
Network-Attached Laser Projector
Final Report

1st Fischer Moseley
Department of Physics

Massachusetts Institute of Technology
Cambridge, MA, USA

fischerm@mit.edu

2nd Jay Lang
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
jaytlang@mit.edu

Abstract—We present a design for a Network-Attached Laser
Projector implemented entirely in hardware on an FPGA fabric,
which utilizes a novel parallel-stack UDP offload engine to
connect to a local area network (LAN), and stream full-color
vectorized images to an RGB laser projector. This hardware
networking stack interfaces with the laser control module di-
rectly, and user packets are processed in real time, allowing for
total system throughput exceeding 100 megabits per second. We
implement this design using a custom laser module and the Nexys
4 DDR FPGA, evaluate its performance and quality using custom
trajectory generation software to stream images over a custom
application layer network protocol, and discuss potential areas
for future expansion and improvement.

Index Terms—Digital systems, Field programmable gate ar-
rays, Computer networks, Diode lasers, Optical projectors

I. PHYSICAL CONSTRUCTION (FISCHER)

Apart from the interlocks, the enclosure also contains the
following:

• An IEC203 connector for 120V power, mounted on the
rear panel.

• An Ethernet connector, mounted on the rear panel.
• A micro-USB connector, mounted on the rear panel.
• The Nexys 4 DDR board, with the custom laser/galvo

board connected to a PMOD connector.
• A bipolar, ±15V power supply for driving the laser

galvos and laser diodes.
• A pair of galvonometer drivers. The galvonomoters have

closed-loop control, so these boards implement some kind
of control loop in analog electronics.

• A galvonometer module, which includes a set of mirrors
mounted orthogonally such that the laser position can be
varied in the x and y directions.

• A RGB laser module. The multicolored output is formed
by combining 660nm, 520nm, and 450nm lasers, which
does not create a true full-color output, but it is sufficient
for our purposes. The beams are generated by individual
lasers and combined with dichromatic mirrors into a
single colinear beam. This is driven by the custom board
connected to the Nexys board’s PMOD port. The output
of the laser module is directed into the galvonometer’s
input before being reflected out of an aperture on the
front of the module.

II. IMAGE PROCESSING (FISCHER)

To pre-prepare images and videos for display via the laser
projector, images need to be vectorized and converted into a
path of points the projector can understand. This processing
currently takes place in Python using the OpenCV toolkit, and
consists of a few steps:

• Rescaling. The image processing script is meant to handle
any arbitrarily sized input, so it rescales everything to a
uniform 512x512 square before any processing begins.
This is done to keep the generated trajectory small and
quickens the actual processing.

• Canny Filtering. A greyscale map of the image is gen-
erated, and then processed by a Canny Filter to detect
edges.

• Trajectory Planning. The canny filter only outputs a
rasterized image, not lists of connected points. OpenCV’s
connectedComponents function is used here, which
returns lists of pixels on the same contour. These lists
don’t have any order to them, so they must be resorted
such that adjacent pixels come after each other in the list.
This process is incredibly slow as it occurs in Python
instead of C++, like the rest of the OpenCV backend.
Once the contours have their pixels properly reordered, a
nearest-neighbors algorithm is run to find the next contour
to add to the trajectory. The final trajectory is passed on
to the next step.

• Recolorization. Each point in the output trajectory is
colorized by sampling the color of the same (x, y) point



in a blurred version of the original image. It was found
that blurring the image before sampling helped to produce
a more predictable color of the contour, as blurring
effectively averages neighboring pixel colors.

• Network streaming. Each point is encapsulated in our
custom application layer network protocol, and then sent
out via the conventional OS socket API at the FPGA.
Earlier versions of the system also supported receiving
information over a direct Ethernet link; The Scapy Python
library was used for crafting and sending such packets.

This process can be be seen in the following images:

Fig. 1. Output of trajectory planning. On the left, the source image. In the
center, the image to be rendered by the projector. On the right, the image to
be rendered, but including the jumps between contours in red. Although the
actual output is colorized, the trajectory here is shown as monochrome for
clarity.

The image processing script can process either a video,
a static image, or a webcam input by specifying a number
of command line options. It was also possible to export the
resulting output into either a .coe, .csv, .png, or .traj
file, which was incredibly useful for debugging.

III. NETWORKING OFFLOAD ENGINE (JAY)

The networking offload engine is a sophisticated, parallel-
stack, pure-hardware device which maintains a connection to
an Internet Protocol Version 4 (IPv4) gateway, and allows
application layer data to be channeled to other hardware
modules on the FPGA fabric over UDP.

The design of this module is broken into several parts,
corresponding with the appropriate layer of the canonical
OSDI model. We introduce these components from the bottom
up.

A. The Physical Layer

The FPGA comes with an Ethernet chipset implementing
the IEEE802.3 fast Ethernet standard, thus rated for 100 Mbps
full-duplex operation. The chipset exports a number of con-
figuration registers to the FPGA, in addition to implementing
the RMII specification.

B. Media Access Controllers

We implement a Media Access Controller (MAC) layer to
complement the Ethernet physical (PHY) chipset on the Nexys
board, per the IEEE802.3 standard. Separate modules are
devised for reception and transmission of packets to support
full duplex operation, each translating raw Ethernet II packets
back and forth from Ethernet frames. In order to populate the
Frame Check Sequence (FCS) and verify it against received

packets, an Ethernet checksum (CRC32-BZIP2) module is
implemented. As is the case in modern NICs, the FCS is
shedded after it is verified, in addition to other Layer-1 specific
structures such as the Ethernet preamble.

This module is small, but difficult to test in vivo due to the
complexity of the RMII interface and the resulting number of
partitions on input signals. To test this module, we utilize the
popular sniffer Wireshark to view raw packets which contain
a passing FCS, and additionally configure a network card on
the controlling machine to discard the FCS regardless of its
correctness. A custom Ethernet protocol was implemented to
accelerate this process; when a packet of this type is received,
it along with its data is echoed back to the sender and never
processed by the rest of the networking subsystem.

C. Address Resolution

The Address Resolution Protocol (ARP) is implemented
above the MAC layer according to RFC 826 [1], to enable dis-
covery and static protocol addressing for the LAN-connected
FPGA. At compile time, a MAC address and desired IP
address are specified within the system logic, and the host
LAN is configured to allow static IP addressing outside of its
DHCP range (if necessary).

The ARP implementation utilizes a single element table
to store protocol and hardware addresses of the gateway. As
such, the system is capable of not only responding to ARP
requests for its own address, but updates its own table mapping
dynamically in accordance to the algorithm specified within
the RFC.

To simplify implementation, the ARP module examines a
single large buffer (implemented as an array of byte registers
and likely synthesized into block RAM), looking for relevant
identifiers at appropriate offsets. As this is extremely difficult
to replicate in simulation, the full dynamic system is tested
via external sniffing (thorugh Wireshark etc.) and fuzzing, in
conjunction with several different router configurations.

D. The Internet Protocol

A subset of IPv4 is implemented according to (the in-
famous) RFC 791 [2], and the header checksum logic is
implemented in a separate module according to RFC 1071.
When an IP packet is passed from the MAC subsystem, the
IP block verifies the header checksum using this module and
also checks to ensure that the packet doesn’t utilize additional
options, is not fragmented, and encapsulates a UDP packet. If
none of these conditions are true, the packet is dropped.

These steps ensure the integrity of incoming data, and
additionally ensure that the packet conforms to only our
desired subset of IPv4. While this imposes some restrictions
upon incoming data (e.g. width cannot exceed the Maximum
Transmission Unit (MTU) of the underlying physical-layer
medium), we have found that we implement a sufficient subset
of IPv4 to where all major operating systems and all tested
router hardware convey packets in a manner our device can
understand.



Note that the Internet Control Message Protocol is not im-
plemented, so bad IPv4 packets (e.g. bad checksum, exceeded
time to live, etc.) are simply dropped rather than relayed back
to the sender.

E. User Datagram Protocol

We implement the User Datagram Protocol (UDP) on top of
our IPv4 receive layer in accordance with RFC 768 [3]. The
checksum is currently omitted, in order to provide a constant-
time depacketization capability, but the necessary logic to
compute this is implemented according to RFC 1071 (using
the same checksum logic as the IPv4 layer). Data at this layer
is completely depacketized once received, and if the incoming
port matches compile-time configuration, data is passed on to
the display controller.

F. Performance Characteristics

The network stack is novel for a number of reasons: most
significantly, since it is implemented in pure hardware, it
is capable of depacketizing data in a bounded number of
clock cycles. This number varies depending on the presence
of certain IPv4 options, but ultimately falls well beneath the
interframe gap required by IEEE802.3. This implies packets
can be sent along to the laser projector at 100 Mbps reliably
- in addition, since the transmission layer is implemented
in parallel to the reception layer, full-duplex operation can
be properly taken advantage of and impending transmission
doesn’t impact the integrity of incoming data.

Furthermore, assuming an IPv4 header length of 20 bytes,
the system is theoretically capable of computing all checksums
and performing all depacketization within 6 clock cycles. This
easily puts it under the required time to implement the gigabit
Ethernet standard, and potentially allows the implementation
of more complex transport-layer protocols (e.g. TCP) using
existing lower infrastructure.

IV. LASER DISPLAY MODULE (FISCHER)

A. Framebuffer

As data is streamed off of the network and into the projector,
incoming sets of (x, y, r, g, b) points are buffered such that the
display controller can later scan through them and write them
to the drive electronics. Originally we considered streaming
directly into the framebuffer, but the incoming packet stream
is of variable speed, meaning that the drive electronics could
read from the framebuffer before the network stack is finished
writing to it. This would produce a distorted frame.

To mitigate this, we use a pair of BRAM banks inside
the display controller. When packets are being received, the
network module will write into one BRAM bank, waiting
for it to fill. Once the end of the frame is reached, the host
computer will signal the FPGA to exchange the banks. The
module will then save the current BRAM address as the end
of the frame, and then toggle an internal bram_select
line to indicate that the incoming and outgoing BRAM banks
have been swapped. Points are then written out to the drive
electronics from the freshly filled BRAM bank, and the newly

decomissioned BRAM bank is made available for new points
to be recorded into. Each BRAM bank is 20,000 addresses
deep and 64-bits wide.

B. Packet Structure

The data enclosed in the packets is 64-bits wide, and follows
the following structure:

cmd x y r g b

• cmd: The control signal the FPGA uses to determine
when to switch BRAM banks in the framebuffer. This
field is set to 0x01 when data is being streamed in,
and set to 0x02 when the frame is complete and the
BRAM banks should be flipped. This field is 8 bits wide
so that the entire packet would be 64 bits wide, which
is conveniently the width of our BRAM buffers. This
enables us to save the entire packet into BRAM without
worrying about rearranging the packet.

• x: The position of the laser beam in the x direction. The
DAC that feeds the drive electronics is 16-bit, so this field
is also 16 bits wide.

• y: The position of the laser beam in the y direction. The
x and y channels are identical, so this field is also 16 bits
wide.

• r: The intensity of the red light at the point. Most images
use 8-bit color anyway, so using 8 bits here seemed
reasonable.

• g: The intensity of the green light. 8 bits wide.
• b: The intensity of the blue light. 8 bits wide.
These packets are stored in this same format in the 64-

bit wide BRAM banks. It is also worth noting that the cmd
parameter is only respected on incoming packets, and packets
being read out of either BRAM bank ignore this parameter.

C. Display Controller

Once a complete framebuffer has been assembled and filled
with packets following the above structure, its contents are
sent to the drive electronics. For galvonometer control, this
takes the form of two SPI-connected DACs, with the output
buffered by a pair of unity-gain opamps. SPI was chosen
for the interface because initial testing revealed that I2C was
much too slow to update the DACs fast enough to produce
a non-flickering image, even when running at 400kHz clock
speed. Using SPI also allows us to skip the address byte at the
start of every transmission, increasing throughput, and using
concurrent SPI buses also allows us to leverage the parallel
nature of the FPGA for a tangible speed improvement.

Originally we considered using a non-unity gain amplifier
stage on the output of the DACs to use more of the dynamic
range of the galvonometers, which supposedly accept a voltage
input between 0−15V . Ultimately, this was decided against as
documentation on the laser modules was virtually nonexistent,
and it wasn’t worth risking damage to the laser driver. This had
the unexpected benefit of requiring the mirrors to undergo less
displacement to produce the same image, effectively reducing



acceleration on the galvonometers and making a less fuzzy
image. This does come at the expense of throw distance, and
the projector must be nearly 15 feet from the screen in order to
produce an image with any discernable detail. We considered
this tradeoff reasonable to prevent any accidental damage to
the hardware.

On the laser side, a PWM signal was used to control the
intensity of each laser. We planned on using DAC-based output
stage originally for controlling laser power, but it was deduced
that a PWM signal could be varied faster than the x and
y galvonometers could be, and PWM would suffice. This
wouldn’t be possible on a traditional microcontroller because
of the difference in clock speed, and so a high-frequency PWM
approach better highlights the unique nature of the FPGA and
enables a less elaborate output stage.

Each channel of PWM output from the FPGA is fed into
a potentiometer that sets the current on an opamp-based
constant current source. This potentiometer can be adjusted
to vary the maximum output power for compliance with EHS
safety restrictions. The constant current source uses a NPN
transistor to regulate the current through the laser diode, and
was chosen instead of a MOSFET because of the absence
of any gate-source or gate-drain capacitance. Since the BJT
is a current-controlled amplifier, parasitic voltages cannot
accumulate across the gate capacitance and accidentally turn
on the laser diode if the laser driver is tampered with. The
lack of gate capacitance also enables a faster switching time,
and the lack of any (significant) switching losses.

This design was implemented on a custom PCB, designed
in Altium and manufactured by PCBWay.

Fig. 2. The 2D and 3D renders of the board in Altium.

V. RETROSPECTIVE

In hindsight, we learned a few rather important lessons
during the development process:

• Simulations are incredibly useful when the input space is
limited. For instance, most of the display control was
verified with simulation before a bitstream was ever
generated, and even then it worked the first time on
hardware. This saved a significant amount of time.
However, simulation of modules with more complex
input spaces (e.g. the Media Access Controllers) can get
unwieldly, especially when the variation of these inputs
over time is critical to assessing system correctness. For
this reason, it’s often useful to utilize an alternate method

of design verification - in our case, the NIC FCS discard
combined with the custom Ethernet-layer echo protocol
proved invaluable.

• Doing trajectory planning properly is super hard. There’s
some rather fancy graph-based algorithms for computing
a proper path through a set of points, but we didn’t feel
like spending a bunch of time on that really captured the
spirit of 6.111 - and so we consider our nearest-neighbors
algorithm sufficient. Those algorithms would take longer
to run than our current system (which is slow enough
as is) and would probably require porting to a compiled
language to make it run in any reasonable amount of time.
This would be the most useful improvement to the image
processing if more time was had.

• System interfaces are anathema to large systems -
whether they lie in software or hardware. Accordingly,
if two team members are implementing two different
parts of the system, picking a well defined interface,
establishing it clearly, and utilizing it throughout design
iteration is invaluable. As we developed our system,
we determined a suitable interface between the network
offload engine and the display controller fairly early
on - and obviously the interface between the network
offload engine and software image generation is well
defined through tens of RFCs. This way we were able
to re-integrate the design several times utilizing the same
interface, in a bug-free manner and a (surprisingly) rapid
pace

• Don’t buy sketchy USB Ethernet adapters off the internet,
because sometimes they don’t implement the slower 100
Mbps standard correctly. Make sure you’ve got old and
established hardware, or better yet, an actual Ethernet
port on your device you can manually modeset with
ethtool.



VI. APPENDIX A - LASER SAFETY AND PROCEDURES

Lasers are sketchy. Especially cheap, poorly-documented
ones procured from the Internet. The RGB laser module that
has been procured is a little short on trustworthy specifications,
and as a result MIT’s Environmental Health and Safety office
(EHS) has been consulted to operate the laser safely. To ensure
compliance with their requirements, the laser:

• Does not output more than 5mW on any channel. This
classifies it as a Class 2M laser.

• Is mounted inside a tamper-proof, interlocked enclosure
that cuts power to the laser when opened. This is accom-
plished with a pair of microswitches in series with the
120V supply inside the enclosure.

• Has been tested by EHS to verify that the laser output
spectra is not harmful to humans.

VII. APPENDIX B - DRIVER BOARD SCHEMATIC

VIII. APPENDIX C - GETTING NETWORKING TO WORK

In order to hook the NALP up to your LAN (or my
networking stack in general), you’ll have to do the following:

• Optional: Assign a MAC address to the FPGA. Currently
I have my FPGA co-opting a MAC address from a Rasp-
berry Pi I own, for ease of debugging packets by brute-
force equality. You might want to change this (especially
if I’m on campus or have my raspi plugged in on your net-
work), or better yet, set up your own little range of MAC
packets nobody else has claimed yet. This is pretty easy to
do, and currently defined in include/offsets.svh
as well as hdl/mac_rx.sv.

• Assign an IP address to the FPGA. This one’s pretty
simple - figure out the DHCP range of your network
and stick the IP address (include/offsets.svh)
outside of the DHCP range but within the subnet. This
should work out of the box...if not, send the IP address
you’ve chosen some ARP requests (e.g. with arping)
and verify that the system responds to ARP requests.
Doing this will force the gateway to recognize the device
as well, which might not happen the first time around.

This might be more complicated on MITnet. Registering
a static IP with IST should work without further config-
uration, and if that’s too much work, a Linux machine
can be configured as a router, and thus as a gateway to
MITnet. This isn’t too hard to set up if the Linux box
has 2 NICs - there’s lots of documentation online - and
should work if you port forward your desired port on that
Linux machine to the FPGA. You’ll need a static IP if
you want to talk to this thing over the wider, non-MITnet
internet though.

• If you’re sending packets over the internet rather than just
a LAN (MITnet doesn’t fall into this category), you’ll
have to port forward through your local router.

• Optional: Change the UDP port this thing lis-
tens on if you feel like it. This is also in
include/offsets.svh.

Note that if you just wanna do Ethernet-level networking, no
router configuration or other black magic is required, besides
modifying my network stack to do just that. Just plug your
board in and start sending packets, using the Media Access
Controller modules and a shared packet buffer without any of
the Internet Protocol / Address Resolution business. Ethertype
0x1234 is used for echo functionality, so try sending packets
there (e.g. with raw sockets or Scapy) to sanity check your
configuration.

REFERENCES

[1] An Ethernet Address Resolution Protocol. RFC 826, November 1982.
[2] Internet Program Protocol Specification. RFC 791, September 1981.
[3] User Datagram Protocol. RFC 768, November 1982.


