 Saga

9/24/24 https://fpga.mit.edu/6205/F24 31

Farm Heroes Saga

9/24/24 https://fpga.mit.edu/6205/F24 32

Finite State Machines Relevant

• Designing systems as finite state machines is still
very common in digital design.
• Doing it in a structured way can make your HDL

very transparent so you know what you’re getting!
• You’ll see data sheets and other places with FSM

diagrams and many protocols express their
functionality with FSMs.

9/24/24 https://fpga.mit.edu/6205/F24 33

Clocks and Time

9/24/24 https://fpga.mit.edu/6205/F24 34

9/24/24 https://fpga.mit.edu/6205/F24 35

Clocking and Synchronous Communication
Module M1 Module M2

CLK

Ideal world:

CLKM1

CLKM2

M1 and M2 clock edges aligned in time

Signal 1

Signal 1

Delay Estimation: Simple RC Networks

9/24/24 https://fpga.mit.edu/6205/F24 36

vout

vin C

R

tp = ln (2) t = 0.69 RC

review

Low-to-High High-to-Low

Simple CMOS Circuit

RC Equation

9/24/24 https://fpga.mit.edu/6205/F24 37

dt
dVC c

c
c V
dt
dVRC +

Vs = 5 V

Switch is closed t<0

Switch opens t>0

Vs = VR + VC

Vs = iR R+ Vc iR =

Vs =

÷÷
ø

ö
çç
è

æ
-=

-
RC
t

sc eVV 1

÷÷
ø

ö
çç
è

æ
-=

-
RC
t

c eV 15

So Signals Experience Delays

• ”Signals” generally have their delays expressed
with:

• Contamination Delay
• Propagation Delay

• But the clock experiences Delay too!

9/24/24 https://fpga.mit.edu/6205/F24 38

9/24/24 https://fpga.mit.edu/6205/F24 39

time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

jeeze, this diagram again!?

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2

≥tHOLD,reg2

Two Requirements/
Conclusions:

9/24/24 https://fpga.mit.edu/6205/F24 40

Clock Skew
Module M1 Module M2

CLK

Real world has clock skew:

CLKM1

CLKM2

M2 clock delayed with respect to M1 clock

delay

Oops! Skew has caused a hold
time problem!

1. Wire delay
2. Different clocks!

Signal 1

Signal 1

Clocks are Not Perfect: Clock Skew

9/24/24 https://fpga.mit.edu/6205/F24 41

D

clk1

QIn Combinational
Logic

D

clk2

Q

Wire delay

clk1

clk2

δ>0

CLout

tclk2 – tclk1tskew =
Based off of times of rising edges.

Not periods!

9/24/24 https://fpga.mit.edu/6205/F24 42

Positive and Negative Skew

R1
In

(a) Positive skew

Combinational
LogicD Q

tCLK1CLK

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay

R1
In

(b) Negative skew

Combinational
LogicD Q

tCLK1

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay CLK

CLK1

CLK2

TCLK

d

TCLK + d

+ thd

2

1

4

3

R1
In

(a) Positive skew

Combinational
LogicD Q

tCLK1CLK

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay

R1
In

(b) Negative skew

Combinational
LogicD Q

tCLK1

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay CLK

CLK1

CLK2

TCLK

d

TCLK + d

2

1

4

3

Receiving edge arrives before the launching edge (negative skew)

Launching edge arrives before the receiving edge (positive skew)

ØAdapted from J. Rabaey, A. Chandrakasan, B. Nikolic,
 “Digital Integrated Circuits: A Design Perspective” Copyright 2003 Prentice Hall/Pearson.

9/24/24 https://fpga.mit.edu/6205/F24 43

time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

Timing

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2

≥tHOLD,reg2

Two Requirements/
Conclusions:

• Setup equation
• was actually short-hand for:

How does Skew Affect Things?
• Originally in our model circuit, we assume all

devices experience the clock edges at the same
time

9/24/24 https://fpga.mit.edu/6205/F24 44

CLK
@

everywhere

tCLK

tedge1 tedge2

tCLK = tedge2 - tedge1

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tedge1 +tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tedge2

9/24/24 https://fpga.mit.edu/6205/F24 45

CLK
@
reg1

tCLK

With Skew

CLK
@
reg2

±skew

tskew

tedge1 tedge2

• The equation turns into:

• Or since
tedge1 +tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tedge2 + tskew

tCLK = tedge2 - tedge1

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tclk + tskew

9/24/24 https://fpga.mit.edu/6205/F24 46

With Skew
±skew

• If that’s now our modified setup equation…
• Positive skew is easier to satisfy
• Negative skew is harder to satisfy

• But you still have degree of freedom with tPD,logic
…maybe you can change that?

• And you could also increase tclk as well.

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tclk + tskew

What about Hold
Time?

• If the second register is getting its clock edge tskew
after the first register that means it needs hold the
values at the input of reg2 for tskew longer :/
• Hold Equation gets modified to be:

9/24/24 https://fpga.mit.edu/6205/F24 47

±skew

tCD,reg1 + tCD,logic ≥ tHOLD,reg2 + tskew

What about Hold
Time?

9/24/24 https://fpga.mit.edu/6205/F24 48

±skew

tCD,reg1 + tCD,logic ≥ tHOLD,reg2 + tskew

• The “growth” from skew is not on low side of
inequality so…
• Positive skew makes eq harder to satisfy.

• Further there’s nothing you can do since contamination
delays are usually very low and beyond our control

• Negative skew makes eq easier to satisfy.

Conclusions

• Positive clock skew improves the minimum cycle
time of our design but makes it harder to meet
register hold times.
• Negative clock skew hurts the minimum cycle time

of our design but makes it easier to meet register
hold times.
• Positive skew is tougher to deal with

9/24/24 https://fpga.mit.edu/6205/F24 49

±skew

tCD,reg1 + tCD,logic ≥ tHOLD,reg2 + tskew

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tclk + tskew

9/24/24 https://fpga.mit.edu/6205/F24 50

Low-skew Clocking in FPGAs

Figures from Xilinx App Notes

• When Vivado is doing
place-and-route it tries
to position logic so that
skew is minimized
wherever possible
• Special clock paths and

buffers exist throughout
the chip to distribute
the clock as effectively
as possible.

Other Problems…

• Stable Clock:

• Jittery Clock:

9/24/24 https://fpga.mit.edu/6205/F24 51

Clocks Are Not Perfectly Periodic either:
Jitter

9/24/24 https://fpga.mit.edu/6205/F24 52

Typical crystal oscillator
100mhz (10ns)
Jitter: 1ps

• Jitter is an approximation of how much the clock
period can increase/decrease cycle to cycle:
• Can make it harder to meet timing since it effectively

shortens tclk …and that affects the setup equation…

tPD,reg1+tPD,logic+ tSETUP,reg2 ≤ tCLK - 2tjitter

Other Problems…

• 50% Duty Cycle Clock

• Not 50% Duty Cycle Clock

9/24/24 https://fpga.mit.edu/6205/F24 53

Duty Cycle

• Another reason we try avoid using neg-edge of
clocks is it makes timing a lot easier
• Clocks will tend to deviate from 50/50 duty cycle

due to variations/asymmetries in p-channel/n-
channel transistor behavior
• Clock Buffers and things will try to clean this up,

but it can be tough

9/24/24 https://fpga.mit.edu/6205/F24 54

9/24/24 https://fpga.mit.edu/6205/F24 55

Goal: use as few clock domains as possible
Suppose we wanted signals at f/2, f/4, f/8, etc.:

logic clk2,clk4,clk8,clk16;
always_ff @(posedge clk) clk2 <= ~clk2;
always_ff @(posedge clk2) clk4 <= ~clk4;
always_ff @(posedge clk4) clk8 <= ~clk16;
always_ff @(posedge clk8) clk16 <= ~clk16;

CLK

CLK2

CLK4

CLK8

CLK16

Very hard to have synchronous communication between clk
and clk16 domains… Can lead to lots of timing violations!

No! don’t do
it this way

9/24/24 https://fpga.mit.edu/6205/F24 56

Solution: One clock, Many enables
Use one (high speed) clock, but create enable signals to select a subset of the edges
to use for a particular piece of sequential logic (much easier on timing requirements)

logic [3:0] count;
always_ff @(posedge clk) count <= count + 1; // counts 0..15
logic enb2, enb4, enb8, enb16;
assign enb2 = (count[0] == 1’b1);
assign enb4 = (count[1:0] == 2’b11);
assign enb8 = (count[2:0] == 3’b111);
assign enb16 = (count[3:0] == 4’b1111);

CLK

ENB2

ENB4

ENB8

ENB16

count 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1414

= clock edge selected by enable signal

always_ff @(posedge clk)
 if (enb2) begin
 // get here every 2nd cycle
 end

How to Make
Frequencies and Clocks

9/24/24 https://fpga.mit.edu/6205/F24 57

Where do we get frequencies?

https://en.wikipedia.org/wiki/Ring_oscillator

• Particular combinational circuits that are fed back
onto themselves so that they cannot be stable can
be made to form oscillators.
• The ring oscillator above is a classic example.
• There is no stable set of output states so this circuit

perpetually oscillates.
• Period of oscillation is based on the delay of each

element

9/24/24 https://fpga.mit.edu/6205/F24 58

Where do we get frequencies?

• Most frequencies come from Crystal Oscillators made of
quartz

• Equivalent to very High-Q LRC tank circuits
• https://en.wikipedia.org/wiki/Crystal_oscillator_frequencies

• Incorporate into circuit like that below and boom,
you’ve got a square wave of some specified frequency
dependent largely on the crystal

https://en.wikipedia.org/wiki/Crystal_oscillator

16MHz Crystal

http://www.z80.info/uexosc.htm

9/24/24 59https://fpga.mit.edu/6205/F24

https://en.wikipedia.org/wiki/Crystal_oscillator_frequencies

High Frequencies
• Very hard to get a crystal oscillator to operate

above ~200 MHz (7th harmonic of resonance of
crystal itself, which usually is limited to about 30
MHz due to fabrication limitations)

• Where does the 2.33 GHz clock of my iPhone come
from then?

• Frequency Multipliers!

9/24/24 60https://fpga.mit.edu/6205/F24

Voltage Controlled Oscillator

http://www.electronicshub.org/voltage-controlled-oscillators-vco/

• It is very easy to make voltage-controlled
oscillators that run up to 1GHz or more.
• Low voltage circuit oscillates at low frequency
• Higher voltageàhigher frequency oscillation

• Block Diagram

A simple VCO (not type
found in FPGA)

VCO𝑉! 𝑓"

9/24/24 61https://fpga.mit.edu/6205/F24

Voltage Controlled Oscillator

http://www.electronicshub.org/voltage-controlled-oscillators-vco/

• It is very easy to make voltage-controlled oscillators
that run up to 1GHz or more.

• Why don’t we just:

• Pick the voltage 𝑉! that is needed to get the
frequency we want 𝑓"?

• That’s gotta be specified right?
• Same reason we don’t see op amps in open loop

out in the wild…they are too unstable…gotta place
them in negative feedback

A simple VCO (not type
found in FPGA)

VCO𝑉! 𝑓"

9/24/24 62https://fpga.mit.edu/6205/F24

Phase Locked Loop

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

• Place the unstable, but capable VCO in a feedback loop.
• This type of circuit is a phase-locked loop variant

9/24/24 63https://fpga.mit.edu/6205/F24

Phase Locked Loop

Phase,
Frequency	
Detector

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

• Circuit that can track an input phase of a system and reproduce it at
the output

9/24/24 64https://fpga.mit.edu/6205/F24

Phase, Frequency Detector

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

9/24/24 65https://fpga.mit.edu/6205/F24

Phase Detector
• Can be a simple XOR, XNOR gate

• Low-pass the output

• If near the desired frequency already this can work…if it
is too far out, it won’t and can be very unreliable since
phase and frequency are related but not quite the same
thing, it will lock onto harmonics, etc…

• For frequency we instead use a PFD:
• Phase/Frequency Detector:

9/24/24 66https://fpga.mit.edu/6205/F24

Phase-Frequency Detection
• Detects both change and which

clock signal is consistently leading
the other one
• Using MOSFETs you

charge/discharge a capacitor
accordingly which also with some
resistors low-pass filters the signal
• The output voltage is then

roughly proportional to the
frequency error!

http://www.globalspec.com/reference/72819/203279/2-7-phase-detectors-with-charge-pump-output

9/24/24 67https://fpga.mit.edu/6205/F24

The R input is the Reset of the flipflop
When this is asserted, it sets Q back to
0 IMMEDIATELY

Phase Frequency Detection

9/24/24 https://fpga.mit.edu/6205/F24 68

• Clock 1 and clock 2 are constantly
competing with one another to
generate up and down signals

• The up signals charge up a capacitors
through a pair of transistors…the
down signal discharges the capacitor

1.pallen.ece.gatech.edu/Academic/ECE_6440/Summer_2003/L070-DPLL(2UP).pdf

Phase-Frequency Detection
• If you’re in State I:

• Increase voltage on
capacitor

• If you’re in State II:
• Decrease voltage on

capacitor

• The voltage that builds
up will be tightly related
to how different these
two circuits are

PFD LPFCharge
Pump

http://www.globalspec.com/reference/72819/203279/2-7-phase-detectors-with-charge-pump-output

9/24/24 69https://fpga.mit.edu/6205/F24

PFD, Charge Pump, LP Filter

𝑓#𝑓$%&

𝑓'%()

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

• So this circuit can make 𝑓2 = 𝑓345 That doesn’t help us!
• How can we make a higher frequency?

9/24/24 70https://fpga.mit.edu/6205/F24

+

-

R2

Vo
VI

R1

V-

𝑉* = 𝑉#
𝑅+

𝑅+ + 𝑅,

V+ • A voltage divider in feedback path gives us
voltage gain!

Use Resistors in Voltage Divider in Feedback Path!

𝐾 =
1

1 − 𝑝 + 𝐺
𝑝 ≈ 0.9999 means 𝐾 =

1
𝐺

𝐺 =
𝑅+

𝑅+ + 𝑅,
The gain 𝐴- of this circuit is therefore:

𝐴- =
𝑅+ + 𝑅,
𝑅+

The gain of a “non-inverting amplifier”

9/24/24 71https://fpga.mit.edu/6205/F24

Same Idea with Phase Locked Loops!

Use a Clock Divider in Feedback
Path!

• A clock divider in feedback path gives us clock gain!

𝑓#𝑓$%&

“𝑓'%()”

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

÷ 𝑛We ”lie” to the PFD so that
it pushes the system more

9/24/24 72https://fpga.mit.edu/6205/F24

Use a Clock Divider in Feedback
Path!

𝑓# = 400	MHz

𝑓$%& = 100	MHz
LP	Filter

VCO
Charge	
Pump

Phase,
Frequency	
Detector

÷ 4

9/24/24 73https://fpga.mit.edu/6205/F24

logic clk2,clk4,clk8,clk16;
always_ff @(posedge clk) clk2 <= ~clk2;
always_ff @(posedge clk2) clk4 <= ~clk4;
always_ff @(posedge clk4) clk8 <= ~clk16;
always_ff @(posedge clk8) clk16 <= ~clk16;

Add a Pre- and Post- Divider for Flex

𝑓#𝑓$%&

“𝑓'%()”

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

÷ 𝑛5

9/24/24 74https://fpga.mit.edu/6205/F24

÷ 𝑛6 ÷ 𝑛7

So to Make 65 MHz?

• How to make 65 MHz from 100 MHz?
• Divide down (not too low)
• Multiply up (not too high)
• Divide down for final product

9/24/24 https://fpga.mit.edu/6205/F24 75

So to Make 65 MHz?
• How to make 65 MHz from 100 MHz?

9/24/24 https://fpga.mit.edu/6205/F24 76

MMCME2_ADV
#(.BANDWIDTH ("OPTIMIZED"),
.CLKOUT4_CASCADE ("FALSE"),
.COMPENSATION ("ZHOLD"),
.STARTUP_WAIT ("FALSE"),
.DIVCLK_DIVIDE (5),
.CLKFBOUT_MULT_F (50.375),
.CLKFBOUT_PHASE (0.000),
.CLKFBOUT_USE_FINE_PS ("FALSE"),
.CLKOUT0_DIVIDE_F (15.500),
.CLKOUT0_PHASE (0.000),
.CLKOUT0_DUTY_CYCLE (0.500),
.CLKOUT0_USE_FINE_PS ("FALSE"),
.CLKIN1_PERIOD (10.0))
mmcm_adv_inst
// Output clocks
(
.CLKFBOUT (clkfbout_clk_wiz_0),
.CLKFBOUTB (clkfboutb_unused),

Add a Pre- and Post- Divider for Flex

𝑓#𝑓$%&

“𝑓'%()”

LP	Filter
VCO

Charge	
Pump

Phase,
Frequency	
Detector

÷ 𝑛5

9/24/24 77https://fpga.mit.edu/6205/F24

÷ 𝑛6 ÷ 𝑛7

n8 and n7 can generally be fractions by switching between several
dividers with a weighted average

9/24/24 https://fpga.mit.edu/6205/F24 78

Generating Other
Clock Frequencies (again)

The Nexys4 board has a 100MHz crystal (10ns period). Use “clock wizard” to generate
other frequencies e.g., 65MHz to generate 1024x768 VGA video.

Clock Wizard can also synthesize certain
multiples/fractions of the CLKIN frequency (100
MHz):

CLKINCLKFX f
D
Mf ÷
ø
ö

ç
è
æ=

In Week 04

• We’ll build HDMI video from scratch.
• For 720p we’ll need:
• a clock at 74.25 MHz (for the pixels)
• A clock at 371.25 MHz (for the bits of the pixels to

be sent serially)
• We’ll use this clock along with a device that is built to

run using always @(posedge clk or negedge clk) to get
742.25 MHz of data out to drive the 720p data.

9/24/24 https://fpga.mit.edu/6205/F24 79

Timing in Vivado
Starting to Look

9/24/24 https://fpga.mit.edu/6205/F24 80

Let’s Look at Some Code:

• Very Simple top_level:
• Use sw[15:0] and

buttons to seed two
values into 16 bit
registers:
• Dividend
• Divisor

• When btn[0] is pushed:
• DIVIDE the 16 bit

numbers

9/24/24 https://fpga.mit.edu/6205/F24 81

`timescale 1ns / 1ps
`default_nettype none

module top_level(
 input wire clk_100mhz, //clock @ 100 mhz
 input wire [15:0] sw, //switches
 input wire [3:0] btn, //all four momentary button switches
 output logic [15:0] led //just here for the funs
);

 logic [3:0] old_btn;
 logic [15:0] quotient;
 logic [15:0] dividend;
 logic [15:0] divisor;
 assign led = quotient;

 always_ff @(posedge clk_100mhz)begin
 for (int i=0; i<4; i=i+1)begin
 old_btn[i] <= btn[i];
 end
 end
 always_ff @(posedge clk_100mhz)begin
 if (btn[0] & ~old_btn[0])begin
 quotient <= dividend/divisor; //divide
 end
 if (btn[1] & ~old_btn[1])begin
 dividend <= sw; //divide //load dividend
 end
 if (btn[2] & ~old_btn[2])begin
 divisor <= sw; //divide //load dividend
 end
 end
endmodule

`default_nettype wire

9/24/24 https://fpga.mit.edu/6205/F24 82

D Q
dividend[15:0]

sw[15:0]
btn[2:0]

D Q
divisor[15:0]

quotient[15:0]
D Q

led[15:0]“/”
aka

divide

Let’s Build it.
• Terminal Output:

9/24/24 https://fpga.mit.edu/6205/F24 83

jodalyst@Josephs-MBP lec06 % ./remote/r.py build.py build.tcl hdl/* xdc/* obj

...

...

...

Writing bitstream obj/final.bit...
INFO: [Vivado 12-1842] Bitgen Completed Successfully.
INFO: [Project 1-1876] WebTalk data collection is mandatory when using a ULT device.
To see the specific WebTalk data collected for your design, open the
usage_statistics_webtalk.html or usage_statistics_webtalk.xml file in the
implementation directory.
INFO: [Common 17-83] Releasing license: Implementation
7 Infos, 0 Warnings, 0 Critical Warnings and 0 Errors encountered.
write_bitstream completed successfully
write_bitstream: Time (s): cpu = 00:00:04 ; elapsed = 00:00:14 . Memory (MB): peak =
2729.707 ; gain = 206.934 ; free physical = 2837 ; free virtual = 8407

”Hmmm Looks good.”

“Jeeze when I deploy this in a high-throughput system
where I have a new pair of numbers to divide every
10ns, the division results are trash. What’s going
on?”…

9/24/24 https://fpga.mit.edu/6205/F24 84

You look through the output from
the build…

9/24/24 https://fpga.mit.edu/6205/F24 85

Verification completed successfully
Phase 20 Verifying routed nets | Checksum: 12923a084

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674

Phase 21 Depositing Routes
Phase 21 Depositing Routes | Checksum: 14a6fdc22

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674

Phase 22 Post Router Timing
INFO: [Route 35-20] Post Routing Timing Summary | WNS=-21.399| TNS=-129.552| WHS=0.090 | THS=0.000 |

Phase 22 Post Router Timing | Checksum: 1a0e6c79b

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674
CRITICAL WARNING: [Route 35-39] The design did not meet timing requirements. Please run
report_timing_summary for detailed reports.
Resolution: Verify that the timing was met or had small violations at all previous steps (synthesis,
placement, power_opt, and phys_opt). Run report_timing_summary and analyze individual timing paths.
INFO: [Route 35-253] TNS is the sum of the worst slack violation on every endpoint in the design. Review
the paths with the biggest WNS violations in the timing reports and modify your constraints or your
design to improve both WNS and TNS.
INFO: [Route 35-16] Router Completed Successfully

Phase 23 Post-Route Event Processing
Phase 23 Post-Route Event Processing | Checksum: 3725a886

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674

Time (s): cpu = 00:00:12 ; elapsed = 00:00:13 . Memory (MB): peak = 2520.699 ; gain = 0.000 ; free
physical = 3116 ; free virtual = 8674

Routing Is Done.

Starting at line 1322:

Look at

9/24/24 https://fpga.mit.edu/6205/F24 86

post_route_timing.rpt

Timing Report

Slack (VIOLATED) : -21.399ns (required time - arrival time)
 Source: dividend_reg[15]/C
 (rising edge-triggered cell FDRE clocked by gclk {rise@0.000ns fall@4.000ns period=10.000ns})
 Destination: quotient_reg[0]/D
 (rising edge-triggered cell FDRE clocked by gclk {rise@0.000ns fall@4.000ns period=10.000ns})
 Path Group: gclk
 Path Type: Setup (Max at Slow Process Corner)
Requirement: 10.000ns (gclk rise@10.000ns - gclk rise@0.000ns)
Data Path Delay: 31.483ns (logic 21.642ns (68.742%) route 9.841ns (31.258%))

 Logic Levels: 82 (CARRY4=80 LUT2=1 LUT3=1)
 Clock Path Skew: 0.026ns (DCD - SCD + CPR)
 Destination Clock Delay (DCD): 4.926ns = (14.926 - 10.000)
 Source Clock Delay (SCD): 5.079ns
 Clock Pessimism Removal (CPR): 0.179ns
 Clock Uncertainty: 0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
 Total System Jitter (TSJ): 0.071ns
 Total Input Jitter (TIJ): 0.000ns
 Discrete Jitter (DJ): 0.000ns
 Phase Error (PE): 0.000ns

What is Slack?
• Slack: measure of how safe your timing is
• The two big timing constraints we worry about are

related to setup and hold
• Therefore there are two Slack values:
• Setup slack: trequired – tactual

• Hold slack: tactual – trequired

9/24/24 https://fpga.mit.edu/6205/F24 87

These are defined such that Positive is GOOD, Negative is BAD for both

9/24/24 https://fpga.mit.edu/6205/F24 88

time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

Timing Diagram

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2

≥tHOLD,reg2

Two Requirements/
Conclusions:

9/24/24 https://fpga.mit.edu/6205/F24 89

time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

tSETUP,reg2

Add in Slack

tPD,reg1 + tPD,logic + tSETUP,reg2 + tSETUP,Slack = tCLK

tCD,reg1 + tCD,logic = tHOLD,reg2 + tHOLD,Slack

tHOLD,reg2

Equations*

tSETUP,Slack

tHOLD,Slack

tSETUP,Slack = tCLK-(tPD,reg1 + tPD,logic + tSETUP,reg2)
tHOLD,Slack = tCD,reg1 + tCD,logic - tHOLD,reg2

*not inequalities

Conclusion

• Positive Slack is GOOD
• Negative Slack is BAD

9/24/24 https://fpga.mit.edu/6205/F24 90

Timing Report

Slack (VIOLATED) : -21.399ns (required time - arrival time)
 Source: dividend_reg[15]/C
 (rising edge-triggered cell FDRE clocked by gclk {rise@0.000ns fall@4.000ns period=10.000ns})
 Destination: quotient_reg[0]/D
 (rising edge-triggered cell FDRE clocked by gclk {rise@0.000ns fall@4.000ns period=10.000ns})
 Path Group: gclk
 Path Type: Setup (Max at Slow Process Corner)
Requirement: 10.000ns (gclk rise@10.000ns - gclk rise@0.000ns)
Data Path Delay: 31.483ns (logic 21.642ns (68.742%) route 9.841ns (31.258%))

 Logic Levels: 82 (CARRY4=80 LUT2=1 LUT3=1)
 Clock Path Skew: 0.026ns (DCD - SCD + CPR)
 Destination Clock Delay (DCD): 4.926ns = (14.926 - 10.000)
 Source Clock Delay (SCD): 5.079ns
 Clock Pessimism Removal (CPR): 0.179ns
 Clock Uncertainty: 0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
 Total System Jitter (TSJ): 0.071ns
 Total Input Jitter (TIJ): 0.000ns
 Discrete Jitter (DJ): 0.000ns
 Phase Error (PE): 0.000ns

Look at

9/24/24 https://fpga.mit.edu/6205/F24 91

routerpt_report_timing.rpt

1/3 from routing
2/3 from routing

This is not good Negative Slack

Results
• By default Vivado only gives you a few offending

paths (our default is one) and it provides them in
order of worst to best
• You can ask for more paths using different

arguments;

9/24/24 https://fpga.mit.edu/6205/F24 92

https://docs.xilinx.com/r/2020.2-English/ug835-vivado-tcl-commands/report_timing

Final Projects Coming Up
• In another ~week or so, we have to start thinking

about planning on starting to get going on final
projects.

• First part of that is teaming and teams benefit from
targeting shared goals

• On the site, we’ll put up an archive of final projects

9/24/24 https://fpga.mit.edu/6205/F24 93

Past Project (with Microphone)

9/24/24 https://fpga.mit.edu/6205/F24 94

Sudoku Solver

9/24/24 https://fpga.mit.edu/6205/F24 95

