
6.205
(aka 6.111)

Introduction

Fall 2024
September 5, 2024 https://fpga.mit.edu/6205/F24 L01-1

Course Overview

§ Prerequisites: 6.191/6.004 (if no && not coreq-ing, email me please)
§ Units: 1-5-6
§ Lectures: Tuesday, Thursday 2:30-4:00 pm in 32-141
§ Labs: No official time. The lab room is the left (southern) portion of building

38's 6th floor.(38-630) There are 17 dedicated computers for working on labs
and assignments there, however, we also strongly encourage you to install
the appropriate toolchains on your own machine when possible.

§ Lab Kit: You will be provided a Real Digital Urbana FPGA board for this class
which you must take care of and return. This will be used in all labs and will
likely form the center of your final project. You must return this

§ Piazza: https://piazza.com/mit/fall2024/6205
§ Textbook: The internet
§ TAs:

§ Kailas Kahler (kailasbk)
§ Stephen Kandeh (skandeh)
§ Jan Park (janp)
§ Kiran Vuksanaj (kiranv)

§ Instructor:
§ Joe Steinmeyer (jodalyst)

L01-2September 5, 2024 https://fpga.mit.edu/6205/F24

Mostly correct course

calendar on front page

of course site including

office hours

Grades

§ Your overall grade is based on the following breakdown:
§ Assignments: 48%

§ 8 weeks of exercises and labs before project time
§ Final Project: 52%

§ Last ~7/8 weeks of semester

§ A large number of students do "A" level work and are,
indeed, rewarded with a grade of "A". The corollary to this
is that, since average performance levels are so high,
punting any part of the subject can lead to a disappointing
grade.

§ Final Project: Details in coming weeks

L01-3September 5, 2024 https://fpga.mit.edu/6205/F24

CI-M Possibility Reality

§ We are now a CI-M (again)
§ We do a lot of writing and presenting with our final

project. You should be prepared for that.

L01-4September 5, 2024 https://fpga.mit.edu/6205/F24

Lab Kit

§ Using a Urbana Board
by RealDigital*

§ Additional parts for
some labs (pick up as
needed)

§ Must return at end of
semester

L01-5September 5, 2024 https://fpga.mit.edu/6205/F24

*newer company

Collaboration

§ Assignments must be done independently but
students may seek help from other students and of
course staff.

§ That does not mean copying people’s stuff.

§ Work submitted must be your own

§ Violations/copying work will be dealt with seriously.
Don’t put us in that position. Nobody (us or you
will be happy)

L01-6September 5, 2024 https://fpga.mit.edu/6205/F24

Grade/Lateness Mechanics

§ Assignments are come out on Thursdays after class
and are due the following Wednesday night.

§ Every day late, they lose 20% (doesn’t accrue on
Sat/Sun)

L01-7September 5, 2024 https://fpga.mit.edu/6205/F24

Office Hours

§ Office Hours calendar on the main website page,
will be updated weekly by staff

§ Office hours in south-side of 38-630, the 6.205 lab
§ In person:

§ In-person support will be prioritized by staff
§ Lab machines in 38-630 will be open for your use if

needed
§ These machines may not be up with accounts until the

weekend.
§ Checkoffs must be done in person
§ Post on Piazza for help too (gets quick responses

generally)

L01-8September 5, 2024 https://fpga.mit.edu/6205/F24

Pause…

§ Questions…?

L01-9September 5, 2024 https://fpga.mit.edu/6205/F24

6.205’s Goal

§ We focus on digital design in this class and apply it
to FPGAs

§ We will want to do lots of simulations, but the end
goal is always to have working implementations on
hardware!

§ The best bugs and thinkos show up when actually
trying to get a system working in real life.

L01-10September 5, 2024 https://fpga.mit.edu/6205/F24

WTFPGA?

§ A giant array of very primitive logic blocks (aka
“gates”, memory, and other specialized hardware
that are each individually programmable.

§ The giant array of logic exists in a huge sea of
programmable interconnects

§ The device can be reprogrammed repeatedly even
once in a device, hence it can be programmed “in
the field”.

§ You have full control over all the modules and their
interconnects. They can run at the same time; not
bound by the fixed structure and limitations of a
computer

L01-11September 5, 2024 https://fpga.mit.edu/6205/F24

A Regular Computer

§ Write Code
§ You Program a piece of hardware with that code
§ That hardware runs following that code

L01-12September 5, 2024 https://fpga.mit.edu/6205/F24

One large and complicated
monolithic, forever fixed
computational system you
have do different things by
changing software that runs
on it

inputs outputs

An FPGA

§ Many small programmable blocks
§ Write code for each and program them
§ Write code that specifies how they work together

and program them
§ Run it all

L01-13September 5, 2024 https://fpga.mit.edu/6205/F24

inputs outputs

Many small, relatively simple
computational elements you
individually program and
individually connect together
as you see fit!

Our cheapo* FPGA in 6.205

§ Has roughly 33,000 programmable blocks
§ 150 18kb memory units
§ 5 clock management tiles
§ 120 dedicated multipliers
§ Vast array of input, output devices

§ …and all of these can be interconnected as we see
fit to build complex systems.

L01-14September 5, 2024 https://fpga.mit.edu/6205/F24

*even cheap FPGAs have resources orders of magnitude more than computation systems from previous decades

Where are FPGAs used?

§ Anywhere that speed and efficiency are important:
§ Hardware accelerators
§ Stream processors

§ Where the “generalness” of a computer isn’t
needed or is harmful:
§ Improvements in:

§ Speed
§ Cost
§ Power consumption

§ Lots of simpler tasks to be done in parallel?
§ In prototyping: After you’ve simulated a new

design but before you spend tens of millions and
wait eighteen months to make a chip you will
prototype it on an FPGA

L01-15September 5, 2024 https://fpga.mit.edu/6205/F24

The State of Hardware

§ Since Moore’s Law has died out, we can’t just wait
for continual gains from shrinking the same old
designs.

§ There has been renewed push to:
§ Find new computational architectures
§ Build custom chips
§ Have much more of a hybrid computational environment

§ FPGAs and their related areas of work are right in
the middle of it.

§ The field is at a very exciting position right

L01-16September 5, 2024 https://fpga.mit.edu/6205/F24

Digital Logic

§ Subfield of electronics
§ Voltages in the circuit are classified as either “1” or “0”

§ each ”family” of digital logic has its own specifications as to
what constitutes a 1 or a 0

§ Digital circuits are designed to:
§ interpret input information as 1’s and 0’s
§ generate output information as 1’s and 0’s

§ Digital electronics are the reason for the “digital”
revolution:
§ Robust, scalable, inexpensive, etc…

L01-17September 5, 2024 https://fpga.mit.edu/6205/F24

Two Broad Types of Digital Logic

L01-18September 5, 2024 https://fpga.mit.edu/6205/F24

𝒇
𝑥!
𝑥"
𝑥#
𝑥$

𝑓 𝑥!, 𝑥", 𝑥#, 𝑥$

Functions: Storage:

𝑥(𝑡) 𝑥(𝑡 − 1)

Stateless

Current Output is
based ONLY on
current Inputs

NOT a function of
time

Stateful

Current Output
is based past

Input

Digital Functions

§ These work just like 𝑓 𝑥!, 𝑥", 𝑥#, 𝑥$ from “regular”
math, however…

§ The values of of inputs and outputs are limited to
the Boolean domain 𝔹 which is just {0,1}
§ as opposed to Real Numbers ℝ
§ Or complex Numbers ℂ

§ How do we “display” a function that exists in ℝ?
§ For example, if I wanted to show you some 𝑓 𝑥	 in
ℝ? How would we do it?

L01-19September 5, 2024 https://fpga.mit.edu/6205/F24

We Plot it or Write it Out with a set
of math algebra

L01-20September 5, 2024 https://fpga.mit.edu/6205/F24

Algebraic depiction of a
input-output behavior

Graphical depiction of a
input-output behavior

Digital Functions

§ Digital Functions can also be written using
algebraic expressions, just ones limited to the
Boolean realm.

§ Digital functions can also be graphically depicted,
just usually not with graphs…instead we’ll use
tables.

L01-21September 5, 2024 https://fpga.mit.edu/6205/F24

Boolean algebra

§ variables can only be 0 or 1
§ Commonly used operations aren’t the same as in

the real domain:
§ �̅� means “Not 𝑥” or the opposite
§ | means logical “or” (sometimes written as +)
§ & or adjacency means “and” (sometimes written as ')

§ So the algebraic expression of a certain digital
function could be:

L01-22September 5, 2024 https://fpga.mit.edu/6205/F24

𝑓 𝑥, 𝑦, 𝑧 = �̅� 3𝑦 ̅𝑧	|�̅� 3𝑦𝑧|𝑥 3𝑦 ̅𝑧|𝑥 3𝑦𝑧|𝑥𝑦𝑧

Digital Functions

§ The “space” of the inputs is often relatively small
compared to other domains and is therefore not
best conveyed using plots

§ Instead you will often write these using “Truth
Tables”

L01-23September 5, 2024 https://fpga.mit.edu/6205/F24

𝒙 𝒚 𝒛 𝑓 𝑥, 𝑦, 𝑧
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

𝑓 𝑥, 𝑦, 𝑧 = �̅� 3𝑦 ̅𝑧	|�̅� 3𝑦𝑧|𝑥 3𝑦 ̅𝑧|𝑥 3𝑦𝑧|𝑥𝑦𝑧

Express your function
algebraically like this:

Or “graphically” like this:

Digital Functions

§ As we’ll see, for a low-count variable inputs, there
are infinite possible functions in the Real domain
ℝ	but only a handful of possible in the Boolean
domain 𝔹

§ For small input functions, the possibilities are so
few we give them names even in the digital space.

L01-24September 5, 2024 https://fpga.mit.edu/6205/F24

The Simplest Digital Function Class

§ One Bit Input:

§ How many possible 1-bit functions exist?

L01-25September 5, 2024 https://fpga.mit.edu/6205/F24

𝒇𝑥 𝑓 𝑥	

1-bit functions (input is a single
value):

September 5, 2024

§ How many possible 1-bit functions exist?
§ Two (actually 4)…

𝑥 𝑓 𝑥
0 0
1 1

𝑥 𝑓 𝑥
0 1
1 0

Buffer (Yes) gate: Inverter (Not) gate:

𝑥 𝑓 𝑥	 𝑥 𝑓 𝑥	

𝑥 𝑓 𝑥
0 1
1 1

Always On gate:
𝑥 𝑓 𝑥
0 0
1 0

Always Off gate:

https://fpga.mit.edu/6205/F24 L01-26

What About Two bits input?

§ Two Bit Input:

§ How many possible 2-bit functions exist?

L01-27September 5, 2024 https://fpga.mit.edu/6205/F24

𝒇
𝑥

𝑓 𝑥, 𝑦
𝑦

2-bit functions:

September 5, 2024

Mayo, Avi & Setty, Yaki & Shavit, Seagull & Zaslaver, Alon & Alon, Uri. (2006).
 Plasticity of the cis-Regulatory Input Function of a Gene. PLoS biology. 4. e45. 10.1371/journal.pbio.0040045.

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y

1

0 x
1

0y𝑓 𝑥, 𝑦
𝒙 𝒚 𝑓 𝑥, 𝑦
0 0 𝑓 0,0
0 1 𝑓 0,1
1 0 𝑓 1,0
1 1 𝑓 1,1

2! = 16 possible
functions exist

Stated another way:
there are 16 unique 1-0
combinations for:
𝑓 0,0 , 𝑓 0,1 , 𝑓 1,0 , and
𝑓 1,1

https://fpga.mit.edu/6205/F24 L01-28

Simple Truth Tables

§ For a single-input
system, there are four
possible mappings (two
non-negligible)

§ For a two input system,
you have 4 input
combinations and 16
possible truth tables

§ There is a lot of
complexity that these
give us

L01-29September 5, 2024 https://fpga.mit.edu/6205/F24

Abels and Khisamutdinov, 2015,
https://www.researchgate.net/publication/291418819_Nucleic_Acid
_Computing_and_its_Potential_to_Transform_Silicon-
Based_Technology

https://www.researchgate.net/publication/291418819_Nucleic_Acid_Computing_and_its_Potential_to_Transform_Silicon-Based_Technology
https://www.researchgate.net/publication/291418819_Nucleic_Acid_Computing_and_its_Potential_to_Transform_Silicon-Based_Technology
https://www.researchgate.net/publication/291418819_Nucleic_Acid_Computing_and_its_Potential_to_Transform_Silicon-Based_Technology

Logical Reduction

§ All high level operations we may want can be
reduced down to combinations of these simpler
logical operations

§ We just need to start to see how.
§ Don’t just think of the “AND” gate as ”AND” in the

quasi-grammar sense of the term. A lot of things
we’d want to do when writing high-level
logic/programs rely on it, even if we don’t name it
that explicitly.

§ Same with “OR” or “XOR”

L01-30September 5, 2024 https://fpga.mit.edu/6205/F24

Consider just one of these truth
tables “XOR”
§ If 0 and 1 are numbers, XOR performs base 2

addition:
§ 0+0=0
§ 0+1=1
§ 1+0=1
§ 1+1=0 (carry 1)

§ Or, if 0 means positive and 1 means negative, XOR
performs sign determination of multiplication:
§ 0×0 = 0 (positive×positive = positive)
§ 0×1 = 1 (positive×negative = negative)
§ 1×0 = 1 (negative×positive = negative)
§ 1×1 = 0 (negative×negative = positive)

L01-31September 5, 2024 https://fpga.mit.edu/6205/F24

Or still thinking about ways of using
XOR
§ XOR expresses the if/else check:

if(A==1):
 output = !B
else:
 output = B

§ XOR it does the check: A!=B
§ XOR does others
§ All high-level algorithmic needs find

their basic implementation in these
fundamental functions

L01-32September 5, 2024 https://fpga.mit.edu/6205/F24

3-bit functions:

September 5, 2024

𝑓 𝑥, 𝑦, 𝑧
2/ = 256 possible
patterns for 𝑓

𝒙 𝒚 𝒛 𝑓 𝑥, 𝑦, 𝑧
0 0 0 𝑓 0,0,0
0 0 1 𝑓 0,0,1
0 1 0 𝑓 0,1,0
0 1 1 𝑓 0,1,1
1 0 0 𝑓 1,0,0
1 0 1 𝑓 1,0,1
1 1 0 𝑓 1,1,0
1 1 1 𝑓 1,1,1

Space of a function
is based off its input
width:

2#! = 2#" = 2/ = 256

https://fpga.mit.edu/6205/F24 L01-33

𝒇
𝑥
𝑦
𝑧

𝑓 𝑥, 𝑦, 𝑧

More Complex Logic Functions

§ 3 input Truth table:
§ A,B,C can be a three bit number:
 if {A,B,C}==7:
 Z=1
 else:
 Z=0
§ A,B two-bit number, C some condition:
 if {A,B}==3 and C:
 Z=1
 else:
 Z=0
§ Etc…

L01-34September 5, 2024 https://fpga.mit.edu/6205/F24

https://electronicspost.com/explain-logic-and-gate-and-its-operation-with-truth-table/

https://reviseomatic.org/help/e-logic/Logic%20Truth%20Tables.php

https://electronicspost.com/explain-logic-and-gate-and-its-operation-with-truth-table/
https://reviseomatic.org/help/e-logic/Logic%20Truth%20Tables.php

Things Scale Quickly
§ As you add more and more bits to your function

input, the number of possible functions you can
express grows astronomically…

September 5, 2024

Number of 𝑛 bit functions that exist: 2-!

https://fpga.mit.edu/6205/F24 L01-35

6-bit functions:

September 5, 2024

Possible functions you can express with six bit
input is:
2-" = 2./ = 1.84×1001

𝒙𝟓 𝒙𝟒 𝒙𝟑 𝒙𝟐 𝒙𝟏 𝒙𝟎 𝑓 𝑥', 𝑥(, 𝑥), 𝑥*, 𝑥+, 𝑥,
0 0 0 0 0 0 𝑓 0,0,0,0,0,0
. …
1 1 1 1 1 1 𝑓 1,1,1,1,1,1

𝑓 𝑥0, 𝑥1, 𝑥$, 𝑥#, 𝑥", 𝑥!

Our FPGA has 33,000 individually programmable 6-
input logic functions, meaning we have
astronomically large possibilities to build.

64 rows

https://fpga.mit.edu/6205/F24 L01-36

This…is Sort of Backwards

§ A modern digital engineer usually doesn’t start with
a set of truth tables and then assign meaning to
them. (what we just did)…have a hammer looking
for nails.

§ We usually want to go in the other direction:
§ Describe some sort of logical behavior that we want (if

this, then that, etc…)
§ Figure out the most efficient underlying digital function

that will express all of that for us and use it!
§ We don’t want to justify logic that we already have
§ We want to synthesize logic to suit a purpose,

L01-37September 5, 2024 https://fpga.mit.edu/6205/F24

Creating Truth Tables Manually

§ If you can boil your function down to a truth table,
it can be used to “program” the small logic
functions in an FPGA!

§ For simple things this isn’t too hard

L01-38September 5, 2024 https://fpga.mit.edu/6205/F24

𝒙𝟓 𝒙𝟒 𝒙𝟑 𝒙𝟐 𝒙𝟏 𝒙𝟎 𝑓 𝑥', 𝑥(, 𝑥), 𝑥*, 𝑥+, 𝑥,
0 0 0 0 0 0 𝑓 0,0,0,0,0,0
. …
1 1 1 1 1 1 𝑓 1,1,1,1,1,1

𝑓 𝑥0, 𝑥1, 𝑥$, 𝑥#, 𝑥", 𝑥!

64 rows

Sum of Products

§ One way to specify a Boolean
function can be in an algebraic
expression

§ Function is High when:
§ x is low and y is low and z is low OR
§ x is low and y is low and z is high OR
§ etc…

§ Called a “Sum of Products”

L01-39September 5, 2024 https://fpga.mit.edu/6205/F24

𝒙 𝒚 𝒛 𝑓 𝑥, 𝑦, 𝑧
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

𝑓 𝑥, 𝑦, 𝑧 = �̅� 3𝑦 ̅𝑧	|�̅� 3𝑦𝑧|𝑥 3𝑦 ̅𝑧|𝑥 3𝑦𝑧|𝑥𝑦𝑧

Called that because OR is sometimes drawn as + in Boolean
algebra, and & is often drawn as multiply

One of Week 01’s Assignments

§ In Week 01 you’ll design a 7-segment decoder:
§ Four bit digital value in encoding numbers 0 to 15 in binary
§ Seven values out which drive 7-segment LED to
§ Approach like seven parallel sum of products.

§ Specify the sum-of-product for the “a” segment…then the
“b” segment, etc…

L01-40September 5, 2024 https://fpga.mit.edu/6205/F24

Sum of Products Does Not Scale

§ Sometimes, sum of products are the easiest way to
just express a digital behavior.

§ But other times…we want to be able to say:
§ “If x is < 258 make an output go high, but only if button B

is not pushed and also do this other thing, but only if
Buttons C1 through C18 are in a 0x2AAAA pattern…”

§ You can reduce this logic down to algebraic
expressions and truth tables, but it takes work

§ More often now we use higher level constructs and
this is really where Hardware Description
Languages.

L01-41September 5, 2024 https://fpga.mit.edu/6205/F24

SystemVerilog

A Hardware Description Language interprets
high-level algorithmic expressions into low-

level digital logic

L01-42September 5, 2024 https://fpga.mit.edu/6205/F24

Verilog…VHDL…Chisel…SystemVerilog…
SystemC…Bluespec…Minispec…Verik…Veryl…
UVM…Amaranth…forever and ever amen.
§ We use Verilog and SystemVerilog since it really is

an industry standard.
§ Yeah Verilog sucks in lots of ways, but I think it is

a really good language to know and have some
fluency in

§ Lots of alternatives, but I’ll leave that to you to
discover in other situations/classes

L01-43September 5, 2024 https://fpga.mit.edu/6205/F24Credit: xkcd

Verilog: A Hardware Description Language (HDL)

§ Verilog is can/be two things:
§ A language used to describe hardware (synthesizable)
§ A language used for simulation of hardware (simulatable)

§ The bulk of your work in 6.205 will be be in
designing Verilog to synthesize onto a device

§ We’ll then use Python for simulating this year
(using a library called cocotb) so we won’t use
Verilog to simulate much.

L01-44September 5, 2024 https://fpga.mit.edu/6205/F24

Variables in Verilog

§ In Verilog:
§ logic is one type of variable
§ How a logic gets used determines what it represents

L01-45September 5, 2024 https://fpga.mit.edu/6205/F24

//variables:
logic a; //create one
logic b; //create another
logic c,d,e; //create several at same time

Variables in Verilog

§ In Verilog we have flexibility to specify the size of
variables:
§ By default things are one bit, but you can specify sizes like

shown below (sizing specified left to right):

L01-46September 5, 2024 https://fpga.mit.edu/6205/F24

//variables:
logic a; //create one bit variable
logic [3:0] b; //create four bit variable
logic [11:0] c,d,e; //create several 12 bit variables

§ Why not just use standard types (32 bit int for
example)?
§ You can, but unless needed, why waste the resources?
§ If you need four bits, just use four bits

Values in Verilog

§ Good practice to always specify values in the
following form: S’Txxxx_xxxx where
§ S is the size of the number (in bits)
§ ’ is the single quote marker
§ T is the numerical base you’re specifying the value in

§ b for binary (0,1)
§ d for decimal (0,1,2,3,4,5,6,7,8,9)
§ h for hex (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

§ xxxx_xxxx are your values
§ The _ is ignored in evaluation
§ use _ to make more readable
§ Don’t need to use _ but is really nice

L01-47September 5, 2024 https://fpga.mit.edu/6205/F24

Values in Verilog

L01-48September 5, 2024 https://fpga.mit.edu/6205/F24

10'b1010_01010_00; //10 bit size of value...
10'b1; //10 bit value but only lsb specified...so this is saying 10'b0000_0000_01;
12'hF0F; //12 bits..this would be 12'b1111_0000_1111;
9'hF0F; //9 bits so 9'b1_0000_1111; top three cut off since we said only 9 long
15; //assumed to be an 32 bit integer by default:
 // 'b0000_0000_0000_0000_0000_0000_0000_1111;

§ Some examples:

Values of Bits

§ Each bit can take on four values:
§ 1: Logical 1
§ 0: Logical 0
§ X: Undefined
§ Z: High Impedance

L01-49September 5, 2024 https://fpga.mit.edu/6205/F24

Order of Operations in Verilog

§ Be careful!
§ The order is not always

what you expect!
§ Use parentheses for

safety!

L01-50September 5, 2024 https://fpga.mit.edu/6205/F24

https://class.ece.uw.edu/cadta/verilog/operators.html

Creating Pure Digital Functions

§ Two ways:
§ Using assign statements
§ Using always_comb blocks

§ Let’s say I wanted c = b || a aka “c = b OR a”

L01-51September 5, 2024 https://fpga.mit.edu/6205/F24

𝒇 𝑐
𝑎
𝑏

//create combinational...
//element with assign:
logic a, b, c;
assign c = a || b;

//create combinational element...
// with always_comb block:
logic a, b, c;
always_comb begin
 c = a || b;
end

Will result in a piece of
combinational logic that carries
out this Boolean function:

What about ”Higher Level”
Constructs?
§ If/Else Statements?

§ For Example: Have three one-bit inputs (𝑥,𝑦,𝑧) and
a one-bit output. If any two or more inputs are 1,
the output is 1 (aka a “majority function”)

L01-52September 5, 2024 https://fpga.mit.edu/6205/F24

Majority Function Solution #1

L01-53September 5, 2024 https://fpga.mit.edu/6205/F24

logic x,y,z,output_1;
//one way (“Sum of products”):
assign output_1 = (!x && y && z)|| (x && !y && z) || (x && y && !z) || (x & y && z);

§ And Verilog is like C in terms of formatting…use
indents to improve readability!!!

logic x,y,z,output_1;
//one way (“Sum of products”):
assign output_1 = (!x && y && z) ||
 (x && !y && z) ||
 (x && y && !z) ||
 (x & y && z);

Great…this might not be how you think about it at first

Majority Function Solution #2

L01-54September 5, 2024 https://fpga.mit.edu/6205/F24

logic x,y,z,output_1;

//another way (alternative sum of products approach):
//('b is base header for binary, so 'b011 means 011 in binary)
assign output_1 = ({x,y,z}=='b011)||
 ({x,y,z}=='b101)||
 ({x,y,z}=='b110)||
 ({x,y,z}=='b111);

Great…this might not be how you think about it at first

Majority Function Solution #3

L01-55September 5, 2024 https://fpga.mit.edu/6205/F24

logic x,y,z,output_1;

//another way (chained ternary operator)
assign output_1 = {x,y,z}>=5?1:{x,y,z}==3?:1:0;
//numbers not specified with base header default to base 10!

OK…I mean this is maybe a bit better…

Majority Function Solution #4

L01-56September 5, 2024 https://fpga.mit.edu/6205/F24

logic x,y,z,output_1;

// same logic as previous ternary chain
// done with always_comb block
always_comb begin
 if ({x,y,z}>=5))begin
 output_1 = 1'b1;//specify bit
 end else if ({x,y,z}==3'b101) begin
 output_1 = 1'b1;
 end else begin
 output_1=0;
 end
end

Majority Function Solution #5

L01-57September 5, 2024 https://fpga.mit.edu/6205/F24

logic x,y,z,output_1;

//ternary chain previous except done with always_comb block (different)
// this way default sets output_1 to 0 and changes to only on certain conditions
always_comb begin
 output_1=0;
 if ({x,y,z}>=5))begin
 output_1 = 1'b1;//specify bit
 end else if ({x,y,z}==3'b101) begin
 output_1 = 1'b1;
 end
end
// Be very careful with this right now...the way this works can easily lead to confusion
// about things and how to understand System/Verilog

Majority Function Solution(s) all
together for review

L01-58September 5, 2024 https://fpga.mit.edu/6205/F24

logic x,y,z,output_1;
//one way (“Sum of products”):
assign output_1 = (!x && y && z)|| (x && !y && z) || (x && y && !z) || (x & y && z);
//another way: ('b is base header for binary, so 'b011 means 011 in binary)
assign output_1 = ({x,y,z}=='b011)||({x,y,z}=='b101)||({x,y,z}=='b110)||({x,y,z}=='b111);
//another way (chained ternary operator)
assign output_1 = {x,y,z}>=5?1:{x,y,z}==3?:1:0;
//numbers not specified with base header default to base 10!
//ternary chain above except done with alway_comb block
always_comb begin
 if ({x,y,z}>=5))begin
 output_1 = 1'b1;//specify bit
 end else if ({x,y,z}==3'b101) begin
 output_1 = 1'b1;
 end else begin
 output_1=0;
 end
end
//ternary chain above except done with always_comb block (different)
always_comb begin
 output_1=0;
 if ({x,y,z}>=5))begin
 output_1 = 1'b1;//specify bit
 end else if ({x,y,z}==3'b101) begin
 output_1 = 1'b1;
 end
end

The result of EACH of these lines?

§ The logic expressed by this truth table:

§ There’s often more than one way to write a thing in
Verilog

L01-59September 5, 2024 https://fpga.mit.edu/6205/F24

𝒙 𝒚 𝒛 𝒐𝒖𝒕𝒑𝒖𝒕_𝟏

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

* Which can be built using ¼ of 1/33000th of our FPGA

Now…life hits us

§ Theoretical Idea of a digital function is divorced
from concept of time, but…

§ Everything takes time to occur because of
capacitance, non-idealities, the speed of light,
etc…:

§ BIG QUESTION. If you set x,y,z, how long
until you see the correct result at the output?

September 5, 2024
https://fpga.mit.edu/6205/F24 L01-60

𝒇
𝑥
𝑦
𝑧

𝑓 𝑥, 𝑦, 𝑧

Delays

§ Two big numbers for a Digital Function:
§ 𝒕𝒄𝒅: Contamination Delay: The minimum time it takes

from an input change on a function to appear at output of
function

§ 𝒕𝒑𝒅: Propagation Delay: The maximum time it takes
from an input change on a function to appear at output of
function

§ Therefore, when a new input is presented to a digital
(combinational function), it will take between 𝒕𝒄𝒅 and 𝒕𝒑𝒅 for
it to calculate!

§ Can also think of these as best/worst case response times
§ During 𝒕𝒑𝒅 the input must be held stable

September 5, 2024
https://fpga.mit.edu/6205/F24 L01-61

𝒇
𝑥
𝑦
𝑧

𝑓 𝑥, 𝑦, 𝑧

How Many Calculations per second?

§ We’ll often want to feed in
one set of inputs and then
another and then another
and then another,
harvesting the outputs as
they appear.

§ If a module has:
§ 𝒕𝒄𝒅 = 𝟏𝐧𝐬
§ 𝒕𝒑𝒅 = 𝟓𝐧𝐬

§ How many calculations can
we get per second?

L01-62September 5, 2024 https://fpga.mit.edu/6205/F24

𝒇
𝑥
𝑦
𝑧

𝑓 𝑥, 𝑦, 𝑧

Throughput ≈ 𝟏
𝒕𝒑𝒅

fthroughput ≈
𝟏
𝟓𝐧𝐬 = 𝟐𝟎𝐌𝐇𝐳

Modules
§ Use modules to compartmentalize/reuse your code:

§ Then else where you can make an instance!

L01-63September 5, 2024 https://fpga.mit.edu/6205/F24

module f1(input wire x,
 input wire y,
 input wire z,
 output logic output_1);

 assign output_1 = ({x,y,z}=='b011)||
 ({x,y,z}=='b101)||({x,y,z}=='b110)||
 ({x,y,z}=='b111);
endmodule

Modules
§ Use modules to compartmentalize/reuse your code.
§ Then else where you can make an instance:

§ Which will build a circuit like this:

L01-64September 5, 2024 https://fpga.mit.edu/6205/F24

logic q,r,t,cat;
//declare instance of that module:
f1 my_f1(.x(q), .y(r), .z(t), .output_1(cat));

𝒇𝟏 cat

q

r

t

And you can build from here

§ What if you wanted a majority function of majority
functions?

L01-65September 5, 2024 https://fpga.mit.edu/6205/F24

logic [8:0] v_in;
logic [2:0] intermediates;
logic total_out;
//declare separate instances of that same module:
f1 f11(.x(v_in[2]), .y(v_in[1]), .z(v_in[0]), .output_1(intermediates[0]));
f1 f12(.x(v_in[5]), .y(v_in[4]), .z(v_in[3]), .output_1(intermediates[1]));
f1 f13(.x(v_in[8]), .y(v_in[7]), .z(v_in[6]), .output_1(intermediates[3]));
//final layer:
f1 f1total(.x(intermediates[2]), .y(intermediates[1]),
 .z(intermediates[0]), .output_1(total_out));

Majority of Majority

L01-66September 5, 2024 https://fpga.mit.edu/6205/F24

logic [8:0] v_in;
logic [2:0] intermediates;
logic total_out;
//declare instance of that module:
f1 f11(.x(v_in[2]), .y(v_in[1]), .z(v_in[0]), .output_1(intermediates[0]));
f1 f12(.x(v_in[5]), .y(v_in[4]), .z(v_in[3]), .output_1(intermediates[1]));
f1 f13(.x(v_in[8]), .y(v_in[7]), .z(v_in[6]), .output_1(intermediates[3]));

f1 f1total(.x(intermediates[2]), .y(intermediates[1]),
 .z(intermediates[0]), .output_1(total_out));

𝒇𝟏
v_in[2:0]

𝒇𝟏
v_in[5:3]

𝒇𝟏
v_in[8:6]

𝒇𝟏 total_out

As we start to Attach things…

§ Functions Driving Functions…

§ Any potential problems?

L01-67September 5, 2024 https://fpga.mit.edu/6205/F24

𝑓 𝑥, 𝑦, 𝑧 = 𝑔 𝑥, ℎ 𝑦, 𝑧

𝒈
x

y
z

𝒉

𝒇

Delays

§ Two big numbers for a Digital Function:
§ 𝒕𝒄𝒅: Contamination Delay: The minimum time it takes

from an input change on a function to appear at output of
function

§ 𝒕𝒑𝒅: Propagation Delay: The maximum time it takes
from an input change on a function to appear at output of
function

§ Therefore, when a new input is presented to a digital
(combinational function), it will take between 𝒕𝒄𝒅 and 𝒕𝒑𝒅 for
it to calculate!

§ Can also think of these as best/worst case response times
§ During 𝒕𝒑𝒅 the input must be held stable

September 5, 2024
https://fpga.mit.edu/6205/F24 L01-68

𝒇
𝑥
𝑦
𝑧

𝑓 𝑥, 𝑦, 𝑧

As we start to Attach things…

§ Function g cannot start calculating its final answer
until h has determined its own final answer.
§ If h needs 𝒕𝒑𝒅𝒉 to calculate and g needs 𝒕𝒑𝒅𝒈 that means…

L01-69September 5, 2024 https://fpga.mit.edu/6205/F24

𝑓 𝑥, 𝑦, 𝑧 = 𝑔 𝑥, ℎ 𝑦, 𝑧

𝒈
x

y
z

𝒉

𝒇

System as a Whole?

§ The 𝒕𝒑𝒅 of the whole system has gone up!
§ So the throughput of the whole system has gone

down.
§ But this is only half the problem.

L01-70September 5, 2024 https://fpga.mit.edu/6205/F24

𝒈
x

y
z

𝒉

𝒇§ The module h is meant
to calculate, but we’re
requiring it to hold its
result for the benefit
of g.

§ That is a waste of its
potential

How to Fix?

§ We fix with flip flops

L01-71September 5, 2024 https://fpga.mit.edu/6205/F24

y
z

𝒉

“I need creative freedom to calculate
results. Do not waste my time by
making me hold values for other
functions. I’m an artist.”

D Q

“I am an edge-triggered D
flip flip. I will hold your
result while you calculate
the next one. This will help
you and lead to a better
society overall.

Fixing function f

§ Make clk a periodic signal
§ Every so often grab a result from h and hold it

input of g.

L01-72September 5, 2024 https://fpga.mit.edu/6205/F24

𝒈
x

y
z

𝒉

𝒇

D Q

clk

§ Frees up h to
calculate at the
same time that
g is calculating
(albeit on
different sets of
data)

*this is not a perfect solution (we’ll spend next few weeks talking about this)

Originally We had:

§ Pure combinational version of the h function:

L01-73September 5, 2024 https://fpga.mit.edu/6205/F24

module h (input wire [7:0] y, input wire [7:0] z, output logic b);
 always_comb begin
 b = y>z;
 end
endmodule

y
z

𝒉 b

Incorporate a Flip Flop in it.

§ Same logic but put a flip flop on output

L01-74September 5, 2024 https://fpga.mit.edu/6205/F24

module h (input wire clk, input wire [7:0] y, input wire [7:0] z, output logic b);
 always_ff @(posedge clk) begin
 b <= y>z;
 end
endmodule

y
z

𝒉′ D Q

clk

b

𝒉

One Last Thought for Day 1

§ This is glimpse of the digital design situation.
§ It is a constant battle against time.
§ Worrying about how long a calculation will take
§ Making sure no part of your design is wasting time
§ Meeting timing in your designs will become a key

piece of who you are as a person.

L01-75September 5, 2024 https://fpga.mit.edu/6205/F24

What’s Next

§ Get Lab Kit (you can get in office hours starting
after 4:30 pm -6:30pm today…or at any office
hours with a TA…see calendar…so that’s Kiran, Jan,
Kailas, or Stephen or Joe)

§ Week 1 assignments are out now (on course
website). Due next Wednesday September 11 at
night at 11:59pm

L01-76September 5, 2024 https://fpga.mit.edu/6205/F24

