
6.205
(aka 6.111)

Sequential Logic I

Fall 2024
September 12, 2024 https://fpga.mit.edu/6205/F24 L01-1

Administrative

§ Week 01 Due Last Night
§ Week 02 Out After Class…due next Wednesday

September 12, 2024 https://fpga.mit.edu/6205/F24 L03-2

The Third Way (Oboe)

§ In addition to GTKWave and Surfer, there’s a MIT-
based startup doing some EDA tool development
that has offered to let us try/test out some of their
tools.

§ One that is relevant for 6.205 is an online
waveform viewer.

§ I’ve updated the documentation on the waveform
page about this tool.

§ Tool is called called Oboe:
§ Site is here: https://digital.oboe.ai
§ Google Docs instructions are here:

https://docs.google.com/document/d/15R-8Jdouyi_TnCMoiqlFLgkRkacpWUujNlQElTLM0QI/edit

L03-3September 12, 2024 https://fpga.mit.edu/6205/F24

https://digital.oboe.ai/

Values in Verilog

§ There are four different values in SystemVerilog:
§ 0: logical 0: self-explanatory
§ 1: logical 1: self-explanatory
§ X: undefined: meaning can’t be determined by simulation
§ Z: high-impedance: meaning it is driven by something

else (you’ll see this with things that are inouts in shared
wire bus architectures). To be honest not very widely
used.

L03-4September 12, 2024 https://fpga.mit.edu/6205/F24

Simulation vs. Reality

§ If you were to try to build a hardware divider in
Verilog it can work.

§ If you simulated the module with 0/0, you should
have seen xxxxxxxxxxx as a result.

§ If you tried that on your board then, you’d see
something like:

L03-5September 12, 2024 https://fpga.mit.edu/6205/F24

”Huh. 0 divided by 0 is 255. Checks out.”

Simulation vs. Reality

§ You need to be very careful about looking out for
undefined (X) values in simulation. They should
not be ignored.

§ In fact, simulations are great because they let us
see those clearly.

§ Digital circuits are extremely robust and are NOT
HAPPY in some in-between state. They *will*
resolve to having a 1 or a 0 at their output.

§ This means that in real-life undefined values only
show up as 1’s or 0’s…so they can be hidden
amongst a sea of legit 1’s and 0’s.

L03-6September 12, 2024 https://fpga.mit.edu/6205/F24

== vs. ===
§ In general equality checks in Verilog will pad 0s (or

1s) as needed (so you’re not really doing checks on
the size of the array)

§ There’s two types of equality checks in
SystemVerilog:
§ == compares 1’s to 0’s only
§ === compares against all four types in an array:

September 12, 2024 https://fpga.mit.edu/6205/F24

logic a,y;
initial begin
$display(5'b00001 == 8'b0000_00001); //eval to true
$display(5'b00001 === 8'b0000_00001); //eval to true
$display(5'b00001 == 8'b1000_0001); //eval to false!!
$display(5'b00001 === 8'b1000_0001); //eval to false!!
$display(a==y); //eval to undefined
$display(a===y); //eval to true (Since both are themselves X (undefined))
end

L03-7

Anywhoo….

§ Moving on…

L03-8September 12, 2024 https://fpga.mit.edu/6205/F24

Levels of Complexity in
Computation

L03-9September 12, 2024 https://fpga.mit.edu/6205/F24

Sipser’s Book
https://en.wikipedia.org/wiki/Automata_theory

https://en.wikipedia.org/wiki/Automata_theory

Two Broad Types of Digital Logic

L01-10September 12, 2024 https://fpga.mit.edu/6205/F24

𝒇
𝑥!
𝑥"
𝑥#
𝑥$

𝑓 𝑥!, 𝑥", 𝑥#, 𝑥$

Functions: Storage:

𝑥(𝑡) 𝑥(𝑡 − 1)

Stateless

Current Output is
based ONLY on
current Inputs

NOT a function of
time

Stateful

Current Output
is based past

Input

A Problem
§ Some things that we want to do in life need

“history” to work (statefulness)
§ Consider this attempt at an LED flasher:

§ How fast will this flash?

September 12, 2024 https://fpga.mit.edu/6205/F24 L03-11

LED𝑓ACTIVATE
FLASH

Feed information
back into system input

a
b 𝑓(𝑎, 𝑏)

a b 𝑓(𝑎, 𝑏)
0 0 0
0 1 0
1 0 1
1 1 0IUNNO

An Attempt

§ One Attempt at Doing this:

§ This will fail

L03-12September 12, 2024 https://fpga.mit.edu/6205/F24

module flasher (input wire a_in,
 output logic led)
 logic b;
 always_comb begin
 if (a_in)begin
 b = ~b;
 end else begin
 b = 0;
 end
 end
 assign led = b;
endmodule

Need a Way to Regulate
Information Flow

§ The feedback loop on the previous slide is a
combinational loop.

§ These are very difficult to get to behave
§ Vivado will actually fail to build if you get one of these

§
§ a,b à f(a,b),aà f(a,b),aà f(a,b),aà f(a,b),aàkaboom
§ The assumptions we make about digital systems fall

apart in this form
L03-13September 12, 2024 https://fpga.mit.edu/6205/F24

LED𝑓ACTIVATE
FLASH

a
b 𝑓(𝑎, 𝑏)

A part that remembers
§ All the parts on the previous page have outputs

based only on inputs
§ What we need are parts that do more than that
§ This arrives in the form of two components:

L03-14September 12, 2024 https://fpga.mit.edu/6205/F24

D Q

CLK

D Q

Edge-Triggered Sample-and-Hold Device

D Flip-Flop

“store D when clk rises”

D Q

E

D Q

E

Level-Triggered Sample-and-Hold Device

D Latch

“store D when E is high”

2-bit functions:

September 12, 2024

Mayo, Avi & Setty, Yaki & Shavit, Seagull & Zaslaver, Alon & Alon, Uri. (2006).
 Plasticity of the cis-Regulatory Input Function of a Gene. PLoS biology. 4. e45. 10.1371/journal.pbio.0040045.

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y𝑓 𝑥, 𝑦
𝒙 𝒚 𝑓 𝑥, 𝑦
0 0 𝑓 0,0
0 1 𝑓 0,1
1 0 𝑓 1,0
1 1 𝑓 1,1

2! = 16 possible
functions exist

Stated another way:
there are 16 unique 1-0
combinations for:
𝑓 0,0 , 𝑓 0,1 , 𝑓 1,0 , and
𝑓 1,1

https://fpga.mit.edu/6205/F24 L01-15

D-Latch

§ A level-based sample-and-hodling device
§ Turn on E, Whatever is at D, shows up at Q
§ When E is on, the latch is “transparent”
§ When E turns off, the last value that D had before

turning off is locked in and held at Q output

L03-16September 12, 2024 https://fpga.mit.edu/6205/F24

D E Q
0 0 Previous Q
0 1 0
1 0 Previous Q
1 1 1

D Q

E

D Q

E

Is Level Storing Good?
§ Return to Flasher

§ The latch can store information, but when
transparent (E = 1) the latch is allowing a
combinational loop to exist:
§ a,b à f(a,b),aà f(a,b),aà f(a,b),aà f(a,b),aàpuke

L03-17September 12, 2024 https://fpga.mit.edu/6205/F24

LED

tpd =6ns

𝑓ACTIVATE
FLASH

Feed information
back into system input

a
b 𝑓(𝑎, 𝑏) Latch

Enable

E
D

What Do We Want

§ We want to store the past info

§ Also want to prevent unregulated flow of
information (the transparent nature of a latch)

§ A latch can’t do that. It is like a door. You open a
door and things and insects can flow in/out all
crazy.

§ We need something that will act as a digital air-
lock or “sally port”

L03-18September 12, 2024 https://fpga.mit.edu/6205/F24

An Air Lock

L03-19September 12, 2024 https://fpga.mit.edu/6205/F24

Sally Port Dover Castle, England

Open/close door to
inside castle

Open/close door to
outside castle

Never open both at
same time!!!

Inside
spaceship

Outside
spaceship

• Prevent unregulated/ dangerous transfer
of electrical signals forward (and also
backwards too)

The D Flip Flop
§ A Flip Flop (aka “register”) only samples the value

of D when clk goes 0à1. Shortly after that it
transfer the captured value of D to Q. And holds it
there under all other conditions

§ Since rising edge of clk is short, no opportunity for
transparency

L03-20September 12, 2024 https://fpga.mit.edu/6205/F24

D Q

CLK

D Q

Edge-Triggered Sample-and-Hold Device

“store D when clk rises”

D CLK Q
0 Rising 0
1 0 Previous Q
0 1 Previous Q
0 Falling Previous Q
1 Rising 1
1 0 Previous Q
1 1 Previous Q
1 Falling Previous Q

The D Latch

September 12, 2024
https://fpga.

mit.edu/6205/
F24

21

• Made of gates (which are
made of transistors, which are
made of sand(currently))

• Something different
though…what is it?

https://www.allaboutcircuits.com/textbook/digital/chpt-10/d-latch/

“latch” means it
holds whatever
value was already
present…basically:
“Previous Q”

E = “Enable”

D = “Data” Q = not sure
meaning, but it
is the output

https://www.allaboutcircuits.com/textbook/digital/chpt-10/d-latch/

The D Latch Provides Memory!

1. Set E=1
2. Set your D value
3. Set E=0
4. Whatever D was is

stored at Q forever
until E is 1 again!

5. Can we do
better/different?

September 12, 2024
https://fpga.

mit.edu/6205/
F24

22

E = “Enable”

D = “Data” Q = not sure
meaning, but it
is the output

The D Flip-Flop (Reg)

September 12, 2024
https://fpga.

mit.edu/6205/
F24

23

CLK

Enabled

NOT EnabledLOW

Data propagates through first D Latch

Two D-Latches in Series driven with opposite enable signals

CLK LINE is LOW

The D Flip-Flop (Reg)

September 12, 2024
https://fpga.

mit.edu/6205/
F24

24

CLK

NOT Enabled

EnabledHIGH

Data propagates through to output

CLK LINE rises to HIGH

Data at Q after
clk rises is data
at D slightly
before clk rises

Two D-Latches in Series driven with opposite enable signals

The Result: the D Flip-Flop

September 12, 2024
https://fpga.

mit.edu/6205/
F24

25

§ The edge-triggered D
register: on the rising edge
of CLK, the value of D is
saved in the register and
then appears shortly
afterward on Q.

D Q

CLK

D Q

D

CLK

Q

When you simplify some common/redundant logic between the
two stages, you get to about ~25 transistors

Example: 74LS74 internals

A Clock Signal

§ We usually use Flip Flops in conjunction with
periodic signals of fixed frequency

§ Call these Clock Signals and they regulate how
often the input is sampled and transferred to the
output

§ The default frequency on our FPGA is 100 MHz

L03-26September 12, 2024 https://fpga.mit.edu/6205/F24

Clock signal: Usually we will “step” on the rising edge of a clock signal

Solving the Flasher
§ Let’s put a FlipFlop in the Feedback Loop

§ A flip flop is NEVER transparent like a latch!
§ It allows us to store and regulate the flow of

information in a system.
§ Make clock a periodic signal and then things start

to work

L03-27September 12, 2024 https://fpga.mit.edu/6205/F24

LED𝑓ACTIVATE
FLASH a

b 𝑓(𝑎, 𝑏)
Register

Clock

Sequential Verilog

§ So far we’ve mostly been writing Combinational
Verilog modules (at least in lecture)*.

§ How do we start to express these new ideas of
sequential logic in Verilog?

L03-28September 12, 2024 https://fpga.mit.edu/6205/F24
*yes you used them a bit in week 1 lab

Always

§ In Verilog the always keyword is a way to specify
logic (sequential, combinational) that is caused by
an event (clock edge, change of state, etc)

§ Very similar to an asynchronous callback in
Javascript etc:
§ “When an event happens, do a certain thing:”

§ Historically there was one always word and you
would then specify a sensitivity list:
§ always @(x) = “when x changes”
§ always @(*) = “when anything changes (combinational)”
§ always @(posedge clk) = “when clk edge rises”
§ Etc…

L03-29September 12, 2024 https://fpga.mit.edu/6205/F24

Regs, Wires, Logics, and Life

§ Original Verilog had two main datatypes
§ wire: Used for continuous assignment (combinational)
§ reg: Used to “store” values

§ Despite its name being short for “register” a reg
might not actually mean the design will synthesize
to an actual register…It depended on usage in the
Verilog.

§ In particular it mostly depended on your sensitivity
list in your always block and if you used block or
non-blocking assignments (= or <=):
§ posedge? Make a flip flop
§ values? Make it a combinational
§ or possibly a latch

L03-30September 12, 2024 https://fpga.mit.edu/6205/F24

SystemVerilog

§ Mostly drop the reg/wire terminology, just have
logic and let compiler figure out if it becomes an
actual register (flip-flop) or wire/net from use

§ Use is specified more clearly now by replacing
ambiguousness of generic always with specific use
cases:
§ always_comb: build using combinational logic
§ always_ff: build using D-flip-flops (edge-trig sequential)
§ always_latch: build using D-latch (level-trig logic)

§ What is synthesized is NOT ”inferred” and more
clearly based on user specification! J

L03-31September 12, 2024 https://fpga.mit.edu/6205/F24

Why Logic?

§ In addition to allowing us to just use one general type rather than two,
the logic datatype has stricter protections against multi-driven nets

§ Logic on output should prevent:

September 12, 2024 https://fpga.mit.edu/6205/F24

module thing(input wire [3:0] a_in,b_in,
output wire [3:0] c_out);
 //stuff that changes c_out
endmodule

module main_module();
 logic[3:0] a,b,c;
 thing my_thing(.a_in(a), .b_in(b), .c_out(c));
 assign c = 4'b1010; //whoops might make it through (multi-driven net)
endmodule

module thing(input wire [3:0] a_in,b_in,
output logic [3:0] c_out);
 //stuff
endmodule

module main_module();
 logic[3:0] a,b,c;
 thing my_thing(.a_in(a), .b_in(b), .c_out(c));
 assign c = 4'b1010; //should get caught on synthesis
endmodule

L03-32

We use an always_ff to make
flipflops

§ You use @(posedge clk) to specify that the flipflop
is triggered on the positive (rising) edge of the clk
signal

§ Can also do negedge (negative/falling edge) if you
want

L03-33September 12, 2024 https://fpga.mit.edu/6205/F24

always_ff @(posedge clk)begin
 //do things ON the rising edge of clk
end

Blocking vs. Nonblocking
Assignment
§ Within any type of always block you can assign things in two

different ways:

§ In both ways, you don’t need the keyword assign

§ Blocking assignment (=): evaluation and assignment are
immediate; subsequent statements affected. (ORDER
MATTERS)

§ Nonblocking assignment (<=): all assignments deferred to
end of simulation time step after all right-hand sides have
been evaluated (even those in other active always blocks)
(ORDER DOESN’T MATTER)

L03-34September 12, 2024 https://fpga.mit.edu/6205/F24

Blocking Assignments <=

§ Blocking Assignments lend themselves to thinking
about time

§ a <= a + 1; will allow us to express the idea of
future a will be based on current a + 1

§ This is not something we ever want to do in purely
combinational logic (and in fact can be confusing)
§ We want combinational logic to express instantaneous

relationships of causality

§ But we do often want to do that in sequential logic

L03-35September 12, 2024 https://fpga.mit.edu/6205/F24

Blocking vs. Nonblocking
Assignment in Combinational
§ Verilog supports two types of assignments within always-type blocks, with

subtly different behaviors.
§ Blocking assignment (=): evaluation and assignment are immediate

§ Nonblocking assignment (<=): all assignments deferred to end of
simulation time step after all right-hand sides have been evaluated (even
those in other active always blocks)

L03-36September 12, 2024 https://fpga.mit.edu/6205/F24

always_comb begin
 x = a | b; // 1. evaluate a|b, assign result to x
 y = a ^ b ^ c; // 2. evaluate a^b^c, assign result to y
 z = b & ~c; // 3. evaluate b&(~c), assign result to z
end

always_comb begin
 x <= a | b; // 1. evaluate a|b, but defer assignment to x
 y <= a ^ b ^ c; // 2. evaluate a^b^c, but defer assignment to y
 z <= b & ~c; // 3. evaluate b&(~c), but defer assignment to z
 // 4. end of time step: assign new values to x, y and z
end

Sometimes, as above, both produce the same result. Sometimes, not!

Consider this Chained Flip Flop Circuit

L03-37September 12, 2024 https://fpga.mit.edu/6205/F24

clk_in:

val_in:

q1:

q2:

q3:

Assignment Style for Sequential
Logic

• Suppose we want to specify that circuit above in
Verilog:

• Will nonblocking and blocking assignments both
produce the desired result? (“old” means value
before clock edge, “new” means the value after
most recent assignment)

L03-38September 12, 2024 https://fpga.mit.edu/6205/F24

Use Nonblocking for Sequential
Logic

L03-39September 12, 2024 https://fpga.mit.edu/6205/F24

module nonblocking(
 input wire val_in, clk_in,
 output logic val_out
);
 logic q1, q2;
 always_ff @(posedge clk_in) begin
 q1 <= val_in;
 q2 <= q1; // uses old q1
 val_out <= q2; // uses old q2
 end
endmodule

module blocking(
 input wire val_in, clk_in,
 output logic val_out
);
 logic q1, q2;
 always_ff @(posedge clk_in) begin
 q1 = val_in;
 q2 = q1; // uses new q1
 val_out = q2; // uses new q2
 end
endmodule

“At each rising clock edge, q1,
q2, and out simultaneously
receive the old values of vin,
q1, and q2.”

“At each rising clock edge, q1 = vin.
After that, q2 = q1.
After that, out = q2.
Therefore out = vin.

val_in val_in

Strong Guidelines

§ Blocking assignments (=) more closely align with how
combinational works (use only in always_comb)

§ Non-blocking assignments (<=) more closely align with
how sequential logic works (use only in always_ff)

§ Avoid mixing blocking and non-block assignments
within one block!
§ Something will synthesize, but sometimes simulation may

differ from what gets synthesized (built)
§ Really hard to comprehend for our limited human

minds…so debugging is a nightmare

L03-40September 12, 2024 https://fpga.mit.edu/6205/F24

Coding Guidelines

§ The following are helpful guidelines passed down by people smarter
than me. If followed, they ensure your simulation results will match
what they synthesized hardware will do:

1. When modeling sequential logic, use and always_ff with
nonblocking assignments.

2. When modeling combinational logic with an always block, use
always_comb with blocking assignments.

3. When modeling both sequential and “combinational” logic within the
same always block, use nonblocking assignments.

4. Do not mix blocking and nonblocking assignments in the same
always block.

5. Do not make assignments to the same variable from more than one
always block (this should throw errors, but might not if using
blocking assignments)

§ A Big thing we will be checking in your Verilog code!

L03-41September 12, 2024 https://fpga.mit.edu/6205/F24

Taken from: “Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!” by Clifford E. Cummings

”Combinational vs Sequential”

§ In combinational logic, you are making just
combinational logic

§ In sequential logic specification, you’re often
specifying both combinational and sequential logic.

L03-42September 12, 2024 https://fpga.mit.edu/6205/F24

Examples

L03-43September 12, 2024 https://fpga.mit.edu/6205/F24

module blob(input wire a_in, b_in,sel_in,
 output logic val_out);
 always_comb begin
 if (sel_in)
 val_out = b_in;
 else
 val_out = a_in;
 end
endmodule

module blob(input wire a_in, b_in,
 sel_in, clk_in,
 output logic val_out);
 always_ff @(posedge clk_in) begin
 if (sel_in)
 val_out <= b_in;
 else
 val_out <= a_in;
 end
endmodule

Example: A Counter

L03-44September 12, 2024 https://fpga.mit.edu/6205/F24

// 4-bit counter with enable and synchronous clear
module counter(input wire clk_in, enb_in, clr_in,
 output logic [3:0] count_out);
 always_ff @(posedge clk_in) begin
 count_out <= clr_in ? 4’b0 : (enb_in ? count_out+1 : count_out);
 end
endmodule Combinational

Example: A Counter

L03-45September 12, 2024 https://fpga.mit.edu/6205/F24

// 4-bit counter with enable and synchronous clear
module counter(input wire clk_in, enb_in, clr_in,
 output logic [3:0] count_out);
 always_ff @(posedge clk_in) begin
 count_out <= clr_in ? 4’b0 : (enb_in ? count_out+1 : count_out);
 end
endmodule Sequential

Let’s Build a Debouncer

§ Switches are mechanical
devices. When they close
and open, they can
“bounce”

§ Humans can’t see, but
electronics can since they
are fast.

§ A debouncer protects logic
from these types of
artifacts

§ Only transfers its input to
its output if it has been
stable for a long time

L03-46September 12, 2024 https://fpga.mit.edu/6205/F24

https://www.nuvation.com/reso
urces/article/switch-
debouncing-electronic-product-
designs

Bouncing Switch

§ Let us build and test a debouncer together…

L03-47September 12, 2024 https://fpga.mit.edu/6205/F24

