
6.205
Sequential Logic II:

Sequential Logic Timing
Intro to Finite State Machines

9/18/24 https://fpga.mit.edu/6205/F24 1

Administrative

• Week 02’s content is due tomorrow

• Week 03’s comes out on Thursday

9/18/24 https://fpga.mit.edu/6205/F24 2

Think Like a Hardware Engineer
• Many programming constructs/patterns are done

to help you, the person, rather than reflect the
underlying hardware design

• Part of becoming a good hardware-focused
engineer is learning how to give the machine what
it wants.

• For example…object oriented programming. Who is
that really for?

9/18/24 https://fpga.mit.edu/6205/F24 3

9/18/24 https://fpga.mit.edu/6205/F24 4

Consider this task: Data Deserializer
• Single bits come in lsb-first* one after the other on a clock.
• Module assembles them into 8-bit bytes and sends them out

9/18/24 https://fpga.mit.edu/6205/F24 5

mc

8
data_out

data_valid_out

bits_in

data_clock

106

*in SPI in lab, data is transferred msb first

The solution must obviously
involve an Indexable array
• What are you assuming?
• What functionality/capability can be stripped

away?
• Are you doing what you’re doing…

• for you? (not right answer)
• or the FPGA? (right answer)

9/18/24 https://fpga.mit.edu/6205/F24 6

So ugh…

• Oh but I gotta take care of wrap-around

9/18/24 https://fpga.mit.edu/6205/F24 7

logic [7:0] buffer;
logic [2:0] buffer_ind;
always_ff @(posedge clk)begin
 buffer[buffer_ind] <= bit_in;
 buffer_ind <= buffer_in +1;
end

logic [7:0] buffer;
logic [2:0] buffer_ind;
always_ff @(posedge clk)begin
 buffer[buffer_ind] <= bit_in;
 if (buffer_ind > BUFFER_LIMIT)begin
 buffer_ind <= 0;
 end else begin
 buffer_ind <= buffer_in +1;
 end
end

• Oh but it backwards logic [7:0] buffer;
logic [2:0] buffer_ind;
always_ff @(posedge clk)begin
 buffer[7-buffer_ind] <= bit_in;
 if (buffer_ind > BUFFER_LIMIT)begin
 buffer_ind <= 0;
 end else begin
 buffer_ind <= buffer_in +1;
 end
end

6 hours later…

• You’ve gotten this gross functionality working but it
may not be beneficial for the problem at hand.

9/18/24 https://fpga.mit.edu/6205/F24 8

What do indexable arrays give us?

• “Random” Access to an array (in other words, at
any point in time I can access/modify any element
of the array)
• As we’ll see, large-scale Randomly accessible

memory is a burden. You do not want to use it
unless you need to!

• Do we need that here?

9/18/24 https://fpga.mit.edu/6205/F24 9

Reconsider this task: Data Deserializer
• The bits are coming in in order of lsb-first
• They’re only ever going to go in one place, and we’ll use them in

order they come in….we don’t need array access.

9/18/24 https://fpga.mit.edu/6205/F24 10

mc

8
data_out

data_valid_out

bits_in

data_clock

106

Make a queue or fifo-like
structure
• Just push the data in as it comes in

9/18/24 https://fpga.mit.edu/6205/F24 11

logic [7:0] buffer;
always_ff @(posedge clk)begin
 buffer <= {buffer[6:0], bit_in};
end

• Oh is that backwards? No biggie…

logic [7:0] buffer;
always_ff @(posedge clk)begin
 buffer <= {bit_in, buffer[7:1]};
end

“SHIFT BUFFER”….a simple FIFO for bits!

We should also not mistake short
verilog for “good” verilog

9/18/24 https://fpga.mit.edu/6205/F24 12

/ and %

• We’ve done nothing in this class so far that needs
these two operators.
• In the land of digital design, / and % should be

avoided at all costs until they are absolutely
needed.
• They are extremely expensive operations to

perform
• We’ll see how expensive they are in future lectures and

labs.

• No need to use these for a cycle counter

9/18/24 https://fpga.mit.edu/6205/F24 13

The Cycle Counter from Lab 01
• Build a thing that starts at zero and counts up to a

number, then goes back to 0.
• Every clock cycle you are asking this thing to

perform 32 bit integer division and find the
remainder….that is a monumental task to just
count a number and wrap it around

9/18/24 https://fpga.mit.edu/6205/F24 14

module counter(input wire clk_in,
 input wire [31:0] period_in,
 output logic [31:0] count_out
);
 always_ff @(posedge clk_in)begin
 count_out <= (count_out+1) % period_in ;
 end
endmodule

Simpler, Cheaper

• A 32 bit add, a 32 bit compare, an if/else

9/18/24 https://fpga.mit.edu/6205/F24 15

module counter(input wire clk_in,
 input wire [31:0] period_in,
 output logic [31:0] count_out
);
 always_ff @(posedge clk_in)begin
 if (count_out+1 == period_in)begin
 count_out <= 0;
 end else begin
 count_out <= count_out + 1;
 end
 end
endmodule

Now in some cases…
• The tools may be able to optimize an atrocious line

like this one for you, but that can depend on things
it knows…and it doesn’t know all the stuff you
know.

9/18/24 https://fpga.mit.edu/6205/F24 16

module counter(input wire clk_in,
 input wire [31:0] period_in,
 output logic [31:0] count_out
);
 always_ff @(posedge clk_in)begin
 count_out <= (count_out+1) % period_in ;
 end
endmodule

The tool doesn’t really know that count_out will never be greater than period_in…it
will likely synthesize a device that can do % for all possible count_out start values.

And at the very least…

• The closer your Verilog matches what should get
built, the less you’re asking of the tool.
• Tools will always let you down so you want to rely

on them as little as possible.

9/18/24 https://fpga.mit.edu/6205/F24 17

Simulation vs. Reality

• / and % may work in simulation, but likely not in
real life.
• Be aware of that.
• You can compute pi to 1000 digits “instantaneously

in simulation”…that does not mean it can be done
in real life

9/18/24 https://fpga.mit.edu/6205/F24 18

Asynchronous vs. synchronous
reset

• There’s very little reason to have an asynchronous
reset in our class, especially right now

9/18/24 https://fpga.mit.edu/6205/F24 19

module thing(input wire clk_in,
 input wire rst_in,
);
 always_ff @(posedge clk_in || posedge rst_in)begin
 if (rst_in)begin
 //reset stuff
 end else begin
 //do normal stuff
 end
 end
endmodule

Asynchronous vs. synchronous
reset

• Just have the flip flop sensitivity list be the positive
edge of the clock

9/18/24 https://fpga.mit.edu/6205/F24 20

module thing(input wire clk_in,
 input wire rst_in,
);
 always_ff @(posedge clk_in)begin
 if (rst_in)begin
 //reset stuff
 end else begin
 //do normal stuff
 end
 end
endmodule

Only thing clocking a Flip Flop
should be our high speed clock
• Do not have numerous sequential numerous blocks

all being clocked by different signals

9/18/24 https://fpga.mit.edu/6205/F24 21

always_ff @(posedge a)begin
 //stuff
end
always_ff @(posedge b)begin
 //other stuff
end
always_ff @(posedge c)begin
 //other other stuff
end

HORRIBLE, BAD, DO NOT DO

Can make simulations mismatch reality
Can make designs not meet timing and fail
Will be cludge code that will hurt you

always_ff @(posedge clk)begin
 if (a)begin
 //stuff
 end else if (b) begin
 //other stuff
 end else if (c) begin
 //other other stuff
 end
end

INSTEAD DO

Reliable Design Practice
Simulations more likely to match reality
Timing easier to meet

Or if you really need things to happen
on the “edge” of a non-clock signal…
• Remember old signal values and compare

9/18/24 https://fpga.mit.edu/6205/F24 22

always_ff @(posedge clk)begin
 old_a <= a;
 old_b <= b;
 old_c <= c;
 if (a && !old_a)begin //on the rising edge of a
 //stuff
 end else if (b && !old_b)begin //on the rising edge of b
 //other stuff
 end else if (c && !old_c) begin //on the rising edge of c
 //other other stuff
 end
end

Clocks are Special

• Clock signals get special treatment inside the FPGA
• Get to priority routing, go down special “clock

lines” to minimize skew (future class)
• Making lots of signals “clocks” can cause

congestion and the entire design to fail

9/18/24 https://fpga.mit.edu/6205/F24 23

Sequential Logic

9/18/24 https://fpga.mit.edu/6205/F24 24

Registers, Latches, and Flip-Flops

9/18/24 https://fpga.mit.edu/6205/F24 25

D Q

E

D Q

E

D Q

CLK

D Q

Edge-Triggered Sample-and-Hold Device Level-Triggered Sample-and-Hold Device

D Flip-Flop D Latch

• The terminology is a mess for historical reasons and just people in
general, including myself. Here’s one interpretation:

• A “register” is something that holds a value. Flip-flops and Latches
are registers

• Further confusing the situation, people, including myself, often
use “register” or “reg” to just refer to flip-flops

“store D when clk rises” “store D when E is high”

Use a lot! Won’t use as much

D Flip-Flop Registers Give Us A Few
Critical Capabilities
• We can store values for later use (simple memory)
• We can sample values at precise times

• A rising edge is as close to a delta-function like event as
we can get

• We can design in stages:
• Allow us to non-destructively limit signal propagation

which prevents:
• Combinational loops (last week)
• Glitches (today)

9/18/24 https://fpga.mit.edu/6205/F24 26

All Electronics are Non-Ideal
• Inherent to the logic is the need to charge and/or

discharge parasitic capacitances and inductances
through non-0 value resistances
• As 8.02, or 6.200/6.002 will have shown, this has

an inherent time constant involved with it
• …meaning a finite time at which it will respond

given a change
• Obviously we don’t want this, but we didn’t want

Coronavirus either. What are you going to do? So it
goes

9/18/24 https://fpga.mit.edu/6205/F24 27

9/18/24 https://fpga.mit.edu/6205/F24 28

vOUT

vIN

VOL

VOH

VIL

VIH

time

timechange

change

• Inputs change outputs…but takes time

When one digital circuit drives another
digital circuit

The more complex/more
layers/the more delay you’ll get

9/18/24 https://fpga.mit.edu/6205/F24 29

…

• Each individual ”stage” needs to charge up/down
before it can influence the next stage.
• Very complicated/deep logic will take time

It’ll take time to transition
• Response of a function will take time (and energy)
• So if we move around on a truth table it can’t be

instantaneous

9/18/24 https://fpga.mit.edu/6205/F24 30

If you’re here on the truth table

c b a y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

And transition to here

c b a y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

How
much
time?

Digital Delays
• For a given digital device, we need to quantify the

delay
• Utilize two different numbers:
• For a given change at the inputs to a digital system:

• Contamination Delay (𝒕𝒄𝒅): How long before the system
will start to respond at its output?

• Propagation Delay (𝒕𝒑𝒅): How long until we can be sure
the system has updated to new value (stabilized)?

9/18/24 https://fpga.mit.edu/6205/F24 31

The Combinational Contract

9/18/24 https://fpga.mit.edu/6205/F24 32

A B
A B
0 1
1 0

tPD propagation delay
tCD contamination delay

A

B

Must be ___________

Must be ___________

Note:
 1. No Promises during
 2. Default (conservative) spec: tCD = 0

< tPD

> tCD

Worst Case:

9/18/24 https://fpga.mit.edu/6205/F24 33

Propagation delay (tPD): An upper bound on the delay
from valid inputs to valid
outputs

Design goal:
 minimize
 propagation
 delay

VOUT < tPD< tPD

VIN

VOL

VOH

VIL

VIH

NOT Gate
Demo:

Best Case:

9/18/24 https://fpga.mit.edu/6205/F24 34

VOUT > tCD> tCD

VIN

VOL

VOH

VIL

VIH

Do we really need tCD?

Usually not… itʼll be
important when we
design circuits with
registers (coming
next!)

If tCD is not specified,
safe to assume itʼs 0.

Contamination delay(tCD): A lower bound on the delay from
invalid inputs to invalid outputs

NOT Gate
Demo:

Review: Example System
• Let’s assume:

• ma has tpd = 3ns
• mb has tpd = 1ns
• mc has tpd = 2ns
• md has tpd = 5ns
• All four modules have tcd = 0ns

• What is:
• i_0 to o_1 tpd?
• i_1 to o_1 tpd?
• tcd of system?
• Critical Path of the system and tpd?

9/18/24 https://fpga.mit.edu/6205/F24 35

mb
i_1

i_0 ma

mc

md
o_1

10 ns
7 ns
0 ns
maàmcàmdà 10ns

Timing Diagram
• The tpd on any stage/module can’t start being used

until all inputs to it are set/stable:

9/18/24 https://fpga.mit.edu/6205/F24 36

i_0 and i_1
change

ma output:

mb output:

mc output:

md output:

time

???

???

???

set

set

set

??? set

1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns 10ns

tpdma

tpdmb

tpdmc

tpdmd

Timing Diagram
• Additionally: the “unknown” periods for

subsequent outputs are quite large

9/18/24 https://fpga.mit.edu/6205/F24 37

i_0 and i_1
change

ma output:

mb output:

mc output:

md output:

time

???

???

???

set

set

set

??? set

1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns 10ns

tpdma

tpdmb

tpdmc

tpdmd

???

???

???

Downstream outputs can be undefined for long time!
Undefined things still take on values

From the Outside

• If all you see is o_1 how can you actually determine
what is valid and what isn’t?
• Is that 1’b1 on o_1 valid or invalid? Who knows?
• Unless you know when you put in values and know the

total tpd of system very hard to discern what is good
and what isn’t.

9/18/24 https://fpga.mit.edu/6205/F24 38

???????
??????

Another Way to Look At Problem
• You have a system, takes in two numbers, a_in and

b_in and produces an output.
• System calculates square root of a_in and then

adds b_in to it

9/18/24 https://fpga.mit.edu/6205/F24 39

sqre rooter

b_in

a_in +
output

32

32

tpd =150ns
tpd =6ns

32
32

Until tpd=150ns passes, what shows up here is invalid

This module will keep
adding though!

(Notation to
say it is 32
bit-wide bus)

b_in needs to be held a long
time. If you change it too
soon the processed a_in
won’t have appeared yet!

Another Problem (being a real downer today, I know…)

• Consider simple addition in binary (or any base):

9/18/24 https://fpga.mit.edu/6205/F24 40

10110
+00011

10

1

0

1

11

22
+ 3

 25

Math checks out:

• Notice how we need to calculate the lower digits
first before we calculate the upper digits?
• Uh Oh…

Timing Diagram of Add
• Lots of invalids before the valid add!

9/18/24 https://fpga.mit.edu/6205/F24 41

New numbers
Inputted

5‘b10110
5‘b00011

adder output:

time

00110

1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns 10ns

tpd_full_add

00111 00101 00001 01001 11001

tpd_full_add tpd_full_add tpd_full_add tpd_full_add

What if we then had this circuit?

9/18/24 https://fpga.mit.edu/6205/F24 42

+
i_1

i_0

0

1
Adder from
previous page

Uhoh :/

val_in

destroy_world_out

module grand_deity (input wire [4:0] val_in,
 output logic destroy_world_out);

 assign destroy_world_out = val_in == 5'b00101;

endmodule

Combinational Glitches!
• Combinational glitches arise when outputs

transition through unintended outputs in response
to transitioning inputs
• Caused by differences in overall OR internal delays

of logic

9/18/24 https://fpga.mit.edu/6205/F24 43

a_in b_out

0 1

1 1

System should always have 1 as output, but during transitions from
0 à 1 or 1à0, b_out will glitch to 0.

a_in
b_out

XORNOT
0 1

0
1

1
1

0

0

1

Glitches Will Happen
• Inherent with complex and DEEP combinational

logic!
• Perform calculations on irrelevant information

• Waste energy
• Very hard to debug

• Extremely difficult to design with reliably at scale
• Too many related time constants
• Too many invalid values

• Our only hope is to encode our data in glitch-
minimizing ways and limit the range that
combinational glitches can propagate (next up)

9/18/24 https://fpga.mit.edu/6205/F24 44

Delays • In modern digital devices the modules work
so fast that their tpd and tcd are not the only
concern…

9/18/24 https://fpga.mit.edu/6205/F24 45

mb
i_1

i_0 ma

mc

md
o_1

Interconnects can have as much or
more delay than elements

• Vivado will calculate delays for us (we will use it)
• But still have combinational issues! (glitches), various

propagation delays!

Glitches can be hard to find
• Let’s say tpd = 1ns (conservative)
• Human is the consumer
• You push the button…

• System stabilizes before the photons emitted from the
LEDs have even reached your eye

• Human eye can only detect up to ~0.01s
phenomena...lol 6 or 7 orders of magnitude difference

• Basically we can’t appreciate the glitches…but they
can be there.

9/18/24 https://fpga.mit.edu/6205/F24 46

So How to Fix this?
• Every combinational circuit has delays regarding how slowly (or

quickly) its outputs change in response to inputs, and this varies
based on design/complexity
• tcd minimum time input takes to start to change output
• tpd maximum time input takes to finish changing output

9/18/24 https://fpga.mit.edu/6205/F24 47

Logic 1
(NOT gate)

Logic 2
(NOT gate)

Logic 3
(XOR gate)

tpd=2 ns

tpd=1 ns

Input

tpd=1 ns

Input

Logic 1

Logic 2

Logic 3

Glitch
Temporary solution based on differential delays

SV

9/18/24 https://fpga.mit.edu/6205/F24 48

Previous page:

logic inputt, outputt;
logic o1, o2, o3;
//assume modules are combinational:
not_gate_a nga(.val_in(inputt), .val_out(o1));
not_gate_b ngb(.val_in(inputt)), .val_out(o2));
xor_gate xg (.vala_in(o1), .valb_in(o2), val_out(o3));

assign outputt = o3;

This is How We Fix This
• Registers let us isolate/limit signal propagation and

synchronize stages

9/18/24 https://fpga.mit.edu/6205/F24 49

CLK is a synchronization signal

Logic 1
(NOT gate)

Logic 2
(NOT gate)

Logic 3
(XOR gate)

tpd=2 ns

Edge-triggered
D reg 1

Input

tpd=1 ns

tpd=1 ns

Edge-triggered
D reg 2

CLK

OUT

tpd is propagation delay (how long
input takes to show up at output)

Solution 1
• Balance output

9/18/24 https://fpga.mit.edu/6205/F24 50

Input

Logic 1

Logic 2

OUT: Logic 3

time

CLK

D reg 1

D reg 2

Previous page:

Intermediate glitches
are minimized and
suppressed in output

All good…sort of

Combinational Logic At Output
• There still could be slight differences in register to

XOR routing

9/18/24 https://fpga.mit.edu/6205/F24 51

Input

Logic 1

Logic 2

OUT: Logic 3

time

CLK

D reg 1

D reg 2

Previous page:

Intermediate glitches
are minimized and
suppressed in output

Intermediate glitch

SV

9/18/24 https://fpga.mit.edu/6205/F24 52

Previous page:

logic inputt, outputt;
logic o1, o2, o3;
logic o1r, o2r;

not_gate_a nga(.val_in(inputt), .val_out(o1));
not_gate_b ngb(.val_in(inputt)), .val_out(o2));

always_ff@(posedge clk_in)begin
 o1r <= o1;
 o2r <= o2;
end

xor_gate xg (.vala_in(o1r), .valb_in(o2r), val_out(o3));

assign outputt = o3;

This is How We Fix This
• Registers let us isolate/limit signal propagation and

synchronize stages

9/18/24 https://fpga.mit.edu/6205/F24 53

CLK is a synchronization signal

Logic 1
(NOT gate)

Logic 2
(NOT gate)

Logic 3
(XOR gate)

tpd=2 ns

Input

tpd=1 ns

tpd=1 ns

CLK

OUT

Edge-triggered
D reg 3

tpd is propagation delay (how long
input takes to show up at output)

Remember about Delays in Logic
• Registers let us isolate/limit signal propagation and

synchronize stages

9/18/24 https://fpga.mit.edu/6205/F24 54

Input

Logic 1

Logic 2

Logic 3

time

CLK

OUT: D reg 3

Previous page:

Intermediate glitches
are minimized and
suppressed in output

Intermediate glitch

Intermediate Glitches
• Even though that glitch is now internal, the fact

that it happens means the XOR is now cycling for
no reason…

9/18/24 https://fpga.mit.edu/6205/F24 55

Input

Logic 1

Logic 2

Logic 3

time

CLK

OUT: D reg 3

Previous page:

May not be happy with
having large internal
logic needlessly flipping
bits for no reason

Intermediate glitch

SV

9/18/24 https://fpga.mit.edu/6205/F24 56

Previous page:

logic inputt, outputt;
logic o1, o2, o3;

not_gate_a nga(.val_in(inputt), .val_out(o1));
not_gate_b ngb(.val_in(inputt)), .val_out(o2));
xor_gate xg (.vala_in(o1), .valb_in(o2), val_out(o3));

always_ff@(posedge clk_in)begin
 outputt <= o3;
end

Add more
• Registers let us isolate/limit signal propagation and

synchronize stages

9/18/24 https://fpga.mit.edu/6205/F24 57

CLK is a synchronization signal

Logic 1
(NOT gate)

Logic 2
(NOT gate)

Logic 3
(XOR gate)

tpd=2 ns

Edge-triggered
D reg 1

Input

tpd=1 ns

tpd=1 ns

Edge-triggered
D reg 2

CLK

OUT

Edge-triggered
D reg 3

tpd is propagation delay (how long
input takes to show up at output)

Remember about Delays in Logic
• Registers let us isolate/limit signal propagation and

synchronize stages

9/18/24 https://fpga.mit.edu/6205/F24 58

Input

Logic 1

Logic 2

Logic 3

time

CLK

D reg 1

D reg 2

D reg 3

Previous page:

Intermediate glitches
are minimized and
suppressed in output

Intermediate glitch

SV

9/18/24 https://fpga.mit.edu/6205/F24 59

Previous page:

logic inputt, outputt;
logic o1, o2, o3;
logic o1r, o2r;

not_gate_a nga(.val_in(inputt), .val_out(o1));
not_gate_b ngb(.val_in(inputt)), .val_out(o2));

always_ff@(posedge clk_in)begin
 o1r <= o1;
 o2r <= o2;
 output <= o3;
end

xor_gate xg (.vala_in(o1r), .valb_in(o2r), val_out(o3));

Tradeoff for all this “protection”?

• More resources
• More latency

9/18/24 https://fpga.mit.edu/6205/F24 60

Design Complex Logic In Stages!

9/18/24 https://fpga.mit.edu/6205/F24 61

logic 2D Q D Q

CLK

reg1 reg3

D Q
reg2

logic 1

logic 3

logic 4 D Q
reg4

logic 5

• D flip-flops regulate signal propagation!
• Design complex logic systems in stages
• Worry only about affects of delays (tpd and tcd) and

glitches within a given stage, rather than how they
all interplay!

Is that All there is To It?

• No. No there’s not

• Let’s return to how Latches and Flip Flops actually
work

9/18/24 https://fpga.mit.edu/6205/F24 62

The D Latch

9/18/24 https://fpga.mit.edu/6205/F24 63

• Made of gates (which are made of
transistors, which are made of
sand(currently))

• Something different though…what is
it?

https://www.allaboutcircuits.com/textbook/digital/chpt-10/d-latch/

“latch” means it
holds whatever
value was already
present…basically:
“Previous Q”

E = “Enable” D = “Data” Q = not sure,
but it is the
output

https://www.allaboutcircuits.com/textbook/digital/chpt-10/d-latch/

The D Latch Provides Memory!

1. Set E=1
2. Set your D value
3. Set E=0
4. Whatever D was is

stored at Q forever
until E is 1 again!

5. Can we do
better/different?

9/18/24 https://fpga.mit.edu/6205/F24 64

E = “Enable” D = “Data” Q = not sure,
but it is the
output

The D Flip-Flop (Reg)

9/18/24 https://fpga.mit.edu/6205/F24 65

CLK

Enabled

!EnabledLOW

Data propagates through first D Latch

Two D-Latches in Series driven
with opposite enable signals

CLK LINE is LOW

The D Flip-Flop (Reg)

9/18/24 https://fpga.mit.edu/6205/F24 66

CLK

!Enabled

EnabledHIGH

Data propagates through to output

Two D-Latches in Series driven
with opposite enable signals

CLK LINE rises to HIGH

Data at Q after clk rises
is data at D slightly
before clk rises

The Result: the D Flip-Flop

9/18/24 https://fpga.mit.edu/6205/F24 67

• The edge-triggered D register:
on the rising edge of CLK, the
value of D is saved in the
register and then appears
shortly afterward on Q.

D Q

CLK

D Q

D

CLK

Q

When you simplify some common/redundant logic
between the two stages, you get to about ~25 transistors

Example: 74LS74 internals

D-Register Timing 1

9/18/24 https://fpga.mit.edu/6205/F24 68

CLK

D

Q

≤tPD

≥tCD

≥tSETUP ≥tHOLD

tPD: maximum propagation delay, @posedge CLK D ®Q
 Maximum time it takes for Q to change after rising edge of CLK

tCD: minimum contamination delay, @posedge CLK D ®Q
 Minimum time it takes for Q to start to change after rising edge of CLK
tSETUP: setup time

How long D must be stable before the rising edge of CLK
tHOLD: hold time

How long D must be stable after the rising edge of CLK

IMPORTANT:

New timing attributes
for registers

=undetermined state

Register-to-Register Timing

9/18/24 https://fpga.mit.edu/6205/F24 69

time

CLK

D Q

CLK

logicFrom
somewhere

reg 1

D Q

reg 2
To somewheresig1 sig2

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

≥tHOLD,reg2

9/18/24 https://fpga.mit.edu/6205/F24 70

time

CLK

sig1

sig2

tCLK

tCD,reg1

tPD,reg1

=undetermined state

=determined state

tCD,logic

tPD,logic

≥tSETUP,reg2

Register-to-Register Timing

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2

≥tHOLD,reg2

Two Requirements/
Conclusions:

D Register Timing Conclusions

9/18/24 https://fpga.mit.edu/6205/F24 71

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCD,reg1 + tCD,logic ≥ tHOLD,reg2

We may/will encounter this in 6.205!
If we try to make our combinational
logic tooooo complex and we won’t
satisfying timing. How do we fix?
Two options:

If you violate this, you have to change your design.
This is more an issue for the device engineers…on
our FPGAs the contamination delays (min change
times) are usually longer than HOLD times, so it is
hard for us to run into this problem in 6.205 (though
it is a very real problem for people laying out
circuits)

tPD,reg , tSETUP,reg , tCD,reg, tHOLD,reg , and t*CD,logic are all roughly fixed/
unchangeable

↑tCLK

↓ tPD,logic
6.205 Design Space:

Slow down clock:

Chop up combinational logic:

Design Complex Logic In Stages!

9/18/24 https://fpga.mit.edu/6205/F24 72

logic 2D Q D Q

CLK

reg1 reg3

D Q
reg2

logic 1

logic 3

logic 4 D Q
reg4

logic 5

• Design complex logic systems in stages
• Worry only about effects of delays (tpd and tclk)

within a given stage, rather than how they all
interplay!

Single Clock Synchronous Discipline

• The timing requirements are already complicated
enough with one clock. Avoid multiple clocks at all cost!
DO NOT clock flip flops on non-clock lines.
• Single Clock signal shared among all clocked devices

(one clock domain)
• Only care about the value of combinational circuits just

before rising edge of clock
• Clock period greater than every combinational delay
• Change saved state after noise-inducing logic changes

have stopped!

9/18/24 https://fpga.mit.edu/6205/F24 73

Sequential Circuit Timing

9/18/24 https://fpga.mit.edu/6205/F24 74

Combinational
Logic

Current
State

New
State

CLK

Input
Output

tCD,Reg = 1ns
tPD,Reg = 3ns

tSETUP,Reg = 2ns
tHOLD,Reg = 2ns

CLOCK

Questions:

• Minimum clock period?

• Constraints on tCD,L ?

• Setup, Hold times for System Input?
> 1 ns

> 10 ns (tPD,R+tPD,L+ tSETUP,R)

tSETUP,Input = tPD,L +tSETUP,R = 7ns
tHOLD,Input = tHOLD,R -tCD,L so maybe 1ns

This is a simple Finite State Machine (next lecture)

tCD,L = ?
tPD,L = 5ns

Assume input is also coming
from a clocked system

Minimum Clock Period?

9/18/24 https://fpga.mit.edu/6205/F24 75

Combinational
Logic

Current
State

New
State

CLK

Input
Output

tCD,Reg = 1ns
tPD,Reg = 3ns

tSETUP,Reg = 2ns
tHOLD,Reg = 2ns

CLOCK
tCD,L = ?

tPD,L = 5ns

Assume input is also coming
from a clocked system

tPD,reg1 + tPD,logic ≤ tCLK - tSETUP,reg2

1. Rising Clock Edge Shows up…
2. It is tPD,Reg = 3ns until flop has finalized changing
3. It is then additional tPD,L = 5ns until logic has finalized changing and starts sending

data back to flop
4. That change must be done at least tSETUP,Reg = 2ns before the next rising clock edge

After 3 ns

After 5 ns

rising

3ns+ 5ns ≤ tCLK – 2ns
10ns ≤ tCLK

tCD,L Constraints?

9/18/24 https://fpga.mit.edu/6205/F24 76

Combinational
Logic

Current
State

New
State

CLK

Input
Output

tCD,Reg = 1ns
tPD,Reg = 3ns

tSETUP,Reg = 2ns
tHOLD,Reg = 2ns

CLOCK
tCD,L = ?

tPD,L = 5ns

Assume input is also coming
from a clocked system

tCD,reg1 + tCD,logic ≥ tHOLD,reg2

1. Rising Clock Edge Shows up…
2. It is tCD,Reg = 1ns until flop output starts changing
3. It is then additional tCD,L = ? Until feedback wire starts changing
4. That change cannot be happening until at least tHOLD,Reg = 2ns has passed from

clock edge

After 1 ns

After ? ns

rising

1ns+ tCD,logic ≥ 2ns
tCD,logic ≥ 1ns

Setup Time for Inputs of Whole System?

9/18/24 https://fpga.mit.edu/6205/F24 77

Combinational
Logic

Current
State

New
State

CLK

Input
Output

tCD,Reg = 1ns
tPD,Reg = 3ns

tSETUP,Reg = 2ns
tHOLD,Reg = 2ns

CLOCK
tCD,L = ?

tPD,L = 5ns

tSETUP,input ≥ tSETUP,reg + tPD,L

1. Input signal comes in
2. It is tPD,L = 5ns until comb logic has processed it and it is fed back…
3. That change must be done at least tSETUP,Reg = 2ns before the next rising clock

edge

After 5 ns

rising

tSETUP,input ≥ 2ns+ 5ns

tSETUP,input = 7ns

Hold Time for System Input?

9/18/24 https://fpga.mit.edu/6205/F24 78

Combinational
Logic

Current
State

New
State

CLK

Input
Output

tCD,Reg = 1ns
tPD,Reg = 3ns

tSETUP,Reg = 2ns
tHOLD,Reg = 2ns

CLOCK
tCD,L = ?

tPD,L = 5ns

tHOLD,input + tCD,L ≥ tHOLD,reg

1. Clock rises
2. Input signal comes in
3. It is additional tCD,L = 1ns until comb logic starts to feed back…
4. That change must be done at least tHOLD,Reg = 2ns after the prior rising clock edge

After 1 ns

rising

tHOLD,input + 1ns ≥ 2ns
tHOLD,input ≥ 1ns

Sequential Circuit Timing

9/18/24 https://fpga.mit.edu/6205/F24 79

Combinational
Logic

Current
State

New
State

CLK

Input
Output

tCD,Reg = 1ns
tPD,Reg = 3ns

tSETUP,Reg = 2ns
tHOLD,Reg = 2ns

CLOCK

Questions:

• Minimum clock period?

• Constraints on tCD,L ?

• Setup, Hold times for Inputs?

> 1 ns

> 10 ns (tPD,R+tPD,L+ tSETUP,R)

tSETUP,Input = tPD,L +tSETUP,R = 7ns
tHOLD,Input = tHOLD,R -tCD,L so maybe 1ns

This is a simple Finite State Machine …

tCD,L = ?
tPD,L = 5ns

Assume input is also coming
from a clocked system

