
6.205
(aka 6.111)

Combinational and
Sequential Logic

Fall 2024
September 10, 2024 https://fpga.mit.edu/6205/F24 L02-1

Administrative

§ Week 1’s content is due tomorrow (Wednesday)
night at 11:59pm

§ Week 2’s content will come out Thursday after
lecture @4pm

September 10, 2024 L01-2https://fpga.mit.edu/6205/F24

Review

1. Have an Idea: “I have three wires of one bit, x,y,
and z. I want to treat them collectively as a
number…where z is the one’s place, y is the two’s
place, and x is the four’s place. If that number is 3,
5, 6, or 7, I want the output bit to be high, else I
want it to be low.

*”High” and “Low” refer to the two states in
the digital domain

September 10, 2024 L01-3https://fpga.mit.edu/6205/F24

Review

2. Implement the idea in SystemVerilog:
module some_module
 (input wire x,
 input wire y,
 input wire z,
 output logic out);

 logic [2:0] temp;
 assign temp = {x,y,z};
 always_comb begin
 if (temp>=5)begin
 out = 1'b1; //specify bit
 end else if (temp==3)begin
 out = 1'b1; //specify bit
 end else begin
 out = 1’b0; //specify bit
 end
 end
endmodule

September 10, 2024 L01-4https://fpga.mit.edu/6205/F24

This Then gets Turned into a Circuit

§ Most synthesis tools will provide some sort of
intermediate visualization if you want.

§ Yosys (an open toolchain) can do this somewhat
easily.

§ This site here: https://digitaljs.tilk.eu/ is built on
Yosys and let’s you see what pops out

§ For example module from previous page yields…

September 10, 2024 L01-5https://fpga.mit.edu/6205/F24

https://digitaljs.tilk.eu/

Equivalent Schematic

September 10, 2024 L01-6https://fpga.mit.edu/6205/F24

This can be helpful, but isn’t the full
story
§ In reality when this gets built on an FPGA,

additional steps will be taken to reduce it into more
primitive functional expression, which we can
helpfully visualize with a truth table or sum of
products.

§ For this example, it would look like this:

𝒙 𝒚 𝒛 𝒐𝒖𝒕𝒑𝒖𝒕_𝟏

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

September 10, 2024 L01-7https://fpga.mit.edu/6205/F24

Review

§ These truth tables are important because they are
effectively the ”code” that are used to program the
fundamental units of the FPGA, the CLBs and
associated wiring

𝒙 𝒚 𝒛 𝒐𝒖𝒕𝒑𝒖𝒕_𝟏

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

September 10, 2024 L01-8https://fpga.mit.edu/6205/F24

Xilinx Logic Blocks

§ Our FPGAs have about
8500 of these à

§ Called “Logic Slices”

§ Each slice has four
CLBs (“Configurable
Logic Blocks”) that
form the clay from
which we sculpt our
digital functions

September 10, 2024 L01-9https://fpga.mit.edu/6205/F24

Variables in Verilog

§ We’ll use the logic type for our basic variable in
6.205

§ It can represent a few different things depending
on usage:
§ A “wire”…literally the routed output of some logic
§ A “reg”…a device that can hold a value over time (a form

of memory)
§ Right now we’re not super worried about “reg”s

logic a; //simple variable (one bit in size)...can only hold 0 or 1
logic a,b,c; //declaring three single bit variables at the same time

September 10, 2024 L01-10https://fpga.mit.edu/6205/F24

There are other Data Types

§ SystemVerilog the language has other datatypes
§ There are int’s, shorts, etc…all with

signed/unsigned versions…we’ll leave them be for a
little bit!

§ However when we do things with loops we’ll use
int’s to help us iterate!

§ For now just use logic variables.
§ Can be any size
§ By default unsigned (we’ll worry about signedness in

future weeks)

September 10, 2024 L01-11https://fpga.mit.edu/6205/F24

Multibits in Verilog

§ Want variables that can contain more than one bit
of information?

§ Specify the sizing left-to-right like shown
§ Can make any size you want, 2, 11, 17 bits
§ Don’t feel compelled to use extra bit just because

you’ve heard of variables being 32 bits or 16 bits
before. Not bound by that structure.

logic [7:0] a; //8bit value (also think of this as an array of 8 bits)
logic [31:0] b; //32 bit value
logic [12:0] c,d; //making two arrays, each 13 bits that called c and d

September 10, 2024 L01-12https://fpga.mit.edu/6205/F24

Arrays in Verilog

§ Can also make “2D” arrays (packed/unpacked):
§ The bottom two arrays are similar, but also

different:
§ One is “packed”
§ One is “unpacked”

§ Packed dimensions are specified before the variable
name

§ Unpacked dimensions are specified after the
variable name

logic [7:0] array3; //8 bit "packed array"
logic [7:0] array4 [2:0]; //three 8 bit unpacked arrays (b[0] not contiguous with b[1])
logic [2:0][7:0] array5 ; //three 8 bit packed arrays
 //(array5[0] contiguous with array5[1])

September 10, 2024 L01-13https://fpga.mit.edu/6205/F24

Un/Packed Arrays
§ Packed means:

§ Whole structure is continuous
§ Like a subdivided larger array

§ Unpacked means:
§ Separate/not continuous

logic [7:0] array3; //8 bit "packed array"
logic [7:0] array4 [2:0]; //three 8 bit unpacked arrays (b[0] not contiguous with b[1])
logic [2:0][7:0] array5 ; //three 8 bit packed arrays
 //(array5[0] contiguous with array5[1])

September 10, 2024 L01-14https://fpga.mit.edu/6205/F24

Un/Packed Arrays
§ Packed/Unpacked has little meaning beyond the

program construct within the Verilog language

§ Unpacked array: Use to handle the output of three
separate adders, for example

§ Packed array: Use to represent a string type
object, for example.

logic [7:0] array3; //8 bit "packed array"
logic [7:0] array4 [2:0]; //three 8 bit chunks (unpacked)
logic [2:0][7:0] array5 ; //really just one 24-bit chunk with sub-indexing convenience

September 10, 2024 L01-15https://fpga.mit.edu/6205/F24

Get familiar with the Three Bases

§ Get somewhat fluent
with the three bases.

§ It will make life easier!

September 10, 2024 L01-16https://fpga.mit.edu/6205/F24

Values in Verilog

§ Good practice to always specify values in the
following form: S’Txxxx_xxxx where
§ S is the size of the number (in bits)
§ ’ is the single quote marker
§ T is the numerical base you’re specifying the value in

§ b for binary (0,1)
§ d for decimal (0,1,2,3,4,5,6,7,8,9)
§ h for hex (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

§ xxxx_xxxx are your values
§ The _ is ignored in evaluation
§ use _ to make more readable
§ Don’t need to use _ but is really nice

September 10, 2024 L01-17https://fpga.mit.edu/6205/F24

Values in Verilog

10'b0101_0101_00; //10 bit size of value...
10'b1; //10 bit value but only lsb specified...so this is saying 10'b0000_0000_01;
12'hF0F; //12 bits..this would be 12'b1111_0000_1111;
9'hF0F; //9 bits so 9'b1_0000_1111; top three cut off since we said only 9 long
15; //assumed to be an 32 bit integer by default:
 // 'b0000_0000_0000_0000_0000_0000_0000_1111;

§ Some examples:

September 10, 2024 L01-18https://fpga.mit.edu/6205/F24

Assignments

§ Consider these:

§ What values will all five variables have?

logic a, b, c, d, e;
assign a = 1'b1; //best practice shows you mean to make this 1 bit
assign b = 0;
assign c = 1;
assign d = 15;
assign e = a && b;

September 10, 2024 L01-19https://fpga.mit.edu/6205/F24

Assignments II

§ What about arrays?

§ Watch out for size!
§ Arrays have a size…you try to fit something too

large in…it will get cut off (lsb’s will get preference)

logic [7:0] a, b, c;
assign a = 8'b1010_1010; //good!
assign b = 16'hF0F0; //fine, but the top eight bits won't get stored
assign c = 32; //fine, but has: 8'b0010_0000 in it (surprise?)

September 10, 2024 L01-20https://fpga.mit.edu/6205/F24

Assignments III

§ What if we’d like to merge arrays?:

§ Index into them however you want

logic [7:0] a, b, c;
assign a = 8'b1010_1010; //good!
assign b = 16'hF0F0; //fine, but the top eight bits won't get stored
assign c = 32; //fine, but has: 8'b0010_0000 in it (surprise?)
logic [15:0] d;
logic [7:0] e, f;
assign d = {a,b}; //16'b1010_1010_1111_0000
assign e = {a[3:0], b[3:0]}; //has 8'b1010_0000;
assign f = {a,b}; //will have: 8'b1111_0000;

September 10, 2024 L01-21https://fpga.mit.edu/6205/F24

Assignments IIIb

§ What about this?

§ Uhoh: e = 3’b001.

§ Specify size and type!!!

logic [2:0] e;
assign e = {1,1,1};

logic [2:0] e;
assign e = {1’b1,1’b1,1’b1};

September 10, 2024 L01-22https://fpga.mit.edu/6205/F24

Other Ways to Assign (Implicit)
§ Can also assign values upon declaration of

variables in Verilog (implicit declaration as opposed
to explicit with the assigns):

logic a = 1'b1; //same as assign a= 1'b1;
logic b = 1'b0;
logic [3:0] c = 4'b1010;

But be careful!!!
logic [3:0] d = 4'b1100;
assign d = 4'hF;
//might error out...might "choose for you"
§ Be careful! Can’t assign twice! This is not

software! Higher up on page does not mean
“earlier”

September 10, 2024 L01-23https://fpga.mit.edu/6205/F24

Other Ways to Assign (always_comb)

§ You can also assign values/set relationships inside
of a block known as always_comb

§ Don’t need to use assign here:

logic a, b, c;
assign a = 1'b1;
assign b = 1'b0;
assign c = a^b;
//alternatively could do:
always_comb begin
 a = 1'b1;
 b = 1'b0;
 c = a^b;
end

September 10, 2024 L01-24https://fpga.mit.edu/6205/F24

Why Use an always_comb?

§ Can let you be more expressive, particularly when
more complicated relationships need to be
expressed!

§ For example, can now do if/else logic cleanly

logic [3:0] a, b, c; //three four bit values!
always_comb begin
 if (a==4'b1010)begin
 c = 4'b1; //(0001)
 end else if (b==4'b0000)begin
 c = 4'b1010;
 end else begin
 c = 4'b0000;
 end
end

September 10, 2024 L01-25https://fpga.mit.edu/6205/F24

Why Use an always_comb?

§ Always-family blocks also are analyzed in order if
you use (=) assignments…Example:

§ Is the same as:

assign a = 4'b1010 + b + c;

logic [3:0] a, b, c; //three four bit values!
always_comb begin
 a = 4'b1010;
 a = a+b;
 a = a+c;
end

September 10, 2024 L01-26https://fpga.mit.edu/6205/F24

Inside an always-type block

§ Order of Code *can* matter

§ The entire block is analyzed and turned into a
“hidden” one-liner like this (or something):

logic [3:0] a, b, c; //three four bit values!
always_comb begin
 a = 4'b1010; //this line evaluated first!
 a = a+b; //this line evaluated second!
 a = a+c; //this line evaluated third!
end

assign a = 4'b1010 + b + c;

September 10, 2024 L01-27https://fpga.mit.edu/6205/F24

Case Statement
§ Need to do in an always block:

§ Use these in place of long-chained if/else statements
that are checking same variable

§ Always have a default case! (safe, good practice)
§ There is no fall-through in Verilog (no need for break

statements like in C/C++)

logic [8:0] a;
logic [1:0] b;
//make b 0, if a is 'b1111_0000
//make b 1, if a is 'b1010_0001
//make b 2, if a is 'b0000_1000
//else b is 3
always_comb begin
 case(a)
 8'hF0 : b = 2'b0;
 8'hA1 : b = 2'b1;
 8'h08 : b = 2'b10;
 default : b = 2'd3;
 endcase
end

September 10, 2024 L01-28https://fpga.mit.edu/6205/F24

What about always @(*)

§ Historically, there was just one always block and
you would infer different types of logic
(combinational, latch, or sequential) from what was
in the parentheses:

always @(<sensitivity list>)begin
 //do your stuff here when a change happens
 //to anything specified in sensitivy list
end

September 10, 2024 L01-29https://fpga.mit.edu/6205/F24

Simple combinational adder

§ For example you would do:

§ Verilog 2001 brought in the “wildcard”. Same as
above can be done with:

always @(x,y)begin
 z= x+y;
end

“any time x or y
changes, z changes as
x+y.” This is a purely
combinational adder

always @(*)begin
 z= x+y;
end

“any time anything in the
block changes, z changes
as x+y.” This is a purely
combinational adder

September 10, 2024 L01-30https://fpga.mit.edu/6205/F24

Consider This Situation

§ “I want a combinational circuit that says z = x+y if
x is 15.”

§ Here’s my solution:

always @(*)begin
 if (x==15)begin
 z = x+y;
 end
end

§ Problems with this?

September 10, 2024 L01-31https://fpga.mit.edu/6205/F24

Remember what we’re doing

§ We are specifying (using HDL) a Boolean function.
That function has a finite input space.

§ We need to make sure we are specifying how this
circuit should work for the entire input space:

§ Code above is saying set z to be x+y when x==15.
It says nothing else.

§ There is a device that will enable this as stated but
it is not combinational!

always @(*)begin
 if (x==15)begin
 z = x+y;
 end
end

September 10, 2024 L01-32https://fpga.mit.edu/6205/F24

A part that remembers
(starting in Lec 03)
§ Haven’t mentioned these yet, but in addition to

combinational blocks there are lots of stateful
things too!

§ Two big ones!

D Q

CLK

D Q

Edge-Triggered Sample-and-Hold Device

D Flip-Flop

“store D when clk rises”

D Q

E

D Q

E

Level-Triggered Sample-and-Hold Device

D Latch

“store D when E is
high”

September 10, 2024 L01-33https://fpga.mit.edu/6205/F24

Missing Input Space

§ This code fails to specify what to do when x!=15.
§ It therefore assumes you want to do nothing.
§ A latch will do that:

§ When x==15, set z to be x+y
§ When x!=15, hold the value you already have

§ Correct code would be:

always @(*)begin
 if (x==15)begin
 z = x+y;
 end
end

always @(*)begin
 if (x==15)begin
 z = x+y;
 end else begin
 z = 0;
 end
end

September 10, 2024 L01-34https://fpga.mit.edu/6205/F24

A latch is not combinational

§ Suddenly your design will have “memory” in it
where you never intended.

§ This can mess up your simulations and designs!
§ Vivado will happily synthesize a latch for you since

it’ll think that’s what you want.
§ Forcing it to know you want combinational logic

(via always_comb) can throw warnings:

§ It will also ensure there’s less chance of simulation-
to-reality variations

WARNING: [Synth 8-327] inferring latch for variable
‘z_reg’ [/top_level.sv:12]

September 10, 2024 L01-35https://fpga.mit.edu/6205/F24

In Conclusion
No way drugs always@() blocks are
for loserz! I’ve got too much to lose

to get mixed up with them.
al
wa
ys
 @
(*
)

IEEE 1364-2001

§ For stuff you write,
stick with specific
always family blocks:
§ always_comb
§ always_ff (coming up)
§ always_latch (coming

up)

§ Tons of legacy code will
have them so you should
be aware and know how
to how to read it and
deal with it!

September 10, 2024 L01-36https://fpga.mit.edu/6205/F24

Remember what we’re doing

§ We are specifying (using HDL) a
Boolean function. That function
has a finite input space.

§ We need to make sure we are
specifying how this circuit should
work for the entire input space:
§ Ideally do this explicitly
§ If you do implicitly make sure you’re

doing so responsibly!
§ If you fail to specify your truth

table in full, unknown behaviors
will exist and wreak havoc

𝒙 𝒚 𝒛 𝒐𝒖𝒕𝒑𝒖𝒕_𝟏

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 ?

1 1 0 ?

1 1 1 ?

September 10, 2024 L01-37https://fpga.mit.edu/6205/F24

Never use always
Always use always_comb
§ When writing your logic:

§ Make sure to cover the entire input space for each variable
in its entirety!

§ Do not forget about leftovers:
§ Have a terminal else in case of if/else if chain
§ Have a default case in the case of a case statement
§ Initialize starting values for variables at start of
always_comb block!

§ Scan output logs from vivado for word “latch”. If there’s
any getting inferred, make sure it is because you want
them (very unlikely in our class)

September 10, 2024 L01-38https://fpga.mit.edu/6205/F24

Ternaries

§ See these a lot in Verilog
§ One-line if/else/if chains done on right side of

assignment:
logic [1:0] a, b;

a = b==2'b11? 2'b0: 2'b10;

a is

if b==2’b11:
 a is 2’b0

else a
is 2’b10

September 10, 2024 L01-39https://fpga.mit.edu/6205/F24

Ternaries

§ Can also be done outside always_comb in regular
assignment statements:

logic [1:0] a, b;
assign a = b==2'b11? 2'b0: 2'b10;
//if b is 2'b11, a is 0, else it is 2'b10

§ Can also be done outside always_comb in regular
assignment statements:

September 10, 2024 L01-40https://fpga.mit.edu/6205/F24

Ternaries

§ Can also chain ternaries

§ Is the same as:

§ Or since we’re in a C-style language:

always_comb begin
 if (a==4'b1010)begin
 c = 4'b1; //(0001)
 end else if (b==4'b0000)begin
 c = 4'b1010;
 end else begin
 c = 4'b0000;
 end
end

logic [3:0] a, b, c; //three four bit values!
assign c = a==4'b1010 ? 4'b1 : b==4'b0000 ? 4'b1010 : 4'b0000;

logic [3:0] a, b, c; //three four bit values!
assign c = a==4'b1010 ? 4'b1
 : b==4'b0000 ? 4'b1010
 : 4'b0000;

September 10, 2024 L01-41https://fpga.mit.edu/6205/F24

Ternary style Specification

§ One benefit of it is that by its syntactic nature it
forces you to have a trailing else:

§ You cannot have something like this:

§ Nice because it forces you to cover your full input
space of possibility, avoiding gaps/resulting latch

logic [1:0] a, b;
assign a = b==2'b11? 2'b0: 2'b10;
//if b is 2'b11, a is 0, else it is 2'b10

logic [1:0] a, b;
assign a = b==2'b11? 2'b0;
//if b is 2'b11, a is 0

September 10, 2024 L01-42https://fpga.mit.edu/6205/F24

Competing Assignments

§ What if I have two always_comb blocks?

§ Only one will be chosen, the other ignored. It will
not make a union or merge the two.

always_comb begin
 a = c + e;
end

always_comb begin
 a = d + 5;
end

September 10, 2024 L01-43https://fpga.mit.edu/6205/F24

Multiple always-type blocks

§ It is fine to use values across multiple always
blocks or continuous assign statements, but you
should only specify them in one and only one
location!

§ Specifying/assigning a variable in multiple spots is
a no-no however

always_comb begin
 d = a+ 5;
end

always_comb begin
 b = a + 8;
end

September 10, 2024 L01-44https://fpga.mit.edu/6205/F24

Where to Create Variables

§ Variables are things that exist physically
§ Always blocks are meant to describe action.
§ You can never declare variables in an always block
§ As much as possible try to declare at top (with nice

comments)
§ And implement logic (assign, always_comb, etc)

below it

September 10, 2024 L01-45https://fpga.mit.edu/6205/F24

Parameters

§ Parameters are different than variables.

§ Their values can change, but only at the compile-
stage.

§ At run-time they are constants.

§ They allow us to make flexible designs (make an
adder that can be 8 bits or 14 bits or whatever)

September 10, 2024 L01-46https://fpga.mit.edu/6205/F24

Parameters

§ Parameters allow us more flexibility in
programmatically describing our designs:

localparam GOOD = 8'b1111_1111; //not changeable
localparam STATE_SIZE = 8;
parameter BAD = 8'b1111_0000; //changeable (see in a few slides how/where)
logic [STATE_SIZE-1:0] state; //made size of state variable based on param
logic [1:0] output;
always_comb begin
 case(state)
 GOOD : output = 2'b11;
 BAD : output = 2'b00;
 default : output = 2'b10;
endcase
end

Apply more meaningful names to
values in certain contexts of
program

Allow us to describe
variable attributes
using common adjustable
values

September 10, 2024 L01-47https://fpga.mit.edu/6205/F24

Parameters

§ localparam is local to the module it exists in
§ parameter is local, but (depending on context),

can be a configuration setting (see in a minute)
§ Always CAPITALIZE so they are easy to spot
§ Parameters can be based on other parameters!

§ $clog2 is a Verilog math operator run at compile
time

§ Other Verilog math functions here:
https://www.chipverify.com/verilog/verilog-math-functions

parameter NUM_CHICKENS = 167;
parameter CHICKEN_WIDTH = $clog2(NUM_CHICKENS);
logic [CHICKEN_WIDTH-1: 0] chicken_counter;

September 10, 2024 L01-48https://fpga.mit.edu/6205/F24

Modules

§ Just like the idea of functions in software! Wrap up
functionality in a reusable and “instantiable” blob

module not_gate (input wire x, output logic y);
 assign y = !x;
Endmodule

module main_module();
 logic a,b;
 assign a = 1'b1;
 not_gate ng1 (a,b); //ng1 is name of instance
endmodule

Specify input/output
variables and
attributes (like
size)Do your operations

Make an instance of your module
(name it) and use it

Declare instance like: module_name instance_name (arg0,arg1,…);

September 10, 2024 L01-49https://fpga.mit.edu/6205/F24

Modules Good Practice
§ I try to append “_in” and ”_out” on the module inputs and outputs

to make more readable.
§ Upon declaration you can also specify the ports explicitly. For

modules with lots of inputs/outputs this makes tracing/debugging
much easier! module thing(input wire [3:0] a_in,b_in,

 output logic [3:0] c_ou);
 always_comb begin
 if (a==4'b1010)begin
 c = 4'b1; //(0001)
 end else if (b==4'b0000)begin
 c = 4'b1010;
 end else begin
 c = 4'b0000;
 end
 end
endmodule
//somewhere else you have main module of code:
module main();
 logic [3:0] q,r,s; //three four bit values!
 thing thing_0(.a_in(q),.b_in(r),.c_in(s));
endmodule

September 10, 2024 L01-50https://fpga.mit.edu/6205/F24

Parameterized Modules

§ We mentioned parameters previously. They can be
used to make flexible modules:

module add_constant #(parameter TO_ADD = 12)
 (input wire [7:0] val_in, output logic [7:0] val_out);
 assign val_out = val_in + TO_ADD;
endmodule

module top();
 logic[7:0]a,b,c,d;
 assign a = 8'd11;
 assign c = 8'b100;
 add_constant ac_0 (.val_in(a), .val_out(b));

 add_constant #(.TO_ADD(5)) ac_1 (.val_in(c), .val_out(d));
 //value of b?
 //value of d?
endmodule

September 10, 2024 L01-51https://fpga.mit.edu/6205/F24

Parameterized Modules

§ Parameterizable modules are more complicated to
write, but their reusability is a great feature

§ If a parameter is not specialized upon instantiation,
the default is used instead.

§ Parameters can be used to specify other
parameters in the design!

September 10, 2024 L01-52https://fpga.mit.edu/6205/F24

Operator Precedence

§ Largely borrowed from C!
§ Be careful some of these often

feel out of order for people.
§ Left/right shift for example!
§ For example if:

§ x=100
§ q=8
§ What will y be?

assign y = x + q>>2;

§ 27...not…102

September 10, 2024 L01-53https://fpga.mit.edu/6205/F24

Reduction Operators in Verilog
§ Reduction operators act like their bitwise cousins,

but are done on a variable rather than between
several:

logic [7:0] b, d;
logic a, c;

assign a = |b; //if anything in b is 1, a is 1
assign c = &d; //everything in d needs to b 1
//four others xor and xnor are particularly
useful

September 10, 2024 L01-54https://fpga.mit.edu/6205/F24

for loops

§ For loops (and to a lesser extent while loops) exist
in Verilog to more conveniently lay out our
hardware.

§ They are NOT for loops “in time”. They are for
loops “in space”

§ There are two general types:
§ Generate for loops (for loops in a generate block)
§ Regular for loops

§ Which one works can be confusing* so we’ll over it
here

*the rules have also changed as Verilog evolved so there can be
confusing info on the internet

September 10, 2024 L01-55https://fpga.mit.edu/6205/F24

Regular for loop

§ If you are in an always block and just need to
replace a bunch of repetitive lines, a for loop can
help

§ Let’s say I had to do some annoying operation a
bunch of times with some variables:

logic [63:0] a;
//assume b and c are large enough
always_comb begin
 for(integer i =0; i<64; i= i+1)begin
 a[i] = b[i]>c[63-i];
 end
end

September 10, 2024 L01-56https://fpga.mit.edu/6205/F24

Generate for loops

§ Put a for loop in a generate block.
§ Use this any time you need to :

§ Run multiple assign statements
§ Create multiple always_comb, always_ff blocks

§ OR:
§ Create multiple instances of a module
§ Create logics

§ Need to use a genvar for your iterating variable
rather than an integer.

§ Can also label your for loops to have access the
modules or entities created within

September 10, 2024 L01-57https://fpga.mit.edu/6205/F24

Generate For Loops

generate
 genvar i;
 for(i=0; i<5; i=i+1)begin: myloop
 logic[31:0] hi;
 assign hi = 32'hAAAAAAAA ^ i;
 end
endgenerate
//outside of generate, those logics can be accessed with:
// myloop[2].hi for example
// this is needed since the logic hi needs more
// specificity than provided otherwise.

An Example:

September 10, 2024 L01-58https://fpga.mit.edu/6205/F24

Rule about For Loops

§ Inside an always_comb (or always_ff?):
§ Use regular for loop

§ Want to make multiple assign statements? Or
Multiple always-type blocks?:
§ Use a generate loop!

§ In both instances, the iterating variables of the
loop have no intrinsic hardware meaning…they
exist as a helper variable during specification (a
copy-paster thingie)

September 10, 2024 L01-59https://fpga.mit.edu/6205/F24

wire vs. logic. vs. reg

§ Can only be signal flow (“nets”). From perspective of
a module, signals coming into module are conveyed by wires.
In other usage, declared wires can only be given values with
assign statement. A wire can also be associated with
combinational logic

§ Ideally represents a flipflop or latch (storage
mechanism), but in reality can also turn into a net (in other
words a wire)/ combinational logic based on usage (cover
more on Thursday in Lec 03). Only given values with always-
family blocks

§ Can represent all datatypes. Its usage dictates what
it ultimately represents (combinational logic). Can be worked
with assign and always-family blocks

wire

reg

logic

September 10, 2024 L01-60https://fpga.mit.edu/6205/F24

Why logic?
§ In addition to allowing us to just use one general type rather than two,

the logic datatype has stricter protections against multi-driven nets

§ Logic on output should prevent:

module thing(input wire [3:0] a_in,b_in,
output wire [3:0] c_out);
 //stuff
endmodule

module main_module();
 logic[3:0] a,b,c;
 thing my_thing(.a_in(a), .b_in(b), .c_in(c));
 assign c = 4'b1010; //whoops might make it through (multi-driven net)
endmodule

module thing(input wire [3:0] a_in,b_in,
output logic [3:0] c_out);
 //stuff
endmodule

module main_module();
 logic[3:0] a,b,c;
 thing my_thing(.a_in(a), .b_in(b), .c_in(c));
 assign c = 4'b1010; //should get caught on synthesis
endmodule

September 10, 2024 L01-61https://fpga.mit.edu/6205/F24

So why still use wire in module
definitions

§ This is a thing we do in 6.205 to help us with our
Vivado toolchain…

module thing(input wire [3:0] a_in,
 input wire [3:0] b_in,
 output wire [3:0] c_out);
 //stuff
endmodule

September 10, 2024 L01-62https://fpga.mit.edu/6205/F24

6.205 Caveat

§ We would like to always wrap our code files in:

§ Prevents Vivado from inferring undeclared variables for us:

§ Forcing the default nettype to be none (rather than wire) will
force a hard error at synthesis (early) and this is good!

§ But need to put back to nettype wire at end since Vivado IP
uses that.

`default_nettype none
//stuff
//stuff
//stuff
`default_nettype wire

module main_module();
 logic [7:0]a, b;
 assign c = a+b; //vivado infers c, but makes a one bit variable
 //this might/will be a problem!!!
endmodule

September 10, 2024 L01-63https://fpga.mit.edu/6205/F24

So consider this module.
§ All inputs and outputs are of type logic
§ A logic is an abstract type whose physical

realization is determined through usage.

§ In the scope of this module, these inputs never get
“used” so their actual manifestation is left
undefined and an error gets thrown

`default_nettype none
module thing(input logic [3:0] a_in,
 input logic [3:0] b_in,
 output logic [3:0] c_out);
 assign c_out = a_in ^ b_in;
endmodule
`default_nettype wire

September 10, 2024 L01-64https://fpga.mit.edu/6205/F24

To Satisfy All of These Issues

§ Declare inputs to a module as wires since it will
fully specify what they are

§ Begin and end all modules with nettype compiler
directives. This will protect you from implicit
declarations by Vivado

`default_nettype none
module thing(input wire [3:0] a_in,
 input wire [3:0] b_in,
 output logic [3:0] c_out);
 assign c_out = a_in ^ b_in;
endmodule
`default_nettype wire

September 10, 2024 L01-65https://fpga.mit.edu/6205/F24

Kind of Annoying

§ Yeah it is. :/ But this is the sort of thing you deal
with when working with a large vendor’s toolchain.

September 10, 2024 L01-66https://fpga.mit.edu/6205/F24

Let’s build some different adders

§ Adder 1 (parameter practice):
§ Add up two variable width values (width is parameterized)

§ Adder 2: A parameterized adder module that works
for an arbitrary bit width and an arbitrary number
of input values

§ Adder 3/if time…(to get some generate practice):
§ Explicitly lay out a tree-shaped adder module for 8, 8-wide

inputs.
§ Force the structure to be a tree shape:

September 10, 2024 L01-67https://fpga.mit.edu/6205/F24

