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Finite State Machines
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Administrivia
• Week 2 due last night.
• Week 3 out after class today
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Cool/Not Cool Bug

• What’s wrong with 
this
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simple_counter msc( 
  .clk_in(clk_in), 
  .rst_in(counter_reset),
  .evt_in(clk_in),
  .count_out(count));

module simple_counter( input wire clk_in,
                       input wire rst_in,
                       input wire evt_in,
                       output logic[15:0] count_out
                      );
  always_ff @(posedge clk_in) begin
    if (rst_in) begin
      count_out <= 16'b0;
    end else if (evt_in) begin
      count_out <= count_out + 1;
    end
  end
endmodule



9/19/24 https://fpga.mit.edu/6205/F24 4

time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

Register-to-Register Timing

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2 

≥tHOLD,reg2

Two Requirements/
Conclusions:



Clocks Stay with Clocks!

• And Signals stay with signals. None of this stuff:
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always_ff @(posedge some_button_thing)begin
  x <= 5+x;
  //other code
end

This will not play nice with other circuits that are clocked off an actual clock!



Interfacing to Sequential 
Logic
…Or what are the problems with working with Sequential 
Logic?....
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Huh?
• In Week 3:
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• You’ll be using these 
occasionally…
• They build this

clk_in

s_outD Q D Qus_in

module synchronizer #(parameter SYNC_DEPTH = 2) 
                     ( input wire clk_in,
                       input wire rst_in,
                       input wire us_in, //unsync_in
                       output logic s_out); //sync_out

  logic [SYNC_DEPTH-1:0] sync;

  always_ff @(posedge clk_in)begin
    if (rst_in)begin
      sync <= {(SYNC_DEPTH){us_in}};
    end else begin
      sync[SYNC_DEPTH-1] <= us_in;
      for (int i=1; i<SYNC_DEPTH; i= i+1)begin
        sync[i-1] <= sync[i];
      end
    end
  end
  assign s_out = sync[0];
endmodule



What if…?
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CLK

Sequential
System

Can’t guarantee setup and hold times will be met!

Another 
System II

Another 
System I

Periodic data on 
another clock!

Aperiodic signals with no 
respect for main system’s 
timing constraints

• …we need to interface with outside 
equipment:
• Other systems (on different clocks or from 

combinational logic?)
• Human-based inputs (buttons)



Example: Asynchronous Inputs in Sequential Systems
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When an asynchronous signal causes a setup/hold violation...

Clock

Q

D
I

Transition is missed on first 
clock cycle, but caught on 
next clock cycle.

II

Transition is caught  on 
first clock cycle.

?

III

Output is metastable for an 
indeterminate amount of time.

Q: Which cases are problematic?

CLK

Can’t guarantee 
setup and hold 
times will be met!

Q
D

3.3V



Metastability
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Metastability in Altera (L) Devices
Altera Application Note 42 (1999)

• D-registers have issues with all 
that feedback and stuff going on. 
Can go metastable
• Metastability is where the 

system hovers between Logic 
High and Logic Low in an 
unpredictable way

tco = “min time from clock to output”
      ….think of it as tpd here (not exactly the same)



Handling Metastability
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“Metastability and Synchronizers: A Tutorial”
Ran Ginosar, Technion Israel Institute of Technology

• Can’t globally prevent 
metastability, but can isolate 
it!
• Stringing several registers 

together can isolate any 
freakouts!



Handling Metastability
• Completely preventing metastability turns out to be an impossible 

problem
• High gain of digital devices makes it likely that metastable conditions 

will resolve themselves quickly
• Solution to metastability: allow time for signals to stabilize
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How many registers are necessary in 6.205?
• Depends on many design parameters (clock speed, device speeds, …)
• In 6.205, a pair of synchronization registers is sufficient
• And for simple designs…with low tpd you may not even need anything

D Q
Complicated 

Sequential Logic 
System

Clock

D Q D Q

Can be 
metastable right 
after sampling

Very unlikely to be 
metastable for >1 
clock cycle

Extremely unlikely to be 
metastable for >2 clock 
cycles



Handling Metastability

• Don’t break off an asynchronous input until 
it has gone through some registers
• Basically: Ensure that external signals feed 

exactly one flip-flop chain before branching 
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D Q

D Q

Q0

Clock

Clock

Q1

Async 
Input

Clocked  
Synchronous 

System

D Q

CLK

Sequential
Downstream Systems…

…

D Q



Related: Clock Domain Crossing
• For example:

• Data gets sent in at 25 MHz from one device (running on its 
own clock)

• Your system runs at 50 MHz

9/19/24 https://fpga.mit.edu/6205/F24 14

https://zipcpu.com/blog/2017/10/20/cdc.html

• This only works when original clock domain frequency 
is less than or equal to new clock domain frequency

https://zipcpu.com/blog/2017/10/20/cdc.html


State Machines
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Design Example: Level-to-Pulse
• A level-to-pulse converter produces a single-

cycle pulse each time its input goes high.

• It’s a synchronous rising-edge detector.

• Sample uses:
• Buttons and switches pressed by humans for 

arbitrary periods of time
• Single-cycle enable signals for modules

Level to
Pulse

Converter
L P

CLK

Whenever input L goes from 
low to high...

...output P produces a single 
pulse, one clock period wide.



Level-to-Pulse

• One simple solution (~from Lab 02)
• One bit positive discrete time positive 
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• Let’s try to formalize this a bit more

module simple_soln( input wire clk_in, 
      input wire l_in, 
      output logic p_out);
  logic old_l_in; //remember previous value!
  always_ff @(posedge clk) begin
    old_l_in <= l_in;//remember it!
  end
  assign p_out = l_in & ~old_l_in; //high and prev low
endmodule
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Finite State Machines
• Finite State Machines (FSMs) are a useful abstraction for 

sequential circuits with centralized “states” of operation
• At each clock edge, combinational logic computes outputs 

and next state as a function of inputs and present state

Combinational
Logic

Registers
Q D

CLK

inputs
+

present
state

outputs
+

next
state

n n



Level-to-Pulse
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Output Logic

State Transition
 and

State Transition Logic

State

• State: how/what stores past information?
• Output Logic: How does state and input influence output 
• State Transition Logic: Logic dictating next state
• State Transition: Actual updating of state

module simple_soln( input wire clk_in, 
      input wire l_in, 
      output logic p_out);
  logic old_l_in; //remember previous value!
  always_ff @(posedge clk) begin
    old_l_in <= l_in;//remember it!
  end
  assign p_out = l_in & ~old_l_in; //high and prev low
endmodule
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Let’s Formalize it: Two Types of FSMs
Moore and Mealy FSMs : different output generation

outputs
yk = fk(S)

inputs
x0...xn

•Moore FSM:

Comb.
Logic

CLK
n

Registers
Comb.
Logic

D Q

present state S

n

next
state

S+

inputs
x0...xn

•Mealy FSM:

S

Comb.
Logic

CLK

Registers

Comb.
LogicD Q

n

S+

n

outputs
yk = fk(S, x0...xn)

direct combinational path!



Moore

9/19/24 https://fpga.mit.edu/6205/F24 21

• Edward F. Moore
• 1925-2003
• Virginia Tech
• Worked with Claude 

Shannon

• Not same Moore as 
Moore’s Law…that was 
Gordon Moore from Intel

• George H. Mealy
• 1927-2010
• Harvard, Bell Labs

Mealy
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Design Example: Level-to-Pulse
• A level-to-pulse converter produces a single-

cycle pulse each time its input goes high.

• It’s a synchronous rising-edge detector.

• Sample uses:
• Buttons and switches pressed by humans for 

arbitrary periods of time
• Single-cycle enable signals for modules

Level to
Pulse

Converter
L P

CLK

Whenever input L goes from 
low to high...

...output P produces a single 
pulse, one clock period wide.
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High input,
Waiting for fall

11

P = 0

L=1

L=0
00

Low input, 
Waiting for rise

P = 0

01
Edge Detected!

P = 1

L=1

L=0 L=0

L=1

• State transition diagram is a useful FSM representation and
  design aid:

Step 1: State Transition Diagram
• Block diagram of desired system:

D Q
Level to

Pulse
FSM

L P
unsynchronized

user input

Synchronizer Edge Detector

This is the output that results from 
this state. (Moore or Mealy?)

P = 0

11

Binary values of states

L=0

“if L=0 at the clock edge, 
then stay in state 00.”

L=1“if L=1 at the clock edge, 
then jump to state 01.”

D Q

CLK
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Valid State Transition Diagrams

High input,
Waiting for fall

11

P = 0

L=1

L=0
00

Low input, 
Waiting for rise

P = 0

01
Edge Detected!

P = 1

L=1

L=0 L=0

L=1

• Arcs leaving a state are mutually exclusive, i.e., for any combination input 
values there’s at most one applicable arc
• Arcs leaving a state are collectively exhaustive, i.e., for any combination of 

input values there’s at least one applicable arc**
• So for each state: for any combination of input values there’s exactly one 

applicable arc (no ambiguity)
• Often a starting state is specified
• Each state specifies values for all outputs (in the case of Moore)
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Choosing State Representation

Choice #1: binary encoding

For N states, use ceil(log2N) bits to encode the state with each state 
represented by a unique combination of the bits.  Tradeoffs: most efficient 
use of state registers, but requires more complicated combinational logic 
to detect when in a particular state.

Choice #2: “one-hot” encoding

For N states, use N bits to encode the state where the bit corresponding to 
the current state is 1, all the others 0.  Tradeoffs: more state registers, but 
often much less combinational logic since state decoding is trivial.
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Step 2: Logic Derivation

00
Low input, 

Waiting for rise
P = 0

01
Edge Detected!

P = 1

11
High input,

Waiting for fall
P = 0

L=1 L=1

L=0 L=0

L=1L=0

Current 
State In Next  

State Out

S1 S0 L S1+ S0+ P
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 1
1 1 0 0 0 0
1 1 1 1 1 0

• Combinational logic could be derived using Karnaugh maps by hand, 
but we’ll            let an HDL do that for us

00 01 11 10
0 0 0 0 X
1 0 1 1 X

00 01 11 10
0 0 0 0 X
1 1 1 1 X

S1S0
L

S1S0
L

for S1
+:

for S0
+: 0 1

0 0 X
1 1 0

S1
for P:

S0

Comb.
Logic

CLK
n

Registers Comb.
Logic

D Q

S

n

S+L P

S1+ = LS0
S0+ = L

P = S1S0

Transition diagram is readily converted to a state 
transition table (just a truth table)
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Moore Level-to-Pulse Converter

Moore FSM circuit implementation of level-to-pulse converter:

outputs
yk = fk(S)

inputs
x0...xn

Comb.
Logic

CLK
n

Registers Comb.
Logic

D Q

present state S

n

next
state

S+

D Q

S1+ = LS0
S0+ = L P = S1S0

D Q

S0

S1

CLK

S0+

S1+

L P
Q

Q



Moore Level-to-Pulse Converter 
(SystemVerilog) 
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• An example of a 
very explicit 
Moore FSM 
implementation 
of the level-to-
pulse converter:

module moore_fsm( input wire clk_in, 
    input wire l_in, 
    output logic p_out);
  localparam LOW_WAITING = 2'b0; //define your states as...
  localparam EDGE_DETECTED = 2'b01; //parameters for easy...
  localparam HIGH_WAITING = 2'b10; //reading!
  logic [1:0] state; //contain state!
  logic [1:0] next_state; //hold next state!
  //Output Logic:
  always_comb begin
    case(state)
      LOW_WAITING: p_out = 1'b0; //output based only on...
      EDGE_DETECTED: p_out = 1'b1; //current state! This is...
      HIGH_WAITING: p_out = 1'b0; //a characteristic of Moore FSM
      default: p_out = 1'b0; 
    endcase
  end
  //State Transition Logic (Combinational):
  always_comb begin
    case(state) //Also consider explicit if/elses
      LOW_WAITING: next_state = l_in?EDGE_DETECTED:LOW_WAITING;
      EDGE_DETECTED: next_state = l_in?HIGH_WAITING:LOW_WAITING;
      HIGH_WAITING: next_state = l_in?HIGH_WAITING:LOW_WAITING; 
      default: next_state = LOW_WAITING;
    endcase
  end
  //State Transition
  always_ff @(posedge clk_in) begin
    //consider adding a reset here as well!
    state <= next_state; //state becomes calculated next_state
  end
endmodule



Moore Level-to-Pulse Converter 
(SystemVerilog) 

9/19/24 https://fpga.mit.edu/6205/F24 29

• Merging State 
Transition Logic and 
State Transition into 
one block

• Some people like 
this more (me)

module moore_fsm( input wire clk_in, 
   input wire l_in, 
   output logic p_out);
  localparam LOW_WAITING = 2'b0;
  localparam EDGE_DETECTED = 2'b01;
  localparam HIGH_WAITING = 2'b10;
  logic [1:0] state;
  //Output Logic:
  always_comb begin
    case(state)
      LOW_WAITING: p_out = 1'b0;
      EDGE_DETECTED: p_out = 1'b1;
      HIGH_WAITING: p_out = 1'b0; 
      default: p_out = 1'b0; //default
    endcase
  end
  //State Transition and Logic:
  always_ff @(posedge clk_in) begin
    //consider adding a reset here as well!
    case(state)
      LOW_WAITING: state <= l_in?EDGE_DETECTED:LOW_WAITING;
      EDGE_DETECTED: state <= l_in?HIGH_WAITING:LOW_WAITING;
      HIGH_WAITING: state <= l_in?HIGH_WAITING:LOW_WAITING; 
      default: state <= LOW_WAITING;
    endcase
  end
endmodule
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1. When L=1 and S=0, this output is 
asserted immediately and until the state 

transition occurs (or L changes).

2. While in state S=1 and as long as L remains at 1, this 
output is asserted until next clock.

L=1 | P=0

L=1 | P=1

0
Input is low

1
Input is high

L=0 | P=0

L=0 | P=0

Design of a Mealy Level-to-Pulse

• Since outputs are determined by state and inputs, Mealy FSMs 
may need fewer states than Moore FSM implementations

S

Comb.
Logic

CLK
Registers

Comb.
LogicD Q

n

S+

n

direct combinational path!

P

L

State

Clock

Output transitions immediately.
State transitions at the clock edge.

1
2

L P
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Mealy Level-to-Pulse Converter

Mealy FSM circuit implementation of level-to-pulse converter:

Pres. 
State In Next  

State Out

S L S+ P

0 0 0 0
0 1 1 1
1 1 1 0

1 0 0 0

D Q
S

CLK

S+
L

P

Q
S

• FSM’s state simply remembers the previous value of L
• Circuit benefits from the Mealy FSM’s implicit single-cycle assertion 

of outputs during state transitions

0
Input is low

1
Input is high

L=1 | P=1

L=0 | P=0
L=1 | P=0L=0 | P=0



Mealy Level-to-Pulse Converter 
(SystemVerilog) 
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• An example of a 
very explicit 
Mealy FSM 
implementation 
of the level-to-
pulse converter:

module mealy_fsm( input wire clk_in, 
   input wire l_in, 
   output logic p_out);
  localparam LOW_WAITING = 1'b0; //define states but notice...
  localparam HIGH_WAITING = 1'b1; //fewer needed...Mealy usually...
  //though not always, is like that
  logic state; //state (smaller than before...only two states to rep)
  logic next_state;
  //Output Logic:
  always_comb begin
    case(state) //outputs are based on state AND inputs!
      LOW_WAITING: p_out = l_in?1'b1:1'b0;
      HIGH_WAITING: p_out = 1'b0; 
      default: p_out = 1'b0; //default
    endcase
  end
  //State Transition Logic:
  always_comb begin
    case(state)
      LOW_WAITING: next_state = l_in?HIGH_WAITING:LOW_WAITING;
      HIGH_WAITING: next_state = l_in?HIGH_WAITING:LOW_WAITING; 
      default: next_state = LOW_WAITING;
    endcase
  end
  //State Transition
  always_ff @(posedge clk_in) begin
    //consider adding a reset here as well (same goes for any...
    //clocked logic block)
    state <= next_state;
  end
endmodule 



Mealy Level-to-Pulse Converter 
(SystemVerilog) 
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• Merging State 
Transition Logic 
and State 
Transition into 
one block

module mealy_fsm( input wire clk_in, 
   input wire l_in, 
   output logic p_out);
  localparam LOW_WAITING = 1'b0;
  localparam HIGH_WAITING = 1'b1;
  logic state;
  //Output Logic:
  always_comb begin
    case(state)
      LOW_WAITING: p_out = l_in?1'b1:1'b0;
      HIGH_WAITING: p_out = 1'b0; 
      default: p_out = 1'b0; //default
    endcase
  end
  //State Transition and Transition Logic!
  always_ff @(posedge clk_in) begin
    //consider adding a reset here as well!
    case(state)
      LOW_WAITING: state <= l_in?HIGH_WAITING:LOW_WAITING;
      HIGH_WAITING: state <= l_in?HIGH_WAITING:LOW_WAITING; 
      default: state <= LOW_WAITING;
    endcase
  end
endmodule 
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Moore/Mealy Trade-Offs
• How are they different?

• Moore: outputs = f( state ) only
• Mealy outputs = f( state and input )
• Mealy outputs generally occur one cycle earlier than a Moore:

• Compared to a Moore FSM, a Mealy FSM might...
– Be more difficult to conceptualize and design (both at circuit level and in HDL)
– Have fewer states
– Be expressed using fewer lines of Verilog

P

L

State

Clock

Mealy: immediate assertion of P

P

L

State[0]

Clock

Moore: delayed assertion of P



• Moore:
• Usually more states
• Each state has a particular output

• Mealy:
• Fewer states, outputs are specified on edges of diagram
• Potential Dangers:
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Moore/Mealy Trade-Offs

Really-long combinatorial paths!

Possible cyclic logic paths
Combinatorial logic driving itself 
asynchronously through really 
hard-to-debug pathways!
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Let’s Formalize it: Two Types of FSMs
Moore and Mealy FSMs : different output generation

outputs
yk = fk(S)

inputs
x0...xn

•Moore FSM:

Comb.
Logic

CLK
n

Registers
Comb.
Logic

D Q

present state S

n

next
state

S+

inputs
x0...xn

•Mealy FSM:

S

Comb.
Logic

CLK

Registers

Comb.
LogicD Q

n

S+

n

outputs
yk = fk(S, x0...xn)

direct combinational path!



• Moore:
• Usually more states
• Each state has a particular output

• Mealy:
• Fewer states, outputs are specified on edges of diagram
• Potential Dangers:
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Moore/Mealy Trade-Offs

Really-long combinatorial paths!

Possible cyclic logic paths
Combinatorial logic driving itself 
asynchronously through really 
hard-to-debug pathways!



FSM Examples
Time-Dependent
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FSM Example
GOAL:
• Build an electronic combination lock with a reset button, two 

number buttons (0 and 1), and an unlock output signal.  The 
combination will always be 01011.

• We will encode the lock into the state.
• Use a sliding window of the last five entries 

“0”
“1”

RESET
UNLOCK

STEPS:
1. Design lock FSM (block diagram, state transitions)
2. Write SystemVerilog module(s) for FSM
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Step 1A: Block Diagram

fsm_clock

reset

b0_in

b1_in

lock

button

button

button

Clock
generator

Button
Reset

Button
0

Button
1

fsm

unlock

rst_in

b0_in

b1_in

Unlock
Mechanism

Assume buttons are edge 
detected and synchronized
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Step 1B: State transition diagram

RESET
Unlock = 0

“0”
Unlock = 0

“01”
Unlock = 0

“01011”
Unlock = 1

“0101”
Unlock = 0

“010”
Unlock = 0

0 1

0

11

1 0
1

0

0

1
0

RESET

6 states ® 3 bits
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Step 2: Write Verilog

module lock( input wire clk,rst_in,b0_in,b1_in,
     output logic unlock_out);
  // implement state transition diagram
  logic [2:0] state,next_state;
  always_comb begin
    // combinational logic!
    next_state = ???;
  end
  always_ff @(posedge clk_in) begin 
    state <= next_state;
  end
  // generate output
  assign out = ???;
endmodule



Step 2B: state transition 
diagram
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localparam S_RESET = 0; parameter S_0 = 1; // state assignments
localparam S_01 = 2; parameter S_010 = 3;
localparam S_0101 = 4; parameter S_01011 = 5;
logic [2:0] state, next_state; //(both 3 bits wide)
always_comb begin // implement state transition diagram
  if (rst_in) next_state = S_RESET;
  else begin 
    case (state)
      S_RESET: next_state = b0_in ? S_0 : b1_in ? S_RESET : state;
      S_0: next_state = b0_in ? S_0 : b1_in ? S_01 : state;
      S_01: next_state = b0_in ? S_010 : b1_in ? S_RESET : state;
      S_010: next_state = b0_in ? S_0 : b1_in ? S_0101 : state;
      S_0101: next_state = b0_in ? S_010 : b1_in ? S_01011 : state;
      S_01011: next_state = b0_in ? S_0 : b1_in ? S_RESET : state;
      default: next_state = S_RESET; // handle unused states
    endcase
  end 
end



9/19/24 https://fpga.mit.edu/6205/F24 44

Step 2C: generate output

// it’s a Moore machine!  Output only depends on current state

assign unlock_out = (state == S_01011); // assign output: Moore machine
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Step 2: final Verilog implementation

module lock(input wire clk_in,rst_in,b0_in,b1_in,
   output logic unlock_out);
  localparam S_RESET = 0; parameter S_0 = 1; // state assignments
  localparam S_01 = 2; parameter S_010 = 3;
  localparam S_0101 = 4; parameter S_01011 = 5;
  logic [2:0] state, next_state; //(both 3 bits wide)
  always_comb begin // implement state transition diagram
    if (rst_in) next_state = S_RESET;
    else begin 
      case (state)
        S_RESET: next_state = b0_in ? S_0 : b1_in ? S_RESET : state;
        S_0: next_state = b0_in ? S_0 : b1_in ? S_01 : state;
        S_01: next_state = b0_in ? S_010 : b1_in ? S_RESET : state;
        S_010: next_state = b0_in ? S_0 : b1_in ? S_0101 : state;
        S_0101: next_state = b0_in ? S_010 : b1_in ? S_01011 : state;
        S_01011: next_state = b0_in ? S_0 : b1_in ? S_RESET : state;
        default: next_state = S_RESET; // handle unused states
      endcase
    end 
  end
  always_ff @(posedge clk) state <= next_state;
  assign unlock_out = (state == S_01011); // assign output: Moore machine
endmodule
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Real FSM Security System
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COINS ONLY

Co

Sprite

Jolt

Water

LS163

5¢10¢
25¢

30¢30¢

The 6.111 Vending Machine 
(example from circa 2000…slightly updated)

• Lab assistants demand a new soda machine for 
the 6.111 lab. You design the FSM controller.

• All selections are $0.30.

• The machine makes change. (Dimes and 
nickels only.)

• Inputs: limit 1 per clock
• Q - quarter inserted
• D - dime inserted
• N - nickel inserted

• Outputs: limit 1 per clock
• DC - dispense can
• DD - dispense dime
• DN - dispense nickel
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What States are in the System?
• A starting (idle) state:

• A state for each possible amount of money captured:

• What’s the maximum amount of money captured before purchase? 
25 cents (just shy of a purchase) + one quarter (largest coin)

• States to dispense change (one per coin dispensed):

idle

got10cgot5c got15c ...

got35c got40c got45c got50c...

got45c Dispense
Nickel

Dispense
Dime
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A Moore Vender

got10c

got5c

idle

got15c

got20c

got30c
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got45c
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DD=1

chg50
DD=1

chg45b
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chg40
DD=1

chg45
DD=1

chg35
DN=1

got25c

N=1

N=1

N=1

N=1

N=1

N=1

Q=1

Q=1

Q=1

Q=1

Q=1

D=1

D=1

D=1

D=1

D=1

D=1 *

* *

*

*

*
*

*

Here’s a first cut at the 
state transition diagram.

*
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State Reduction
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Q=1
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*
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D=1
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*

*

*
*

*

Duplicate states have:
n The same outputs, and
n The same transitions

There are two duplicates
in our original diagram.
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Verilog for the Moore Vender
States defined with 
parameter keyword

State register defined with 
sequential always block 
(always_ff)

Comb.
Logic

CLK
n

State
Register

Comb.
Logic

D Q
n

n State register
(sequential always block)

n Next-state 
combinational logic
(comb. always block with case)  

n Output combinational 
logic block
(comb. always block or assign 
statements)

So 
triggered 
on posedge 
clock

module mooreVender (
  input wire N, D, Q, clk, reset,
  output logic DC, DN, DD,
  output logic [3:0] state);
  logic [3:0] next;

  parameter IDLE = 0;
  parameter GOT_5c = 1;
  parameter GOT_10c = 2;
  parameter GOT_15c = 3;
  parameter GOT_20c = 4;
  parameter GOT_25c = 5;
  parameter GOT_30c = 6;
  parameter GOT_35c = 7;
  parameter GOT_40c = 7;
  parameter GOT_45c = 9;
  parameter GOT_50c = 10;
  parameter RETURN_20c = 11;
  parameter RETURN_15c = 12;
  parameter RETURN_10c = 13;
  parameter RETURN_5c = 14;

  always_ff @(posedge clk) begin
    if (!reset) state <= IDLE;
    else state <= next;
  end



Enums in SystemVerilog
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Same value…uh oh

module mooreVender (
  input wire N, D, Q, clk, reset,
  output logic DC, DN, DD,
  output logic [3:0] state);
  logic [3:0] next;

  parameter IDLE = 0;
  parameter GOT_5c = 1;
  parameter GOT_10c = 2;
  parameter GOT_15c = 3;
  parameter GOT_20c = 4;
  parameter GOT_25c = 5;
  parameter GOT_30c = 6;
  parameter GOT_35c = 7;
  parameter GOT_40c = 7;
  parameter GOT_45c = 9;
  parameter GOT_50c = 10;
  parameter RETURN_20c = 11;
  parameter RETURN_15c = 12;
  parameter RETURN_10c = 13;
  parameter RETURN_5c = 14;

always_ff @(posedge clk) begin
  if (!reset) state <= IDLE;
  else state <= next;
end



Enums in SystemVerilog

9/19/24 https://fpga.mit.edu/6205/F24 53

• State and next_State are now 
restricted to only be one of a 
set of values

• Vivado figures out the most 
efficient encoding

• Ensures you don’t make 
duplicates or do other stupid 
mistakes 

module mooreVender (
  input wire N, D, Q, clk, reset,
  output logic DC, DN, DD,
  output logic [3:0] state_out);

  enum {IDLE,GOT_5c,GOT_10c,GOT_15c,GOT_20c, 
        GOT_25c,GOT_35c,GOT_40c,GOT_45c,
        GOT_50c,RETURN_20c,RETURN_15c,
        RETURN_10c,RETURN_5c } state, next;
  assign state_out = state;
  always_ff @(posedge clk or negedge reset)begin
    if (!reset) state <= IDLE;
    else state <= next;
  end

typedef enum {IDLE,GOT_5c,GOT_10c,GOT_15c,GOT_20c, 
         GOT_25c,GOT_35c,GOT_40c,GOT_45c,
         GOT_50c,RETURN_20c,RETURN_15c,
         RETURN_10c,RETURN_5c } coin_state;

coin_state state, next; //instances here 
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Verilog for the 
Moore Vender

Combinational output assignment

Next-state logic within a 
combinational always block

always_comb (state or N or D or Q) begin
  case (state)
    IDLE: if (Q) next = GOT_25c;
      else if (D) next = GOT_10c;
      else if (N) next = GOT_5c;
      else next = IDLE;
    GOT_5c: if (Q) next = GOT_30c;
      else if (D) next = GOT_15c;
      else if (N) next = GOT_10c;
      else next = GOT_5c;
    GOT_10c: if (Q) next = GOT_35c;
      else if (D) next = GOT_20c;
      else if (N) next = GOT_15c;
      else next = GOT_10c;
    GOT_15c: if (Q) next = GOT_40c;
      else if (D) next = GOT_25c;
      else if (N) next = GOT_20c;
      else next = GOT_15c;
    GOT_20c: if (Q) next = GOT_45c;
      else if (D) next = GOT_30c;
      else if (N) next = GOT_25c;
      else next = GOT_20c;
    GOT_25c: if (Q) next = GOT_50c;
      else if (D) next = GOT_35c;
      else if (N) next = GOT_30c;
      else next = GOT_25c;
    GOT_30c: next = IDLE;
    GOT_35c: next = RETURN_5c;
    GOT_40c: next = RETURN_10c;
    GOT_45c: next = RETURN_15c;
    GOT_50c: next = RETURN_20c;
    RETURN_20c: next = RETURN_10c;
    RETURN_15c: next = RETURN_5c;
    RETURN_10c: next = IDLE;
    RETURN_5c: next = IDLE;
    default: next = IDLE;
  endcase
end 

assign DC = (state == GOT_30c || 
             state == GOT_35c ||
             state == GOT_40c || 
             state == GOT_45c || 
             state == GOT_50c);
assign DN = (state == RETURN_5c);
assign DD = (state == RETURN_20c || 
             state == RETURN_15c || 
             state == RETURN_10c);
endmodule
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State

Output

Simulation of Moore Vender

idle got5c
got15c

got20c
got45c

C

rtn15

10¢

rtn5

5¢

idle
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FSM Output Glitching

got10c

got20c

D=1

0010

0100

0110

during this state 
transition...

...the state registers may 
transtion like this...

...causing the DC 
output to glitch 

like this!

n FSM state bits may not transition at precisely the same time
n Combinational logic for outputs may contain hazards/glitches 
n Result: your FSM outputs may glitch!

got10c

got20c

got30c

0

0

1

If the soda dispenser is glitch-sensitive, your customers can get a 20-cent soda!

glitch

assign DC = (state == GOT_30c || 
             state == GOT_35c ||
             state == GOT_40c || 
             state == GOT_45c || 
             state == GOT_50c);



One way to fix Glitches:
• Don’t have to have state 3 (3’b011) go into state 4 (3’b100).  Use different state 

naming/use different numbers!!!

• Perhaps a Gray code (??):
• Count up like: 000, 001, 011, 010, 110, 111, 101, 100, …
• Have the really important/glitch-sensitive states only require 

transitions of one bit
• One-hot encoding:

• Johnson encoding:
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A rose by any other name would smell as sweet

001

010

011

Going from this

To this

Probably OK if it lands here 
temporarily in a glitch since ideally 
nothing will respond to this, but 
that depends on your logic

000
100
110
111
011
001
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Another Solution: 
Registered FSM Outputs are Glitch-Free

n

inputs
Next-
State

Comb.
Logic CLK

Output
Comb.
Logic

present state S

n

next
state

CLK

Output
Registers

D Q

State
Registers

D Q

registered 
outputs

n Move output generation into 
the sequential always block

n Calculate outputs based on 
next state

n Delays outputs by one clock 
cycle. Problematic in some 
application.

Note this is inside an edged always with non-blocking assigns!
This will synthesize to registered outputs!

always_ff @(posedge clk) begin
  if (!reset) state <= IDLE;
  else if (clk) state <= next;
    DC <= (next == GOT_30c || next == GOT_35c ||
           next == GOT_40c || next == GOT_45c || 
           next == GOT_50c);
    DN <= (next == RETURN_5c);
    DD <= (next == RETURN_20c || next == RETURN_15c || 
           next == RETURN_10c);
end



Encoding with Enums?
• Generally in SystemVerilog, an enum, unless specified will 

be 0, 1, 2, 3, etc…

• When synthesizing, Vivado may decide on a different 
encoding, however!
• May or may not be what you want! Or you want a 

particular encoding
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enum {IDLE,GOT_5c,GOT_10c,GOT_15c,GOT_20c, 
      GOT_25c,GOT_35c,GOT_40c,GOT_45c,
      GOT_50c,RETURN_20c,RETURN_15c,
      RETURN_10c,RETURN_5c } state, next;

typedef enum {IDLE,GOT_5c,GOT_10c,GOT_15c,GOT_20c, 
              GOT_25c,GOT_35c,GOT_40c,GOT_45c,
              GOT_50c,RETURN_20c,RETURN_15c,
              RETURN_10c,RETURN_5c } state_enc_T;

state_enc_T state, next;



Encoding in Enums?
• If want one-hot do:

• Can also do specify sequential, johnson, gray 
encoding, etc… or you can specify your own if you 
have a good idea:
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typedef enum {IDLE,GOT_5c,GOT_10c,GOT_15c,GOT_20c, 
              GOT_25c,GOT_35c,GOT_40c,GOT_45c,
              GOT_50c,RETURN_20c,RETURN_15c,
              RETURN_10c,RETURN_5c } state_enc_T;

(* fsm_encoding ="one_hot" *) state_enc_T state, next;



Division (an example of an algorithm that 
takes an unknown amount of time)
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Super efficient divider \s

def divider (dividend, divisor):
  count = 0
  if divisor==0:
    return -1
  while dividend>=divisor:
    dividend -= divisor
    count += 1
  return (count, dividend)



A Divider
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• This is a Verilog FSM example of the algorithm 
on the previous page which will run an 
unknown number of times given a set of 
inputs 

• This is how the functionality of a while loop 
could be developed in your modules

• Will not handle negative, or 0 or other things…

Code on the site’s lecture page


