
Network-Attached Laser Projector
Preliminary Report

1st Fischer Moseley
Department of Physics

Massachusetts Institute of Technology
Cambridge, MA, USA

fischerm@mit.edu

2nd Jay Lang
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
jaytlang@mit.edu

Abstract—We present a design for a Network-Attached Laser
Projector implemented entirely in hardware on an FPGA fabric,
which utilizes a novel parallel-stack UDP offload engine to
connect to a local area network (LAN), and stream full-color
vectorized images to an RGB laser projector. This hardware
networking stack interfaces with the laser control module di-
rectly, and user packets are processed in real time, allowing for
total system throughput exceeding 100 megabits per second. We
implement this design using a custom laser module and the Nexys
4 DDR FPGA, evaluate its performance and quality using custom
trajectory generation software to stream images over a custom
application layer network protocol, and discuss potential areas
for future expansion and improvement.

Index Terms—Digital systems, Field programmable gate ar-
rays, Computer networks, Diode lasers, Optical projectors

I. PHYSICAL CONSTRUCTION

The projector itself consists of:
• A RGB laser module. The multicolored beam is formed

by combining the outputs of a 660nm, 520nm, and 450nm
with a set of dichroic mirrors. This doesn’t produce a true
RGB beam, but it’s close enough for our purposes.

• A galvanometer assembly, with a pair of movable
orthogonally-mounted mirrors to steer the beam in the
x and y directions.

• A pair of galvonometer drivers. These discipline the the
mirror’s position to a setpoint defined by an analog input
voltage.

• Driver electronics, consisting of a set of two DACs that
produce the control signals that steer the beam in the x
and y directions, and three constant-current LED drivers,
which regulate the current through each of the laser diode.

• A Nexys 4 DDR FPGA, from Digilent.
Eventually the projector will move from its present card-

board backplane to a proper enclosure. Per EHS regulations,
this will include interlocks that interrupt power to the device
if the enclosure is tampered with during operation.

II. IMAGE PROCESSING

To display an image or video on the wall, the source image
must be converted from raster form to a trajectory for the laser
to trace on the wall. This takes the form of an ordered list of
x, y points, the generation of which happens using OpenCV

in a Python script on a host computer. This occurs over a few
steps.

• Rescaling - To handle arbitrarily sized input, the script
rescales the input source to a resolution of 512x512.
This simplifies the coordinate calculation math that’s
performed later in the pipeline.

• Canny Filtering - The image is converted to greyscale,
and then processed by a Canny filter for edge detection.

• Point Reordering - The Canny filter outputs an image
with the edges encoded as a mask - white pixels against
a black background. The ordering of these pixels follows
the image coordinate system, but the points are reordered
such that adjacent pixels come after each other in the list.
This takes the form of a nearest-neighbors algorithm, and
it is incredibly slow as it occurs in Python. Moving it to
C/C++ is a goal for the final project.

Fig. 1. Output of trajectory planning. On the left, the source image. In the
center, the image to be rendered by the projector. On the right, the image to
be rendered, but including the jumps between contours in red. Although the
actual output is colorized, the trajectory here is shown as monochrome for
clarity.

Currently the Python script only outputs trajectory informa-
tion - since our drive electronics aren’t complete yet, we’ve
been prototyping with a red laser pointer. We have no way to
enable/disable the laser, so we will add the ability to output
full-color once the drive electronics are complete.

Once the trajectory has been calculated, it’s sent out over
the network. Each point is encapsulated as a network packet
using our custom application layer network protocol, and then
sent to the FPGA using the Scapy Python library. We hope to
use the OS socket library once the networking offload engine
is fully working.



Fig. 2. Block diagram for the Network Offload Engine.

Fig. 3. Block diagram for the Display Controller.



III. NETWORKING OFFLOAD ENGINE

A. The Physical Layer

The FPGA comes with an Ethernet chipset implementing
the IEEE802.3 fast Ethernet standard, thus rated for 100 Mbps
full-duplex operation. The chipset exports a number of con-
figuration registers to the FPGA, in addition to implementing
the RMII specification.

B. Media Access Controllers

We implement a Media Access Controller (MAC) layer to
complement the Ethernet physical (PHY) chipset on the Nexys
board, per the IEEE802.3 standard. Separate modules are
devised for reception and transmission of packets to support
full duplex operation, each translating raw Ethernet II packets
back and forth from Ethernet frames. In order to populate the
Frame Check Sequence (FCS) and verify it against received
packets, an Ethernet checksum (CRC32-BZIP2) module is
implemented. As is the case in modern NICs, the FCS is
shedded after it is verified, in addition to other Layer-1 specific
structures such as the Ethernet preamble.

This module is small, but difficult to test in vivo due to the
complexity of the RMII interface and the resulting number of
partitions on input signals. To test this module, we utilize the
popular sniffer Wireshark to view raw packets which contain
a passing FCS, and additionally configure a network card on
the controlling machine to discard the FCS regardless of its
correctness. A custom Ethernet protocol was implemented to
accelerate this process; when a packet of this type is received,
it along with its data is echoed back to the sender and never
processed by the rest of the networking subsystem.

C. Address Resolution

The Address Resolution Protocol (ARP) is implemented
above the MAC layer according to RFC 826 [1], to enable dis-
covery and static protocol addressing for the LAN-connected
FPGA. At compile time, a MAC address and desired IP
address are specified within the system logic, and the host
LAN is configured to allow static IP addressing outside of its
DHCP range (if necessary).

The ARP implementation utilizes a single element table
to store protocol and hardware addresses of the gateway. As
such, the system is capable of not only responding to ARP
requests for its own address, but updates its own table mapping
dynamically in accordance to the algorithm specified within
the RFC.

To simplify implementation, the ARP module examines a
single large buffer (implemented as an array of byte registers
and likely synthesized into block RAM), looking for relevant
identifiers at appropriate offsets. As this is extremely difficult
to replicate in simulation, the full dynamic system is tested
via external sniffing (thorugh Wireshark etc.) and fuzzing, in
conjunction with several different router configurations.

D. The Internet Protocol

Currently, the IPv4 protocol has yet to be implemented in
accordance with RFC 791. [2]

E. User Datagram Protocol (UDP)

Currently, the User Datagram Protocol (UDP) has yet to be
implemented in accordance with RFC 768. [3]

IV. LASER DISPLAY MODULE (FISCHER)

A. Framebuffer

As data is streamed off of the network and into the projector,
incoming sets of (x, y, r, g, b) points are buffered such that the
display controller can later scan through them and write them
to the drive electronics. Originally we considered streaming
directly into the framebuffer, but the incoming packet stream
is of variable speed, meaning that the drive electronics could
read from the framebuffer before the network stack is finished
writing to it. This would produce a distorted frame.

To mitigate this, we use a pair of BRAM banks inside
the display controller. When packets are being received, the
network module will write into one BRAM bank, waiting
for it to fill. Once the end of the frame is reached, the host
computer will signal the FPGA to exchange the banks. The
module will then save the current BRAM address as the end
of the frame, and then toggle an internal bram_select
line to indicate that the incoming and outgoing BRAM banks
have been swapped. Points are then written out to the drive
electronics from the freshly filled BRAM bank, and the newly
decomissioned BRAM bank is made available for new points
to be recorded into. The ultimate size of this BRAM is
something that is still to be determined.

B. Packet Structure

The data enclosed in the packets is 64-bits wide, and follows
the following structure:

cmd x y r g b

• cmd: The control signal the FPGA uses to determine
when to switch BRAM banks in the framebuffer. This
field is set to 0x01 when data is being streamed in,
and set to 0x02 when the frame is complete and the
BRAM banks should be flipped. This field is 8 bits wide
so that the entire packet would be 64 bits wide, which
is conveniently the width of our BRAM buffers. This
enables us to save the entire packet into BRAM without
worrying about rearranging the packet.

• x: The position of the laser beam in the x direction. The
DAC that feeds the drive electronics is 16-bit, so this field
is also 16 bits wide.

• y: The position of the laser beam in the y direction. The
x and y channels are identical, so this field is also 16 bits
wide.

• r: The intensity of the red light at the point. Most images
use 8-bit color anyway, so using 8 bits here seemed
reasonable.

• g: The intensity of the green light. 8 bits wide.
• b: The intensity of the blue light. 8 bits wide.
These packets are stored in this same format in the 64-

bit wide BRAM banks. It is also worth noting that the cmd



parameter is only respected on incoming packets, and packets
being read out of either BRAM bank ignore this parameter.

C. Display Controller
Once a complete framebuffer has been assembled and filled

with packets following the above structure, its contents are
sent to the drive electronics. For galvonometer control, this
takes the form of two SPI-connected DACs, with the output
buffered by a pair of unity-gain opamps. SPI was chosen
for the interface because initial testing revealed that I2C was
much too slow to update the DACs fast enough to produce
a non-flickering image, even when running at 400kHz clock
speed. Using SPI also allows us to skip the address byte at the
start of every transmission, increasing throughput, and using
concurrent SPI buses also allows us to leverage the parallel
nature of the FPGA for a tangible speed improvement.

Originally we considered using a non-unity gain amplifier
stage on the output of the DACs to use more of the dynamic
range of the galvonometers, which supposedly accept a voltage
input between 0−15V . Ultimately, this was decided against as
documentation on the laser modules was virtually nonexistent,
and it wasn’t worth risking damage to the laser driver. This had
the unexpected benefit of requiring the mirrors to undergo less
displacement to produce the same image, effectively reducing
acceleration on the galvonometers and making a less fuzzy
image. This does come at the expense of throw distance, and
the projector must be nearly 15 feet from the screen in order to
produce an image with any discernable detail. We considered
this tradeoff reasonable to prevent any accidental damage to
the hardware.

On the laser side, a PWM signal was used to control the
intensity of each laser. We planned on using DAC-based output
stage originally for controlling laser power, but it was deduced
that a PWM signal could be varied faster than the x and
y galvonometers could be, and PWM would suffice. This
wouldn’t be possible on a traditional microcontroller because
of the difference in clock speed, and so a high-frequency PWM
approach better highlights the unique nature of the FPGA and
enables a less elaborate output stage.

Each channel of PWM output from the FPGA is fed into
a potentiometer that sets the current on an opamp-based
constant current source. This potentiometer can be adjusted
to vary the maximum output power for compliance with EHS
safety restrictions. The constant current source uses a NPN
transistor to regulate the current through the laser diode, and
was chosen instead of a MOSFET because of the absence
of any gate-source or gate-drain capacitance. Since the BJT
is a current-controlled amplifier, parasitic voltages cannot
accumulate across the gate capacitance and accidentally turn
on the laser diode if the laser driver is tampered with. The
lack of gate capacitance also enables a faster switching time,
and the lack of any (significant) switching losses.

This design has been transferred to a custom PCB, which
is currently being fabricated at PCBWay.

REFERENCES

[1] An Ethernet Address Resolution Protocol. RFC 826, November 1982.

[2] Internet Program Protocol Specification. RFC 791, September 1981.
[3] User Datagram Protocol. RFC 768, November 1982.


