
6.205
Finite State Machines

9/19/24 https://fpga.mit.edu/6205/F24 1

Administrivia
• Week 2 due last night.
• Week 3 out after class today

9/19/24 https://fpga.mit.edu/6205/F24 2

Cool/Not Cool Bug

• What’s wrong with
this

9/19/24 https://fpga.mit.edu/6205/F24 3

simple_counter msc(
 .clk_in(clk_in),
 .rst_in(counter_reset),
 .evt_in(clk_in),
 .count_out(count));

module simple_counter(input wire clk_in,
 input wire rst_in,
 input wire evt_in,
 output logic[15:0] count_out
);
 always_ff @(posedge clk_in) begin
 if (rst_in) begin
 count_out <= 16'b0;
 end else if (evt_in) begin
 count_out <= count_out + 1;
 end
 end
endmodule

9/19/24 https://fpga.mit.edu/6205/F24 4

time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

Register-to-Register Timing

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2

≥tHOLD,reg2

Two Requirements/
Conclusions:

Clocks Stay with Clocks!

• And Signals stay with signals. None of this stuff:

9/19/24 https://fpga.mit.edu/6205/F24 5

always_ff @(posedge some_button_thing)begin
 x <= 5+x;
 //other code
end

This will not play nice with other circuits that are clocked off an actual clock!

Interfacing to Sequential
Logic
…Or what are the problems with working with Sequential
Logic?....

9/19/24 https://fpga.mit.edu/6205/F24 6

Huh?
• In Week 3:

9/19/24 https://fpga.mit.edu/6205/F24 7

• You’ll be using these
occasionally…
• They build this

clk_in

s_outD Q D Qus_in

module synchronizer #(parameter SYNC_DEPTH = 2)
 (input wire clk_in,
 input wire rst_in,
 input wire us_in, //unsync_in
 output logic s_out); //sync_out

 logic [SYNC_DEPTH-1:0] sync;

 always_ff @(posedge clk_in)begin
 if (rst_in)begin
 sync <= {(SYNC_DEPTH){us_in}};
 end else begin
 sync[SYNC_DEPTH-1] <= us_in;
 for (int i=1; i<SYNC_DEPTH; i= i+1)begin
 sync[i-1] <= sync[i];
 end
 end
 end
 assign s_out = sync[0];
endmodule

What if…?

9/19/24 https://fpga.mit.edu/6205/F24 8

CLK

Sequential
System

Can’t guarantee setup and hold times will be met!

Another
System II

Another
System I

Periodic data on
another clock!

Aperiodic signals with no
respect for main system’s
timing constraints

• …we need to interface with outside
equipment:
• Other systems (on different clocks or from

combinational logic?)
• Human-based inputs (buttons)

Example: Asynchronous Inputs in Sequential Systems

9/19/24 https://fpga.mit.edu/6205/F24 9

When an asynchronous signal causes a setup/hold violation...

Clock

Q

D
I

Transition is missed on first
clock cycle, but caught on
next clock cycle.

II

Transition is caught on
first clock cycle.

?

III

Output is metastable for an
indeterminate amount of time.

Q: Which cases are problematic?

CLK

Can’t guarantee
setup and hold
times will be met!

Q
D

3.3V

Metastability

9/19/24 https://fpga.mit.edu/6205/F24 10

Metastability in Altera (L) Devices
Altera Application Note 42 (1999)

• D-registers have issues with all
that feedback and stuff going on.
Can go metastable
• Metastability is where the

system hovers between Logic
High and Logic Low in an
unpredictable way

tco = “min time from clock to output”
 ….think of it as tpd here (not exactly the same)

Handling Metastability

9/19/24 https://fpga.mit.edu/6205/F24 11

“Metastability and Synchronizers: A Tutorial”
Ran Ginosar, Technion Israel Institute of Technology

• Can’t globally prevent
metastability, but can isolate
it!
• Stringing several registers

together can isolate any
freakouts!

Handling Metastability
• Completely preventing metastability turns out to be an impossible

problem
• High gain of digital devices makes it likely that metastable conditions

will resolve themselves quickly
• Solution to metastability: allow time for signals to stabilize

9/19/24 https://fpga.mit.edu/6205/F24 12

How many registers are necessary in 6.205?
• Depends on many design parameters (clock speed, device speeds, …)
• In 6.205, a pair of synchronization registers is sufficient
• And for simple designs…with low tpd you may not even need anything

D Q
Complicated

Sequential Logic
System

Clock

D Q D Q

Can be
metastable right
after sampling

Very unlikely to be
metastable for >1
clock cycle

Extremely unlikely to be
metastable for >2 clock
cycles

Handling Metastability

• Don’t break off an asynchronous input until
it has gone through some registers
• Basically: Ensure that external signals feed

exactly one flip-flop chain before branching

9/19/24 https://fpga.mit.edu/6205/F24 13

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input

Clocked
Synchronous

System

D Q

CLK

Sequential
Downstream Systems…

…

D Q

Related: Clock Domain Crossing
• For example:

• Data gets sent in at 25 MHz from one device (running on its
own clock)

• Your system runs at 50 MHz

9/19/24 https://fpga.mit.edu/6205/F24 14

https://zipcpu.com/blog/2017/10/20/cdc.html

• This only works when original clock domain frequency
is less than or equal to new clock domain frequency

https://zipcpu.com/blog/2017/10/20/cdc.html

State Machines

9/19/24 https://fpga.mit.edu/6205/F24 15

9/19/24 https://fpga.mit.edu/6205/F24 16

Design Example: Level-to-Pulse
• A level-to-pulse converter produces a single-

cycle pulse each time its input goes high.

• It’s a synchronous rising-edge detector.

• Sample uses:
• Buttons and switches pressed by humans for

arbitrary periods of time
• Single-cycle enable signals for modules

Level to
Pulse

Converter
L P

CLK

Whenever input L goes from
low to high...

...output P produces a single
pulse, one clock period wide.

Level-to-Pulse

• One simple solution (~from Lab 02)
• One bit positive discrete time positive

9/19/24 https://fpga.mit.edu/6205/F24 17

• Let’s try to formalize this a bit more

module simple_soln(input wire clk_in,
 input wire l_in,
 output logic p_out);
 logic old_l_in; //remember previous value!
 always_ff @(posedge clk) begin
 old_l_in <= l_in;//remember it!
 end
 assign p_out = l_in & ~old_l_in; //high and prev low
endmodule

9/19/24 https://fpga.mit.edu/6205/F24 18

Finite State Machines
• Finite State Machines (FSMs) are a useful abstraction for

sequential circuits with centralized “states” of operation
• At each clock edge, combinational logic computes outputs

and next state as a function of inputs and present state

Combinational
Logic

Registers
Q D

CLK

inputs
+

present
state

outputs
+

next
state

n n

Level-to-Pulse

9/19/24 https://fpga.mit.edu/6205/F24 19

Output Logic

State Transition
 and

State Transition Logic

State

• State: how/what stores past information?
• Output Logic: How does state and input influence output
• State Transition Logic: Logic dictating next state
• State Transition: Actual updating of state

module simple_soln(input wire clk_in,
 input wire l_in,
 output logic p_out);
 logic old_l_in; //remember previous value!
 always_ff @(posedge clk) begin
 old_l_in <= l_in;//remember it!
 end
 assign p_out = l_in & ~old_l_in; //high and prev low
endmodule

9/19/24 https://fpga.mit.edu/6205/F24 20

Let’s Formalize it: Two Types of FSMs
Moore and Mealy FSMs : different output generation

outputs
yk = fk(S)

inputs
x0...xn

•Moore FSM:

Comb.
Logic

CLK
n

Registers
Comb.
Logic

D Q

present state S

n

next
state

S+

inputs
x0...xn

•Mealy FSM:

S

Comb.
Logic

CLK

Registers

Comb.
LogicD Q

n

S+

n

outputs
yk = fk(S, x0...xn)

direct combinational path!

Moore

9/19/24 https://fpga.mit.edu/6205/F24 21

• Edward F. Moore
• 1925-2003
• Virginia Tech
• Worked with Claude

Shannon

• Not same Moore as
Moore’s Law…that was
Gordon Moore from Intel

• George H. Mealy
• 1927-2010
• Harvard, Bell Labs

Mealy

9/19/24 https://fpga.mit.edu/6205/F24 22

Design Example: Level-to-Pulse
• A level-to-pulse converter produces a single-

cycle pulse each time its input goes high.

• It’s a synchronous rising-edge detector.

• Sample uses:
• Buttons and switches pressed by humans for

arbitrary periods of time
• Single-cycle enable signals for modules

Level to
Pulse

Converter
L P

CLK

Whenever input L goes from
low to high...

...output P produces a single
pulse, one clock period wide.

9/19/24 https://fpga.mit.edu/6205/F24 23

High input,
Waiting for fall

11

P = 0

L=1

L=0
00

Low input,
Waiting for rise

P = 0

01
Edge Detected!

P = 1

L=1

L=0 L=0

L=1

• State transition diagram is a useful FSM representation and
 design aid:

Step 1: State Transition Diagram
• Block diagram of desired system:

D Q
Level to

Pulse
FSM

L P
unsynchronized

user input

Synchronizer Edge Detector

This is the output that results from
this state. (Moore or Mealy?)

P = 0

11

Binary values of states

L=0

“if L=0 at the clock edge,
then stay in state 00.”

L=1“if L=1 at the clock edge,
then jump to state 01.”

D Q

CLK

9/19/24 https://fpga.mit.edu/6205/F24 24

Valid State Transition Diagrams

High input,
Waiting for fall

11

P = 0

L=1

L=0
00

Low input,
Waiting for rise

P = 0

01
Edge Detected!

P = 1

L=1

L=0 L=0

L=1

• Arcs leaving a state are mutually exclusive, i.e., for any combination input
values there’s at most one applicable arc
• Arcs leaving a state are collectively exhaustive, i.e., for any combination of

input values there’s at least one applicable arc**
• So for each state: for any combination of input values there’s exactly one

applicable arc (no ambiguity)
• Often a starting state is specified
• Each state specifies values for all outputs (in the case of Moore)

9/19/24 https://fpga.mit.edu/6205/F24 25

Choosing State Representation

Choice #1: binary encoding

For N states, use ceil(log2N) bits to encode the state with each state
represented by a unique combination of the bits. Tradeoffs: most efficient
use of state registers, but requires more complicated combinational logic
to detect when in a particular state.

Choice #2: “one-hot” encoding

For N states, use N bits to encode the state where the bit corresponding to
the current state is 1, all the others 0. Tradeoffs: more state registers, but
often much less combinational logic since state decoding is trivial.

9/19/24 https://fpga.mit.edu/6205/F24 26

Step 2: Logic Derivation

00
Low input,

Waiting for rise
P = 0

01
Edge Detected!

P = 1

11
High input,

Waiting for fall
P = 0

L=1 L=1

L=0 L=0

L=1L=0

Current
State In Next

State Out

S1 S0 L S1+ S0+ P
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 1
1 1 0 0 0 0
1 1 1 1 1 0

• Combinational logic could be derived using Karnaugh maps by hand,
but we’ll let an HDL do that for us

00 01 11 10
0 0 0 0 X
1 0 1 1 X

00 01 11 10
0 0 0 0 X
1 1 1 1 X

S1S0
L

S1S0
L

for S1
+:

for S0
+: 0 1

0 0 X
1 1 0

S1
for P:

S0

Comb.
Logic

CLK
n

Registers Comb.
Logic

D Q

S

n

S+L P

S1+ = LS0
S0+ = L

P = S1S0

Transition diagram is readily converted to a state
transition table (just a truth table)

9/19/24 https://fpga.mit.edu/6205/F24 27

Moore Level-to-Pulse Converter

Moore FSM circuit implementation of level-to-pulse converter:

outputs
yk = fk(S)

inputs
x0...xn

Comb.
Logic

CLK
n

Registers Comb.
Logic

D Q

present state S

n

next
state

S+

D Q

S1+ = LS0
S0+ = L P = S1S0

D Q

S0

S1

CLK

S0+

S1+

L P
Q

Q

Moore Level-to-Pulse Converter
(SystemVerilog)

9/19/24 https://fpga.mit.edu/6205/F24 28

• An example of a
very explicit
Moore FSM
implementation
of the level-to-
pulse converter:

module moore_fsm(input wire clk_in,
 input wire l_in,
 output logic p_out);
 localparam LOW_WAITING = 2'b0; //define your states as...
 localparam EDGE_DETECTED = 2'b01; //parameters for easy...
 localparam HIGH_WAITING = 2'b10; //reading!
 logic [1:0] state; //contain state!
 logic [1:0] next_state; //hold next state!
 //Output Logic:
 always_comb begin
 case(state)
 LOW_WAITING: p_out = 1'b0; //output based only on...
 EDGE_DETECTED: p_out = 1'b1; //current state! This is...
 HIGH_WAITING: p_out = 1'b0; //a characteristic of Moore FSM
 default: p_out = 1'b0;
 endcase
 end
 //State Transition Logic (Combinational):
 always_comb begin
 case(state) //Also consider explicit if/elses
 LOW_WAITING: next_state = l_in?EDGE_DETECTED:LOW_WAITING;
 EDGE_DETECTED: next_state = l_in?HIGH_WAITING:LOW_WAITING;
 HIGH_WAITING: next_state = l_in?HIGH_WAITING:LOW_WAITING;
 default: next_state = LOW_WAITING;
 endcase
 end
 //State Transition
 always_ff @(posedge clk_in) begin
 //consider adding a reset here as well!
 state <= next_state; //state becomes calculated next_state
 end
endmodule

Moore Level-to-Pulse Converter
(SystemVerilog)

9/19/24 https://fpga.mit.edu/6205/F24 29

• Merging State
Transition Logic and
State Transition into
one block

• Some people like
this more (me)

module moore_fsm(input wire clk_in,
 input wire l_in,
 output logic p_out);
 localparam LOW_WAITING = 2'b0;
 localparam EDGE_DETECTED = 2'b01;
 localparam HIGH_WAITING = 2'b10;
 logic [1:0] state;
 //Output Logic:
 always_comb begin
 case(state)
 LOW_WAITING: p_out = 1'b0;
 EDGE_DETECTED: p_out = 1'b1;
 HIGH_WAITING: p_out = 1'b0;
 default: p_out = 1'b0; //default
 endcase
 end
 //State Transition and Logic:
 always_ff @(posedge clk_in) begin
 //consider adding a reset here as well!
 case(state)
 LOW_WAITING: state <= l_in?EDGE_DETECTED:LOW_WAITING;
 EDGE_DETECTED: state <= l_in?HIGH_WAITING:LOW_WAITING;
 HIGH_WAITING: state <= l_in?HIGH_WAITING:LOW_WAITING;
 default: state <= LOW_WAITING;
 endcase
 end
endmodule

9/19/24 https://fpga.mit.edu/6205/F24 30

1. When L=1 and S=0, this output is
asserted immediately and until the state

transition occurs (or L changes).

2. While in state S=1 and as long as L remains at 1, this
output is asserted until next clock.

L=1 | P=0

L=1 | P=1

0
Input is low

1
Input is high

L=0 | P=0

L=0 | P=0

Design of a Mealy Level-to-Pulse

• Since outputs are determined by state and inputs, Mealy FSMs
may need fewer states than Moore FSM implementations

S

Comb.
Logic

CLK
Registers

Comb.
LogicD Q

n

S+

n

direct combinational path!

P

L

State

Clock

Output transitions immediately.
State transitions at the clock edge.

1
2

L P

9/19/24 https://fpga.mit.edu/6205/F24 31

Mealy Level-to-Pulse Converter

Mealy FSM circuit implementation of level-to-pulse converter:

Pres.
State In Next

State Out

S L S+ P

0 0 0 0
0 1 1 1
1 1 1 0

1 0 0 0

D Q
S

CLK

S+
L

P

Q
S

• FSM’s state simply remembers the previous value of L
• Circuit benefits from the Mealy FSM’s implicit single-cycle assertion

of outputs during state transitions

0
Input is low

1
Input is high

L=1 | P=1

L=0 | P=0
L=1 | P=0L=0 | P=0

Mealy Level-to-Pulse Converter
(SystemVerilog)

9/19/24 https://fpga.mit.edu/6205/F24 32

• An example of a
very explicit
Mealy FSM
implementation
of the level-to-
pulse converter:

module mealy_fsm(input wire clk_in,
 input wire l_in,
 output logic p_out);
 localparam LOW_WAITING = 1'b0; //define states but notice...
 localparam HIGH_WAITING = 1'b1; //fewer needed...Mealy usually...
 //though not always, is like that
 logic state; //state (smaller than before...only two states to rep)
 logic next_state;
 //Output Logic:
 always_comb begin
 case(state) //outputs are based on state AND inputs!
 LOW_WAITING: p_out = l_in?1'b1:1'b0;
 HIGH_WAITING: p_out = 1'b0;
 default: p_out = 1'b0; //default
 endcase
 end
 //State Transition Logic:
 always_comb begin
 case(state)
 LOW_WAITING: next_state = l_in?HIGH_WAITING:LOW_WAITING;
 HIGH_WAITING: next_state = l_in?HIGH_WAITING:LOW_WAITING;
 default: next_state = LOW_WAITING;
 endcase
 end
 //State Transition
 always_ff @(posedge clk_in) begin
 //consider adding a reset here as well (same goes for any...
 //clocked logic block)
 state <= next_state;
 end
endmodule

Mealy Level-to-Pulse Converter
(SystemVerilog)

9/19/24 https://fpga.mit.edu/6205/F24 33

• Merging State
Transition Logic
and State
Transition into
one block

module mealy_fsm(input wire clk_in,
 input wire l_in,
 output logic p_out);
 localparam LOW_WAITING = 1'b0;
 localparam HIGH_WAITING = 1'b1;
 logic state;
 //Output Logic:
 always_comb begin
 case(state)
 LOW_WAITING: p_out = l_in?1'b1:1'b0;
 HIGH_WAITING: p_out = 1'b0;
 default: p_out = 1'b0; //default
 endcase
 end
 //State Transition and Transition Logic!
 always_ff @(posedge clk_in) begin
 //consider adding a reset here as well!
 case(state)
 LOW_WAITING: state <= l_in?HIGH_WAITING:LOW_WAITING;
 HIGH_WAITING: state <= l_in?HIGH_WAITING:LOW_WAITING;
 default: state <= LOW_WAITING;
 endcase
 end
endmodule

9/19/24 https://fpga.mit.edu/6205/F24 34

Moore/Mealy Trade-Offs
• How are they different?

• Moore: outputs = f(state) only
• Mealy outputs = f(state and input)
• Mealy outputs generally occur one cycle earlier than a Moore:

• Compared to a Moore FSM, a Mealy FSM might...
– Be more difficult to conceptualize and design (both at circuit level and in HDL)
– Have fewer states
– Be expressed using fewer lines of Verilog

P

L

State

Clock

Mealy: immediate assertion of P

P

L

State[0]

Clock

Moore: delayed assertion of P

• Moore:
• Usually more states
• Each state has a particular output

• Mealy:
• Fewer states, outputs are specified on edges of diagram
• Potential Dangers:

9/19/24 https://fpga.mit.edu/6205/F24 35

Moore/Mealy Trade-Offs

Really-long combinatorial paths!

Possible cyclic logic paths
Combinatorial logic driving itself
asynchronously through really
hard-to-debug pathways!

9/19/24 https://fpga.mit.edu/6205/F24 36

Let’s Formalize it: Two Types of FSMs
Moore and Mealy FSMs : different output generation

outputs
yk = fk(S)

inputs
x0...xn

•Moore FSM:

Comb.
Logic

CLK
n

Registers
Comb.
Logic

D Q

present state S

n

next
state

S+

inputs
x0...xn

•Mealy FSM:

S

Comb.
Logic

CLK

Registers

Comb.
LogicD Q

n

S+

n

outputs
yk = fk(S, x0...xn)

direct combinational path!

• Moore:
• Usually more states
• Each state has a particular output

• Mealy:
• Fewer states, outputs are specified on edges of diagram
• Potential Dangers:

9/19/24 https://fpga.mit.edu/6205/F24 37

Moore/Mealy Trade-Offs

Really-long combinatorial paths!

Possible cyclic logic paths
Combinatorial logic driving itself
asynchronously through really
hard-to-debug pathways!

FSM Examples
Time-Dependent

9/19/24 https://fpga.mit.edu/6205/F24 38

9/19/24 https://fpga.mit.edu/6205/F24 39

FSM Example
GOAL:
• Build an electronic combination lock with a reset button, two

number buttons (0 and 1), and an unlock output signal. The
combination will always be 01011.

• We will encode the lock into the state.
• Use a sliding window of the last five entries

“0”
“1”

RESET
UNLOCK

STEPS:
1. Design lock FSM (block diagram, state transitions)
2. Write SystemVerilog module(s) for FSM

9/19/24 https://fpga.mit.edu/6205/F24 40

Step 1A: Block Diagram

fsm_clock

reset

b0_in

b1_in

lock

button

button

button

Clock
generator

Button
Reset

Button
0

Button
1

fsm

unlock

rst_in

b0_in

b1_in

Unlock
Mechanism

Assume buttons are edge
detected and synchronized

9/19/24 https://fpga.mit.edu/6205/F24 41

Step 1B: State transition diagram

RESET
Unlock = 0

“0”
Unlock = 0

“01”
Unlock = 0

“01011”
Unlock = 1

“0101”
Unlock = 0

“010”
Unlock = 0

0 1

0

11

1 0
1

0

0

1
0

RESET

6 states ® 3 bits

9/19/24 https://fpga.mit.edu/6205/F24 42

Step 2: Write Verilog

module lock(input wire clk,rst_in,b0_in,b1_in,
 output logic unlock_out);
 // implement state transition diagram
 logic [2:0] state,next_state;
 always_comb begin
 // combinational logic!
 next_state = ???;
 end
 always_ff @(posedge clk_in) begin
 state <= next_state;
 end
 // generate output
 assign out = ???;
endmodule

Step 2B: state transition
diagram

9/19/24 https://fpga.mit.edu/6205/F24 43

localparam S_RESET = 0; parameter S_0 = 1; // state assignments
localparam S_01 = 2; parameter S_010 = 3;
localparam S_0101 = 4; parameter S_01011 = 5;
logic [2:0] state, next_state; //(both 3 bits wide)
always_comb begin // implement state transition diagram
 if (rst_in) next_state = S_RESET;
 else begin
 case (state)
 S_RESET: next_state = b0_in ? S_0 : b1_in ? S_RESET : state;
 S_0: next_state = b0_in ? S_0 : b1_in ? S_01 : state;
 S_01: next_state = b0_in ? S_010 : b1_in ? S_RESET : state;
 S_010: next_state = b0_in ? S_0 : b1_in ? S_0101 : state;
 S_0101: next_state = b0_in ? S_010 : b1_in ? S_01011 : state;
 S_01011: next_state = b0_in ? S_0 : b1_in ? S_RESET : state;
 default: next_state = S_RESET; // handle unused states
 endcase
 end
end

9/19/24 https://fpga.mit.edu/6205/F24 44

Step 2C: generate output

// it’s a Moore machine! Output only depends on current state

assign unlock_out = (state == S_01011); // assign output: Moore machine

9/19/24 https://fpga.mit.edu/6205/F24 45

Step 2: final Verilog implementation

module lock(input wire clk_in,rst_in,b0_in,b1_in,
 output logic unlock_out);
 localparam S_RESET = 0; parameter S_0 = 1; // state assignments
 localparam S_01 = 2; parameter S_010 = 3;
 localparam S_0101 = 4; parameter S_01011 = 5;
 logic [2:0] state, next_state; //(both 3 bits wide)
 always_comb begin // implement state transition diagram
 if (rst_in) next_state = S_RESET;
 else begin
 case (state)
 S_RESET: next_state = b0_in ? S_0 : b1_in ? S_RESET : state;
 S_0: next_state = b0_in ? S_0 : b1_in ? S_01 : state;
 S_01: next_state = b0_in ? S_010 : b1_in ? S_RESET : state;
 S_010: next_state = b0_in ? S_0 : b1_in ? S_0101 : state;
 S_0101: next_state = b0_in ? S_010 : b1_in ? S_01011 : state;
 S_01011: next_state = b0_in ? S_0 : b1_in ? S_RESET : state;
 default: next_state = S_RESET; // handle unused states
 endcase
 end
 end
 always_ff @(posedge clk) state <= next_state;
 assign unlock_out = (state == S_01011); // assign output: Moore machine
endmodule

9/19/24 https://fpga.mit.edu/6205/F24 46

Real FSM Security System

9/19/24 https://fpga.mit.edu/6205/F24 47

COINS ONLY

Co

Sprite

Jolt

Water

LS163

5¢10¢
25¢

30¢30¢

The 6.111 Vending Machine
(example from circa 2000…slightly updated)

• Lab assistants demand a new soda machine for
the 6.111 lab. You design the FSM controller.

• All selections are $0.30.

• The machine makes change. (Dimes and
nickels only.)

• Inputs: limit 1 per clock
• Q - quarter inserted
• D - dime inserted
• N - nickel inserted

• Outputs: limit 1 per clock
• DC - dispense can
• DD - dispense dime
• DN - dispense nickel

9/19/24 https://fpga.mit.edu/6205/F24 48

What States are in the System?
• A starting (idle) state:

• A state for each possible amount of money captured:

• What’s the maximum amount of money captured before purchase?
25 cents (just shy of a purchase) + one quarter (largest coin)

• States to dispense change (one per coin dispensed):

idle

got10cgot5c got15c ...

got35c got40c got45c got50c...

got45c Dispense
Nickel

Dispense
Dime

9/19/24 https://fpga.mit.edu/6205/F24 49

A Moore Vender

got10c

got5c

idle

got15c

got20c

got30c
DC=1

got35c
DC=1

got40c
DC=1

got45c
DC=1

got50c
DC=1

chg50b
DD=1

chg50
DD=1

chg45b
DN=1

chg40
DD=1

chg45
DD=1

chg35
DN=1

got25c

N=1

N=1

N=1

N=1

N=1

N=1

Q=1

Q=1

Q=1

Q=1

Q=1

D=1

D=1

D=1

D=1

D=1

D=1 *

* *

*

*

*
*

*

Here’s a first cut at the
state transition diagram.

*

9/19/24 https://fpga.mit.edu/6205/F24 50

State Reduction

got10c

got5c

idle

got15c

got20c

got30c
DC=1

got35c
DC=1

got40c
DC=1

got45c
DC=1

got50c
DC=1

rtn20
DD=1

rtn10
DD=1

rtn15
DD=1

rtn5
DN=1

got25c

N=1

N=1

N=1

N=1

N=1

N=1

Q=1

Q=1

Q=1

Q=1

Q=1

D=1

D=1

D=1

D=1

D=1

D=1

*

*
*

*

*

*

*

17 states
5 state bits

15 states
4 state bits

*

*

got10c

got5c

idle

got15c

got20c

got30c
DC=1

got35c
DC=1

got40c
DC=1

got45c
DC=1

got50c
DC=1

chg50b
DD=1

chg50
DD=1

chg45b
DN=1

chg40
DD=1

chg45
DD=1

chg35
DN=1

got25c

N=1

N=1

N=1

N=1

N=1

N=1

Q=1

Q=1

Q=1

Q=1

Q=1

D=1

D=1

D=1

D=1

D=1

D=1 *

* *

*

*

*
*

*

Duplicate states have:
n The same outputs, and
n The same transitions

There are two duplicates
in our original diagram.

9/19/24 https://fpga.mit.edu/6205/F24 51

Verilog for the Moore Vender
States defined with
parameter keyword

State register defined with
sequential always block
(always_ff)

Comb.
Logic

CLK
n

State
Register

Comb.
Logic

D Q
n

n State register
(sequential always block)

n Next-state
combinational logic
(comb. always block with case)

n Output combinational
logic block
(comb. always block or assign
statements)

So
triggered
on posedge
clock

module mooreVender (
 input wire N, D, Q, clk, reset,
 output logic DC, DN, DD,
 output logic [3:0] state);
 logic [3:0] next;

 parameter IDLE = 0;
 parameter GOT_5c = 1;
 parameter GOT_10c = 2;
 parameter GOT_15c = 3;
 parameter GOT_20c = 4;
 parameter GOT_25c = 5;
 parameter GOT_30c = 6;
 parameter GOT_35c = 7;
 parameter GOT_40c = 7;
 parameter GOT_45c = 9;
 parameter GOT_50c = 10;
 parameter RETURN_20c = 11;
 parameter RETURN_15c = 12;
 parameter RETURN_10c = 13;
 parameter RETURN_5c = 14;

 always_ff @(posedge clk) begin
 if (!reset) state <= IDLE;
 else state <= next;
 end

Enums in SystemVerilog

9/19/24 https://fpga.mit.edu/6205/F24 52

Same value…uh oh

module mooreVender (
 input wire N, D, Q, clk, reset,
 output logic DC, DN, DD,
 output logic [3:0] state);
 logic [3:0] next;

 parameter IDLE = 0;
 parameter GOT_5c = 1;
 parameter GOT_10c = 2;
 parameter GOT_15c = 3;
 parameter GOT_20c = 4;
 parameter GOT_25c = 5;
 parameter GOT_30c = 6;
 parameter GOT_35c = 7;
 parameter GOT_40c = 7;
 parameter GOT_45c = 9;
 parameter GOT_50c = 10;
 parameter RETURN_20c = 11;
 parameter RETURN_15c = 12;
 parameter RETURN_10c = 13;
 parameter RETURN_5c = 14;

always_ff @(posedge clk) begin
 if (!reset) state <= IDLE;
 else state <= next;
end

Enums in SystemVerilog

9/19/24 https://fpga.mit.edu/6205/F24 53

• State and next_State are now
restricted to only be one of a
set of values

• Vivado figures out the most
efficient encoding

• Ensures you don’t make
duplicates or do other stupid
mistakes

module mooreVender (
 input wire N, D, Q, clk, reset,
 output logic DC, DN, DD,
 output logic [3:0] state_out);

 enum {IDLE,GOT_5c,GOT_10c,GOT_15c,GOT_20c,
 GOT_25c,GOT_35c,GOT_40c,GOT_45c,
 GOT_50c,RETURN_20c,RETURN_15c,
 RETURN_10c,RETURN_5c } state, next;
 assign state_out = state;
 always_ff @(posedge clk or negedge reset)begin
 if (!reset) state <= IDLE;
 else state <= next;
 end

typedef enum {IDLE,GOT_5c,GOT_10c,GOT_15c,GOT_20c,
 GOT_25c,GOT_35c,GOT_40c,GOT_45c,
 GOT_50c,RETURN_20c,RETURN_15c,
 RETURN_10c,RETURN_5c } coin_state;

coin_state state, next; //instances here

9/19/24 https://fpga.mit.edu/6205/F24 54

Verilog for the
Moore Vender

Combinational output assignment

Next-state logic within a
combinational always block

always_comb (state or N or D or Q) begin
 case (state)
 IDLE: if (Q) next = GOT_25c;
 else if (D) next = GOT_10c;
 else if (N) next = GOT_5c;
 else next = IDLE;
 GOT_5c: if (Q) next = GOT_30c;
 else if (D) next = GOT_15c;
 else if (N) next = GOT_10c;
 else next = GOT_5c;
 GOT_10c: if (Q) next = GOT_35c;
 else if (D) next = GOT_20c;
 else if (N) next = GOT_15c;
 else next = GOT_10c;
 GOT_15c: if (Q) next = GOT_40c;
 else if (D) next = GOT_25c;
 else if (N) next = GOT_20c;
 else next = GOT_15c;
 GOT_20c: if (Q) next = GOT_45c;
 else if (D) next = GOT_30c;
 else if (N) next = GOT_25c;
 else next = GOT_20c;
 GOT_25c: if (Q) next = GOT_50c;
 else if (D) next = GOT_35c;
 else if (N) next = GOT_30c;
 else next = GOT_25c;
 GOT_30c: next = IDLE;
 GOT_35c: next = RETURN_5c;
 GOT_40c: next = RETURN_10c;
 GOT_45c: next = RETURN_15c;
 GOT_50c: next = RETURN_20c;
 RETURN_20c: next = RETURN_10c;
 RETURN_15c: next = RETURN_5c;
 RETURN_10c: next = IDLE;
 RETURN_5c: next = IDLE;
 default: next = IDLE;
 endcase
end

assign DC = (state == GOT_30c ||
 state == GOT_35c ||
 state == GOT_40c ||
 state == GOT_45c ||
 state == GOT_50c);
assign DN = (state == RETURN_5c);
assign DD = (state == RETURN_20c ||
 state == RETURN_15c ||
 state == RETURN_10c);
endmodule

9/19/24 https://fpga.mit.edu/6205/F24 55

State

Output

Simulation of Moore Vender

idle got5c
got15c

got20c
got45c

C

rtn15

10¢

rtn5

5¢

idle

9/19/24 https://fpga.mit.edu/6205/F24 56

FSM Output Glitching

got10c

got20c

D=1

0010

0100

0110

during this state
transition...

...the state registers may
transtion like this...

...causing the DC
output to glitch

like this!

n FSM state bits may not transition at precisely the same time
n Combinational logic for outputs may contain hazards/glitches
n Result: your FSM outputs may glitch!

got10c

got20c

got30c

0

0

1

If the soda dispenser is glitch-sensitive, your customers can get a 20-cent soda!

glitch

assign DC = (state == GOT_30c ||
 state == GOT_35c ||
 state == GOT_40c ||
 state == GOT_45c ||
 state == GOT_50c);

One way to fix Glitches:
• Don’t have to have state 3 (3’b011) go into state 4 (3’b100). Use different state

naming/use different numbers!!!

• Perhaps a Gray code (??):
• Count up like: 000, 001, 011, 010, 110, 111, 101, 100, …
• Have the really important/glitch-sensitive states only require

transitions of one bit
• One-hot encoding:

• Johnson encoding:

9/19/24 https://fpga.mit.edu/6205/F24 57

A rose by any other name would smell as sweet

001

010

011

Going from this

To this

Probably OK if it lands here
temporarily in a glitch since ideally
nothing will respond to this, but
that depends on your logic

000
100
110
111
011
001

9/19/24 https://fpga.mit.edu/6205/F24 58

Another Solution:
Registered FSM Outputs are Glitch-Free

n

inputs
Next-
State

Comb.
Logic CLK

Output
Comb.
Logic

present state S

n

next
state

CLK

Output
Registers

D Q

State
Registers

D Q

registered
outputs

n Move output generation into
the sequential always block

n Calculate outputs based on
next state

n Delays outputs by one clock
cycle. Problematic in some
application.

Note this is inside an edged always with non-blocking assigns!
This will synthesize to registered outputs!

always_ff @(posedge clk) begin
 if (!reset) state <= IDLE;
 else if (clk) state <= next;
 DC <= (next == GOT_30c || next == GOT_35c ||
 next == GOT_40c || next == GOT_45c ||
 next == GOT_50c);
 DN <= (next == RETURN_5c);
 DD <= (next == RETURN_20c || next == RETURN_15c ||
 next == RETURN_10c);
end

Encoding with Enums?
• Generally in SystemVerilog, an enum, unless specified will

be 0, 1, 2, 3, etc…

• When synthesizing, Vivado may decide on a different
encoding, however!
• May or may not be what you want! Or you want a

particular encoding

9/19/24 https://fpga.mit.edu/6205/F24 59

enum {IDLE,GOT_5c,GOT_10c,GOT_15c,GOT_20c,
 GOT_25c,GOT_35c,GOT_40c,GOT_45c,
 GOT_50c,RETURN_20c,RETURN_15c,
 RETURN_10c,RETURN_5c } state, next;

typedef enum {IDLE,GOT_5c,GOT_10c,GOT_15c,GOT_20c,
 GOT_25c,GOT_35c,GOT_40c,GOT_45c,
 GOT_50c,RETURN_20c,RETURN_15c,
 RETURN_10c,RETURN_5c } state_enc_T;

state_enc_T state, next;

Encoding in Enums?
• If want one-hot do:

• Can also do specify sequential, johnson, gray
encoding, etc… or you can specify your own if you
have a good idea:

9/19/24 https://fpga.mit.edu/6205/F24 60

typedef enum {IDLE,GOT_5c,GOT_10c,GOT_15c,GOT_20c,
 GOT_25c,GOT_35c,GOT_40c,GOT_45c,
 GOT_50c,RETURN_20c,RETURN_15c,
 RETURN_10c,RETURN_5c } state_enc_T;

(* fsm_encoding ="one_hot" *) state_enc_T state, next;

Division (an example of an algorithm that
takes an unknown amount of time)

9/19/24 https://fpga.mit.edu/6205/F24 61

Super efficient divider \s

def divider (dividend, divisor):
 count = 0
 if divisor==0:
 return -1
 while dividend>=divisor:
 dividend -= divisor
 count += 1
 return (count, dividend)

A Divider

9/19/24 https://fpga.mit.edu/6205/F24 62

• This is a Verilog FSM example of the algorithm
on the previous page which will run an
unknown number of times given a set of
inputs

• This is how the functionality of a while loop
could be developed in your modules

• Will not handle negative, or 0 or other things…

Code on the site’s lecture page

